EP1869144A1 - Procede et catalyseur destines a produire un produit brut possedant une teneur en azote reduite - Google Patents

Procede et catalyseur destines a produire un produit brut possedant une teneur en azote reduite

Info

Publication number
EP1869144A1
EP1869144A1 EP06740768A EP06740768A EP1869144A1 EP 1869144 A1 EP1869144 A1 EP 1869144A1 EP 06740768 A EP06740768 A EP 06740768A EP 06740768 A EP06740768 A EP 06740768A EP 1869144 A1 EP1869144 A1 EP 1869144A1
Authority
EP
European Patent Office
Prior art keywords
grams
catalyst
crude
crude feed
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06740768A
Other languages
German (de)
English (en)
Inventor
Opinder Kishan Bhan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of EP1869144A1 publication Critical patent/EP1869144A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/10Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/04Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding

Definitions

  • the present invention generally relates to systems, methods, and catalysts for treating crude feed. More particularly, certain embodiments described herein relate to systems, methods, and catalysts for conversion of a crude feed to a total product, wherein the total product includes a crude product that is a liquid mixture at 25 0 C and 0.101 MPa, and has one or more properties that are changed relative to the respective property of the crude feed.
  • Disadvantaged crudes may include acidic components that contribute to the total acid number ("TAN") of the crude feed.
  • TAN total acid number
  • Disadvantaged crudes with a relatively high TAN may contribute to corrosion of metal components during transporting and/or processing of the disadvantaged crudes.
  • Removal of acidic components from disadvantaged crudes may involve chemically neutralizing acidic components with various bases.
  • corrosion-resistant metals may be used in transportation equipment and/or processing equipment. The use of corrosion-resistant metal often involves significant expense, and thus, the use of corrosion-resistant metal in existing equipment may not be desirable.
  • Another method to inhibit corrosion may involve addition of corrosion inhibitors to disadvantaged crudes before transporting and/or processing of the disadvantaged crudes. The use of corrosion inhibitors may negatively affect equipment used to process the crudes and/or the quality of products produced from the crudes.
  • Disadvantaged crudes often contain relatively high levels of residue. Disadvantaged crudes having high levels of residue tend to be difficult and expensive to transport and/or process using conventional facilities. Disadvantaged crudes often contain organically bound heteroatoms (for example, sulfur, oxygen, and nitrogen). Organically bound heteroatoms may, in some situations, have an adverse effect on catalysts used to process disadvantaged crudes. Disadva ⁇ taged crudes may include relatively high amounts of metal contaminants, for example, nickel, vanadium, and/or iron. During processing of such crudes, metal contaminants and/or compounds of metal contaminants, may deposit on a surface of the catalyst or in the void volume of the catalyst. Such deposits may cause a decline in the activity of the catalyst.
  • Disadvantaged crudes may have components that contribute coke and/or to thermal degradation of the disadvantaged crude.
  • the coke and/or thermally degraded components may form and/or deposit on catalyst surfaces at a rapid rate during processing of disadvantaged crudes. It may be costly to regenerate the catalytic activity of a catalyst contaminated with coke and/or thermally degraded crude. Additionally, high temperatures used during regeneration of a catalyst may also diminish the activity of the catalyst and/or cause the catalyst to deteriorate.
  • Disadvantaged crudes may include metals (for example, calcium, potassium and/or sodium) in metal salts of organic acids.
  • Metals in metal salts of organic acids are not typically separated from disadvantaged crudes by conventional production processing, for example, desalting and/or acid washing.
  • metals in metal salts of organic acids may deposit preferentially in void volumes between catalyst particles, particularly at the top of the catalyst bed.
  • the deposit of contaminants, for example, metals in metal salts of organic acids, at the top of the catalyst bed generally results in an increase in pressure drop through the bed and may effectively plug the bed.
  • the metals in metal salts of organic acids may cause rapid deactivation of catalysts.
  • Disadvantaged crudes may include organic oxygen compounds. Treatment facilities that process disadvantaged crudes with an oxygen content of at least 0.002 grams of oxygen per gram of disadvantaged crude may encounter problems during processing.
  • Organic oxygen compounds when heated during processing, may form higher oxidation compounds (for example, ketones and/or acids formed by oxidation of alcohols, and/or acids formed by oxidation of ethers) that are difficult to remove from the treated crude and/or may corrode/contaminate equipment during processing and cause plugging in transportation lines.
  • Disadvantaged crudes may include hydrogen deficient hydrocarbons. When processing hydrogen deficient hydrocarbons, consistent quantities of hydrogen generally need to be added, particularly if unsaturated fragments resulting from cracking processes are produced. Hydrogenation during processing, which typically involves the use of an active hydrogenation catalyst, may be needed to inhibit unsaturated fragments from forming coke. Hydrogen is costly to produce and/or costly to transport to treatment facilities.
  • Crude instability tends to result in phase separation of components during processing and/or formation of undesirable by-products (for example, hydrogen sulfide, water, and carbon dioxide).
  • undesirable by-products for example, hydrogen sulfide, water, and carbon dioxide.
  • disadvantaged crudes may reduce the amount of components that contribute to high viscosity, thermal degradation of the disadvantaged crude, and/or coking. Removal of these components, however, may cause instability in the crude, thus causing separation of the crude during transportation.
  • components that contribute to high viscosity and/or coking are typically removed when the crude is treated with a catalyst that has a large pore size, a high surface area, and a low hydrotreating activity. The resulting crude may then be further treated to remove other unwanted components in the crude.
  • Some processes for improving the quality of crude include adding a diluent to disadvantaged crudes to lower the weight percent of components contributing to the disadvantaged properties.
  • Adding diluent generally increases costs of treating disadvantaged crudes due to the costs of diluent and/or increased costs to handle the disadvantaged crudes. Addition of diluent to a disadvantaged crude may, in some situations, decrease stability of such crude.
  • disadvantaged crudes generally have undesirable properties (for example, relatively high TAN, a tendency to become unstable during treatment, and/or a tendency to consume relatively large amounts of hydrogen during treatment).
  • Disadvantaged crudes may also include relatively high amounts of undesirable components (for example, components that contribute to thermal degradation, residue, organically bound heteroatoms, metal contaminants, metals in metal salts of organic acids, and/or organic oxygen compounds).
  • undesirable components for example, components that contribute to thermal degradation, residue, organically bound heteroatoms, metal contaminants, metals in metal salts of organic acids, and/or organic oxygen compounds.
  • Such properties and components tend to cause problems in conventional transportation and/or treatment facilities, including increased corrosion, decreased catalyst life, process plugging, and/or increased usage of hydrogen during treatment.
  • the invention provides a method of producing a crude product, comprising: contacting a crude feed with one or more catalysts to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 0 C and 0.101 MPa; the crude feed has a micro-carbon residue ("MCR") content of at least 0.0001 grams per gram of crude feed; and at least one of the catalysts is a Column 6 metal catalyst that comprises: one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table; a pore size distribution with a median pore diameter of greater than 110 A; and a pore volume in which pores having a pore diameter of at least 350 A provide at most 10% of the pore volume, wherein pore volume and pore diameter are as determined by ASTM Method D4282; and controlling contacting conditions such that the crude product has a MCR content of at most 90% of the MCR content of the crude feed, wherein MCR content is as determined
  • the invention also provides a catalyst, comprising: a support; and one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table; wherein the catalyst has a pore size distribution with a median pore diameter greater than 110 A and a pore volume in which pores having a pore diameter of at least 350 A provide at most 10% of the pore volume, wherein pore diameter and pore volume are as determined by ASTM Method D4282.
  • the invention also provides a method of making a catalyst, comprising: combining a support with a metal solution comprising one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table, wherein the support has an average pore diameter of at least 90 A and a pore volume in which pores having a pore diameter of at least 350 A provide at most 15% of the pore volume of the support, wherein pore diameter and pore volume are as determined by ASTM Method D4282.
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with one or more catalysts to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 °C and 0.101 MPa, the crude feed has a MCR content of at least 0.0001 grams per gram of crude feed, and at least one of the catalysts is a Columns 6-10 catalyst that has, per gram of catalyst, at least 0.3 grams of one or more metals from Columns 6-10 of the Periodic Table and/or one or more compounds of one or more metals from Columns 6-10 of the Periodic Table; and a binder; and controlling contacting conditions such that the crude product has a MCR content of at most 90% of the MCR content of the crude feed, wherein MCR content is as determined by ASTM Method D4530.
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with one or more catalysts to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 0 C and 0.101 MPa, the crude feed comprises one or more alkali metal salts of one or more organic acids, alkaline-earth metal salts of one or more organic acids, or mixtures thereof, the crude feed has, per gram of crude feed, a total content of alkali metal and alkaline-earth metal in metal salts of organic acids of at least 0.00001 grams, and at least one of the catalysts is a Columns 5-10 metal catalyst that comprises: a support, the support comprising theta alumina; and one or more metals from Columns 5-10 of the Periodic Table and/or one or more compounds of one or more metals from Columns 5-10 of the Periodic Table; and controlling contacting conditions such that the crude product has a total content of alkali metal and alkaline-earth metal
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with one or more catalysts to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 0 C and 0.101 MPa; the crude feed has a nitrogen content of at least 0.0001 grams per gram of crude feed; and at least one of the catalysts is a Column 6 metal catalyst that comprises: one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table; a pore size distribution with a median pore diameter of greater than 110 A; and a pore volume in which pores having a pore diameter of at least 350 A provide at most 10% of the pore volume, wherein pore diameter and pore volume are as determined by ASTM Method D4282; and controlling contacting conditions such that the crude product has a nitrogen content of at most 90% of the nitrogen content of the crude feed, wherein nitrogen content is as determined by ASTM Method D5762.
  • the invention also provides a method of producing a crude product, comprising: contacting a crude feed with one or more catalysts to produce a total product that includes the crude product, wherein the crude product is a liquid mixture at 25 °C and 0.101 MPa; the crude feed has a nitrogen content of at least 0.0001 grams per gram of crude feed; wherein at least one of the catalysts is a Column 6 metal catalyst that is obtainable by heating a Column 6 metal catalyst precursor in the presence of one or more sulfur containing compounds at a temperature below about 500 0 C, wherein the Column 6 metal catalyst precursor comprises: one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table; and a support; and controlling contacting conditions such that the crude product has a nitrogen content of at most 90% of the nitrogen content of the crude feed, wherein nitrogen content is as determined by ASTM Method D5762.
  • the invention also provides, in combination with one or more of the above embodiments, the Column 6 metal catalyst: (a) in which pores having a pore diameter of at least 350 A provide at most 5%, at most 3%, at most 1%, or at most 0.5% of the pore volume; (b) has a pore size distribution with a median pore diameter of at least 120 A, at least 130 A, at least 150 A 3 at least 180 A, at least 200 A, at least 250 A, or at most 300 A, wherein pore size distribution is as determined by ASTM Method D4282; and/or (c) has a pore size distribution such that at least 60 % of the total number of pores in the pore size distribution are within about 45 A, about 35 A, or about 25 A of the median pore diameter of the pore size distribution.
  • the invention also provides, in combination with one or more of the above embodiments, that the Column 6 metal catalyst: (a) has, per gram of catalyst, from about 0.0001 grams to about 0.3 grams, about 0.005 grams to about 0.2 grams, or about 0.01 grams to about 0.1 grams of one or more of the Column 6 metals and/or one or more of the Column 6 metal compounds, calculated as total weight of Column 6 metal; (b) comprises one or more metals from Columns 7-10 of the Periodic Table and/or one or more compounds of one or more metals from Columns 7-10 of the Periodic Table; and has, per gram of catalyst, from about 0.001 grams to about 0.1 grams or about 0.01 grams to about 0.05 grams of one or more of the Columns 7-10 metals and/or one or more of the Columns 7-10 metal compounds, calculated as total weight of Columns 7-10 metals; (c) comprises one or more metals from Column 10 of the Periodic Table and/or one or more compounds of one or more metals from Column 10 of the Periodic Table
  • the invention also provides, in combination with one or more of the above embodiments, that the Column 6 metal catalyst or Column 6 metal solution has, per gram of catalyst or Column 6 metal solution: (a) from about 0.01 grams to about 0.15 grams of molybdenum and/or one or more compounds of molybdenum, calculated as total weight of molybdenum; and from about 0.001 grams to about 0.05 grams of nickel and/or one or more compounds of nickel, calculated as total weight of nickel; and (b) optionally, from about 0.001 grams to about 0.05 grams of iron and/or one or more compounds of iron, calculated as total weight of iron; and (c) optionally, from about 0.0001 grams to about 0.05 grams of phosphorus and/or one or more compounds of phosphorus, calculated as total weight of phosphorus.
  • the invention also provides, in combination with one or more of the above embodiments, that the Columns 5-10 metal catalyst: (a) comprises molybdenum; (b) comprises tungsten; (c) comprises vanadium; (d) has, per gram of catalyst, from about 0.001 grams to about 0.1 grams or about 0.01 grams to about 0.05 grams of one or more metals from Columns 7-10 of the Periodic Table and/or one or more compounds of one or more metals from Columns 7-10 of the Periodic Table; (e) comprises one or more elements from Column 15 of the Periodic Table and/or one or more compounds of one or more elements from Column 15 of the Periodic Table; (f) comprises phosphorus; and/or (g) has a pore size distribution with a median pore diameter of at least 180 A, at least 200 A, at least 230 A, at least 250 A, or at least 300 A.
  • the invention also provides, in combination with one or more of the above embodiments, that the Column 6 metal catalyst is a supported catalyst, in which the support has, per gram of support: (a) at least 0.8 grams, at least 0.9 grams, or at least 0.95 grams of gamma alumina; (b) at most 0.1 grams, at most 0.08 grams, at most 0.06 grams, at most 0.04 grams, or at most 0.02 grams of silica, or (c) at least 0.3 grams or at least 0.5 grams of theta alumina.
  • the invention also provides, in combination with one or more of the above embodiments, contacting the crude feed with one or more catalysts in which at least one or more of the catalysts is a Column 6 metal catalyst that is obtainable by combining a mixture with one or more of the Column 6 metals and/or one or more of the Column 6 metal compounds, and the mixture comprises: one or more metals from Columns 7-10 of the Periodic Table and/or one or more compounds of one or more metals from Columns 7-10 of the Periodic Table; and a support.
  • at least one of the Columns 7-10 metals comprises nickel, cobalt, iron, or mixtures thereof.
  • the invention also provides, in combination with one or more of the above embodiments, a crude feed that has: (a) from about 0.0001 grams to about 0.5 grams, about 0.005 grams to about 0.1 grams, or about 0.01 grams to about 0.05 grams of MCR per gram of crude feed; (b) from about 0.0001 grams to about 0.1 grams, about 0.001 grams to about 0.05 grams, or about 0.005 grams to about 0.01 grams of nitrogen per gram of crude feed; and/or (c) from about 0.00001 grams to about 0.005 grams, about 0.00005 grams to about 0.05 grams, or about 0.0001 grams to about 0.01 grams of alkali metal and alkaline-earth metal in metal salts of organic acids per gram of crude feed.
  • the invention also provides, in combination with one or more of the above embodiments, a crude product that has: (a) a MCR content of at most 80%, at most 50%, at most 30%, or at most 10% of the MCR content of the crude feed; (b) a nitrogen content of at most 80%, at most 50%, at most 30%, or at most 10% of the nitrogen content of the crude feed; (c) a total content of alkali metal ⁇ and alkaline-earth metal in metal salts of organic acids in the crude product of at most 80%, at most 50%, at most 30%, or at most 10% of the content of alkali metal, and alkaline-earth metal, in metal salts of organic acids in the crude feed; (d) a MCR content in a range from about 0.1% to about 75%, about 0.5% to about 45%, about 1% to about 25%, or about 2% to about 9% of the MCR content of the crude feed; (e) a nitrogen content in a range from about 0.1% to about 75%, about 0.
  • the invention also provides, in combination with one or more of the above embodiments, contacting the crude feed with one or more catalysts and one or more additional catalysts, at least one of the catalysts is the Column 6 metal catalyst, and one or more of the additional catalysts has a median pore diameter of at least 60 A, at least 90 A, at least 110 A, at least 18 ⁇ A, at least 200 A, or at least 250 A; and the Column 6 metal catalyst is contacted with the crude feed prior to and/or after contact of the crude feed with at least one of the additional catalysts.
  • the invention also provides, in combination with one or more of the above embodiments, at least one of the catalysts is the Columns 5-10 metal catalyst; and contacting the crude feed with an additional catalyst having a median pore diameter of at least 60 A, and the additional catalyst is contacted with the crude feed subsequent to contact of the crude feed with the Columns 5-10 metal catalyst.
  • the invention also provides, in combination with one or more of the above embodiments, contacting the crude feed with one or more catalysts to produce a total product in which, during contact, a crude feed/total product mixture has a P- value of at least 1.5.
  • the invention also provides, in combination with one or more of the above embodiments, contacting in the presence of a hydrogen source.
  • the invention also provides, in combination with one or more of the above embodiments, the contacting conditions which comprise: (a) a temperature within the range of about 50 0 C to about 500 °C; (b) a temperature of at most 430 0 C, at most 420 0 C, or at most 410 0 C; (c) a total pressure within a range of about 0.1 MPa to about 20 MPa; (d) a total pressure of at most 18 MPa, at most 16 MPa, or at most 14 MPa; (e) a liquid hourly space velocity of at least 0.05 h "1 ; and/or (f) a ratio of a gaseous hydrogen source to the crude feed in a range from about 0.1 Nm 3 /m 3 to about 100,000 NmV, In some embodiments, the invention also provides, in combination with one or more of the above embodiments, a method that comprises contacting a crude feed with one or more catalysts to produce a total product that includes a crude product, the method further comprising
  • the invention provides, in combination with one or more of the above embodiments, a method of making a catalyst that includes combining a support with a Column 6 metal solution: (a) that has a pH of up to about 3; (b) that has a pH in a range from about 1 to about 3; (c) in which an amount of Column 6 metal in the metal solution is selected such that the catalyst has, per gram of catalyst, from about 0.0001 grams to about 0.3 grams, about 0.005 grams to about 0.2 grams, or about 0.01 grams to about 0.1 grams of one or more of the Column 6 metals and/or one or more of the Column 6 metal compounds, calculated as total weight of Column 6 metal; (d) that comprises one or more metals from Columns 7-10 of the Periodic Table and/or one or more compounds of one or more metals from Columns 7-10 of the Periodic Table; and where an amount of Columns 7-10 metals is selected such that the catalyst has, per gram of catalyst, from about 0.001 grams to about 0.1 grams or about 0.01
  • the invention provides, in combination with one or more of the above embodiments, a method of making a catalyst that includes: heat-treating the supported metal at a temperature in a range from about 40 0 C to about 400 0 C, about 60 0 C to about 300 0 C, or about 100 0 C to about 200 0 C; and optionally further heat-treating the supported metal at a temperature of at least 400 0 C.
  • the invention provides, in combination with one or more of the above embodiments, a Columns 6-10 metal catalyst: (a) that comprises one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table; (b) that comprises one or more metals from Columns 7-10 of the Periodic Table and/or one or more compounds of one or more metals from Columns 7-10 of the Periodic Table; (c) that comprises molybdenum and/or tungsten; (d) that comprises nickel and/or cobalt; (e) in which the binder comprises silica, alumina, silica/alumina, titanium oxide, zirconium oxide, or mixtures thereof; and/or (f) that is amorphous.
  • features from specific embodiments may be combined with features from other embodiments.
  • features from one embodiment may be combined with features from any of the other embodiments.
  • crude products are obtainable by any of the methods and systems described herein.
  • transportation fuels, heating fuel, lubricants, or chemicals are obtainable from a crude product or a blend obtained by any of the methods and system described herein.
  • FIG. 1 is a schematic of an embodiment of a contacting system.
  • FIGS. 2 A and 2B are schematics of embodiments of contacting systems that include two contacting zones.
  • FIGS. 3 A and 3B are schematics of embodiments of contacting systems that include three contacting zones.
  • FIG. 4 is a schematic of an embodiment of a separation zone in combination with a contacting system.
  • FIG. 5 is a schematic of an embodiment of a blending zone in combination with a contacting system.
  • FIG. 6 is a schematic of an embodiment of a combination of a separation zone, a contacting system, and a blending zone.
  • the crude product having reduced MCR content and/or a reduced nitrogen content relative to the MCR content and/or the nitrogen content of the crude feed is produced by contacting the crude feed with the catalyst that has a pore size distribution with a median pore diameter of greater than 110 A, and a pore volume in which pores having a pore diameter of at least 350 A provide at most 10% of the pore volume.
  • Crude product having reduced nitrogen content relative to the nitrogen content of the crude feed is produced by contacting the crude feed with the uncalcined catalyst.
  • Crude product having reduced content of metals in metal salts of organic acids relative to the content of metals in metal salts of organic acids of the crude feed is produced by contacting the crude feed with the catalyst that includes Columns 5-10 metal(s) and theta alumina. Crude product having reduced MCR content relative to the MCR content of the crude feed is produced by contacting the crude feed with the bulk metal catalyst.
  • 11/013,629; 11/014,318; 11/013,576; 11/013,835; 11/014,362; 11/014,011; 11/013,747; 11/013,918; 11/014,275; 11/014,060; 11/014,272; 11/014,380; 11/014,005; 11/013,998; 11/014,406; 11/014,365; 11/013,545; 11/014,132; 11/014,363; 11/014,251; 11/013,632; 11/014,009; 11/014,297; 11/014,004; 11/013,999; 11/014,281; 11/013,995; 11/013,904, 11/013,952; 11/014,299; 11/014,381; 11/014,346; 11/014,028; 11/013,826; and 11/013,622 also discuss systems, methods, and catalysts that address the above problems,
  • ASTM American Standard Testing and Materials
  • API gravity refers to API gravity at 15.5 0 C (60 0 F). API gravity is as determined by ASTM Method D6822.
  • Atomic hydrogen percentage and atomic carbon percentage of the crude feed and the crude product are as determined by ASTM Method D5291.
  • Boiling range distributions for the crude feed, the total product, and/or the crude product are as determined by ASTM Method D5307 unless otherwise mentioned.
  • Binder refers to a substrate that combines smaller particles together to form larger substances (for example, blocks or pellets).
  • Bind metal catalyst refers to a catalyst that includes at least one metal, and does not require a carrier or a support.
  • C 5 asphaltenes refers to asphaltenes that are insoluble in pentane. C 5 asphaltenes content is as determined by ASTM Method D2007.
  • Column X metal(s) refers to one or more metals of Column X of the Periodic Table and/or one or more compounds of one or more metals of Column X of the Periodic Table, in which X corresponds to a column number (for example, 1-12) of the Periodic Table.
  • Column 6 metal(s) refers to one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table.
  • Column X element(s) refers to one or more elements of Column X of the Periodic Table, and/or one or more compounds of one or more elements of Column X of the Periodic Table, in which X corresponds to a column number (for example, 13-18) of the Periodic Table.
  • Column 15 element(s) refers to one or more elements from Column 15 of the Periodic Table and/or one or more compounds of one or more elements from Column 15 of the Periodic Table.
  • weight of a metal from the Periodic Table is calculated as the weight of metal or the weight of element. For example, if 0.1 grams OfMoO 3 is used per gram of catalyst, the calculated weight of the molybdenum metal in the catalyst is 0.067 grams per gram of catalyst.
  • Content refers to the weight of a component in a substrate (for example, a crude feed, a total product, or a crude product) expressed as weight fraction or weight percentage based on the total weight of the substrate.
  • Wtppm refers to parts per million by weight.
  • “Crude feed/total product mixture” refers to the mixture that contacts the catalyst during processing. “Distillate” refers to hydrocarbons with a boiling range distribution between 204 0 C
  • Heteroatoms refers to oxygen, nitrogen, and/or sulfur contained in the molecular structure of a hydrocarbon. Heteroatoms content is as determined by ASTM Methods E385 for oxygen, D5762 for total nitrogen, and D4294 for sulfur. "Total basic nitrogen” refers to nitrogen compounds that have a pKa of less than 40. Basic nitrogen (“bn”) is as determined by ASTM Method D2896.
  • Hydrocarbon source refers to hydrogen, and/or a compound and/or compounds that when in the presence of a crude feed and a catalyst react to provide hydrogen to compound(s) in the crude feed.
  • a hydrogen source may include, but is not limited to, hydrocarbons (for example, C 1 to C 4 hydrocarbons such as methane, ethane, propane, butane), water, or mixtures thereof.
  • a mass balance may be conducted to assess the net amount of hydrogen provided to the compound(s) in the crude feed.
  • Frat plate crush strength refers to compressive force needed to crush a catalyst. Flat plate crush strength is as determined by ASTM Method D4179.
  • LHSV refers to a volumetric liquid feed rate per total volume of catalyst, and is expressed in hours (h "1 ). Total volume of catalyst is calculated by summation of all catalyst volumes in the contacting zones, as described herein.
  • Liquid mixture refers to a composition that includes one or more compounds that are liquid at standard temperature and pressure (25 0 C, 0.101 MPa, hereinafter referred to as "STP"), or a composition that includes a combination of one of more compounds that are liquid at STP with one or more compounds that are solids at STP.
  • STP standard temperature and pressure
  • Periodic Table refers to the Periodic Table as specified by the International Union of Pure and Applied Chemistry (IUPAC), November 2003.
  • Metal in metal salts of organic acids refer to alkali metals, alkaline-earth metals, zinc, arsenic, chromium, or combinations thereof. A content of metals in metal salts of organic acids is as determined by ASTM Method Dl 318.
  • MCR content refers to a quantity of carbon residue remaining after evaporation and pyrolysis of a substrate. MCR content is as determined by ASTM Method D4530.
  • Naphtha refers to hydrocarbon components with a boiling range distribution between 38 °C (100 0 F) and 200 0 C (392 0 F) at 0.101 MPa. Naphtha content is as determined by ASTM Method D5307.
  • Ni/V/Fe refers to nickel, vanadium, iron, or combinations thereof.
  • Ni/V7Fe content refers to the content of nickel, vanadium, iron, or combinations thereof.
  • the Ni/V/Fe content is as determined by ASTM Method D5708.
  • NmV refers to normal cubic meters of gas per cubic meter of crude feed.
  • Non-carboxylic containing organic oxygen compounds refers to organic oxygen compounds that do not have a carboxylic (-CO 2 -) group.
  • Non-carboxylic containing organic oxygen compounds include, but are not limited to, ethers, cyclic ethers, alcohols, aromatic alcohols, ketones, aldehydes, or combinations thereof, which do not have a carboxylic group.
  • Non-condensable gas refers to components and/or mixtures of components that are gases at STP.
  • P (peptization) value or “P-value” refers to a numeral value, which represents the flocculation tendency of asphaltenes in the crude feed. Determination of the P-value is described by J. J. Heithaus in “Measurement and Significance of Asphaltene Peptization", Journal of Institute of Petroleum, Vol. 48, Number 458, February 1962, pp. 45-53.
  • Residue refers to components that have a boiling range distribution above 538 °C (1000 0 F), as determined by ASTM Method D5307.
  • SCFB refers to standard cubic feet of gas per barrel of crude feed.
  • Surface area of a catalyst is as determined by ASTM Method D3663.
  • TAN refers to a total acid number expressed as milligrams ("mg") of KOH per gram ("g") of sample. TAN is as determined by ASTM Method D664.
  • VGO refers to hydrocarbons with a boiling range distribution between 343 °C (650 0 F) and 538 0 C (1000 0 F) at 0.101 MPa. VGO content is as determined by ASTM Method D5307.
  • Viscosity refers to kinematic viscosity at 37.8 °C (100 0 F). Viscosity is as determined using ASTM Method D445.
  • test method may be modified and/or recalibrated to test for such property.
  • Crudes may be produced and/or retorted from hydrocarbon containing formations and then stabilized. Crudes are generally solid, semi-solid, and/or liquid. Crudes may include crude oil. Stabilization may include, but is not limited to, removal of non- condensable gases, water, salts, solids, or combinations thereof from the crude to form a stabilized crude. Such stabilization may often occur at, or proximate to, the production and/or retorting site. Stabilized crudes include crudes that have not been distilled and/or fractionally distilled in a treatment facility to produce multiple components with specific boiling range distributions (for example, naphtha, distillates, VGO, and/or lubricating oils).
  • Distillation includes, but is not limited to, atmospheric distillation methods and/or vacuum distillation methods.
  • Undistilled and/or unfractionated stabilized crudes may include components that have a carbon number above 4 in quantities of at least 0.5 grams of such components per gram of crude.
  • Stabilized crudes also include crudes from a surface retorting processes. For example, Canadian tar sands may be mined, and then treated in a surface retorting process. The crude produced from such surface retorting may be a stabilized crude. Examples of stabilized crudes include whole crudes, topped crudes, desalted crudes, desalted topped crudes, retorted crudes, or mixtures thereof.
  • Topped refers to a crude that has been treated such that at least some of the components that have a boiling point below 35 0 C at 0.101 MPa (about 95 0 F at 1 atm) have been removed.
  • topped crudes will have a content of at most 0.1 grams, at most 0.05 grams, or at most 0.02 grams of such components per gram of the topped crude.
  • Some stabilized crudes have properties that allow the stabilized crudes to be transported to conventional treatment facilities by transportation carriers (for example, pipelines, trucks, or ships).
  • Other crudes have one or more unsuitable properties that render them disadvantaged.
  • Disadvantaged crudes may be unacceptable to a transportation carrier and/or a treatment facility, thus imparting a low economic value to the disadvantaged crude. The economic value may be such that a reservoir that includes the disadvantaged crude is deemed too costly to produce, transport, and/or treat.
  • Properties of disadvantaged crudes may include, but are not limited to: a) TAN of at least 0.1, or at least 0.3; b) viscosity of at least 10 cSt; c) API gravity of at most 19; d) a total Ni/V/Fe content of at least 0.00002 grams or at least 0.0001 grams of Ni/V/Fe per gram of disadvantaged crude; e) a total heteroatoms content of at least 0.005 grams of heteroatoms per gram of disadvantaged crude; f) a residue content of at least 0.01 grams of residue per gram of disadvantaged crude; g) a C 5 asphaltenes content of at least 0.04 grams ofCs asphaltenes per gram of disadvantaged crude; h) a MCR content of at least 0.0001 grams of MCR per gram of disadvantaged crude; i) a content of metals in metal salts of organic acids of at least O.OOQ01 grams of metals per gram of disadvantaged crude; or j) combinations thereof.
  • disadvantaged crudes includes, per gram of disadvantaged crude, at least 0.2 grams of residue, at least 0.3 grams of residue, at least 0.5 grams of residue, or at least 0.9 grams of residue.
  • disadvantaged crudes have a TAN in a range from about 0.1 to about 20, about 0.3 to about 10, or about 0.4 to about 5.
  • disadvantaged crudes, per gram of disadvantaged crude have a sulfur content of at least 0.005, at least 0.01, or at least 0.02 grams.
  • disadvantaged crudes have, per gram of disadvantaged crude, an MCR content of at least 0.0001 grams, at least 0.001 grams, at least 0.003 grams, at least 0.005 grams, at least 0.01 grams, at least 0.1 grams, or at least 0.5 grams.
  • Disadvantaged crudes may have, per gram of disadvantaged crude, an MCR content in a range from about 0.0001 grams to about 0.5 grams, from about 0.005 grams to about 0.1 grams, or from about 0.01 grams to about 0.05 grams.
  • disadvantaged crudes have, per gram of disadvantaged crude, a nitrogen content of at least 0.0001 grams, at least 0.001 grams, at least 0.01 grams, at least 0.05 grams, or at least 0.1 grams.
  • Disadvantaged crudes may have, per gram of disadvantaged crude, a nitrogen content in a range from about 0.0001 grams to about 0.1 grams, from about 0.001 grams to about 0.05 grams, or from about 0.005 grams to about 0.01 grams.
  • disadvantaged crudes have at least 0.00001 grams, at least 0.0001 grams, at least 0.001 grams, or at least 0.01 grams, of alkali and alkaline earth metals in metal salts of organic acids.
  • Disadvantaged crudes may have a content of metals in metal salts of organic acids in a range from about 0.00001 grams to about 0.003 grams, about 0.00005 grams to about 0.005 grams, or about 0.0001 grams to about 0.01 grams of alkali metal and alkaline-earth metal in metal salts of organic acids.
  • disadvantaged crudes have properties including, but not limited to: a) TAN of at least 0.5; b) an oxygen content of at least 0.005 grams of oxygen per gram of crude feed; c) a C5 asphaltenes content of at least 0.04 grams of C5 asphaltenes per gram of crude feed; d) a higher than desired viscosity (for example, greater than or equal to 10 cSt for a crude feed with API gravity of at least 10; e) a content of metals in metal salts of organic acids of at least 0.00001 grams of alkali and alkaline earth metals per gram of crude; or f) combinations thereof.
  • Disadvantaged crudes may include, per gram of disadvantaged crude: at least 0.001 grams, at least 0.005 grams, or at least 0.01 grams of hydrocarbons with a boiling range distribution between about 95 0 C and about 200 °C at 0.101 MPa; at least 0.001 grams, at least 0.005 grams, or at least 0.01 grams of hydrocarbons with a boiling range distribution between about 200 0 C and about 300 °C at 0.101 MPa; at least 0.001 grams, at least 0.005 grams, or at least 0.01 grams of hydrocarbons with a boiling range distribution between about 300 0 C and about 400 0 C at 0.101 MPa; and at least 0.001 grams, at least 0.005 grams, or at least 0.01 grams of hydrocarbons with a boiling range distribution between about 400 °C and 650 °C at 0.101 MPa.
  • Disadvantaged crudes may include, per gram of disadvantaged crude: at least 0.001 grams, at least 0.005 grams, or at least 0.01 grams of hydrocarbons with a boiling range distribution of at most 100 0 C at 0.101 MPa; at least 0.001 grams, at least 0.005 grams, or at least 0.01 grams of hydrocarbons with a boiling range distribution between about 100 0 C and about 200 0 C at 0.101 MPa; at least 0.001 grams, at least 0.005 grams, or at least 0.01 grams of hydrocarbons with a boiling range distribution between about 200 0 C and about 300 0 C at 0.101 MPa; at least 0.001 grams, at least 0.005 grams, or at least 0.01 grams of hydrocarbons with a boiling range distribution between about 300 °C and about 400 0 C at 0.101 MPa; and at least 0.001 grams, at least 0.005 grams, or at least 0.01 grams of hydrocarbons with a boiling range distribution between about 400 °C and 650 0 C at 0.101 MPa.
  • Some disadvantaged crudes may include, per gram of disadvantaged crude, at least 0.001 grams, at least 0.005 grams, or at least 0.01 grams of hydrocarbons with a boiling range distribution of at most 100 °C at 0.101 MPa, in addition to higher boiling components.
  • the disadvantaged crude has, per gram of disadvantaged crude, a content of such hydrocarbons of at most 0.2 grams or at most 0.1 grams.
  • Some disadvantaged crudes may include, per gram of disadvantaged crude, at least 0.001 grams, at least 0.005 grams, or at least 0.01 grams of hydrocarbons with a boiling range distribution below 200 0 C at 0.101 MPa.
  • disadvantaged crudes include, per gram of disadvantaged crude, up to 0.9 grams, or up to 0.99 grams of hydrocarbons with a boiling range distribution above 300 0 C. In certain embodiments, disadvantaged crudes also include, per gram of disadvantaged crude, at least 0.001 grams of hydrocarbons with a boiling range distribution above 650 0 C. In certain embodiments, disadvantaged crudes include, per gram of disadvantaged crude, up to about 0.9 grams, or up to about 0.99 grams of hydrocarbons with a boiling range distribution between about 300 0 C and about 1000 0 C.
  • disadvantaged crudes that might be treated using the processes described herein include, but are not limited to, crudes from of the following regions of the world: U.S. Gulf Coast, southern California, north slope of Alaska, Canada tar sands, Canadian Alberta region, Mexico Bay of Campeche, Argentinean San Jorge basin, Brazilian Santos and Campos basins, Egyptian Gulf of Suez, Chad, United Kingdom North Sea, Angola Offshore, China Bohai Bay, China Karamay, Iraq Zagros, Ukraine Caspian, Nigeria Offshore, Madagascar northwest, Oman, Netherlands Schoonebek, Venezuelan Zulia, Malaysia, and Indonesia Sumatra.
  • Treatment of disadvantaged crudes may enhance the properties of the disadvantaged crudes such that the crudes are acceptable for transportation and/or treatment.
  • a crude and/or disadvantaged crude that is to be treated herein is referred to as "crude feed".
  • the crude feed may be topped, as described herein.
  • the crude feed may be obtainable by, but is not limited to, methods as described herein.
  • the crude product resulting from treatment of the crude feed, as described herein, is generally suitable for transporting and/or treatment. Properties of the crude product produced as described herein are closer to the corresponding properties of West Texas Intermediate crude than the crude feed, or closer to the corresponding properties of Brent crude, than the crude feed, thereby enhancing the economic value of the crude feed.
  • Such crude product may be refined with less pre-treatment than other crude products from disadvantaged crude feeds, or no pre-treatment, thereby enhancing refining efficiencies.
  • Pre-treatment may include desulfurization, demetallization and/or atmospheric distillation to remove impurities.
  • Treatment of a crude feed in accordance with inventions described herein may include contacting the crude feed with the catalyst(s) in a contacting zone and/or combinations of two or more contacting zones.
  • a contacting zone at least one property of a crude feed may be changed by contact of the crude feed with one or more catalysts relative to the same property of the crude feed.
  • contacting is performed in the presence of a hydrogen source.
  • the hydrogen source is one or more hydrocarbons that under certain contacting conditions react to provide relatively small amounts of hydrogen to compound(s) in the crude feed.
  • FIG. 1 is a schematic of contacting system 100 that includes an upstream contacting zone 102.
  • the crude feed enters upstream contacting zone 102 via crude feed conduit 104.
  • a contacting zone may be a reactor, a portion of a reactor, multiple portions of a reactor, or combinations thereof. Examples of a contacting zone include a stacked bed reactor, a fixed bed reactor, an ebullating bed reactor, a continuously stirred tank reactor ("CSTR"), a fluidized bed reactor, a spray reactor, and a liquid/liquid contactor.
  • the contacting system is on or coupled to an offshore facility. Contact of the crude feed with the catalyst(s) in contacting system 100 may be a continuous process or a batch process.
  • the contacting zone may include one or more catalysts (for example, two catalysts), hi some embodiments, contact of the crude feed with a first catalyst of the two catalysts may reduce metals in metal salts of organic acids of the crude feed. Subsequent contact of the crude feed having reduced metal salts with the second catalyst may decrease MCR content and/or heteroatoms content.
  • TAN, viscosity, Ni/V/Fe content, heteroatoms content, residue content, API gravity, or combinations of these properties of the crude product change by at least 10% relative to the same properties of the crude feed after contact of the crude feed with one or more catalysts.
  • a volume of catalyst in the contacting zone is in a range from about 10% to about 60 vol%, about 20% to about 50 vol%, or about 30% to about 40 vol% of a total volume of crude feed in the contacting zone.
  • a slurry of catalyst and crude feed may include from about 0.001 grams to about 10 grams, about 0.005 grams to about 5 grams, or about 0.01 grams to about 3 grams of catalyst per 100 grams of crude feed in the contacting zone.
  • Contacting conditions in the contacting zone may include, but are not limited to, temperature, pressure, hydrogen source flow, crude feed flow, or combinations thereof. Contacting conditions in some embodiments are controlled to produce a crude product with specific properties. Temperature in the contacting zone may range from about 50 0 C to about 500 0 C, about 60 °C to about 440 0 C, about 70 0 C to about 430 0 C, or about 80 0 C to about 420 0 C. Pressure in a contacting zone may range from about 0.1 MPa to about 20 MPa, about 1 MPa to about 12 MPa, about 4 MPa to about 10 MPa, or about 6 MPa to about 8 MPa.
  • LHSV of the crude feed will generally range from about 0.05 h “1 to about 30 h “1 , about 0.5 h '1 to about 25 h “1 , about 1 h '1 to about 20 h “1 , about 1.5 h “1 to about 15 h “1 , or about 2 h “1 to about 1O h “1 .
  • LHSV is at least 5 h “1 , at least H h “1 , at least 15 h "1 , or at least 20 h '1 .
  • the total pressure is at most 18 MPa, at most 16 MPa, at most 14 MPa, at most 12 MPa, at most 10 MPa, or at most 8 MPa.
  • the temperature is at most 430 0 C, at most 420 °C, at most 410 0 C, or at most 400 °C.
  • a ratio of the gaseous hydrogen source to the crude feed typically ranges from about 0.1 NmVm 3 to about 100,000 NmV, about 0.5 Nm 3 /m 3 to about 10,000
  • the hydrogen source in some embodiments, is combined with carrier gas(es) and recirculated through the contacting zone.
  • Carrier gas may be, for example, nitrogen, helium, and/or argon.
  • the carrier gas may facilitate flow of the crude feed and/or flow of the hydrogen source in the contacting zone(s).
  • the carrier gas may also enhance mixing in the contacting zone(s).
  • a hydrogen source for example, hydrogen, methane or ethane
  • the hydrogen source may enter upstream contacting zone 102 co-currently with the crude feed in crude feed conduit 104 or separately via gas conduit 106.
  • upstream contacting zone 102 contact of the crude feed with a catalyst produces a total product that includes a crude product, and, in some embodiments, gas.
  • a carrier gas is combined with the crude feed and/or the hydrogen source in conduit 106. The total product may exit upstream contacting zone 102 and enter downstream separation zone 108 via total product conduit 110.
  • downstream separation zone 108 the crude product and gas may be separated from the total product using generally known separation techniques, for example, gas- liquid separation.
  • the crude product may exit downstream separation zone 108 via crude product conduit 112, and then be transported to transportation carriers, pipelines, storage vessels, refineries, other processing zones, or a combination thereof.
  • the gas may include gas formed during processing (for example, hydrogen sulfide, carbon dioxide, and/or carbon monoxide), excess gaseous hydrogen source, and/or carrier gas.
  • the excess gas maybe recycled to contacting system 100, purified, transported to other processing zones, storage vessels, or combinations thereof.
  • contacting the crude feed with the catalyst(s) to produce a total product is performed in two or more contacting zones.
  • the total product may be separated to form the crude product and gas(es).
  • FIGS. 2-3 are schematics of embodiments of contacting system 100 that includes two or three contacting zones.
  • contacting system 100 includes upstream contacting zone 102 and downstream contacting zone 114.
  • FIGS. 3A and 3B include contacting zones 102, 114, 116.
  • contacting zones 102, 114, 116 are depicted as separate contacting zones in one reactor.
  • the crude feed enters upstream contacting zone 102 via crude feed conduit 104.
  • the carrier gas is combined with the hydrogen source in gas conduit 106 and is introduced into the contacting zones as a mixture, hi certain embodiments, as shown in FIGS.
  • the hydrogen source and/or the carrier gas may enter the one or more contacting zones with the crude feed separately via gas conduit 106 and/or in a direction counter to the flow of the crude feed via, for example, gas conduit 106'. Addition of the hydrogen source and/or the carrier gas counter to the flow of the crude feed may enhance mixing and/or contact of the crude feed with the catalyst.
  • Contact of the crude feed with catalyst(s) in upstream contacting zone 102 forms a feed stream. The feed stream flows from upstream contacting zone 102 to downstream contacting zone 114. hi FIGS. 3A and 3B, the feed stream flows from downstream contacting zone 114 to additional downstream contacting zone 116.
  • Contacting zones 102, 114, 116 may include one or more catalysts. As shown in FIG. 2B, the feed stream exits upstream contacting zone 102 via feed stream conduit 118 and enters downstream contacting zone 114. As shown in FIG. 3B, the feed stream exits downstream contacting zone 114 via conduit 118 and enters additional downstream contacting zone 116.
  • the feed stream may be contacted with additional catalyst(s) in downstream contacting zone 114 and/or additional downstream contacting zone 116 to form the total product.
  • the total product exits downstream contacting zone 114 and/or additional downstream contacting zone 116 and enters downstream separation zone 108 via total product conduit 110.
  • the crude product and/or gas is (are) separated from the total product.
  • the crude product exits downstream separation zone 108 via crude product conduit 112.
  • FIG. 4 is a schematic of an embodiment of a separation zone upstream of contacting system 100.
  • the disadvantaged crude (either topped or untopped) enters upstream separation zone 120 via crude conduit 122.
  • Li upstream separation zone 120 at least a portion of the disadvantaged crude is separated using techniques known in the art (for example, sparging, membrane separation, pressure reduction, filtering, or combinations thereof) to produce the crude feed.
  • water may be at least partially separated from the disadvantaged crude in upstream separation zone 120.
  • components that have a boiling range distribution below 95 0 C or below 100 0 C may be at least partially separated from the disadvantaged crude in upstream separation zone 120 to produce the crude feed.
  • at least a portion of naphtha and compounds more volatile than naphtha are separated from the disadvantaged crude.
  • at least a portion of the separated components exit upstream separation zone 120 via conduit 124.
  • the crude feed obtained from upstream separation zone 120 includes a mixture of components with a boiling range distribution of at least 100 0 C or, in some embodiments, a boiling range distribution of at least 120 °C.
  • the separated crude feed includes a mixture of components with a boiling range distribution between about 100 °C to about 1000 0 C, about 120 °C to about 900 0 C, or about 200 0 C to about 800 0 C.
  • At least a portion of the crude feed exits upstream separation zone 120 and enters contacting system 100 (see, for example, the contacting zones in FIGS. 1-3) via additional crude feed conduit 126 to be further processed to form a crude product.
  • upstream separation zone 120 may be positioned upstream or downstream of a desalting unit. In certain embodiments, upstream separation zone 120 may be positioned downstream of a retorting process for bitumen, oil shale, and/or tar sands.
  • the crude product exits contacting system 100 via crude product conduit 112.
  • the crude product is blended with a crude that is the same as or different from the crude feed. For example, the crude product may be combined with a crude having a different viscosity thereby resulting in a blended product having a viscosity that is between the viscosity of the crude product and the viscosity of the crude.
  • the crude product may be blended with crude having a TAN and/or MCR content that is different, thereby producing a product that has a TAN and/or MCR content that is between the TAN and/or MCR content of the crude product and the crude.
  • the blended product may be suitable for transportation and/or treatment.
  • crude feed enters contacting system
  • blending zone 130 at least a portion of the crude product is combined with one or more process streams (for example, a hydrocarbon stream such as naphtha produced from separation of one or more crude feeds), a crude, a crude feed, or mixtures thereof, to produce a blended product.
  • process streams, crude feed, crude, or mixtures thereof are introduced directly into blending zone 130 or upstream of such blending zone via stream conduit 132.
  • a mixing system may be located in or near blending zone 130.
  • the blended product may meet product specifications designated by refineries and/or transportation carriers. Product specifications include, but are not limited to, a range of or a limit of API gravity, TAN, viscosity, or combinations thereof.
  • the blended product exits blending zone 130 via blend conduit 134 to be transported or processed.
  • the disadvantaged crude enters upstream separation zone 120 through crude conduit 122, and the disadvantaged crude is separated as previously described to form the crude feed.
  • the crude feed then enters contacting system 100 through additional crude feed conduit 126. At least some components from the disadvantaged crude exit separation zone 120 via conduit 124. At least a portion of the crude product exits contacting system 100 and enters blending zone 130 through crude product conduit 128.
  • Other process streams and/or crudes enter blending zone 130 directly or via stream conduit 132 and are combined with the crude product to form a blended product.
  • the blended product exits blending zone 130 via blend conduit 134.
  • the crude product and/or the blended product are transported to a refinery and distilled and/or fractionally distilled to produce one or more distillate fractions.
  • the distillate fractions may be processed to produce commercial products such as transportation fuel, lubricants, or chemicals.
  • the crude product after contact of the crude feed with the catalyst, the crude product has a TAN of at most 90%, at most 50%, at most 30%, or at most 10% of the TAN of the crude feed. In certain embodiments, the crude product has a TAN of at most 1, at most 0.5, at most 0.3, at most 0.2, at most 0.1, or at most 0.05. TAN of the crude product will frequently be at least 0.0001 and, more frequently, at least 0.001. In some embodiments, TAN of the crude product may be in a range from about 0.001 to about 0.5, about 0.01 to about 0.2, or about 0.05 to about 0.1.
  • the crude product has a total Ni/V/Fe content of at most 90%, at most 50%, at most 30%, at most 10%, at most 5%, or at most 3% of the Ni/V/Fe content of the crude feed.
  • the crude product has, per gram of crude product a total Ni/V/Fe content in a range from about 1 x 10 " grams to about 5 x 10 " grams, about 3 x 10 ⁇ 7 grams to about 2 x 10 "5 grams, or about 1 x 10 "6 grams to about 1 x 10 "5 grams.
  • the crude product has at most 2 x 10 "5 grams of Ni/V/Fe per gram of crude product.
  • a total Ni/V/Fe content of the crude product is about 70% to about 130%, about 80% to about 120%, or about 90% to about 110% of the Ni/V/Fe content of the crude feed.
  • the crude product has a total content of metals in metal salts of organic acids of at most 90%, at most 50%, at most 30%, at most 10%, or at most 5% of the total content of metals in metal salts of organic acids in the crude feed.
  • the total content of metals in metal salts of organic acids is in a range from about 0.1% to about 75%, from about 0.5% to about 45%, from about 1% to about 25%, or from about 2% to about 9% of the content of metals in metal salts of organic acids of the crude feed.
  • Organic acids that generally form metal salts include, but are not limited to, carboxylic acids, thiols, imides, sulfonic acids, and sulfonates. Examples of carboxylic acids include, but are not limited to, naphthenic acids, phenanthrenic acids, and benzoic acid.
  • the metal portion of the metal salts may include alkali metals (for example, lithium, sodium, and potassium), alkaline-earth metals (for example, magnesium, calcium, and barium), Column 12 metals (for example, zinc and cadmium), Column 15 metals (for example arsenic), Column 6 metals (for example, chromium), or mixtures thereof.
  • alkali metals for example, lithium, sodium, and potassium
  • alkaline-earth metals for example, magnesium, calcium, and barium
  • Column 12 metals for example, zinc and cadmium
  • Column 15 metals for example arsenic
  • Column 6 metals for example, chromium
  • the crude product has a total content of alkali metal and alkaline-earth metal in metal salts of organic acids of at most 90%, at most 80%, at most 50%, at most 30%, at most 10%, or at most 5% of the content of alkali metal and alkaline- earth metal in metal salts of organic acids in the crude feed.
  • the total content of alkali metal and alkaline-earth metal in metal salts of organic acids in the crude product is in a range from about 0.1% to about 75%, from about 0.5% to about 45%, from about 1% to about 25%, or from about 2% to about 9% of the total content of alkali metal and alkaline-earth metal salts of organic acids in the crude feed.
  • the crude product has a total content of zinc salts of one or more organic acids of at most 90%, at most 80%, at most 50%, at most 30%, at most 10%, or at most 5% of the content of zinc salts of one or more organic acids in the crude feed.
  • the total content of zinc salts of organic acids in the crude product is in a range from about 0.1% to about 75%, from about 0.5% to about 45%, from about 1% to about 25%, or from about 2% to about 9% of the total content of zinc salts of organic acids in the crude feed.
  • the crude product has a total content of chromium and/or arsenic in metal salts of organic acids of at most 90% of the content of chromium and/or arsenic in metal salts of organic acids in the crude feed.
  • the crude product has, per gram of crude product, from about 1 x 10 "7 grams to about 5 x 10 "5 grams, about 5 x 10 "7 grams to about 1 x 10 "5 grams, or about 1 x 10 "6 grams to about 5 x 10 "6 grams of alkali metal and alkaline-earth metal in metal salts of organic acids.
  • API gravity of the crude product produced from contact of the crude feed with catalyst, at the contacting conditions is about 70% to about 130%, about 80% to about 120%, about 90% to about 110%, or about 100% to about 130% of the API gravity of the crude feed. In certain embodiments, API gravity of the crude product is from about 14 to about 40, about 15 to about 30, or about 16 to about 25.
  • the crude product has a viscosity of at most 90%, at most 80%, at most 70%, at most 50%, at most 30%, at most 10%, or at most 5% of the viscosity of the crude feed. In some embodiments, the viscosity of the crude product is at most 90% of the viscosity of the crude feed while the API gravity of the crude product is about 70% to about 130%, about 80% to about 120%, or about 90% to about 110% of the API gravity the crude feed.
  • the crude product has a total heteroatoms content of at most 90%, at most 50%, at most 30%, at most 10%, or at most 5% of the total heteroatoms content of the crude feed, hi certain embodiments, the crude product has a total heteroatoms content of at least 1%, at least 30%, at least 80%, or at least 99% of the total heteroatoms content of the crude feed.
  • the sulfur content of the crude product maybe at most 90%, at most 50%, at most 30%, at most 10%, or at most 5% of the sulfur content of the crude feed. In certain embodiments, the crude product has a sulfur content of at least 1%, at least 30%, at least 80%, or at least 99% of the sulfur content of the crude feed.
  • total nitrogen content of the crude product may be at most 90%, at most 80%, at most 70%, at most 50%, at most 30% or at most 10%, or at most 5% of a total nitrogen content of the crude feed.
  • the crude product has a total nitrogen content of at least 1 %, at least 30%, at least 80%, or at least 99% of the total nitrogen content of the crude feed.
  • the crude product has a total nitrogen content in a range from about 0.1% to about 75%, from about 0.5% to about 45%, from about 1% to about 25%, or about 2% to about 9% of the total nitrogen content of the crude feed.
  • the crude product has, per gram of crude product, a total nitrogen content in a range from about 0.00001 grams to about 0.05 grams, about 0.0001 grams to about 0.01 grams, or about 0.0005 grams to about 0.001 grams.
  • basic nitrogen content of the crude product may be at most 95%, at most 90%, at most 50%, at most 30%, at most 10%, or at most 5% of the basic nitrogen content of the crude feed.
  • the crude product has a basic nitrogen content of at least 1%, at least 30%, at least 80%, or at least 99% of the basic nitrogen content of the crude feed.
  • the oxygen content of the crude product maybe at most 90%, at most 50%, at most 30%, at most 10%, or at most 5% of the oxygen content of the crude feed. In certain embodiments, the oxygen content of crude product may be least 1%, at least 30%, at least 80%, or at least 99% of the oxygen content of the crude feed. In some embodiments, the total content of carboxylic acid compounds of the crude product may be at most 90%, at most 50%, at most 30%, at most 10%, or at most 5% of the content of the carboxylic acid compounds in the crude feed. In certain embodiments, the total content of carboxylic acid compounds of the crude product may be at least 1%, at least 30%, at least 80%, or at least 99% of the total content of carboxylic acid compounds in the crude feed.
  • selected organic oxygen compounds may be reduced in the crude feed.
  • carboxylic acids and/or metal salts of carboxylic acids may be chemically reduced before non-carboxylic containing organic oxygen compounds.
  • Carboxylic acids and non-carboxylic containing organic oxygen compounds in a crude product may be differentiated through analysis of the crude product using generally known spectroscopic methods (for example, infrared analysis, mass spectrometry, and/or gas chromatography).
  • the crude product in certain embodiments, has an oxygen content of at most 90%, at most 80%, at most 70%, or at most 50% of the oxygen content of the crude feed, and TAN of the crude product is at most 90%, at most 70%, at most 50%, at most 30% or at most 40% of the TAN of the crude feed.
  • the oxygen content of the crude product may be at least 1%, at least 30%, at least 80%, or at least 99% of the oxygen content of the crude feed, and the crude product has a TAN of at least 1%, at least 30%, at least 80%, or at least 99% of the TAN of the crude feed.
  • the crude product may have a content of carboxylic acids and/or metal salts of carboxylic acids of at most 90%, at most 70%, at most 50%, or at most 40% of the crude feed, and a content of non-carboxylic acid containing organic oxygen compounds within about 70% to about 130%, about 80% to about 120%, or about 90% to about 110% of the non-carboxylic acid containing organic oxygen compounds of the crude feed.
  • the crude product includes, in its molecular structure, from about 0.05 grams to about 0.15 grams or from about 0.09 grams to about 0.13 grams of hydrogen per gram of crude product.
  • the crude product may include, in its molecular structure, from about 0.8 grams to about 0.9 grams or from about 0.82 grams to about 0.88 grams of carbon per gram of crude product.
  • a ratio of atomic hydrogen to atomic carbon (H/C) of the crude product may be within about 70% to about 130%, about 80% to about 120%, or about 90% to about 110% of the atomic H/C ratio of the crude feed.
  • a crude product atomic H/C ratio within about 10% to about 30% of the crude feed atomic H/C ratio indicates that uptake and/or consumption of hydrogen in the process is relatively small, and/or that hydrogen is produced in situ.
  • the crude product includes components with a range of boiling points.
  • the crude product includes, per gram of the crude product: at least 0.001 grams, or from about 0.001 grams to about 0.5 grams of hydrocarbons with a boiling range distribution of at most 100 0 C at 0.101 MPa; at least 0.001 grams, or from about 0.001 grams to about 0.5 grams of hydrocarbons with a boiling range distribution between about 100 °C and about 200 °C at 0.101 MPa; at least 0.001 grams, or from about 0.001 grams to about 0.5 grams of hydrocarbons with a boiling range distribution between about 200 °C and about 300 0 C at 0.101 MPa; at least 0.001 grams, or from about 0.001 grams to about 0.5 grams of hydrocarbons with a boiling range distribution between about 300 °C and about 400 0 C at 0.101 MPa; and at least 0.001 grams, or from about 0.001 grams to about 0.5 grams of hydrocarbons with a boiling range distribution between about 400 0 C and about 538
  • the crude product includes, per gram of crude product, at least 0.001 grams of hydrocarbons with a boiling range distribution of at most 100 0 C at 0.101 MPa and/or at least 0.001 grams of hydrocarbons with aboiling range distribution between about 100 °C and about 200 0 C at 0.101 MPa.
  • the crude product may have at least 0.001 grams, or at least 0.01 grams of naphtha per gram of crude product, hi other embodiments, the crude product may have a naphtha content of at most 0.6 grams, or at most 0.8 grams of naphtha per gram of crude product.
  • the crude product has, per gram of crude product, a distillate content in a range from about 0.00001 grams to about 0.5 grams, about 0.001 grams to about 0.3 grams, or about 0.002 grams to about 0.2 grams.
  • the crude product has, per gram of crude product, a VGO content in a range from about 0.00001 grams to about 0.8 grams, about 0.001 grams to about 0.5 grams, about 0.005 grams to about 0.4 grams, or about 0.01 grams to about 0.3 grams.
  • the crude product has a residue content of at most 90%, at most 70%, at most 50%, at most 30%, or at most 10% of the residue content of the crude feed. In certain embodiments, the crude product has a residue content of about 70% to about 130%, about 80% to about 120%, or about 90% to about 110% of the residue content of the crude feed.
  • the crude product may have, per gram of crude product, a residue content in a range from about 0.00001 grams to about 0.8 grams, about 0.0001 grams to about 0.5 grams, about 0.0005 grams to about 0.4 grams, about 0.001 grams to about 0.3 grams, about 0.005 grams to about 0.2 grams, or about 0.01 grams to about 0.1 grams.
  • the C 5 asphaltenes content is at most 90%, at most 80%, at most 70%, at most 50%, at most 30%, or at most 10% of the C 5 asphaltenes content of the crude feed. In certain embodiments, the C 5 asphaltenes content of the crude product is at least 10%, at least 60%, or at least 70% of the C 5 asphaltenes content of the crude feed.
  • the crude product may have a C 5 asphaltenes content in a range from about 0.1% to about 75%, from about 0.5% to about 45%, from about 1% to about 25%, or from about 2% to about 9% of the C 5 asphaltenes content of the crude feed.
  • the crude product has, in some embodiments, from about 0.0001 grams to about 0.1 grams, from about 0.005 grams to about 0.08 grams, or from about 0.01 grams to about 0.05 grams of C 5 asphaltenes per gram of crude product.
  • the crude product has an MCR content that is at most 90%, at most 80%, at most 50%, at most 30%, or at most 10% of the MCR content of the crude feed, hi some embodiments, the crude product has a MCR content in a range from about 0.1% to about 75%, from about 0.5% to about 45%, from about 1% to about 25%, or from about 2% to about 9% of the MCR content of the crude feed.
  • the crude product has, in some embodiments, from about 0.00001 grams to about 0.1 grams, about 0.0001 grams to about 0.05 grams, or about 0.001 grams to about 0.005 grams of MCR per gram of crude product.
  • the C5 asphaltenes content and MCR content may be combined to produce a mathematical relationship between the high viscosity components in the crude product relative to the high viscosity components in the crude feed.
  • a sum of a crude feed C 5 asphaltenes content and a crude feed MCR content may be represented by S.
  • a sum of a crude product C 5 asphaltenes content and a crude product MCR content may be represented by S'.
  • the sums may be compared (S' to S) to assess the net reduction in high viscosity components in the crude feed.
  • S 1 of the crude product may be in a range from about 1% to about 99%, about 10% to about 90%, or about 20% to about 80% of S.
  • a ratio of MCR content of the crude product to C 5 asphaltenes content is in a range from about 1.0 to about 3.0, about 1.2 to about 2.0, or about 1.3 to about 1.9.
  • the crude product includes from greater than 0 grams, but less than 0.01 grams, from about 0.000001 grams to about 0.001 grams, or from about 0.00001 grams to about 0.0001 grams of total catalyst per gram of crude product.
  • the catalyst may assist in stabilizing the crude product during transportation and/or treatment.
  • the catalyst may inhibit corrosion, inhibit friction, and/or increase water separation abilities of the crude product. Methods described herein may be configured to add one or more catalysts described herein to the crude product during treatment.
  • the crude product produced from contacting system 100 has properties different than properties of the crude feed.
  • properties may include, but are not limited to: a) reduced TAN; b) reduced viscosity; c) reduced total Ni/V/Fe content; d) reduced content of sulfur, oxygen, nitrogen, or combinations thereof; e) reduced residue content; f) reduced C 5 asphaltenes content; g) reduced MCR content; h) increased API gravity; i) a reduced content of metals in metal salts of organic acids; j) increased stability relative to the crude feed; or k) combinations thereof.
  • Catalysts used in one or more embodiments of the inventions may include one or more bulk metals and/or one or more metals on a support.
  • the metals may be in elemental form or in the form of a compound of the metal.
  • the catalysts described herein may be introduced into the contacting zone as a precursor, and then become active as a catalyst in the contacting zone (for example, when sulfur and/or a crude feed containing sulfur is contacted with the precursor).
  • the catalyst or combination of catalysts used as described herein may or may not be commercial catalysts.
  • Examples of commercial catalysts that are contemplated to be used as described herein include HDS22; HDN60; C234; C311; C344; C411; C424; C344; C444; C447; C454; C448; C524; C534; DN120; DN140; DN190; DN200; DN800; DC2118; DC2318; DN3100; DN3110; DN3300; DN3310; RC400; RC410; RN412; RN400; RN410; RN420; RN440; RN450; RN650; RN5210; RN5610; RN5650; RM430; RM5030; Z603; Z623; Z673; Z703; Z713; Z723; Z753; and Z763, which are available from CRI International, Inc.
  • catalysts used to change properties of the crude feed include one or more Columns 5-10 metal(s) on a support.
  • Columns 5-10 metal(s) include, but are not limited to, vanadium, chromium, molybdenum, tungsten, manganese, technetium, rhenium, iron, cobalt, nickel, ruthenium, palladium, rhodium, osmium, indium, platinum, or mixtures thereof.
  • Compounds of Columns 5-10 metal(s) include, but are not limited to, oxides, nitrates, ammonium salts, and carbonates of the Columns 5-10 metal(s).
  • Examples of Columns 5-10 metal compounds include, but are not limited to, molybdenum trioxide, molybdenum ammonium oxide, molybdenum carbonate, tungsten trioxide, nickel oxide, nickel carbonate, nickel nitrate, cobalt carbonate, and cobalt oxide.
  • the catalyst may have, per gram of catalyst, a total Columns 5-10 metal(s) content in a range from at least 0.0001 grams, at least 0.001 grams, at least 0.01 grams, at least 0.3 grams, at least 0.5 grams, at least 0.6 grams, at least 0.8 grams, or at least 0.9 grams.
  • a total content of Columns 5-10 metal(s), per gram of catalyst may be in a range about 0.0001 grams to about 0.99 grams, about 0.0005 grams to about 0.5 grams, about 0.001 grams to about 0.3 grams, about 0.005 grams to about 0.2 grams, or about 0.01 grams to about 0.1 grams, hi some embodiments, the catalyst includes Column 15 element(s) in addition to the Columns 5-10 metal(s).
  • the catalyst may have a total Column 15 element content, per gram of catalyst, in range from about 0.000001 grams to about 0.1 grams, about 0.00001 grams to about 0.06 grams, about 0.00005 grams to about 0.03 grams, or about 0.0001 grams to about 0.001 grams, hi other embodiments, the catalyst does not include a Column 15 element. hi some embodiments, the catalyst includes a combination of Column 6 metal(s) with one or more metals from Column 5 and/or Columns 7-10. A molar ratio of Column 6 metal to Column 5 metal may be in a range from about 0.1 to about 20, about 1 to about 10, or about 2 to about 5.
  • a molar ratio of Column 6 metal to Columns 7-10 metal may be in a range from about 0.1 to about 20, about 1 to about 10, or about 2 to about 5.
  • the catalyst includes Column 15 element(s) in addition to the combination of Column 6 metal(s) with one or more metals from Columns 5 and/or 7-10.
  • the catalyst includes Column 6 metal(s) and Column 10 metal(s).
  • a molar ratio of the total Column 10 metal to the total Column 6 metal in the catalyst may be in a range from about 1 to about 10, or from about 2 to about 5.
  • the catalyst includes Column 5 metal(s) and Column 10 metal(s).
  • a molar ratio of the total Column 10 metal to the total Column 5 metal in the catalyst may be in a range from about 1 to about 10, or from about 2 to about 5.
  • the catalyst includes Column 6 metal(s).
  • the catalyst may have, per gram of catalyst, a total Column 6 metal(s) content of at least 0.00001 grams, at least 0.01 grams, at least 0.02 grams and/or in a range from about 0.0001 grams to about 0.6 grams, about 0.001 grams to about 0.3 grams, about 0.005 grams to about 0.2 grams, or about 0.01 grams to about 0.1 grams.
  • the catalyst includes from about 0.0001 grams to about 0.2 grams, from about 0.001 grams to about 0.08 grams, or from about 0.01 grams to 0.06 grams of Column 6 metal(s) per gram of catalyst. In some embodiments, the catalyst includes Column 15 element(s) in addition to the Column 6 metal(s).
  • the catalyst includes a combination of Column 6 metal(s) with one or more metals from Columns 7-10.
  • the catalyst may have, per gram of catalyst, a total Column 7-10 metal(s) content in a range from about 0.0001 grams to about 0.1 grams, from about 0.001 grams to about 0.05 grams, or from about 0.01 grams to about 0.03 grams.
  • the catalyst includes, per gram of catalyst, from about 0.01 grams to about 0.15 grams of molybdenum and from about 0.001 grams to about 0.05 grams of nickel.
  • the catalyst in some embodiments, also includes from about 0.001 grams to about 0.05 grams of iron per gram of catalyst.
  • the catalyst includes, per gram of catalyst, from about 0.01 grams to about 0.15 grams of molybdenum, from about 0.001 grams to about 0.05 grams of nickel, from about 0.001 grams to about 0.05 grams of iron, and from about 0.0001 grams to about 0.05 grams of phosphorus.
  • Columns 5-10 metal(s) are incorporated in, or deposited on, a support to form the catalyst.
  • Columns 5-10 metal(s) in combination with Column 15 element(s) are incorporated in, or deposited on, the support to form the catalyst.
  • the weight of the catalyst includes all support, all metal(s), and all element(s).
  • the support may be porous and may include refractory oxides, porous carbon based materials, zeolites, or combinations thereof. Refractory oxides may include, but are not limited to, alumina, silica, silica-alumina, titanium oxide, zirconium oxide, magnesium oxide, or mixtures thereof.
  • Porous carbon based materials include, but are not limited to, activated carbon and/or porous graphite.
  • zeolites include Y-zeolites, beta zeolites, mordenite zeolites, ZSM-5 zeolites, and fe ⁇ ierite zeolites.
  • Zeolites may be obtained from a commercial manufacturer such as Zeolyst (Valley Forge, Pennsylvania, U.S.A.).
  • the support may be prepared and/or selected based upon a variety of desired characteristics. Examples of characteristics include, but are not limited to, pore volume, average pore diameter, pore volume distribution, surface area, and percentage of pores above or in a certain pore diameter range.
  • the support in some embodiments, is prepared such that the support has an average pore diameter of at least 90 A, at least 110 A, at least 130 A, at least 150 A, at least 170 A, or at least 180 A.
  • the support is prepared by combining water with the support to form a paste.
  • an acid is added to the paste to assist in extrusion of the paste.
  • the water and dilute acid are added in such amounts and by such methods as required to give the extrudable paste a desired consistency.
  • acids include, but are not limited to, nitric acid, acetic acid, sulfuric acid, and hydrochloric acid.
  • the paste maybe extruded and cut using generally known catalyst extrusion methods and catalyst cutting methods to form extrudates.
  • the extrudates maybe heat-treated at a temperature in a range from about 65 0 C to about 260 °C or from about 85 0 C to about 235 °C for a period of time (for example, for about 0.5 hours to about 8 hours) and/or until the moisture content of the extrudate has reached a desired level.
  • the heat- treated extrudate may be further heat-treated at a temperature in a range from about 800 0 C to about 1200 0 C or about 900 0 C to about 1100 0 C to form a support having an average pore diameter of at least 150 A.
  • the supports have a pore volume distribution over a range of pore diameters.
  • the support contains pores that have a pore diameter of at least 350 A, at least 400 A, at least 500 A, or at least 1000 A, or in a range of about 350 A to about 5000 A, about 400 A to about 1000 A, or about 500 A to about 900 A, which provide at most 15%, at most 10%, at most 5% at most 3%, at most 1% or at most 0.5% of the total pore volume of the support.
  • the support includes gamma alumina, theta alumina, delta alumina, alpha alumina, or combinations thereof.
  • the amount of gamma alumina, delta alumina, alpha alumina, or combinations thereof, per gram of catalyst support maybe in a range from about 0.0001 grams to about 0.99 grams, about 0.001 grams to about 0.5 grams, about 0.01 grams to about 0.1 grams, or at most 0.1 grams as determined by x-ray diffraction.
  • the support includes, per gram of support, at least 0.5 grams, at least 0.8 grams, at least 0.9 grams, or at least 0.95 grams of gamma alumina.
  • the support contains, per gram of support, from about 0.5 grams to about 0.99 grams, from about 0.6 grams to about 0.9 grams, or from about 0.7 grams to about 0.8 grams of gamma alumina.
  • the support has, either alone or in combination with other forms of alumina, a theta alumina content, per gram of support, in a range from about 0.1 grams to about 0.99 grams, about 0.5 grams to about 0.9 grams, or about 0.6 grams to about 0.8 grams, as determined by x-ray diffraction.
  • the support may have, per gram of support, at least 0.1 grams, at least 0.3 grams, at least 0.5 grams, or at least 0.8 grams of theta alumina, as determined by x-ray diffraction.
  • the support includes, per gram of support, at most 0.2 grams, at most 0.1 grams, at most 0.08 grams, at most 0.06 grams, at most 0.05 grams, at most 0.04 grams, at most 0.03 grams, at most 0.02 grams, or at most 0.01 grams of silica, ha certain embodiments, the support has, per gram of support, from about 0.001 grams to about 0.2 grams or from about 0.01 grams to about 0.1 grams of silica. In some embodiments, the support includes a combination of silica and alumina. Supported catalysts may be prepared using generally known catalyst preparation techniques. Examples of catalyst preparations are described in U.S. Patent Nos. 6,218,333 to Gabrielov et al; 6,290,841 to Gabrielov et al.; and 5,744,025 to Boon et al, and U.S. Patent Application Publication No. US 2003/0111391 to Bhan.
  • the support may be combined with metal to form a catalyst.
  • the support is heat-treated at temperatures in a range from about 400 0 C to about 1200 0 C, about 450 °C to about 1000 0 C, or about 600 0 C to about 900 0 C prior to combining with a metal.
  • impregnation aids may be used during preparation of the catalyst. Examples of impregnation aids include hydrogen peroxide, organic acids, amines, ethylenediaminetetraacetic acid (EDTA), ammonia, or mixtures thereof.
  • amines include, but are not limited to, alkanolamines, ammonia, alkyl amines, aromatic amines, and substituted ammonium compounds.
  • Organic acids include, but are not limited to, citric acid, tartaric acid, oxalic acid, malonic acid, malic acid, or mixtures thereof.
  • the support may be combined with a metal solution having a pH of up to about 3.
  • the pH of the metal solution may range from about 1 to about 3, or from about 1.5 to about 2.5. Controlling the pH of the metal solution may facilitate dispersion of metals into the support.
  • a dispersed or substantially dispersed metal catalyst prepared using such pH controlled conditions may have an increased catalyst life compared to the life of a conventional catalyst when used to process a crude feed at the same contacting conditions.
  • the metal solution may include Column 6 metal(s). hi some embodiments, the metal solution includes Column 6 metal(s) in combination with Columns 7-10 metal(s)-. In certain embodiments, the metal solution includes Column 15 element(s) in combination with Column 6 metal(s), or in combination with Column 6 metal(s) and Columns 7-10 metal(s).
  • the pH of the metal solution may be adjusted to the desired pH of up to pH 3 using mineral acids and/or organic acid components.
  • Mineral acids include, but are not limited to, phosphoric acid, nitric acid, sulfuric acid, or mixtures thereof.
  • the metal solution is prepared by combining one or more Columns 6-10 metal solutions having different pH values.
  • a Columns 6-10 metal solution having a pH in a range from about 4 to about 7, or from about 5 to about 6, may be combined with a different Columns 6-10 metal solution having a pH in a range from about 0.1 to about 4, or about 1 to about 3.
  • the Columns 6-10 metal solutions include impregnation aids, mineral acids, organic acids, Column 15 element(s), or mixtures thereof.
  • a catalyst may be formed by adding or incorporating multiple Columns 5-10 metal(s) to a support sequentially ("overlaying").
  • a support/Columns 7-10 metal(s) mixture is prepared by combining a support with one or more Columns 7-10 metal(s). In an embodiment, the resulting mixture includes about 0.01 grams to about 0.1 grams of Columns 7-10 metal(s) per gram of the support/Columns 7-10 metal(s) mixture.
  • the support/Columns 7-10 metal(s) mixture may be heat-treated at a temperature in a range from about 50 0 C to about 100 0 C or about 60 °C to about 90 °C for several hours, and then heat-treated at a temperature in a range from about 400 0 C to about 700 0 C, about 450 0 C to about 650 °C, or about 500 0 C to about 600 0 C for about 2 hours.
  • the resulting metal-containing support may be combined with a Column 6 metal(s) and, optionally, an additional amount of Columns 7-10 metal(s) such that the finished catalyst contains, per gram of catalyst, at least 0.3 grams, at least 0.1 grams, or at least 0.08 grams of the Column 6 metal(s), and a total Columns 7-10 metal(s), per gram of catalyst, in a range from about 0.01 grams to about 0.2 grams or from about 0.05 grams to about 0.1 grams.
  • the resulting catalyst may be heat-treated at a temperature in a range from about 50 °C to about 100 0 C or from about 60 °C to about 90 0 C for several hours , and then heat-treated at a temperature in a range from about 350 °C to about 500 0 C or 400 0 C to about 450 0 C for about 2 hours.
  • Column 15 element(s) may be combined with the support/Columns 7-10 metal(s) mixture and/or with the Column 6 metal(s).
  • the Columns 5-10 metal(s) and support may be mixed with suitable mixing equipment to form a Columns 5-10 metal(s)/support mixture.
  • suitable mixing equipment include tumblers, stationary shells or troughs, Muller mixers (for example, batch type or continuous type), impact mixers, and any other generally known mixer or device, that will suitably provide the Columns 5-10 metal(s)/support mixture, m certain embodiments, the materials are mixed until the Columns 5-10 metal(s) is (are) substantially homogeneously dispersed in the support.
  • the catalyst is heat-treated at temperatures from about 150
  • the catalyst may be heat-treated in the presence of hot air and/or oxygen rich air at a temperature in a range between about 400 0 C and about 1000 0 C to remove volatile matter such that at least a portion of the Columns 5-10 metal(s) are converted to the corresponding metal oxide(s).
  • the catalyst may be heat-treated in the presence of air at temperatures in a range from about 35 0 C to about 500 °C for a period of time in a range from 1 hour to about 3 hours to remove a majority of the volatile components without substantially converting the Columns 5-10 metal(s) to metal oxide(s).
  • Catalysts prepared by such a method are generally referred to as "uncalcined" catalysts.
  • the active metals may be substantially dispersed on the support. Preparations of such catalysts are described in U.S. Patent Nos. 6,218,333 to Gabrielov et al. and 6,290,841 to Gabrielov et al.
  • a theta alumina support may be combined with Columns 5- 10 metal(s) to form a theta alumina support/Columns 5-10 metal(s) mixture.
  • the theta alumina support/Columns 5-10 metal(s) mixture may be heat-treated at a temperature of at least 400 0 C to form a catalyst having a pore size distribution with a median pore diameter of at least 230 A. Typically, such heat-treating is conducted at temperatures of at most 1200 0 C.
  • bulk metals catalysts used to change properties of the crude feed include one or more Columns 6-10 metal(s).
  • the bulk metal catalyst may have, per gram of catalyst, a total Columns 6-10 metal(s) content from at least 0.3 grams, at least 0.5 grams, at least 0.6 grams, at least 0.8 grams, or at least 0.9 grams.
  • the total Columns 6-10 metal(s) content, per gram of catalyst may be in a range from about 0.3 grams to about 0.99 grams, from about 0.5 grams to about 0.9 grams, or from about 0.6 grams to about 0.8 grams.
  • the catalyst includes Column 15 element(s) in addition to the Columns 6-10 metal(s).
  • the bulk metal catalyst may have a total Column 15 element content, per gram of catalyst, in range from about 0.000001 grams to 0.1 grams, about 0.00001 grams about 0.06 grams, about 0.00005 grams to about 0.03 grams, or about 0.0001 grams to about 0.001 grams.
  • the bulk metal catalyst may include a binder.
  • the binder maybe silica, alumina oxide, zinc oxide, oxides of the Columns 6-10 metal(s), carbon, zeolites, or mixtures thereof.
  • the catalyst includes at most 0.2 grams, at most 0.1 grams, at most 0.05 grams, at most 0.01 grams, or at most 0.005 grams of binder per gram of catalyst.
  • the bulk metal catalyst may be prepared as described in U.S. Patent Nos. 4,937,218 to Aqudelo et al.; 6,162,350 to Soled et al.; and 6,783,663 to Riley et al.; U.S. Patent Application Publication Nos. US 2004/0182749 to Domokos et al. and US 2004/0235653 to Domokos et al.; and by Landau et al. in "Hydrosulfurization of Methyl-Substituted Dibenzothiophenes: Fundamental Study of Routes to Deep Desulfurization, Journal of Catalysis, 1996, Vol. 159, pp. 236-235.
  • one or more Columns 6-10 metal slurries in water or other protic liquids are contacted at a temperature in a range from about 25 0 C to about 95 °C with a slurry of water, alkaline compound, and a binder to form a Columns 6-10 metal/binder slurry.
  • the Columns 6-10 metal slurries may include 0.01 grams to 0.8 grams, 0.02 grams to 0.5 grams, or 0.05 grams to 0.3 grams of Columns 6-10 metal(s) per gram of slurry.
  • the alkali compound is ammonia.
  • An amount of alkali compound may be at least 0.5 moles, at least 0.7 moles, at least 0.8 moles, at least, 0.9 moles or at most 2 mole per mole of Columns 6-10 metal(s), based on the oxide form of the Columns 6-10 metal(s).
  • the binder may be silica, alumina, silica/alumina, titanium oxide, zirconium oxide, or mixtures thereof.
  • the Columns 6-10 metal/binder slurry may be held at ambient and/or at the slurry temperature for a period of time (for example, at least 10 minutes, at least 30 minutes, or at least 240 minutes) and then cooled, if necessary.
  • the bulk metal catalyst may be isolated from the slurry using general isolation techniques (for example, filtration, spray dying, flash drying, evaporation, and vacuum distillation).
  • the bulk metal catalyst may be heat- treated in a range from about 25 0 C to 95 °C, from about 55 °C to about 90 °C, or from about 70 °C to about 80 0 C.
  • the bulk metal catalyst is further heat-treated at a temperature in a range from about 100 0 C to about 600 °C, from about 120 0 C to about 400 0 C, or at most 300 °C.
  • the bulk metal catalyst may be powdered, shaped, and/or combined with other materials.
  • the bulk metal catalyst may be characterized using powder x-ray diffraction methods.
  • the bulk metal catalyst may exhibit no significant reflection that can be assigned to the Columns 6-10 metal components. No significant reflection as detected by x-ray diffraction methods may indicate that the bulk metal catalyst is substantially amorphous, or amorphous.
  • the support (either a commercial support or a support prepared as described herein) may be combined with a supported catalyst and/or a bulk metal catalyst.
  • the supported catalyst may include Column 15 element(s).
  • the supported catalyst and/or the bulk metal catalyst may be converted into a powder with an average particle size from about 1 micron to about 50 microns, about 2 microns about 45 microns, or about 5 microns to about 40 microns.
  • the powder may be combined with a support to form an embedded metal catalyst.
  • the powder may be combined with the support and then extruded using standard techniques to form a catalyst having a pore size distribution with a median pore diameter in a range from about 80 A to about 200 A or about 90 A to about 180 A, or about 120 A to about 130 A.
  • Combining the catalyst with the support allows, in some embodiments, at least a portion of the metal to reside under the surface of the resulting embedded metal catalyst leading to less metal on the surface than would otherwise occur in the unembedded metal catalyst.
  • having less metal on the surface of the catalyst extends the life and/or catalytic activity of the catalyst by allowing at least a portion of the metal to move to the surface of the catalyst during use. The metals may move to the surface of the catalyst through erosion of the surface of the catalyst during contact of the catalyst with a crude feed.
  • catalysts may be characterized by pore structure.
  • pore structure parameters include, but are not limited to, pore diameter, pore volume, surface areas, or combinations thereof.
  • the catalyst may have a distribution of total quantity of pore size versus pore diameter.
  • the median pore diameter of the pore size distribution may be in a range from about 30 A to about 1000 A, about 50 A to about 500 A, or about 60 A to about 300 A.
  • catalysts that include at least 0.5 grams of gamma alumina per gram of catalyst have a pore size distribution with a median pore diameter in a range from about 50 A to about 500 A, about 60 A to about 200 A, about 90 A to about 180 A, about 100 A to about 140 A, or about 120 A to about 130 A.
  • catalysts that include at least 0.1 grams of theta alumina per gram of catalyst have a pore size distribution with a median pore diameter in a range from about 180 A to about 500 A, about 200 A to about 300 A, or about 230 A to about 250 A. Such median pore diameters are typically at most 1000 A. In certain embodiments, the median pore diameter of the pore size distribution is greater than 110 A, at least 120 A, at least 130 A, at least 140 A, at least 150 A, at least 200 A, or at least 250 A. Such median pore diameters are typically at most 300 A. The median pore diameter of the pore size distribution may be in a range from about 115 A to about 290 A, from about 120 A to about 190 A, from about 130 A to about 180 A, or from about 140 A to about 160 A.
  • the catalyst having the pore size distribution has at least 60% of a total number of pores in the pore size distribution with a pore diameter within about 45 A, about 35 A, about 30 A, about 25 A, or about 20 A of the median pore diameter of the pore distribution.
  • the median pore diameter of the pore size distribution is at least 180 A, at least 200 A, or at least 230A, greater that 60% of a total number of pores in the pore size distribution have a pore diameter within about 50 A, about 70 A, or about 90 A of the median pore diameter.
  • the catalyst has a pore size distribution with a median pore diameter in a range from about 180 A to about 500 A, about 200 A to about 400 A, or about 230 A to about 300 A, with at least 60% of a total number of pores in the pore size distribution having a pore diameter within about 50 A, about 70 A, or about 90 A of the median pore diameter.
  • pore volume of pores may be at least 0.3 cm 3 /g, at least 0.7 cn ⁇ Vg or at least 0.9 cm 3 /g.
  • pore volume of pores may range from about 0.3 cm 3 /g to about 0.99 cm 3 /g, about 0.4 cm 3 /g to about 0.8 cm 3 /g, or about 0.5 cnrVg to about 0.7 cmVg.
  • pores having a pore diameter of at least 350 A, at least 400 A, at least 500 A, at least 1000 A, at least 3000 A, or at least 5000 A provide at most 10%, at most 5%, at most 3%, at most 1%, or at most 0.5% of the total pore volume of the catalyst.
  • Such pore diameters may be in a range of about 350 A to about 5000 A, about 400 A to about 1000 A, or about 500 A to about 900 A.
  • the total pore volume provided by pores with such pore diameters may be in a range from about 0% to about 9%, about 0.1% to about 5%, or about 0.5% to about 1%.
  • the catalyst having a pore size distribution with a median pore diameter in a range from about 60 A to about 500 A may, in some embodiments, have a surface area of at least 100 m 2 /g, at least 120 m 2 /g, at least 170 m 2 /g, at least 220 m 2 /g, or at least 270 m 2 /g.
  • Such surface area may be in a range from about 100 m 2 /g to about 300 m 2 /g, about 120 m 2 /g to about 270 m 2 /g, about 130 m 2 /g to about 250 m 2 /g, or about 170 m 2 /g to about 220 m 2 /g.
  • a surface area of a shaped bulk metal catalyst is at least 30 m 2 /g, at least 60 m 2 /g, or in a range from about 10 m 2 /g to about 350 m 2 /g.
  • the bulk metal catalyst, the supported catalyst and/or the catalyst precursor is sulfided to form metal sulfides (prior to use) using techniques known in the art (for example, ACTICATTM process, CRI International, Inc.).
  • the catalyst(s) and/or catalyst precursor may be dried then sulfided.
  • the catalyst(s) or catalyst precursor may be sulfided in situ by contact of the catalyst or catalyst precursor with a crude feed that includes sulfur-containing compounds.
  • In-situ sulfurization may utilize either gaseous hydrogen sulfide in the presence of hydrogen, or liquid-phase sulfurizing agents such as organosulfur compounds (including alkylsulf ⁇ des, polysulfides, thiols, and sulfoxides). Ex-situ sulfurization processes are described in U.S. Patent Nos. 5,468,372 to Seamans et al. and 5,688,736 to Seamans et al.
  • a first type of catalyst (“first catalyst") includes Columns
  • the first catalyst has a pore size distribution with a median pore diameter of at least 180 A, at least 220 A, at least 230 A 5 at least 250 A, at least 300 A, or at most 500 A.
  • the support may include at least 0.1 grams, at least 0.5 grams, or at least 0.9 grams, or at most 0.999 grams of theta alumina per gram of support. In some embodiments, the support has an alpha alumina content of below 0.1 grams of alpha alumina per gram of catalyst.
  • the catalyst includes, in some embodiments, at most 0.1 grams of Column 6 metal(s) per gram of catalyst and at least 0.0001 grams of Column 6 metal(s) per gram of catalyst, hi some embodiments, the Column 6 metal(s) are molybdenum and/or tungsten, hi some embodiments, a first catalyst may include Column 5 metal(s).
  • the first catalyst may allow for removal of alkali metals and alkaline-earth metals in metal salts of organic acids.
  • the first catalyst is generally capable of removing at least a portion of the alkali metals and/or alkaline-earth metal salts of organic acids, which may reduce viscosity and/or surface tension of the crude feed.
  • a second type of catalyst (“second catalyst”) includes Columns 6-10 metal(s) in combination with a support.
  • the second catalyst has a median pore diameter of greater than 110 A.
  • the second catalyst has pores with a pore diameter of at least 350 A, which provide at most 10% of the pore volume of the second catalyst.
  • the second catalyst has per gram of second catalyst, in some embodiments, a total content of Column 6 metal(s) in a range from about 0.0001 grams to about 0.3 grams, a total content of Columns 7-10 metal(s) in a range from about 0.0001 grams to about 0.1 grams, and a total content of Column 15 element(s) in a range from about 0.00001 grams to about 0.1 grams, hi certain embodiments, the second catalyst support has, per gram of support, at least 0.9 grams of gamma alumina.
  • the second catalyst is generally capable of: removing at least a portion of the components from the crude feed that contribute to thermal degradation as measured by MCR; removing at least a portion of organic nitrogen containing compounds; and removing at least a portion of the Cs asphaltenes from the crude feed.
  • the second catalyst in some embodiments, also removes at least a portion of the residue, removes at least a portion of the Ni/Fe/V, removes at least a portion of the components that contribute to high viscosities, and/or removes at least a portion of the components that contribute to low API gravity.
  • a third type of catalyst may have a median pore diameter of about 250 A.
  • the third catalyst has pores with a pore diameter of at least 350 A, which provide at most 10% of the pore volume of the third catalyst.
  • the third catalyst is generally capable of: removing at least a portion of the components from the crude feed that contribute to thermal degradation as measured by MCR; removing a portion of compounds containing heteroatoms; and/or removing a portion of the C 5 asphaltenes from the crude feed.
  • the third catalyst in some embodiments, also removes components that contribute to high viscosities and/or low API gravity.
  • the second catalyst(s) and third catalyst(s) have selected median pore diameters and pores having selected pore diameters providing at most 10%, at most 5%, at most 3% or at most 1% of the pore volume.
  • These catalysts provide enhanced reduction of C5 asphaltenes content in the crude feed and/or reduction of at least a portion of the components that contribute to thermal degradation of the crude feed as measured by MCR. Reduction of these compounds using catalysts with selected median pore diameter and selected pore volume may allow the number of catalysts to be minimized.
  • the crude feed is first treated with a conventional catalyst having relatively low catalytic activity to remove C 5 asphaltenes and/or components that contribute to thermal degradation.
  • These types of conventional catalysts generally remove the C 5 asphaltenes and/or other components by allowing a relatively large portion of the C 5 asphaltenes and/or other components to enter the pores of the catalysts and fill the pores. As the pores are filled, the C 5 asphaltenes and/or other components may be'physically removed from the crude feed. Once the pores are filled and/or plugged, the life of the conventional catalyst becomes diminished. Catalysts with selected median pore diameter and selected pore volumes remove C 5 asphaltenes and/or other components that contribute to thermal degradation by limiting the portion, if any, of C 5 asphaltenes and/or other components that enter the pores of the catalyst.
  • the life of the catalyst may not be diminished due to contact of the catalyst with C 5 asphaltenes and/or other components.
  • the second catalyst(s) and/or the third catalyst(s) may remove at least a portion of the alkali metals and alkaline-metals in metal salts of organic acids.
  • the second catalyst(s) and/or the third catalyst(s) are capable of removing at least a portion of the alkali metals and/or alkaline-earth metal salts of organic acids that contribute to formation of compounds that increase viscosity and/or surface tension of the crude feed.
  • the second catalyst(s) and/or the third catalyst(s) are capable of removing at least a portion of the components that contribute to relatively high viscosity of the crude feed.
  • a fourth type of catalyst (“fourth catalyst”) may be obtainable by combining a support with Column 6 metal(s) to produce a catalyst precursor. Typically, the catalyst precursor is heated to at least 100 °C for about 2 hours. In certain embodiments, the fourth catalyst(s) may have, per gram of fourth catalyst(s), a Column 15 element(s) content in a range from about 0.001 grams to about 0.03 grams, 0.005 grams to about 0.02 grams, or 0.008 grams to about 0.01 grams. The fourth catalyst(s) may exhibit significant activity and stability when used to treat the crude feed as described herein, hi some embodiments, the catalyst precursor is heated at temperatures below 500 0 C in the presence of one or more sulfur compounds.
  • the fourth catalyst(s) is (are) generally capable of removing a portion of nitrogen containing compounds from the crude feed. Removal of nitrogen containing compounds decreases the corrosive properties of the crude product relative to the corrosive properties of the crude feed.
  • the fourth catalyst(s) may remove at least a portion of the components that contribute to the TAN of the crude feed, remove at least a portion of the metals in metal salts of organic acids, remove at least a portion of the Ni/V/Fe, and/or remove at least a portion of components contributing to a high viscosity of the crude feed.
  • the fourth catalyst(s) in some embodiments, may also reduce at least a portion of the MCR content of the crude feed, while maintaining crude feed/total product stability.
  • the fourth catalyst(s) may have a Column 6 metal(s) content in a range from about 0.0001 grams to about 0.1 grams, about 0.005 grams to about 0.05 grams, or about 0.001 grams to about 0.01 grams and a Column 10 metal(s) content in a range from about 0.0001 grams to about 0.05 grams, about 0.005 grams to about 0.03 grams, or about 0.001 grams to about 0.01 grams per gram of fourth catalyst(s).
  • the fourth catalyst(s) may facilitate reduction of at least a portion of the components that contribute to MCR in the crude feed at temperatures in a range from about 300 0 C to about 500 0 C or about 350 0 C to about 450 0 C and pressures in a range from about 0.1 MPa to about 20 MPa, about 1 MPa to about 10 MPa, or about 2 MPa to about 8 MPa.
  • a fifth type of catalyst may be a bulk metal catalyst.
  • the fifth catalyst(s) includes at least 0.3 grams of Columns 6-10 metal(s) per gram of fifth catalyst(s).
  • the fifth catalyst(s) also includes the binder.
  • the fifth catalyst(s) in some embodiments, includes Column 6 metal(s) in combination with Column 9 metal(s) and/or Column 10 metal(s).
  • the fifth catalyst(s) is generally capable of removing at least a portion of the components that contribute to thermal degradation as measured by MCR.
  • the fifth catalyst(s), in some embodiments, is also capable of removing at least a portion of C 5 asphaltenes, at least a portion of organic compounds containing heteroatoms, at least a portion of the total Ni/V/Fe content, at least a portion of the components that contribute to high viscosity, and/or at least a portion of the components that contribute to low API gravity.
  • the first catalyst(s), second catalyst(s), third catalyst(s), fourth catalyst(s), and fifth catalyst(s), may be stable for at least 3 months, at least 6 months or at least 1 year at temperatures of at least 370 0 C, at least 380 0 C, at least 390 °C, at least 400 0 C, or at least 420 0 C, and pressures of at least 8 Nm 3 Zm 3 , at least 10 NmV, or at least 14 Nm 3 An 3 during contact with the crude feed.
  • the crude feed may be contacted with an additional catalyst subsequent to contact with the first catalyst.
  • the additional catalyst may be one or more of the following: the second catalyst, the third catalyst, the fourth catalyst, the fifth catalyst, the commercial catalysts described herein, or combinations thereof.
  • first catalyst(s), second catalyst(s), third catalyst(s), fourth catalyst(s), and fifth catalyst(s) may also be made and/or used as is otherwise described herein.
  • Selecting the catalyst(s) of this application and controlling operating conditions may allow a crude product to be produced that has a MCR content, a nitrogen content, a content of metals in metal salts of organic acids, and/or selected properties changed relative to the crude feed.
  • the resulting crude product may have enhanced properties relative to the crude feed and, thus, be more acceptable for transporting and/or refining.
  • Arrangement of two or more catalysts in a selected sequence may control the sequence of property improvements for the crude feed. For example, metals in metal salts of organic acids in the crude feed can be reduced before at least a portion of the components contributing to MCR and/or heteroatoms in the crude feed are reduced.
  • Arrangement and/or selection of the catalysts may, in some embodiments, improve lives of the catalysts and/or the stability of the crude feed/total product mixture. Improvement of a catalyst life and/or stability of the crude feed/total product mixture during processing may allow a contacting system to operate for at least 3 months, at least 6 months, or at least 1 year without replacement of the catalyst in the contacting zone.
  • a life of the catalyst may be determined by measuring the temperature change of the contacting zone over a period of time (for example, one month, two months, three months, six months, and/or one year), while other contacting conditions remain relatively constant such that certain product specifications are maintained.
  • a requirement for an increase in the temperature of about 15 °C, about 13 °C, or about 10 0 C above the initial temperature required for processing, may indicate that the effectiveness of the catalyst is diminished.
  • Combinations of selected catalysts may allow reduction in at least a portion of the MCR content, at least a portion of the Ni/V/Fe, at least a portion of the C 5 asphaltenes, at least a portion of the metals in metal salts of organic acids, at least a portion of the components that contribute to TAN, at least a portion of the residue, or combinations thereof, from the crude feed before other properties of the crude feed are changed, while maintaining the stability of the crude feed/total product mixture during processing (for example, maintaining a crude feed P-value of above 1.5).
  • C 5 asphaltenes, TAN, and/or API gravity may be incrementally reduced by contact of the crude feed with selected catalysts. The ability to incrementally and/or selectively change properties of the crude feed may allow the stability of the crude feed/total product mixture to be maintained during processing.
  • the first catalyst allows, in some embodiments, for removal of at least a portion of metals in metal salts of organic acids from the crude feed. For example, reducing at least a portion of the metals in metal salts of organic acids in the crude feed/total product mixture relative to the crude feed inhibits plugging of other catalysts positioned downstream, and thus, increases the length of time the contacting system may be operated without replenishment of catalyst. Removal of at least a portion of the metals in metal salts of organic acids from the crude feed may, in some embodiments, increase a life of one or more catalysts positioned after the first catalyst.
  • the second catalyst(s), the third catalyst(s), and/or the fourth catalyst(s) may be positioned downstream of the first catalyst. Further contact of the crude feed/total product mixture with the second catalyst(s), third catalyst(s), and/or the fourth catalyst(s) may reduce MCR content, reduce the content of Ni/V/Fe, reduce sulfur content, reduce oxygen content, reduce viscosity, and/or further reduce the content of metals in metal salts of organic acids.
  • the fifth catalyst(s) may be positioned downstream of commercial catalysts.
  • the commercial catalysts may be used to remove at least a portion of the Ni/V/Fe in a crude feed. Further contact of the crude feed/total product mixture with the fifth catalyst(s) may reduce MCR content, reduce sulfur content, reduce nitrogen content, and/or reduce oxygen content.
  • catalyst selection and/or order of catalysts in combination with controlled contacting conditions may assist in reducing hydrogen uptake by the crude feed, maintaining crude feed/total product mixture stability during processing, and changing one or more properties of the crude product relative to the respective properties of the crude feed.
  • Stability of the crude feed/total product mixture may be affected by various phases separating from the crude feed/total product mixture. Phase separation may be caused by, for example, insolubility of the crude feed and/or crude product in the crude feed/total product mixture, flocculation of asphaltenes from the crude feed/total product mixture, precipitation of components from the crude feed/total product mixture, or combinations thereof.
  • the concentration of crude feed and/or total product in the crude feed/total product mixture may change.
  • concentration of the total product in the crude feed/total product mixture changes due to formation of the crude product, solubility of the components of the crude feed and/or components of the total product in the crude feed/total product mixture tends to change.
  • the crude feed may contain components that are soluble in the crude feed at the beginning of processing.
  • properties of the crude feed change for example, TAN, MCR, C 5 asphaltenes, P-value, or combinations thereof
  • the components may tend to become less soluble in the crude feed/total product mixture.
  • the crude feed and the total product may form two phases and/or become insoluble in one another.
  • Solubility changes may also result in the crude feed/total product mixture forming two or more phases. Formation of two phases, through flocculation of asphaltenes, change in concentration of crude feed and total product, and/or precipitation of components, tends to reduce the life of one or more of the catalysts. Additionally, the efficiency of the process may be reduced. For example, repeated treatment of the crude feed/total product mixture may be necessary to produce a crude product with desired properties.
  • the P- value of the crude feed/total product mixture may be monitored and the stability of the process, crude feed, and/or crude feed/total product mixture may be assessed.
  • a P-value that is at most 1.5 indicates that flocculation of asphaltenes from the crude feed generally occurs. If the P-value is initially at least 1.5, and such P-value increases or is relatively stable during contacting, then this indicates that the crude feed is relatively stabile during contacting.
  • Crude feed/total product mixture stability as assessed by P-value, maybe controlled by controlling contacting conditions, by selection of catalysts, by selective ordering of catalysts, or combinations thereof. Such controlling of contacting conditions may include controlling LHSV, temperature, pressure, hydrogen uptake, crude feed flow, or combinations thereof.
  • Catalysts described herein may facilitate reduction of MCR content and viscosity at elevated temperatures and pressures while maintaining the stability of the crude feed/total product mixture and/or maintaining the lives of the catalysts.
  • contacting conditions are controlled such that temperatures in one or more contacting zones may be different. Operating at different temperatures allows for selective change in crude feed properties while maintaining the stability of the crude feed/total product mixture.
  • the crude feed enters a first contacting zone at the start of a process.
  • a first contacting temperature is the temperature in the first contacting zone.
  • Other contacting temperatures are the temperatures in contacting zones that are positioned after the first contacting zone.
  • a first contacting temperature may be in a range from about 100 0 C to about 420 0 C and a second contacting temperature may be in a range that is about 20 0 C to about 100 0 C, about 30 ° C to about 90 0 C, or about 40 ° C to about 60 °C different than the first contacting temperature. In some embodiments, the second contacting temperature is greater than the first contacting temperature.
  • Having different contacting temperatures may reduce TAN and/or C 5 asphaltenes content in a crude product relative to the TAN and/or the C 5 asphaltenes content of the crude feed to a greater extent than the amount of TAN and/or C 5 asphaltene reduction, if any, when the first and second contacting temperatures are the same as or within 10 0 C of each other.
  • Non-limiting examples of support preparations, catalyst preparations, and systems with selected arrangement of catalysts and controlled contacting conditions are set forth below.
  • An alumina/silica support was prepared by mulling 550 grams of an alumina/silica mixture, 26 grams of calcined alumina fines, 585 grams of water, and 8 grams of 16M nitric acid for 35 minutes.
  • the alumina/silica mixture was prepared by combining at least 0.98 grams of alumina/silica mixture (Criterion Catalysts and Technologies LP) per gram of support with up to 0.02 grams of silica (Criterion Catalysts and Technologies LP) per gram of alumina/silica mixture.
  • the mulled mixture was extruded through 1.94 mm and 3.28 mm diameter die plates, and then heat-treated at a temperature in a range from 93 °C (200 °F) to 121 0 C (250 0 F) until a loss on ignition in a range of 27 wt% to 30 wt%, based on initial extrudate weight, was obtained. Loss on ignition was performed by heating the extrudates to 540 0 C for 15 minutes to 50 minutes, and then determining the relative amount of weight lost by the extrudates. The extrudates were further heat-treated at 918 °C (1685 °F) for 1 hour.
  • the support had an average pore diameter of 125 A, a surface area of 281 m 2 /g, a pore volume of 0.875 cmVg, and pores with a diameter of at least 350 A, which provided 0.9% of the total pore volume of the support.
  • Example 1 demonstrates preparation of a support that has an average pore diameter of at least 90 A and pores having a pore diameter of at least 350 A provide at most 15% of the pore volume of the support.
  • Example 2 Preparation of a Catalyst having a Median Pore Diameter of 115 A and a Selected Pore Volume Distribution.
  • a catalyst was prepared as follows. An alumina/silica support prepared as described in Example 1 was impregnated with a molybdenum/nickel/phosphorus impregnation solution prepared as follows. A first solution was made by combining 62.34 grams Of(NH 4 ⁇ Mo 2 O 7 , 17.49 grams OfMoO 3 , 12.22 grams of 30% H 2 O 2 , and 50.47 grams of deionized water to form a slurry. MEA (3.0 grams) was added to. the slurry at a rate sufficient to control the exotherm of dissolution. The slurry was heated to 64 0 C (147 0 F) / until the solids dissolved, and then cooled to room temperature. The pH of the first solution was 5.34.
  • a second solution was made by combining 8.2 grams of Ni(NOs) 2 -OH 2 O and 5.47 grams OfNiCO 3 with 30.46 grams of deionized water, and then adding 29.69 grams of 85 wt% H 3 PO 4 .
  • the pH of the second solution was 0.29.
  • the first solution and second solution were combined, and sufficient deionized water was added to bring the combined solution volume up to 218.75 mL to yield the molybdenum/nickel/phosphorus impregnation solution.
  • the pH of the impregnation solution was 2.02.
  • the support (2Q0.0 grams) was combined with the impregnation solution and aged for several hours with occasional agitation.
  • the resulting support/metal mixture was heat-treated at 125 0 C for several hours, and then heat-treated at 482 0 C (900 0 F) for 2 hours.
  • the resulting catalyst contained, per gram of catalyst, 0.13 grams of molybdenum, 0.03 grams of nickel, and 0.03 grams of phosphorus with the balance being support.
  • the catalyst had a pore size distribution with a median pore diameter of 115 A with 66.7% of the total number of pores having a pore diameter within 28 A of the median pore diameter.
  • the surface area of the catalyst was 179 m 2 /g.
  • the pore volume of the catalyst was 0.5 cm 3 /g.
  • the pore volume distribution is summarized in Table 1.
  • the pores of the catalyst having a pore diameter of at least of 350 A provided 1.71% of the total pore volume of the catalyst.
  • Example 2 demonstrates preparation of a Column 6 metal catalyst having a pore size distribution with a median pore diameter of greater than 110 A, and a pore volume in which pores having a pore diameter of at least 350 A provide at most 10% of the total pore volume.
  • This example also demonstrates preparation of a Column 6 metal catalyst from a support having an average pore diameter of at least 90 A, and a pore volume in which pores having a pore diameter of at least 350 A provide at most 15% of the total pore volume.
  • a tubular reactor with a centrally positioned thermowell was equipped with thermocouples to measure temperatures throughout a catalyst bed.
  • the catalyst bed was formed by filling the space between the thermowell and an inner wall of the reactor with catalysts and silicon carbide (20-grid, Stanford Materials; Aliso Viejo, CA).
  • silicon carbide is believed to have low, if any, catalytic properties under the process conditions described herein.
  • AU catalysts were mixed with silicon carbide in a volume ratio of 2 parts silicon carbide to 1 part catalyst before placing the mixture into the contacting zone portions of the reactor.
  • the crude feed flow to the reactor was from the top of the reactor to the bottom of the reactor.
  • Silicon carbide was positioned at the bottom of the reactor to serve as a bottom support.
  • a bottom catalyst/silicon carbide mixture (81 cm 3 ) was positioned on top of the silicon carbide to form a bottom contacting zone.
  • the bottom catalyst was prepared as described in Example 2.
  • a top catalyst/silicon carbide mixture (9 cm 3 ) was positioned on top of the bottom contacting zone to form a top contacting zone.
  • the top catalyst was a molybdenum/vanadium catalyst on a theta alumina support prepared as follows.
  • a support was prepared by mulling 576 grams of alumina (Criterion Catalysts and Technologies LP, Michigan City, Michigan, U.S.A.) with 585 grams of water and 8 grams of glacial nitric acid for 35 minutes.
  • the resulting mulled mixture was extruded through a 1.3 mm die plate, heat-treated between 90 0 C and about 125 0 C, and further heat-treated at 918 0 C, which resulted in 650 grams of a support with a median pore diameter of 182 A.
  • the heat- treated support was placed in a Lindberg furnace. The furnace temperature was raised to about 1000 ° C to about 1100 0 C over 1.5 hours, and then held in this range for 2 hours to produce the support.
  • the support was impregnated with a molybdenum/vanadium impregnation solution prepared as follows.
  • a first solution was made by combining 2.14 grams of (NH 4 ) 2 Mo 2 O 7 , 3.21 grams OfMoO 3 , 0.56 grams of 30% H 2 O 2 , 0.14 grams of monoethanolamine, and 3.28 grams of deionized water to form a slurry. The slurry was heated to 65 0 C until solids dissolved, and then cooled to room temperature.
  • the support was impregnated with the molybdenum/vanadium impregnation solution and aged for 2 hours with occasional agitation.
  • the resulting support/metal mixture was heat-treated at 125 0 C for several hours, and then heat-treated at 480 0 C for 2 hours.
  • the resulting catalyst contained, per gram of catalyst, 0.02 grams of vanadium and 0.02 grams of molybdenum, with the balance being support.
  • Silicon carbide was positioned on top of the top contacting zone to fill dead space and to serve as a preheat zone.
  • the catalyst bed was loaded into a Lindberg furnace that included four heating zones corresponding to the preheat zone, the top and bottom contacting zones, and the bottom support.
  • the catalysts were sulfided by introducing a gaseous mixture of 5 vol% hydrogen sulfide and 95 vol% hydrogen gas into the contacting zones at a rate of about 1.5 liter of gaseous mixture per volume (mL) of total catalyst (silicon carbide was not counted as part of the volume of catalyst) for the time periods set forth below.
  • the reactor pressure was about 1.9 MPa (279.7 psi).
  • Temperatures of the contacting zones were increased from ambient to 204 0 C (400 °F) over 1 hour, and then held at 204 0 C for 2 hours.
  • the contacting zones were increased incrementally to 316 0 C (600 0 F) at a rate of about 10 0 C (about 50 0 F) per hour.
  • the contacting zones were maintained at 316 0 C for an hour, incrementally raised to 370 0 C (700 0 F) over 1 hour, and then held at 370 0 C for two hours.
  • the contacting zones were then allowed to cool to ambient temperature.
  • the contacting zones were then heated to 204 0 C over 2 hours and crude feed (BC- 10, Brazil) was fed to the top of the reactor.
  • the crude feed flowed through the preheat zone, top contacting zone, bottom contacting zone, and bottom support of the reactor.
  • the crude feed was contacted with each of the catalysts in the presence of hydrogen gas. Contacting conditions were as follows: ratio of hydrogen gas to the crude feed provided to the reactor was 656 NmV (4000 SCFB), LHSV was 0.5 h "1 , and pressure was 13.8 MPa (2014.7 psi).
  • the two contacting zones were incrementally heated from 204 0 C to 390 ° C at a rate in a range from 0.1 0 C per hour to 10 0 C per hour, and then maintained at 390 °C for 311 hours. Temperatures of the catalyst bed was incrementally raised to 400 °C, and maintained at 400 °C for 352 hours.
  • the total product exited the catalyst bed.
  • the total product was introduced into a gas-liquid phase separator.
  • the gas-liquid separator the total product was separated into the crude product and gas.
  • Gas input to the system was measured by a mass flow controller.
  • Gas exiting the system was cooled to a temperature sufficient to remove any liquid components having a carbon number of at least 5 from the gas.
  • the separated gas was measured using a wet test meter.
  • the crude product was periodically analyzed to determine a weight percentage of components of the crude product. Crude product and crude feed properties are summarized in Table 4.
  • the crude product had, per gram of crude product, a nitrogen content of 0.0024 grams, a MCR content of 0.046 grams, and a C 5 asphaltenes content of 0.043 grams.
  • the crude product also had a calcium content of 0.6 wtppm, a potassium content of 1.3 wtppm, and a sodium content of 0.6 wtppm.
  • Example 3 demonstrates that contacting the crude feed with one or more catalysts at controlled contacting conditions produced a total product that included the crude product.
  • At least one of the catalysts was a Column 6 metal catalyst that: (a) included Column 6 metal(s); (b) had a pore size distribution with a median pore diameter of greater than 110 A; and (c) had a pore volume in which pores having a pore diameter of at least 350 A provided at most 10% of the pore volume.
  • crude feed/total product mixture stability was maintained.
  • the crude product had reduced MCR, a reduced product mixture stability was maintained.
  • the crude product had reduced MCR, a reduced alkali metal and alkaline-earth metal salts in organic acids, reduced Ni/V/Fe content, reduced sulfur content, reduced nitrogen content, reduced C5 asphaltenes, and reduced oxygen content relative to the crude feed.
  • Example 4 Preparation of a Catalyst Support.
  • An alumina support was prepared by mulling 550 grams of alumina powder (Criterion Catalysts and Technologies LP), 26 grams of calcined alumina fines, 585 grams of water, and 8 grams of 16M nitric acid for 35 minutes.
  • the mulled mixture was extruded through 1.94 mm and 3.28 mm diameter die plates, heat-treated at 93 °C (200 0 F), 107 0 C (225 0 F), and then heat-treated at 121 0 C (250 °F) until a loss on ignition in a range of 27 wt% to 30 wt%, based on initial extrudate weight, was obtained. Loss on ignition was performed as described in Example 1.
  • the extrudates were further heat-treated at 918 0 C (1685 0 F) for 1 hour.
  • the support had an average pore diameter of 186.4 A, a pore volume of 0.868 cm 3 /mL, and pores with a diameter of at least 350 A, which provided 13.3% of the total pore volume of the support.
  • Example 4 demonstrates preparation of a support that has an average pore diameter of at least 90 A and a pore volume in which pores having a pore diameter of at least 350 A provide at most 15% of the pore volume of the support.
  • Example 5 Preparation of a Catalyst having a Median Pore Diameter of 250 A and a Selected Pore Volume Distribution.
  • the alumina support prepared as described in Example 4 was impregnated with a molybdenum/cobalt/phosphorus impregnation solution prepared as follows. MOO 3 (22.95 grams) was combined with 85 wt% H 3 PO 4 (12.67 grams), and heated to 82 °C (180 0 F) to form a molybdenum/phosphorous solution. Co(OH) 2 (29.83 grams) was added to the molybdenum/phosphorus solution and the resulting molybdenum/cobalt/phosphorus solution was heated to 100 0 C. Citric acid monohydrate (21.5 grams) was added to the molybdenum/cobalt/phosphorus solution, heated to 100 0 C, and maintained at 100 0 C for 1 hour.
  • the resulting solution was reduced in volume to 252 mL to produce the molybdenum/cobalt/phosphorus impregnation solution.
  • the impregnation solution had a pH of 3.22.
  • the alumina support (300.0 grams) was combined with the impregnation solution and aged for several hours with occasional agitation.
  • the resulting support/metal mixture was heat-treated at 120 °C for several hours, and then heat-treated at 426 0 C (800 0 F) for 2 hours.
  • the resulting catalyst was further heat-treated at 593 °C (1100 0 F) for 2 hours.
  • the catalyst contained, per gram of catalyst, 0.153 grams of molybdenum, 0.043 grams of cobalt, and 0.008 grams of phosphorus, with the balance being support.
  • the catalyst had a pore size distribution with a median pore diameter of 250 A, with 67% of the total number of pores having a pore diameter within 58 A of the median pore diameter.
  • the surface area of the catalyst was 98 m 2 /g.
  • the pore volume distribution is summarized in Table 3.
  • pores having a pore diameter of at least 350 A provided 2.8% of the total pore volume of the catalyst.
  • Example 5 demonstrates the preparation of the Column 6 metal catalyst having a pore size distribution with a median pore diameter of greater than 110 A, and a pore volume in which pores of at least 350 A provide at most 10% of the total pore volume.
  • This example also demonstrates the preparation of the Column 6 metal catalyst from a support having an average pore diameter of at least 90 A, and a pore volume in which pores having a pore diameter of at least 350 A provide at least 15% of the total pore volume.
  • the reactor apparatus except for content of contacting zones, the crude feed, catalyst sulfiding method, total product separation method, contacting conditions, contacting time, and crude product analysis were the same as described in Example 3.
  • a molybdenum/cobalt/phosphorus catalyst prepared as described in Example 5 was mixed with silicon carbide and the mixture (81 cm 3 ) was positioned in the bottom contacting zone.
  • the molybdenum/vanadium catalyst on a theta alumina support, prepared as described in Example 3 was mixed with silicon carbide.
  • the molybdenum-vanadium catalyst/silicon carbide mixture (9 cm 3 ) was positioned in the top contacting zone.
  • the crude product had a nitrogen content of 0.0047 grams, a MCR content of 0.072 grams and a C 5 asphaltenes content of 0.05 grams, per gram of crude product.
  • the crude product also had 0.5 wtppm of calcium, 1.5 wtppm of potassium, and 0.6 wtppm of sodium.
  • Example 6 demonstrates that contacting the crude feed with one or more catalysts under controlled contacting conditions produced a total product that included the crude product.
  • At least one of the catalysts was a Columns 6 metal catalyst that: (a) included Column 6 metal(s); (b) had a pore size distribution with a median pore diameter of greater than 110 A; and (c) had a pore volume in which pores having a pore diameter of at least 350 A provided at most 10% of the pore volume.
  • the crude product had reduced MCR, reduced alkali metal and alkaline-earth metal salts of organic acids, reduced Ni/V/Fe content, reduced sulfur content, reduced nitrogen content, reduced C 5 asphaltenes, and reduced oxygen content relative to the crude feed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

L'invention concerne des procédés et des systèmes destinés à mettre en contact une charge brute avec un ou plusieurs catalyseurs afin de produire un produit total qui contient un produit brut. Le produit brut consiste en un mélange liquide à 25 °C et 0,101 MPa. Ce produit brut possède une teneur en azote d'au moins 90% de la teneur en azote de la charge brute. Une ou plusieurs autres propriétés du produit brut peuvent être modifiées par au moins 10 % par rapport aux propriétés respectives de la charge brute.
EP06740768A 2005-04-11 2006-04-07 Procede et catalyseur destines a produire un produit brut possedant une teneur en azote reduite Withdrawn EP1869144A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US67013605P 2005-04-11 2005-04-11
PCT/US2006/013176 WO2006110595A1 (fr) 2005-04-11 2006-04-07 Procede et catalyseur destines a produire un produit brut possedant une teneur en azote reduite

Publications (1)

Publication Number Publication Date
EP1869144A1 true EP1869144A1 (fr) 2007-12-26

Family

ID=36636339

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06740768A Withdrawn EP1869144A1 (fr) 2005-04-11 2006-04-07 Procede et catalyseur destines a produire un produit brut possedant une teneur en azote reduite

Country Status (10)

Country Link
US (1) US20060231457A1 (fr)
EP (1) EP1869144A1 (fr)
JP (1) JP2008536001A (fr)
CN (1) CN101166809A (fr)
BR (1) BRPI0610669A2 (fr)
CA (1) CA2604009A1 (fr)
NL (1) NL2000053C2 (fr)
NO (1) NO20075769L (fr)
RU (1) RU2007141711A (fr)
WO (1) WO2006110595A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7534342B2 (en) 2003-12-19 2009-05-19 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US20100098602A1 (en) 2003-12-19 2010-04-22 Opinder Kishan Bhan Systems, methods, and catalysts for producing a crude product
US7745369B2 (en) 2003-12-19 2010-06-29 Shell Oil Company Method and catalyst for producing a crude product with minimal hydrogen uptake
BRPI0610670B1 (pt) * 2005-04-11 2016-01-19 Shell Int Research método para produzir um produto bruto, catalisador para produzir um produto bruto, e, método para fabricar um catalisador
CA2604006A1 (fr) 2005-04-11 2006-10-19 Shell International Research Maatschappij B.V. Procede et catalyseur pour produire un produit brut a teneur reduite en azote
US20080083650A1 (en) 2006-10-06 2008-04-10 Bhan Opinder K Methods for producing a crude product
DE08825898T1 (de) 2007-05-03 2010-10-21 Auterra, Inc. Produkt mit monomeren und polymeren von titanylen und herstellungsverfahren dafür
US8894843B2 (en) 2008-03-26 2014-11-25 Auterra, Inc. Methods for upgrading of contaminated hydrocarbon streams
US9206359B2 (en) 2008-03-26 2015-12-08 Auterra, Inc. Methods for upgrading of contaminated hydrocarbon streams
US9061273B2 (en) 2008-03-26 2015-06-23 Auterra, Inc. Sulfoxidation catalysts and methods and systems of using same
US8764973B2 (en) 2008-03-26 2014-07-01 Auterra, Inc. Methods for upgrading of contaminated hydrocarbon streams
US8298404B2 (en) 2010-09-22 2012-10-30 Auterra, Inc. Reaction system and products therefrom
US9828557B2 (en) 2010-09-22 2017-11-28 Auterra, Inc. Reaction system, methods and products therefrom
BR112014015372B1 (pt) 2011-12-22 2020-01-14 Advanced Refining Technologies Llc Composição de suporte de catalisador de alumina, método para preparar um suporte de catalisador e composição de catalisador para hidroconversão e método parahidroprocessamento de um destilado médio ou uma matéria-prima de hidrocarboneto pesado
US10450516B2 (en) 2016-03-08 2019-10-22 Auterra, Inc. Catalytic caustic desulfonylation

Family Cites Families (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2921023A (en) * 1957-05-14 1960-01-12 Pure Oil Co Removal of naphthenic acids by hydrogenation with a molybdenum oxidesilica alumina catalyst
US3025231A (en) * 1959-06-03 1962-03-13 Texaco Inc Catalytic hydrogenation of heavy oils such as shale oil
US3080435A (en) * 1960-07-18 1963-03-05 Shell Oil Co Dehydrogenation process
NL285285A (fr) * 1961-11-10
US3553279A (en) * 1968-03-29 1971-01-05 Texas Instruments Inc Method of producing ethylene
US3558474A (en) * 1968-09-30 1971-01-26 Universal Oil Prod Co Slurry process for hydrorefining petroleum crude oil
US3576737A (en) * 1969-03-25 1971-04-27 Chevron Res Vanadium removal from hydrocarbons
US3663431A (en) * 1969-10-15 1972-05-16 Union Oil Co Two-phase hydrocarbon conversion system
BE758565A (nl) * 1969-11-18 1971-05-06 Shell Int Research Werkwijze voor het katalytisch hydrogenerend omzetten van een residualekoolwaterstofolie
US3716478A (en) * 1970-02-10 1973-02-13 Agency Ind Science Techn Hydrogenation treatment of hydrocarbon oil
US3712861A (en) * 1970-10-19 1973-01-23 Mobil Oil Corp Upgrading a hydrocarbon utilizing a catalyst of metal sulfides dispersed in alumina
US3730876A (en) * 1970-12-18 1973-05-01 A Sequeira Production of naphthenic oils
US3716479A (en) * 1970-12-23 1973-02-13 Mobil Oil Corp Demetalation of hydrocarbon charge stocks
US3812028A (en) * 1971-05-18 1974-05-21 Standard Oil Co Hydrotreatment of fossil fuels
US3786138A (en) * 1971-08-16 1974-01-15 Atlantic Richfield Co Hydrogen generation
JPS5139645B2 (fr) * 1972-12-30 1976-10-29
US3876532A (en) * 1973-02-27 1975-04-08 Gulf Research Development Co Method for reducing the total acid number of a middle distillate oil
US3948759A (en) * 1973-03-28 1976-04-06 Exxon Research And Engineering Company Visbreaking a heavy hydrocarbon feedstock in a regenerable molten medium in the presence of hydrogen
US3960712A (en) * 1973-04-30 1976-06-01 Universal Oil Products Company Hydrodesulfurization of asphaltene-containing black oil with a gamma-alumina composite catalyst of specified particle density
US3931052A (en) * 1973-08-29 1976-01-06 Mobil Oil Corporation Alumina-supported catalyst for residua demetalation and desulfurization
US3891541A (en) * 1973-08-29 1975-06-24 Mobil Oil Corp Process for demetalizing and desulfurizing residual oil with hydrogen and alumina-supported catalyst
US3876523A (en) * 1973-08-29 1975-04-08 Mobil Oil Corp Catalyst for residua demetalation and desulfurization
US3887455A (en) * 1974-03-25 1975-06-03 Exxon Research Engineering Co Ebullating bed process for hydrotreatment of heavy crudes and residua
US3928176A (en) * 1974-04-01 1975-12-23 Exxon Research Engineering Co Heavy crude conversion
US3960708A (en) * 1974-05-31 1976-06-01 Standard Oil Company Process for upgrading a hydrocarbon fraction
US3960706A (en) * 1974-05-31 1976-06-01 Standard Oil Company Process for upgrading a hydrocarbon fraction
US4016067A (en) * 1975-02-21 1977-04-05 Mobil Oil Corporation Process for demetalation and desulfurization of petroleum oils
JPS51122105A (en) * 1975-04-18 1976-10-26 Toa Nenryo Kogyo Kk Process for hydrofining of hydrocarbon oil
US4196102A (en) * 1975-12-09 1980-04-01 Chiyoda Chemical Engineering & Construction Co., Ltd. Catalysts for demetallization treatment of _hydrocarbons supported on sepiolite
GB1561629A (en) * 1975-12-10 1980-02-27 Ici Ltd Catalyst
US4067799A (en) * 1976-07-02 1978-01-10 Exxon Research And Engineering Company Hydroconversion process
US4191635A (en) * 1977-12-21 1980-03-04 Standard Oil Company (Indiana) Process for the cracking of heavy hydrocarbon streams
JPS5579043A (en) * 1978-12-13 1980-06-14 Chiyoda Chem Eng & Constr Co Ltd Hydrogenation catalyst for heavy hydrocarbon oil
US4446244A (en) * 1979-09-26 1984-05-01 Chevron Research Company Hydrocarbons hydroprocessing with imogolite catalyst
US4357263A (en) * 1979-10-22 1982-11-02 Mobil Oil Corporation Catalyst for the upgrading of aromatic liquids
JPS595011B2 (ja) * 1979-11-27 1984-02-02 千代田化工建設株式会社 重質炭化水素油の水素化処理用触媒ならびにその製法
FI803329L (fi) * 1980-10-23 1982-04-24 Farmos Oy Vaextsubstratbaedd
US4591426A (en) * 1981-10-08 1986-05-27 Intevep, S.A. Process for hydroconversion and upgrading of heavy crudes of high metal and asphaltene content
US4376037A (en) * 1981-10-16 1983-03-08 Chevron Research Company Hydroprocessing of heavy hydrocarbonaceous oils
US4427535A (en) * 1981-11-02 1984-01-24 Hydrocarbon Research, Inc. Selective operating conditions for high conversion of special petroleum feedstocks
US4447314A (en) * 1982-05-05 1984-05-08 Mobil Oil Corporation Demetalation, desulfurization, and decarbonization of petroleum oils by hydrotreatment in a dual bed system prior to cracking
JPS58219293A (ja) * 1982-06-15 1983-12-20 Chiyoda Chem Eng & Constr Co Ltd 重質油の水素化分解方法
FR2528721B1 (fr) * 1982-06-17 1986-02-28 Pro Catalyse Ste Fse Prod Cata Catalyseur supporte presentant une resistance accrue aux poisons et son utilisation en particulier pour l'hydrotraitement de fractions petrolieres contenant des metaux
US4437980A (en) * 1982-07-30 1984-03-20 Rockwell International Corporation Molten salt hydrotreatment process
US4886594A (en) * 1982-12-06 1989-12-12 Amoco Corporation Hydrotreating catalyst and process
US4450068A (en) * 1982-12-20 1984-05-22 Phillips Petroleum Company Demetallization of hydrocarbon containing feed streams
US4460707A (en) * 1982-12-28 1984-07-17 Union Oil Company Of California Hydroprocessing catalyst and method for preparing it
FR2538813A1 (fr) * 1982-12-31 1984-07-06 Inst Francais Du Petrole Procede d'hydrotraitement convertissant en au moins deux etapes une fraction lourde d'hydrocarbures contenant des impuretes soufrees et des impuretes metalliques
US4498979A (en) * 1983-09-12 1985-02-12 Exxon Research & Engineering Co. Hydrodesulfurization process with conversion of heavy hydrocarbons utilizing a catalyst containing a group IIA metal component
US4587012A (en) * 1983-10-31 1986-05-06 Chevron Research Company Process for upgrading hydrocarbonaceous feedstocks
US4588709A (en) * 1983-12-19 1986-05-13 Intevep, S.A. Catalyst for removing sulfur and metal contaminants from heavy crudes and residues
US4520128A (en) * 1983-12-19 1985-05-28 Intevep, S.A. Catalyst having high metal retention capacity and good stability for use in the demetallization of heavy crudes and method of preparation of same
US4572778A (en) * 1984-01-19 1986-02-25 Union Oil Company Of California Hydroprocessing with a large pore catalyst
US4564439A (en) * 1984-06-29 1986-01-14 Chevron Research Company Two-stage, close-coupled thermal catalytic hydroconversion process
US4659454A (en) * 1984-12-21 1987-04-21 Mobil Oil Corporation Hydrocracking of heavy feeds plus light fractions with dispersed dual function catalyst
US4665261A (en) * 1985-06-21 1987-05-12 Atlantic Richfield Company Hydrocarbon conversion process using a molten salt
US5108581A (en) * 1985-09-09 1992-04-28 Exxon Research And Engineering Company Hydroconversion of heavy feeds by use of both supported and unsupported catalysts
US4661265A (en) * 1985-09-30 1987-04-28 Amoco Corporation Catalyst deoiling process
US4746419A (en) * 1985-12-20 1988-05-24 Amoco Corporation Process for the hydrodemetallation hydrodesulfuration and hydrocracking of a hydrocarbon feedstock
US4729826A (en) * 1986-02-28 1988-03-08 Union Oil Company Of California Temperature controlled catalytic demetallization of hydrocarbons
US4738884A (en) * 1986-03-03 1988-04-19 Owens-Corning Fiberglas Corporation Asphalt adhesives superimposed on asphalt-based roofing sheet
DE3623430A1 (de) * 1986-07-11 1988-01-28 Veba Oel Entwicklungs Gmbh Verfahren zur hydrierenden behandlung von mit chlorbiphenylen u. dgl. kontaminierten mineraloelen
US4830736A (en) * 1986-07-28 1989-05-16 Chevron Research Company Graded catalyst system for removal of calcium and sodium from a hydrocarbon feedstock
US4917789A (en) * 1987-02-03 1990-04-17 Fina Technology, Inc. Catalytic dewaxing process
US5047142A (en) * 1988-05-13 1991-09-10 Texaco Inc. Catalyst composition and method for hydroprocessing petroleum feedstocks
JP2631712B2 (ja) * 1988-08-18 1997-07-16 コスモ石油株式会社 重質炭化水素油の水素化処理触媒組成物ならびにそれを用いる水素化処理方法
US4992157A (en) * 1988-08-29 1991-02-12 Uop Process for improving the color and color stability of hydrocarbon fraction
US5089463A (en) * 1988-10-04 1992-02-18 Chevron Research And Technology Company Hydrodemetalation and hydrodesulfurization catalyst of specified macroporosity
US4992163A (en) * 1989-12-13 1991-02-12 Exxon Research And Engineering Company Cat cracking feed preparation
EP0460300A1 (fr) * 1990-06-20 1991-12-11 Akzo Nobel N.V. Procédé de préparation d'un catalyseur présulfuré, procédé de préparation d'un catalyseur sulfuré et utilisation d'un tel catalyseur
US5089453A (en) * 1990-06-25 1992-02-18 Chevron Research And Technology Company Hydroconversion catalyst and method for making the catalyst
US5200060A (en) * 1991-04-26 1993-04-06 Amoco Corporation Hydrotreating process using carbides and nitrides of group VIB metals
US5171727A (en) * 1991-08-26 1992-12-15 Uop Method of preparing a catalyst for the hydroconversion of asphaltene-containing hydrocarbonaceous charge stocks
US5223472A (en) * 1992-04-14 1993-06-29 Union Oil Company Of California Demetallation catalyst
US5300212A (en) * 1992-10-22 1994-04-05 Exxon Research & Engineering Co. Hydroconversion process with slurry hydrotreating
FR2701270B1 (fr) * 1993-02-08 1995-04-14 Inst Francais Du Petrole Procédé d'élimination du mercure dans les hydrocarbures par passage sur un catalyseur présulfuré.
US5397456A (en) * 1993-02-19 1995-03-14 Texaco Inc. Hydroconversion process employing catalyst with specified pore size distribution
US5395536A (en) * 1993-05-07 1995-03-07 Baker Hughes, Inc. Wastewater organic acid removal process
US5514273A (en) * 1993-10-01 1996-05-07 Texaco Inc. Hydroconversion process employing catalyst with specified pore size distribution
US5620592A (en) * 1994-07-29 1997-04-15 Chevron U.S.A. Inc. Low macropore resid conversion catalyst
NO303837B1 (no) * 1994-08-29 1998-09-07 Norske Stats Oljeselskap FremgangsmÕte for Õ fjerne hovedsakelig naftensyrer fra en hydrokarbonolje
DE19600684A1 (de) * 1995-02-17 1996-08-22 Linde Ag Verfahren zum Spalten von Kohlenwasserstoffen und Vorrichtung
US5885441A (en) * 1997-04-11 1999-03-23 Intevep, S.A. Steam conversion process and catalyst
US5807469A (en) * 1995-09-27 1998-09-15 Intel Corporation Flexible continuous cathode contact circuit for electrolytic plating of C4, tab microbumps, and ultra large scale interconnects
US6210564B1 (en) * 1996-06-04 2001-04-03 Exxon Research And Engineering Company Process for desulfurization of petroleum feeds utilizing sodium metal
US5856609A (en) * 1996-09-12 1999-01-05 Phillips Petroleum Company Aromatic hydrodealkylation process with sulfur oxide containing catalyst
EP0848992B1 (fr) * 1996-12-17 2002-03-27 Institut Francais Du Petrole Catalyseur contenant du bore et du silicium et son utilisation en hydrotraitement de charges hydrocarbonées
US5744025A (en) * 1997-02-28 1998-04-28 Shell Oil Company Process for hydrotreating metal-contaminated hydrocarbonaceous feedstock
FR2764213B1 (fr) * 1997-06-10 1999-07-16 Inst Francais Du Petrole Catalyseur d'hydrotraitement de charges hydrocarbonees dans un reacteur a lit fixe
US5897769A (en) * 1997-08-29 1999-04-27 Exxon Research And Engineering Co. Process for selectively removing lower molecular weight naphthenic acids from acidic crudes
US5871636A (en) * 1997-08-29 1999-02-16 Exxon Research And Engineering Company Catalytic reduction of acidity of crude oils in the absence of hydrogen
US6218333B1 (en) * 1999-02-15 2001-04-17 Shell Oil Company Preparation of a hydrotreating catalyst
US6554994B1 (en) * 1999-04-13 2003-04-29 Chevron U.S.A. Inc. Upflow reactor system with layered catalyst bed for hydrotreating heavy feedstocks
US6509291B2 (en) * 2000-04-11 2003-01-21 Akzo Nobel N.V. Process for sulfiding a catalyst containing an S-containing additive
US6524469B1 (en) * 2000-05-16 2003-02-25 Trans Ionics Corporation Heavy oil upgrading process
US6203313B1 (en) * 2000-06-09 2001-03-20 Rebbecca L. Holmes Candle having reconfigurable shape
US20020056664A1 (en) * 2000-09-07 2002-05-16 Julie Chabot Extension of catalyst cycle length in residuum desulfurization processes
US6547957B1 (en) * 2000-10-17 2003-04-15 Texaco, Inc. Process for upgrading a hydrocarbon oil
RU2282784C2 (ru) * 2001-04-20 2006-08-27 Эксонмобил Апстрим Рисерч Компани Способ и устройство для обогащения тяжелой нефти
US20030042174A1 (en) * 2001-06-18 2003-03-06 Petronetiics Llc. Method to treat emulsified hydrocarbon mixtures
US6841062B2 (en) * 2001-06-28 2005-01-11 Chevron U.S.A. Inc. Crude oil desulfurization
US6887369B2 (en) * 2001-09-17 2005-05-03 Southwest Research Institute Pretreatment processes for heavy oil and carbonaceous materials
US20030070808A1 (en) * 2001-10-15 2003-04-17 Conoco Inc. Use of syngas for the upgrading of heavy crude at the wellhead

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006110595A1 *

Also Published As

Publication number Publication date
WO2006110595A1 (fr) 2006-10-19
US20060231457A1 (en) 2006-10-19
CN101166809A (zh) 2008-04-23
CA2604009A1 (fr) 2006-10-19
BRPI0610669A2 (pt) 2017-01-31
NL2000053C2 (nl) 2007-07-27
RU2007141711A (ru) 2009-05-20
NL2000053A1 (nl) 2006-10-12
JP2008536001A (ja) 2008-09-04
NO20075769L (no) 2007-11-09

Similar Documents

Publication Publication Date Title
CA2604012C (fr) Procede et catalyseur destines a produire un produit brut presentant une teneur en mcr reduite
US7678264B2 (en) Systems, methods, and catalysts for producing a crude product
CA2604015C (fr) Systemes, procedes et catalyseurs permettant de produire un produit brut
US20060234876A1 (en) Systems, methods, and catalysts for producing a crude product
US7749374B2 (en) Methods for producing a crude product
US20060231457A1 (en) Systems, methods, and catalysts for producing a crude product
US20050167330A1 (en) Systems, methods, and catalysts for producing a crude product

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090525

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091006