EP1877720B1 - Protective module for protecting electrified objects from threats, especially threats caused by shaped charges - Google Patents

Protective module for protecting electrified objects from threats, especially threats caused by shaped charges Download PDF

Info

Publication number
EP1877720B1
EP1877720B1 EP06724724A EP06724724A EP1877720B1 EP 1877720 B1 EP1877720 B1 EP 1877720B1 EP 06724724 A EP06724724 A EP 06724724A EP 06724724 A EP06724724 A EP 06724724A EP 1877720 B1 EP1877720 B1 EP 1877720B1
Authority
EP
European Patent Office
Prior art keywords
electrode
shaped charge
facing
electrode material
jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06724724A
Other languages
German (de)
French (fr)
Other versions
EP1877720A1 (en
Inventor
Matthias Wickert
Karsten Michael
Jürgen KUDER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1877720A1 publication Critical patent/EP1877720A1/en
Application granted granted Critical
Publication of EP1877720B1 publication Critical patent/EP1877720B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/007Reactive armour; Dynamic armour

Definitions

  • the present invention relates to a protection module for the protection of objects with electric current against threats, in particular by shaped charges.
  • various protection mechanisms For protection of objects, such as battle tanks, against shaped charges are already used various protection mechanisms.
  • a protective mechanism provides to disturb shaped charge beams by electric current.
  • the basic operating principle of this electrical protection mechanism is to couple an electric current by means of two electrode plates in the beam generated by the hollow charge, which then leads to a disturbance of the beam.
  • Hollow charge jets are generated in the detonation of an explosive explosive device around a conical or hemispherical metal insert and are particularly suitable for penetrating armor.
  • Such shaped charge jets are characterized by a unidirectionally directed, forming in the course of detonation matter beam.
  • the shaped charge jet has speeds in the range of about 7 km / s to 10 km / s at the top.
  • the materials of the armor behave on the order of several hundred GPa due to the jet pressure occurring due to the high jet speed, so to speak as liquids, so that the shaped charge jet penetrates the laminate materials according to the laws of hydrodynamics, which ultimately justifies the high breakdown power of such shaped charge jets.
  • the shaped charge jet 1 passes from above through the electrically charged electrode plates 2, 3 which are connected to a pulse current source 4 designed as a high-voltage capacitor.
  • the terminals of the pulse current source 4 are connected to the electrode plates 2, 3, which are penetrated by the shaped charge jet 1 in the manner shown. It is described that on passage of the shaped charge jet 1 through both electrode plates 2, 3, an electric current forming along the beam causes the shaped charge jet 1 to disturb the beam, so that after passage of the shaped charge jet 1 through the electrode plate 3 facing the object 5 Beam diameter expands, causing the penetration power of the beam within the object 5 is reduced, which can be determined via the penetration depth of the shaped charge jet in the object.
  • an electric current along the shaped charge jet can only occur as soon as the tip of the shaped charge jet 1 appears on the electrode 3 facing the object 5 and thus establishes a conductive connection between the two electrodes 2, 3. Since the shaped charge jet 1 has good electrical conductivity, a high current of several 100 kA can flow between the electrode plates as the shaped charge beam passes through both electrodes. However, the electrical current along the beam 1 can only flow through a portion of the shaped charge jet between the electrodes as long as this jet portion is located between the electrode plates and has not yet emerged from the rear electrode.
  • the pulse power supply 4 to the passage time of the shaped charge jet 1, for example, such that the current flow in the form of an over-damped oscillation and the duration of the first half-wave is tuned to the passage duration of the shaped charge jet.
  • the tip of the shaped charge jet can propagate at a very high speed of 7 km / s or more, and thus passes both electrode plates, which are located a few cm apart, within a few microseconds. Therefore, in particular, the time period for the current injection into the tip of the shaped charge jet is only short and thus the possibility of achieving a beam cross-section widening - especially since the current can increase only with a limited also dependent on the inductance of the circuit, limited rate of change.
  • DE 40 34 401 A1 which forms a basis for the preamble of claim 1, is to take a generic electromagnetic armor with two spaced plates, which are connected in parallel via at least one capacitor and are electrically rechargeable.
  • a multiple plate armor is the WO 2004/057262 A2 to remove, with at least one consisting of electrostrictive or magnetostrictive material plate.
  • the invention has for its object to provide a device for protecting an object against shaped charge jets with an electrode assembly which at least one object to the object and at least one remote from the object electrode, between which an electrical voltage is applied, form such that a significant improvement the disintegration effect on the shaped charge jet becomes possible, which is comparable to a wire explosion.
  • the measures required for this purpose are intended to be technically simple and easy to use take into account cost-effective implementation and in particular be realized with the lowest possible weight.
  • a device for protecting an object against shaped charge jets with an electrode arrangement according to the preamble of claim 1 is characterized in that the electrode facing the object has at least one area with a spatially heterogeneous electrode material, which preferably provides a lower material density compared to steel whereby the thickness formation of the electrode facing the object can be made significantly larger compared to a designed as a steel plate, the object-facing electrode without causing an absolute weight gain for the device according to the solution would necessarily be connected.
  • the electrode material should have a very good electrical conductivity, in order to ensure that a pronounced electrical current flow along the shaped charge jet is formed when two electrically opposed electrodes pass through one another.
  • the object facing electrode turns out to be light metal foam material, such as an open-cell aluminum foam with a relative density of 6% in relation to the density of an aluminum solid material electrode.
  • Said aluminum foam is characterized by corresponding air pockets and by a high porosity.
  • Electrodes conceivable that are able to bring a large electric current to the penetration point of the shaped charge jet.
  • Such a structure could, for example, have an inner honeycomb structure.
  • material processing of possible electrode structures offer primarily chemical or physical deposition or vapor deposition, as well as chemical or physical Materialabtrageluie, such as chemical etching or abrading material erosion.
  • an electrode of an ordered or disorderly mesh each consisting of at least one electrically conductive, wire-like conductor material.
  • the formation of an electrode in the form of a wire mesh made of copper wire would be an electrode form which can be used with advantage.
  • the region acted upon by the shaped charge jet reacts with a strong displacement of the heterogeneous electrode material away from the beam axis. This results in an increased distance of the remaining heterogeneous electrode material in the radial direction to the beam axis - while the tip of the shaped charge jet penetrates deeper into the heterogeneous region of the electrode material, forming a locomotive crater reason.
  • the beam tip forms a good electrical contact, via which a high current can be coupled into the shaped charge jet.
  • the current coupled in here can contribute to disturbing the entire beam section from the tip of the shaped charge jet to the first electrode 2.
  • a particularly advantageous manner additionally serves a introduced between two electrodes, consisting of electrically insulating material plate, which is referred to in the following stripper plate.
  • the stripping plate is preferably penetrated by the shaped charge jet with a very small crater diameter, while metallic particles are retained as far as possible after the breakdown of the first electrode and a shell of ionized particles around the actual shaped charge jet.
  • parasitic current paths between the two electrodes are reduced to the flow of current in the shaped charge beam, but not in the vicinity of the hollow charge jet through this and thus do not contribute to the disturbance of the shaped charge jet.
  • the current flow is thus concentrated on the "stripped" shaped charge jet.
  • Fig. 1 is a schematized schematic representation of the solution designed according to the protection arrangement against shaped charge jets.
  • the two in Fig. 1 shown image sequences each show a shaped charge jet 1, which penetrates from the left side facing away from the object 5 front electrode 2 and further propagates to the right.
  • the front electrode 2 is arranged downstream of a stripper plate 6 formed of electrically insulating material, which consists for example of polypropylene.
  • a so-called back electrode 3 is provided, which is formed porous in the embodiment shown and includes individual cavities, as can be seen in principle from the plurality of boxes shown.
  • a so-called back electrode 3 is provided, which is formed porous in the embodiment shown and includes individual cavities, as can be seen in principle from the plurality of boxes shown.
  • An insulating stripper plate 6 is provided between the two electrodes 2 and 3.
  • the stripper plate 6 suppresses parasitic current paths, i. it ensures that between both electrodes 2 and 3, a current flow takes place exclusively through and along the shaped charge jet 1.
  • the tip of the shaped charge jet 1 so interacts with the back electrode 3, that there is a significant lateral cratering 8 within the back electrode 3 during the passage of the shaped charge jet 1 through the back electrode 3.
  • Current considerations assume that precisely because of this strong lateral crater effect 8, the coupling of the current into the beam is concentrated on the region of the tip of the shaped charge jet 1 at the crater bottom and the location of current injection with the crater ground moves through the heterogeneous region of the electrode 3 , This allows a time-prolonged coupling of electric current through the beam tip.
  • This situation could also be referred to as a dynamic electrode, since the electrode edge effective for current injection, the crater ground, moves with the tip of the shaped charge jet.
  • the duration of the current injection into the tip of the shaped charge jet can be influenced by the length of the possible path through the heterogeneous region of the electrode material. The result is an extension of the current injection through the tip of the shaped charge jet, as a result of a strong disintegration of the shaped charge jet including the tip can be achieved as in a wire explosion, so that caused by the shaped charge jet penetration effect on one in the beam direction of the back electrode 3 to ordered object 5 is significantly reduced.
  • the electrode thickness of the back electrode 3 is made larger, the weight of the electrode assembly is not necessarily increased compared to conventional steel electrode plates, especially since the back electrode 3 is made of porous material having air inclusions whose specific gravity is significantly lower than that of an electrode Solid material is
  • Porous materials or structured electrode materials with enclosed cavities of the order of magnitude of the hollow charge jet diameter of up to several millimeters have proved to be particularly advantageous On the one hand allow an effective disturbance of the shaped charge jet and on the other hand contribute to a low weight of the armor.
  • the front electrode 2 or the electrode facing away from the object was an aluminum plate with a plate thickness of 6 mm.
  • an insulating stripper plate with a thickness of 15 mm, consisting of polypropylene, has been arranged.
  • a 120 mm thick aluminum foam electrode has been arranged downstream of the electrode facing the object, the relative density of which was 6% compared to the solid material.
  • the aluminum foam electrode in turn was cast on a 10 mm thick aluminum base, which in turn was attached to a 6 mm thick aluminum plate with good electrical contact.
  • the cast-on aluminum base ensured a good electrical connection to the reticulated aluminum foam structure.
  • the rearmost plate was used to supply power and to support the structure.
  • a voltage of 10 kV was applied between the electrodes by means of a high voltage capacitor. It could be shown that when a bombardment of the projecting electrode arrangement with a shaped charge jet was carried out, no appreciable parts of the shaped charge jet were able to penetrate the rearmost aluminum plate in the jet direction. In the exemplary embodiment, this plate is not yet designed to catch entrained fragments or the possibly not yet stopped bolt of the shaped charge. With the identical experimental setup, but without the application of a high voltage between the two electrodes, it was found that the hollow charge jet applied to the electrode arrangement was able to penetrate the structure almost unhindered. It could thus be shown that the protective effect against shaped charge jets decisively and clearly depends on the coupling of electric current, which could be significantly improved with the electrode arrangement used here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Particle Accelerators (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Elimination Of Static Electricity (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Thermistors And Varistors (AREA)

Abstract

A device is disclosed for protecting an object from shaped charge jets comprising an electrode arrangement which is provided with at least one electrode facing the object and one electrode facing away from the object between which an electrical voltage can be applied. The invention is distinguished by the object-facing electrode having at least one area with a spatially heterogeneous electrode material.

Description

Technisches GebietTechnical area

Die vorliegende Erfindung bezieht sich auf ein Schutzmodul zum Schutz von Objekten mit elektrischem Strom gegen Bedrohungen, insbesondere durch Hohlladungen. Zum Schutz von Objekten, beispielsweise Kampfpanzern, gegen Hohlladungen werden bereits verschiedene Schutzmechanismen eingesetzt. Ein Schutzmechanismus sieht vor, Hohlladungsstrahlen durch elektrischen Strom zu stören. Das grundsätzliche Wirkprinzip dieses elektrischen Schutzmechanismus besteht darin, einen elektrischen Strom mit Hilfe von zwei Elektrodenplatten in den von der Hohlladung erzeugten Strahl einzukoppeln, der dann zu einer Störung des Strahls führt.The present invention relates to a protection module for the protection of objects with electric current against threats, in particular by shaped charges. For protection of objects, such as battle tanks, against shaped charges are already used various protection mechanisms. A protective mechanism provides to disturb shaped charge beams by electric current. The basic operating principle of this electrical protection mechanism is to couple an electric current by means of two electrode plates in the beam generated by the hollow charge, which then leads to a disturbance of the beam.

Stand der TechnikState of the art

Hohlladungsstrahlen werden bei der Detonation einer Anordnung von brisantem Sprengstoff um eine kegel- oder halbkugelförmige Metalleinlage erzeugt und sind insbesondere zum Durchschlagen von Panzerungen geeignet. Derartige Hohlladungsstrahlen zeichnen sich durch einen unidirektional gerichteten, sich im Wege der Detonation ausbildenden Materiestrahls aus. Der Hohlladungsstrahl weist an der Spitze Geschwindigkeiten im Bereich von etwa 7 km/s bis 10 km/s auf. Trifft ein derartiger Hohlladungsstrahl auf ein Hindernis, wie beispielsweise eine Panzerung, so verhalten sich die Materialien der Panzerung aufgrund des durch die hohe Strahlgeschwindigkeit auftretenden Strahldruckes in der Größenordnung von mehreren Hundert GPa, gleichsam wie Flüssigkeiten, so dass der Hohlladungsstrahl nach den Gesetzmäßigkeiten der Hydrodynamik die Schichtmaterialien durchdringt, wodurch sich letztlich die hohe Durchschlagsleistung derartiger Hohlladungsstrahlen begründet.Hollow charge jets are generated in the detonation of an explosive explosive device around a conical or hemispherical metal insert and are particularly suitable for penetrating armor. Such shaped charge jets are characterized by a unidirectionally directed, forming in the course of detonation matter beam. The shaped charge jet has speeds in the range of about 7 km / s to 10 km / s at the top. If such a shaped charge jet encounters an obstacle, such as armor, for example, the materials of the armor behave on the order of several hundred GPa due to the jet pressure occurring due to the high jet speed, so to speak as liquids, so that the shaped charge jet penetrates the laminate materials according to the laws of hydrodynamics, which ultimately justifies the high breakdown power of such shaped charge jets.

Gleichsam bestehender Bestrebungen, die Durchschlagskraft derartiger Hohlladungsstrahlen zu optimieren, existieren ebenso Anstrengungen durch Ausbildung geeigneter Schutzanordnungen, die Zerstörungswirkung von Hohlladungsstrahlen an Objekten, wie beispielsweise Panzerungen, möglichst zu minimieren. Die weiteren Ausführungen betreffen somit den Schutz von Objekten gegen die Einwirkung vor Hohlladungsstrahlen.Equally existing efforts to optimize the penetration of such shaped charge jets, there are also efforts by training suitable protection arrangements to minimize the destructive effect of shaped charge jets of objects, such as armor as possible. The further embodiments thus relate to the protection of objects against the action of shaped charge jets.

Aus einem Beitrag von Demidkov S.V., "The ways of the shaped charge jets functional parameters electromagnetic control efficiency amplification", 20th International Symposium on Ballistics, Orlando, FL, 23-27 September 2002 , geht die Wirkungsweise von elektromagnetischen Feldern auf die Ausbreitung von Hohlladungsstrahlen hervor. In diesem Artikel wird das an sich bekannte Schutzprinzip basierend auf einer gezielten Verbreiterung eines Hohlladungsstrahls durch die Einkopplung von elektrischem Strom längs des sich ausbreitenden Hohlladungsstrahls beschrieben. Hierbei findet eine kondensatorähnliche Elektrodenanordnung Anwendung, mit zwei voneinander beabstandeten Elektrodenplatten, die vor einem zu schützenden Objekt angebracht sind. Eine derartige schematisiert dargestellte Anordnung ist in Fig. 2 dargestellt. Der Hohlladungsstrahl 1 tritt von oben durch die elektrisch aufgeladenen Elektrodenplatten 2, 3, die mit einer als Hochspannungskondensator ausgebildeten Pulsstromquelle 4 verbunden sind. Die Anschlüsse der Pulsstromquelle 4 sind mit den Elektrodenplatten 2, 3 verbunden, die in der gezeigten Weise von dem Hohlladungsstrahl 1 durchschlagen werden. Es wird beschrieben, dass bei Durchtritt des Hohlladungsstrahls 1 durch beide Elektrodenplatten 2, 3 ein sich längs des Strahls ausbildender elektrischer Strom den Hohlladungsstrahl 1 zu einer Störung des Strahls führt, dass sich nach Durchtritt des Hohlladungsstrahls 1 durch die dem Objekt 5 zugewandte Elektrodenplatte 3 der Strahldurchmesser aufweitet, wodurch die Penetrationsleistung des Strahls innerhalb des Objektes 5 reduziert wird, die über die Eindringtiefe des Hohlladungsstrahls in dem Objekt bestimmt werden kann.From a post by Demidkov SV, 20th International Symposium on Ballistics, Orlando, FL, September 23-27, 2002, "The ways of the shaped charge jets functional parameters electromagnetic control efficiency amplification" , the effect of electromagnetic fields on the propagation of shaped charge jets emerges. In this article, the protection principle known per se based on a targeted broadening of a shaped charge jet by the coupling of electric current along the propagating shaped charge jet is described. Here, a capacitor-like electrode assembly is used, with two spaced apart electrode plates, which are mounted in front of an object to be protected. Such a schematically illustrated arrangement is in Fig. 2 shown. The shaped charge jet 1 passes from above through the electrically charged electrode plates 2, 3 which are connected to a pulse current source 4 designed as a high-voltage capacitor. The terminals of the pulse current source 4 are connected to the electrode plates 2, 3, which are penetrated by the shaped charge jet 1 in the manner shown. It is described that on passage of the shaped charge jet 1 through both electrode plates 2, 3, an electric current forming along the beam causes the shaped charge jet 1 to disturb the beam, so that after passage of the shaped charge jet 1 through the electrode plate 3 facing the object 5 Beam diameter expands, causing the penetration power of the beam within the object 5 is reduced, which can be determined via the penetration depth of the shaped charge jet in the object.

Grundsätzlich kann ein elektrischer Strom längs des Hohlladungsstrahls nur auftreten, sobald die Spitze des Hohlladungsstrahls 1 auf die dem Objekt 5 zugewandte Elektrode 3 auftritt und somit eine leitende Verbindung zwischen den beiden Elektroden 2, 3 herstellt. Da der Hohlladungsstrahl 1 eine gute elektrische Leitfähigkeit besitzt, kann beim Durchtritt des Hohlladungsstrahls durch beide Elektroden ein hoher Strom von mehreren 100 kA zwischen den Elektrodenplatten fließen. Der elektrische Strom längs des Strahls 1 kann jedoch nur so lange durch einen zwischen den Elektroden befindlichen Abschnitt des Hohlladungsstrahls fließen, solange sich eben dieser Strahlabschnitt zwischen den Elektrodenplatten befindet und noch nicht aus der hinteren Elektrode ausgetreten ist. Hierzu bedarf es einer Anpassung der Pulsstromversorgung 4 auf die Durchtrittszeit des Hohlladungsstrahls 1, beispielsweise derart, dass der Stromfluss in Form einer überdämpften Schwingung verläuft und die Dauer der ersten Halbwelle auf die Durchtrittsdauer des Hohlladungsstrahls abgestimmt ist. Wie bereits vorstehend erwähnt, vermag sich die Spitze des Hohlladungsstrahls mit einer sehr großen Geschwindigkeit von 7 km/s oder mehr auszubreiten und passiert somit beide Elektrodenplatten, die einige cm voneinander entfernt angeordnet sind, innerhalb weniger Mikrosekunden. Daher ist insbesondere die Zeitspanne für die Stromeinkopplung in die Spitze des Hohlladungsstrahls nur kurz und damit die Möglichkeit, eine Strahlquerschnittsaufweitung zu erreichen - zumal der Strom nur mit einer wesentlich auch von der Induktivität des Schaltkreises abhängigen, begrenzten Änderungsrate ansteigen kann.In principle, an electric current along the shaped charge jet can only occur as soon as the tip of the shaped charge jet 1 appears on the electrode 3 facing the object 5 and thus establishes a conductive connection between the two electrodes 2, 3. Since the shaped charge jet 1 has good electrical conductivity, a high current of several 100 kA can flow between the electrode plates as the shaped charge beam passes through both electrodes. However, the electrical current along the beam 1 can only flow through a portion of the shaped charge jet between the electrodes as long as this jet portion is located between the electrode plates and has not yet emerged from the rear electrode. For this purpose, it requires an adaptation of the pulse power supply 4 to the passage time of the shaped charge jet 1, for example, such that the current flow in the form of an over-damped oscillation and the duration of the first half-wave is tuned to the passage duration of the shaped charge jet. As already mentioned above, the tip of the shaped charge jet can propagate at a very high speed of 7 km / s or more, and thus passes both electrode plates, which are located a few cm apart, within a few microseconds. Therefore, in particular, the time period for the current injection into the tip of the shaped charge jet is only short and thus the possibility of achieving a beam cross-section widening - especially since the current can increase only with a limited also dependent on the inductance of the circuit, limited rate of change.

Werden, wie im gezeigten Beispiel in Fig. 2 dargestellt, als Elektroden jeweils Platten aus Vollmaterial, bspw. aus Stahl, verwendet, so wird aufgrund der nur beschränkten Elektrodenplattendicke die Spitze des Hohlladungsstrahls nur für sehr kurze Zeit von einem Strom durchflossen, zumal der elektrische Strom erst in jenem Augenblick einsetzt, sobald die Strahlspitze die dem Objekt 5 zugewandte Elektrode 3 erreicht hat. Jedoch tritt die Strahlspitze sogleich wieder aus der hinteren Elektrodenplatte 3 aus und kann daher nicht wie der mittlere Bereich des Hohlladungsstrahls 1, während der gesamten Durchtrittszeit durch den Zwischenelektrodenraum von elektrischem Strom durchflossen werden. Somit ist mit den derzeit bekannten Mitteln für einen effektiven Schutz gegenüber Hohlladungsstrahlen keine ausreichende Störung des Hohlladungsstrahls möglich.Become, as in the example shown in Fig. 2 shown, as electrodes each plates made of solid material, eg. Of steel used, then due to the limited electrode plate thickness, the tip of the shaped charge jet flows through a stream only for a very short time, especially since the electric current starts only at that moment, as soon as the jet tip the object 5 facing the electrode 3 has reached. However, the beam tip immediately emerges again from the rear electrode plate 3 Therefore, electric current can not flow through the intermediate electrode space during the entire passage time, as is the case with the middle region of the shaped charge jet 1. Thus, with the currently known means for effective protection against shaped charge jets sufficient disturbance of the shaped charge jet is not possible.

Der DE 40 34 401 A1 , der eine Grundlage für den Oberbegriff des Anspruchs 1 bildet, ist eine gattungsgemäße elektromagnetische Panzerung mit zwei in einem Abstand angeordneten Platten zu entnehmen, die über mindestens einen Kondensator parallel geschaltet und elektrisch aufladbar sind.Of the DE 40 34 401 A1 , which forms a basis for the preamble of claim 1, is to take a generic electromagnetic armor with two spaced plates, which are connected in parallel via at least one capacitor and are electrically rechargeable.

Eine Mehrfachplattenpanzerung ist der WO 2004/057262 A2 zu entnehmen, mit wenigstens einer aus elektrostriktivem oder magnetostriktivem Material bestehenden Platte.A multiple plate armor is the WO 2004/057262 A2 to remove, with at least one consisting of electrostrictive or magnetostrictive material plate.

In der US 6,622,608 B1 ist eine Plattenpanzerung mit zwei abstandsvariablen Platten beschrieben, deren gegenseitiger Abstand mittels elektromagnetischer Abstoßungskräfte zwischen den Platten bedarfsgerecht einstellbar ist.In the US 6,622,608 B1 is a plate armor described with two distance variable plates whose mutual distance is adjusted by means of electromagnetic repulsion forces between the plates as needed.

Schließlich geht aus der DE 42 44 564 C2 ein Sandwichstruktur-artig ausgebildetes Schutzelement hervor, das über eine Spulen- und/oder Kondensatoranordnung verfügt, durch die angrenzende Schutzplatten beschleunigt werden können, um die Eindringtiefe eines sich annähernden Hohlladungsprojektils in die Struktur zu reduzieren.Finally, leave the DE 42 44 564 C2 a sandwich structure-like formed protective element, which has a coil and / or capacitor arrangement, can be accelerated by the adjacent protective plates to reduce the penetration depth of an approaching shaped charge projectile into the structure.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zum Schutz eines Objektes gegen Hohlladungsstrahlen mit einer Elektrodenanordnung, die wenigstens eine dem Objekt zu- und wenigstens eine dem Objekt abgewandte Elektrode vorsieht, zwischen denen eine elektrische Spannung angelegt ist, derart auszubilden, dass eine deutliche Verbesserung der Desintegrationswirkung auf den Hohlladungsstrahl möglich wird, die mit einer Drahtexplosion vergleichbar ist. Die hierfür erforderlichen Maßnahmen sollen dem Aspekt einer technisch einfachen und kostengünstigen Realisierung Rechnung tragen und insbesondere mit möglichst geringem Gewicht realisierbar sein.The invention has for its object to provide a device for protecting an object against shaped charge jets with an electrode assembly which at least one object to the object and at least one remote from the object electrode, between which an electrical voltage is applied, form such that a significant improvement the disintegration effect on the shaped charge jet becomes possible, which is comparable to a wire explosion. The measures required for this purpose are intended to be technically simple and easy to use take into account cost-effective implementation and in particular be realized with the lowest possible weight.

Die Lösung der der Erfindung zugrunde liegenden Aufgabe ist im Anspruch 1 angegeben. Den Erfindungsgedanken vorteilhaft weiterbildende Merkmale sind Gegenstand der Unteransprüche sowie im Weiteren der Beschreibung, insbesondere unter Bezugnahme auf die Ausführungsbeispiele zu entnehmen.The solution of the problem underlying the invention is specified in claim 1. The concept of the invention advantageously further features are the subject of the dependent claims and in the following the description, in particular with reference to the exemplary embodiments.

Lösungsgemäß zeichnet sich eine Vorrichtung zum Schutz eines Objektes gegen Hohlladungsstrahlen mit einer Elektrodenanordnung gemäß dem Oberbegriff des Anspruches 1 dadurch aus, dass die dem Objekt zugewandte Elektrode wenigstens einen Bereich mit einem räumlich heterogen ausgebildeten Elektrodenmaterial aufweist, das vorzugsweise eine geringere Materialdichte im Vergleich zu Stahl vorsieht, wodurch die Dickenausbildung der dem Objekt zugewandten Elektrode erheblich größer gewählt werden kann im Vergleich zu einer als Stahlplatte ausgebildeten, dem Objekt zugewandten Elektrode, ohne dass dabei eine absolute Gewichtszunahme für die lösungsgemäße Vorrichtung notwendigerweise verbunden wäre.According to the invention, a device for protecting an object against shaped charge jets with an electrode arrangement according to the preamble of claim 1 is characterized in that the electrode facing the object has at least one area with a spatially heterogeneous electrode material, which preferably provides a lower material density compared to steel whereby the thickness formation of the electrode facing the object can be made significantly larger compared to a designed as a steel plate, the object-facing electrode without causing an absolute weight gain for the device according to the solution would necessarily be connected.

Gleichsam wie im Falle aller bekannten Elektrodenanordnungen soll das Elektrodenmaterial über eine sehr gute elektrische Leitfähigkeit verfügen, um zu gewährleisten, dass sich bei Strahldurchtritt durch beide sich gegenüber stehenden Elektroden ein ausgeprägter elektrischer Stromfluss längs des Hohlladungsstrahls ausbildet.As in the case of all known electrode arrangements, the electrode material should have a very good electrical conductivity, in order to ensure that a pronounced electrical current flow along the shaped charge jet is formed when two electrically opposed electrodes pass through one another.

Als besonders vorteilhaft für die dem Objekt zugewandte Elektrode erweist sich als Material leichter Metallschaum, beispielsweise ein offenporiger Aluminiumschaum mit einer relativen Dichte von 6% in Relation zur Dichte einer aus Alu-Vollmaterial bestehenden Elektrode. Genannter Aluminiumschaum zeichnet sich durch entsprechende Lufteinschlüsse und durch eine hohe Porosität aus. Darüber hinaus sind jedoch auch im Wege chemischer, mechanischer und/oder physikalischer Materialbearbeitungsverfahren herstellbare, in ihrer Struktur heterogen ausgebildete Elektroden denkbar, die in der Lage sind, einen großen elektrischen Strom an den Eindringpunkt des Hohlladungsstrahls heranzuführen. Eine derartige Struktur könnte beispielsweise eine innere Honigwabenstruktur aufweisen. Zur Materialbearbeitung möglicher Elektrodenstrukturen bieten sich vornehmlich chemische oder physikalische Abscheide- oder Aufdampfprozesse an, ebenso gut wie chemische oder physikalische Materialabtrageprozesse, wie beispielsweise chemisches Ätzen oder abrasiv wirkende Materialabtragungen. Es ist aber auch durchaus möglich, eine Elektrode aus einem geordneten oder ungeordneten Geflecht, jeweils bestehend aus wenigstens einem elektrisch leitenden, drahtartigen Leitermaterial herzustellen. Beispielsweise wäre die Ausbildung einer Elektrode in Form eines aus Kupferdraht gefertigten Drahtgeflechts eine durchaus bevorzugt einsetzbare Elektrodenform. Selbstverständlich ist es ebenso möglich, zumindest die dem Objekt zugewandte Elektrode mehrschichtig auszubilden, beispielsweise mit verschiedenen Elektrodenbereichen unterschiedlicher Porosität und Gefügestruktur.As a particularly advantageous for the object facing electrode turns out to be light metal foam material, such as an open-cell aluminum foam with a relative density of 6% in relation to the density of an aluminum solid material electrode. Said aluminum foam is characterized by corresponding air pockets and by a high porosity. In addition, however, can be produced in the way of chemical, mechanical and / or physical material processing methods, heterogeneously formed in their structure Electrodes conceivable that are able to bring a large electric current to the penetration point of the shaped charge jet. Such a structure could, for example, have an inner honeycomb structure. For material processing of possible electrode structures offer primarily chemical or physical deposition or vapor deposition, as well as chemical or physical Materialabtrageprozesse, such as chemical etching or abrading material erosion. But it is also quite possible to produce an electrode of an ordered or disorderly mesh, each consisting of at least one electrically conductive, wire-like conductor material. For example, the formation of an electrode in the form of a wire mesh made of copper wire would be an electrode form which can be used with advantage. Of course, it is also possible to form at least the electrode facing the object multi-layered, for example, with different electrode regions of different porosity and microstructure.

Neben der geringeren Dichte des heterogenen Bereichs der dem Objekt zugewandten Elektrode reagiert der von dem Hohlladungsstrahl beaufschlagte Bereich im Unterschied zu Vollmaterial wie Stahl mit einer starken Verdrängung des heterogenen Elektrodenmaterials weg von der Strahlachse. Es resultiert ein vergrößerter Abstand des stehen gebliebenen heterogenen Elektrodenmaterials in radialer Richtung zur Strahlachse - während die Spitze des Hohlladungsstrahls tiefer in den heterogenen Bereich des Elektrodenmaterials eindringt, wobei ein sich fortbewegender Kratergrund ausbildet. Im Bereich des Kratergrundes bildet die Strahlspitze einen guten elektrischen Kontakt aus, über den ein hoher Strom in den Hohlladungsstrahl eingekoppelt werden kann. Der hier eingekoppelte Strom vermag zur Störung des gesamten Strahlabschnitts von der Spitze des Hohlladungsstrahls bis zur ersten Elektrode 2 beizutragen. Gleichzeitig ist zu erwarten, dass die Stromeinkopplung in hinter der Spitze liegende Strahlbereiche aufgrund des großen Abstand des beim Durchgang der Strahlspitze zur Seite verdrängten Materials reduziert wird. Damit werden Strompfade reduziert, die nicht zu der Desintegration des Hohlladungsstrahls bis zur Strahlspitze beitragen.In addition to the lower density of the heterogeneous region of the electrode facing the object, the region acted upon by the shaped charge jet, in contrast to solid material such as steel, reacts with a strong displacement of the heterogeneous electrode material away from the beam axis. This results in an increased distance of the remaining heterogeneous electrode material in the radial direction to the beam axis - while the tip of the shaped charge jet penetrates deeper into the heterogeneous region of the electrode material, forming a locomotive crater reason. In the area of the crater floor, the beam tip forms a good electrical contact, via which a high current can be coupled into the shaped charge jet. The current coupled in here can contribute to disturbing the entire beam section from the tip of the shaped charge jet to the first electrode 2. At the same time, it is to be expected that the current injection is reduced to behind-the-jet areas due to the large distance of the displaced when passing the beam tip to the side of the material. This reduces current paths which do not contribute to the disintegration of the shaped charge jet up to the beam tip.

Im Vollmaterial bildet sich dagegen eine feste Kraterwand mit nur geringem Abstand zum Hohlladungsstrahl aus, wodurch eine Stromeinkopplung hinter der Spitze erleichtert wird. Die zugehörigen Strompfade führen nicht mehr über die Spitze des Hohlladungsstrahls und sind daher einer effektiven Störung der Strahlspitze abträglich.In the solid material, however, forms a solid crater wall with only a small distance from the shaped charge jet, whereby a current injection behind the tip is facilitated. The associated current paths no longer lead via the tip of the shaped charge jet and are therefore detrimental to an effective disturbance of the beam tip.

Es hat sich gezeigt, dass durch eine lösungsgemäß vorgeschlagene Strukturierung des Elektrodenmaterials mit den vorstehend aufgezeigten Materialvarianten eine effektive Beeinflussung der Form der Hohlladungsstrahlspitze erreichbar ist, die sich durch die materialbedingte Kraterbildung und die darin sich ausbildenden Strompfade ergibt.It has been found that by structuring the electrode material proposed in accordance with the solution with the material variants indicated above, an effective influencing of the shape of the shaped charge jet tip can be achieved, which results from the material-related cratering and the current paths forming therein.

In besonders vorteilhafter Weise dient zusätzlich eine zwischen beiden Elektroden eingeführte, aus elektrisch isolierendem Material bestehende Platte, die im folgenden Stripperplatte genannt wird. Die Stripperplatte wird von dem Hohlladungsstrahl vorzugsweise mit einem sehr geringen Kraterdurchmesser durchschlagen, während metallische Partikel nach dem Durchschlag der ersten Elektrode sowie ein Hülle von ionisierten Teilchen um den eigentlichen Hohlladungsstrahl möglichst zurückgehalten werden. Hierdurch werden zu dem Stromfluss in dem Hohlladungsstrahl parasitäre Strompfade zwischen den beiden Elektroden reduziert, die in der Umgebung des Hohlladungsstrahls aber nicht durch diesen führen und damit nicht zur Störung des Hohlladungsstrahls beitragen. Der Stromfluss wird somit auf den "gestrippten" Hohlladungsstrahl konzentriert.In a particularly advantageous manner additionally serves a introduced between two electrodes, consisting of electrically insulating material plate, which is referred to in the following stripper plate. The stripping plate is preferably penetrated by the shaped charge jet with a very small crater diameter, while metallic particles are retained as far as possible after the breakdown of the first electrode and a shell of ionized particles around the actual shaped charge jet. As a result, parasitic current paths between the two electrodes are reduced to the flow of current in the shaped charge beam, but not in the vicinity of the hollow charge jet through this and thus do not contribute to the disturbance of the shaped charge jet. The current flow is thus concentrated on the "stripped" shaped charge jet.

Kurze Beschreibung der ErfindungBrief description of the invention

Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben. Es zeigen:

  • Fig. 1 schematisierte Darstellung einer lösungsgemäß ausgebildeten Schutzanordnung,
  • Fig. 2 Schutzanordnung gemäß Stand der Technik.
The invention will now be described by way of example without limitation of the general inventive idea by means of embodiments with reference to the drawings. Show it:
  • Fig. 1 Schematic representation of a solution according trained protection arrangement,
  • Fig. 2 Protection arrangement according to the prior art.

Wege zur Ausführung der Erfindung, gewerbliche VerwendbarkeitWays to carry out the invention, industrial usability

In Fig. 1 ist eine schematisierte Prinzipdarstellung der lösungsgemäß ausgebildeten Schutzanordnung gegen Hohlladungsstrahlen dargestellt. Die beiden in Fig. 1 dargestellten Bildsequenzen zeigen jeweils einen Hohlladungsstrahl 1, der von links eine dem Objekt 5 abgewandte Frontelektrode 2 durchdringt und sich im Weiteren nach rechts ausbreitet. In Strahlrichtung des Hohlladungsstrahles 1 ist der Frontelektrode 2 eine aus elektrisch isolierendem Material ausgebildete Stripperplatte 6 nachgeordnet, die beispielsweise aus Polypropylen besteht. Zudem ist eine dem Objekt zugewandte Elektrode, eine so genannte Rückelektrode 3 vorgesehen, die im gezeigten Ausführungsbeispiel porös ausgebildet ist und einzelne Hohlräume einschließt, wie dies aus der Vielzahl der dargestellten Kästchen prinzipiell zu entnehmen ist. In der oberen Bildsequenzdarstellung in Fig. 1 ist der zeitliche Moment dargestellt, zu dem der Hohlladungsstrahl 1 in Kontakt mit der Rückelektrode 3 tritt und somit eine elektrische Kontaktierung zwischen Frontelektrode 2 und Rückelektrode 3 herstellt. Überdies sei angenommen, dass beide Elektroden 2 und 3 über eine nicht weiter in Fig. 1 dargestellte Pulsstromquelle, vorzugsweise in Form eines Hochspannungskondensators, miteinander verbunden sind, gleichsam der bereits in Figur 2 gezeigten Anordnung, wobei eine zwischen beiden Elektroden angelegte elektrische Spannung wenigstens einige kV beträgt.In Fig. 1 is a schematized schematic representation of the solution designed according to the protection arrangement against shaped charge jets. The two in Fig. 1 shown image sequences each show a shaped charge jet 1, which penetrates from the left side facing away from the object 5 front electrode 2 and further propagates to the right. In the beam direction of the shaped charge jet 1, the front electrode 2 is arranged downstream of a stripper plate 6 formed of electrically insulating material, which consists for example of polypropylene. In addition, an electrode facing the object, a so-called back electrode 3 is provided, which is formed porous in the embodiment shown and includes individual cavities, as can be seen in principle from the plurality of boxes shown. In the upper picture sequence representation in Fig. 1 the temporal moment is shown at which the shaped charge jet 1 comes into contact with the back electrode 3 and thus establishes an electrical contact between front electrode 2 and back electrode 3. Moreover, suppose that both electrodes 2 and 3 are not further in Fig. 1 shown pulse power source, preferably in the form of a high voltage capacitor, are interconnected, as it were already in FIG. 2 shown arrangement, wherein an applied between the two electrodes electrical voltage is at least a few kV.

Eine isolierende Stripperplatte 6 ist zwischen den beiden Elektroden 2 und 3 vorgesehen. Die Stripperplatte 6 unterdrückt parasitäre Strompfade, d.h. sie stellt sicher, dass zwischen beiden Elektroden 2 und 3 ein Stromfluss ausschließlich durch und längs des Hohlladungsstrahls 1 stattfindet.An insulating stripper plate 6 is provided between the two electrodes 2 and 3. The stripper plate 6 suppresses parasitic current paths, i. it ensures that between both electrodes 2 and 3, a current flow takes place exclusively through and along the shaped charge jet 1.

Durch die poröse oder anderweitig strukturierte Ausbildung der Rückelektrode 3, im Unterschied zu einer aus Vollmaterial bestehenden Elektrode, wie dies beispielsweise zum Stand der Technik unter Bezugnahme auf Fig. 2 skizziert dargestellt ist, tritt die Spitze des Hohlladungsstrahls 1 dergestalt mit der Rückelektrode 3 in Wechselwirkung, dass sich eine deutliche seitliche Kraterbildung 8 innerhalb der Rückelektrode 3 während des Durchtritts des Hohlladungsstrahls 1 durch die Rückelektrode 3 erfolgt. Derzeitige Überlegungen gehen davon aus, dass eben aufgrund dieser starken seitlichen Kraterwirkung 8 die Einkopplung des Stroms in den Strahl auf den Bereich der Spitze des Hohlladungsstrahls 1 am Kratergrund konzentriert wird und sich der Ort der Stromeinkopplung mit dem Kratergrund durch den heterogenen Bereich der Elektrode 3 bewegt. Hierdurch wird eine zeitlich verlängerte Einkopplung von elektrischem Strom durch die Strahlspitze ermöglicht. Diesen Sachverhalt könnte man auch als dynamische Elektrode bezeichnen, da sich der für die Stromeinkopplung effektive Elektrodenrand, der Kratergrund, sich mit der Spitze des Hohlladungsstrahls mitbewegt. Damit kann die Dauer der Stromeinkopplung in die Spitze des Hohlladungsstrahls durch die Länge des möglichen Pfads durch den heterogenen Bereich des Elektrodenmaterials beeinflusst werden. Es resultiert eine Verlängerung der Stromeinkopplung durch die Spitze des Hohlladungsstrahls, als deren Folge eine starke Desintegration des Hohlladungsstrahls einschließlich der Spitze wie bei einer Drahtexplosion erreicht werden kann, so dass die von dem Hohlladungsstrahl verursachte Penetrationswirkung auf ein der in Strahlrichtung der Rückelektrode 3 nach geordnetes Objekt 5 erheblich reduziert wird.Due to the porous or otherwise structured design of the return electrode 3, in contrast to an electrode made of solid material, as for example with the prior art with reference to Fig. 2 outlined is shown, the tip of the shaped charge jet 1 so interacts with the back electrode 3, that there is a significant lateral cratering 8 within the back electrode 3 during the passage of the shaped charge jet 1 through the back electrode 3. Current considerations assume that precisely because of this strong lateral crater effect 8, the coupling of the current into the beam is concentrated on the region of the tip of the shaped charge jet 1 at the crater bottom and the location of current injection with the crater ground moves through the heterogeneous region of the electrode 3 , This allows a time-prolonged coupling of electric current through the beam tip. This situation could also be referred to as a dynamic electrode, since the electrode edge effective for current injection, the crater ground, moves with the tip of the shaped charge jet. Thus, the duration of the current injection into the tip of the shaped charge jet can be influenced by the length of the possible path through the heterogeneous region of the electrode material. The result is an extension of the current injection through the tip of the shaped charge jet, as a result of a strong disintegration of the shaped charge jet including the tip can be achieved as in a wire explosion, so that caused by the shaped charge jet penetration effect on one in the beam direction of the back electrode 3 to ordered object 5 is significantly reduced.

Gleichwohl die Elektrodendicke der Rückelektrode 3 vergrößert ausgebildet ist, wird das Gewicht der Elektrodenanordnung verglichen zu konventionellen, aus Stahl bestehenden Elektrodenplatten, nicht notwendigerweise vergrößert, zumal die Rückelektrode 3 aus porösem Material mit Lufteinschlüssen besteht, deren spezifisches Gewicht deutlich geringer ist als das einer Elektrode aus Vollmaterial istHowever, although the electrode thickness of the back electrode 3 is made larger, the weight of the electrode assembly is not necessarily increased compared to conventional steel electrode plates, especially since the back electrode 3 is made of porous material having air inclusions whose specific gravity is significantly lower than that of an electrode Solid material is

Besonders vorteilhaft haben sich poröse Materialien oder strukturierte Elektrodenmaterialen mit eingeschlossenen Hohlräumen in der Größenordnung des Hohlladungsstrahldurchmessers von bis zu mehreren Millimetern erwiesen, die einerseits eine effektive Störung des Hohlladungsstrahls ermöglichen und andererseits zu einem geringen Gewicht der Panzerung beitragen.Porous materials or structured electrode materials with enclosed cavities of the order of magnitude of the hollow charge jet diameter of up to several millimeters have proved to be particularly advantageous On the one hand allow an effective disturbance of the shaped charge jet and on the other hand contribute to a low weight of the armor.

Untersuchungen an einem konkreten Ausführungsbeispiel haben die besondere Effektivität der Schutzanordnung deutlich demonstriert. Als Frontelektrode 2 bzw. die dem Objekt abgewandte Elektrode diente eine Aluminiumplatte mit einer Plattendicke von 6 mm. Im Abstand von 15 mm ist eine isolierende Stripperplatte mit einer Dicke von 15 mm, bestehend aus Polypropylen, angeordnet worden. Gegenüber der Stripperplatte ist als dem Objekt zugewandte Elektrode eine 120 mm dicke Aluminiumschaumelektrode nachgeordnet worden, deren relative Dichte 6%, verglichen zum Vollmaterial, aufwies. Die aus Aluminiumschaum bestehende Elektrode ist ihrerseits an einem 10 mm dicken Aluminiumsockel angegossen worden, der seinerseits an einer 6 mm dicken Aluminiumplatte mit gutem elektrischem Kontakt befestigt war. Durch den angegossenen Aluminiumsockel wurde eine gute elektrische Verbindung zu dem netzartigen Aluminiumschaumstruktur sichergestellt. Die hinterste Platte diente der Stromzuführung und zum Tragen der Struktur.Investigations on a specific embodiment have clearly demonstrated the particular effectiveness of the protection arrangement. The front electrode 2 or the electrode facing away from the object was an aluminum plate with a plate thickness of 6 mm. At a distance of 15 mm, an insulating stripper plate with a thickness of 15 mm, consisting of polypropylene, has been arranged. Opposite the stripper plate, a 120 mm thick aluminum foam electrode has been arranged downstream of the electrode facing the object, the relative density of which was 6% compared to the solid material. The aluminum foam electrode in turn was cast on a 10 mm thick aluminum base, which in turn was attached to a 6 mm thick aluminum plate with good electrical contact. The cast-on aluminum base ensured a good electrical connection to the reticulated aluminum foam structure. The rearmost plate was used to supply power and to support the structure.

Zwischen den Elektroden wurde mit Hilfe eines Hochspannungskondensators eine Spannung von 10 kV angelegt. Es konnte gezeigt werden, dass bei Durchführung eines Beschusses der vorstehenden Elektrodenanordnung mit einem Hohlladungsstrahl keinerlei nennenswerte Teile des Hohlladungsstrahls die in Strahlrichtung hinterste Aluminiumplatte zu durchdringen vermochten. In dem Ausführungsbeispiel ist diese Platte noch nicht dafür ausgelegt, mitgerissene Fragmente oder den etwaig noch nicht abgestoppten Bolzen der Hohlladung abzufangen. Mit dem identischen Versuchsaufbau, jedoch ohne dem Anlegen einer Hochspannung zwischen beiden Elektroden, zeigte sich, dass die auf die Elektrodenanordnung applizierte Hohlladungsstrahl den Aufbau nahezu ungehindert zu durchdringen vermochte. Es konnte somit gezeigt werden, dass die Schutzwirkung gegen Hohlladungsstrahlen entscheidend und eindeutig durch die Einkopplung von elektrischem Strom abhängt, die mit der hier angewendeten Elektrodenanordnung deutlich verbessert werden konnte.A voltage of 10 kV was applied between the electrodes by means of a high voltage capacitor. It could be shown that when a bombardment of the projecting electrode arrangement with a shaped charge jet was carried out, no appreciable parts of the shaped charge jet were able to penetrate the rearmost aluminum plate in the jet direction. In the exemplary embodiment, this plate is not yet designed to catch entrained fragments or the possibly not yet stopped bolt of the shaped charge. With the identical experimental setup, but without the application of a high voltage between the two electrodes, it was found that the hollow charge jet applied to the electrode arrangement was able to penetrate the structure almost unhindered. It could thus be shown that the protective effect against shaped charge jets decisively and clearly depends on the coupling of electric current, which could be significantly improved with the electrode arrangement used here.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
HohlladungsstrahlShaped charge jet
22
Objekt abgewandte Elektrode, FrontelektrodeObject remote electrode, front electrode
33
Objekt zugewandte Elektrode, RückelektrodeObject facing electrode, back electrode
44
Pulsstromquelle, HochspannungskondensatorPulse current source, high voltage capacitor
55
Objektobject
66
Stripperplattestripper plate
77
Mitgerissene ElektrodenpartikelEntrained electrode particles
88th
Kraterbildungcratering

Claims (13)

  1. A device for protecting an object from shaped charge jets (1) comprising an electrode arrangement which is provided with at least one object-facing electrode (2) and at least one object-facing-away electrode (3) between which an electric voltage is applied,
    wherein the electrode (3) facing the object (5) has at least one area with a spatially heterogeneous electrode material.
  2. A device according to claim 1,
    wherein the spatially heterogeneous electrode material has an electrically conducting metal foam.
  3. A device according to claim 2,
    wherein the metal foam is an open-pore aluminum foam which has a relative density of less than 10% of the density of the full material.
  4. A device according to claim 1,
    wherein the spatially heterogeneous electrode material is a structured electrode material produced by means of chemical, mechanical and/or physical material processing methods
    and the spatially heterogeneous electrode material encloses at least partially at least local cavities.
  5. A device according to claim 4,
    wherein the structured electrode material is designed as a honeycomb structure.
  6. A device according to claim 4 or 5,
    wherein the cavities provide a metal filling whose relative density is less than the structured electrode material surrounding the material filling.
  7. A device according to claim 6,
    wherein the material filling is steel wool.
  8. A device according to claim 1,
    wherein the spatially heterogeneous electrode material is designed as an ordered or an unordered mesh, which is composed of at least one electrically conducting material, such as for example steel wool.
  9. A device according to one of the claims 1 to 8,
    wherein between the at least one object-facing electrode (3) and the at least one object-facing-away electrode (2) a body composed of an electrically insulating material is provided.
  10. A device according to claim 9,
    wherein the body is designed plate-shaped like the two electrodes.
  11. A device according to claim 10,
    wherein the body is designed as a stripper plate (6) and is composed of electrically insulating material.
  12. A device according to one of the claims 1 to 11,
    wherein in order to generate an electric voltage between the at least two electrodes (2,3), a pulsed-current source (4), preferably in the form of a high-voltage capacitor, is provided.
  13. A device according to one of the claims 1 to 12,
    wherein the electrode (3) facing the object has a density less than the density of steel.
EP06724724A 2005-05-04 2006-05-04 Protective module for protecting electrified objects from threats, especially threats caused by shaped charges Not-in-force EP1877720B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005021348A DE102005021348B3 (en) 2005-05-04 2005-05-04 Protection module for the protection of objects with electric current against threats, in particular by shaped charges
PCT/EP2006/004207 WO2006117232A1 (en) 2005-05-04 2006-05-04 Protective module for protecting electrified objects from threats, especially threats caused by shaped charges

Publications (2)

Publication Number Publication Date
EP1877720A1 EP1877720A1 (en) 2008-01-16
EP1877720B1 true EP1877720B1 (en) 2011-07-27

Family

ID=36642315

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06724724A Not-in-force EP1877720B1 (en) 2005-05-04 2006-05-04 Protective module for protecting electrified objects from threats, especially threats caused by shaped charges

Country Status (5)

Country Link
US (1) US8006607B2 (en)
EP (1) EP1877720B1 (en)
AT (1) ATE518109T1 (en)
DE (1) DE102005021348B3 (en)
WO (1) WO2006117232A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015187013A1 (en) * 2014-06-02 2015-12-10 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Electric reactive armour

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8091464B1 (en) * 2007-10-29 2012-01-10 Raytheon Company Shaped charge resistant protective shield
WO2010082970A2 (en) * 2008-10-23 2010-07-22 University Of Virginia Patent Foundation Reactive topologically controlled armors for protection and related method
DE102009038630A1 (en) 2009-08-26 2011-04-28 Rheinmetall Waffe Munition Gmbh Protection module for an object against in particular shaped charge projectiles
DE102010019475A1 (en) 2010-05-05 2011-11-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for protecting an object at least against shaped charge jets
KR101312320B1 (en) 2013-06-25 2013-09-27 국방과학연구소 Electromagnetic armor and vehicle protection system
US9422745B2 (en) * 2014-05-09 2016-08-23 Leslie Ho Leung Chow Safe with nitinol wire locking mechanism
US10215535B2 (en) * 2015-03-20 2019-02-26 The Boeing Company System, method, and assembly for adaptively shielding a structure
GR1010011B (en) * 2020-06-05 2021-05-25 Ανδρεας Παντελεημωνος Ζηνας Additional three-level system reinforcing and enhancing the dynamic armor of tanks via compressed ferromagnetic powder and electromagnetic amplification

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE419630B (en) 1980-01-16 1981-08-17 Zeidler Holmgren Handel STORAGE DEVICE FOR BODIES WHICH MUST BE EXPOSED TO THE ENVIRONMENT, LIKE HYGROSCOPIC BODIES FOR MOISTURE TAKING
DE3132007C1 (en) * 1981-08-13 1999-10-28 Friedrich Ulf Deisenroth Active armor plating for protection against hollow charge and kinetic energy projectile, useful in military vehicle
DE3139774C1 (en) * 1981-10-07 1994-12-22 Friedrich Ulf Deisenroth Active armour for protection against shaped-charge projectiles
DE3404272A1 (en) * 1983-03-15 1987-10-01 Krueger Beuster Helmut Cryogenically active protector
DE3705694A1 (en) * 1987-02-23 1988-09-01 Buck Chem Tech Werke METHOD AND ARRANGEMENT FOR PROTECTING OBJECTS AGAINST LASER BEAMS
DE3715807C1 (en) * 1987-05-12 1998-12-03 Deutsch Franz Forsch Inst Protection against threats such as shells
DE4034401A1 (en) * 1990-10-29 1992-04-30 Deutsch Franz Forsch Inst Electromagnetic armour plating - has two metal plates with dielectric and potential difference between them short-circuited by projectile to produce diverting lorentz force
DE4244546C2 (en) * 1992-12-30 2002-05-02 Deutsch Franz Forsch Inst Electromagnetic sandwich
RU2064651C1 (en) 1993-12-28 1996-07-27 Научно-исследовательский институт специального машиностроения Device for electrodynamic protection of objects against shaped-charge jet
US6698331B1 (en) * 1999-03-10 2004-03-02 Fraunhofer Usa, Inc. Use of metal foams in armor systems
RU2148237C1 (en) 1999-03-12 2000-04-27 Научно-исследовательский институт специального машиностроения МГТУ им.Н.Э.Баумана Method for electromagnetic protection of objects
SE522191C2 (en) 2000-09-13 2004-01-20 Foersvarets Forskningsanstalt Armored vehicle capable of handling range of different attack kinetic energy projectiles and RSV radiation units and uses electromagnetic armoring comprising two connecting parallel plates with intermediate space
US6622608B1 (en) * 2001-06-26 2003-09-23 United Defense Lp Variable standoff extendable armor
US6899009B2 (en) * 2001-06-26 2005-05-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flexible multi-shock shield
US6758125B1 (en) * 2002-12-18 2004-07-06 Bae Systems Information And Electronic Systems Integration Inc. Active armor including medial layer for producing an electrical or magnetic field
US7465500B2 (en) * 2004-10-28 2008-12-16 The Boeing Company Lightweight protector against micrometeoroids and orbital debris (MMOD) impact using foam substances
FR2882813B1 (en) * 2005-03-04 2007-05-11 Tda Armements Sas Soc Par Acti MODULE STRUCTURE FOR ELECTRIC SHIELD
US20070240621A1 (en) * 2006-04-17 2007-10-18 Pizhong Qiao Blast resistant composite panels for tactical shelters

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015187013A1 (en) * 2014-06-02 2015-12-10 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Electric reactive armour
NL2012932B1 (en) * 2014-06-02 2016-06-16 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Electric reactive Armour.
KR20170023883A (en) * 2014-06-02 2017-03-06 네덜란제 오르가니자티에 포오르 토에게파스트-나투우르베텐샤펠리즈크 온데르조에크 테엔오 Electric reactive armour
EP3149427B1 (en) 2014-06-02 2019-04-10 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Electric reactive armour

Also Published As

Publication number Publication date
EP1877720A1 (en) 2008-01-16
ATE518109T1 (en) 2011-08-15
US20090199701A1 (en) 2009-08-13
US8006607B2 (en) 2011-08-30
DE102005021348B3 (en) 2006-12-28
WO2006117232A1 (en) 2006-11-09

Similar Documents

Publication Publication Date Title
EP1877720B1 (en) Protective module for protecting electrified objects from threats, especially threats caused by shaped charges
DE4440120C2 (en) Protective device with reactive armor
EP1002213B1 (en) System for protecting objects against shaped charges
EP0300315B1 (en) Shock wave generator for an apparatus for non-contact disintegration of concrements, present in a body
DE69910953T2 (en) Active protection device for vehicles or structures
DE3920890A1 (en) ARC-RAY TOOLS WITH IMPROVED ARCHING ADHESION TO IMPROVE EFFICIENCY
DE3688056T2 (en) LIGHTNING ARRESTER.
DE3415625C2 (en)
EP2564479B1 (en) Spark gap
DE4244546C2 (en) Electromagnetic sandwich
DE2630273B2 (en) Shaped charge
DE1254896B (en) Device for generating short-term hydraulic pressure surges with high energy
EP2921813A1 (en) Switchable charge variants with hole pattern inserts
DE2747031C2 (en) Device for destroying calculus in the urinary tract
WO2011138025A1 (en) Device for protecting an object at least from shaped charge jets
DE3926239B3 (en) Reactive plating, has flat effective body centrifugable against approaching projectile by using electrical flat coil accelerator, where front plates are integrated as electrical contact sensor in circuit of accelerator
EP2290317B1 (en) Protective element for an object in particular against shaped charge weapons
EP2679948B1 (en) Penetrator with a hollow charge
DE19504856B4 (en) Device for accelerating a projectile
DE3027434C1 (en) Ammunition for fighting armored targets
DE102019209477B4 (en) Lightning protection spark gap
DE19629389C1 (en) Warhead for destruction of aerial targets
EP2888053B1 (en) Method and device for fragmenting and/or weakening material by means of high-voltage pulses
DE3608840A1 (en) BULLET CANNON WITH ELECTROMAGNETIC ACCELERATION SYSTEM
DE1583162C (en) Underwater sound source

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080722

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006009906

Country of ref document: DE

Effective date: 20110915

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RENTSCH PARTNER AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111127

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111028

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

26N No opposition filed

Effective date: 20120502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006009906

Country of ref document: DE

Effective date: 20120502

BERE Be: lapsed

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111027

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 518109

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060504

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110727

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: BELLERIVESTRASSE 203 POSTFACH, 8034 ZUERICH (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190521

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190522

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190521

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190523

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190523

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006009906

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201