EP1868682A1 - Elektromedizinische implantierbare oder extrakorporal anwendbare vorrichtung für die organbehandlung und organüberwachung und verfahren zur therapierenden organbehandlung - Google Patents

Elektromedizinische implantierbare oder extrakorporal anwendbare vorrichtung für die organbehandlung und organüberwachung und verfahren zur therapierenden organbehandlung

Info

Publication number
EP1868682A1
EP1868682A1 EP06743257A EP06743257A EP1868682A1 EP 1868682 A1 EP1868682 A1 EP 1868682A1 EP 06743257 A EP06743257 A EP 06743257A EP 06743257 A EP06743257 A EP 06743257A EP 1868682 A1 EP1868682 A1 EP 1868682A1
Authority
EP
European Patent Office
Prior art keywords
electrodes
heart
organ
electrical
electromagnetic energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06743257A
Other languages
English (en)
French (fr)
Inventor
Friederike Scharmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1868682A1 publication Critical patent/EP1868682A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0492Patch electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0587Epicardial electrode systems; Endocardial electrodes piercing the pericardium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3625External stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/365Heart stimulators controlled by a physiological parameter, e.g. heart potential
    • A61N1/368Heart stimulators controlled by a physiological parameter, e.g. heart potential comprising more than one electrode co-operating with different heart regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37252Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data
    • A61N1/37254Pacemaker or defibrillator security, e.g. to prevent or inhibit programming alterations by hackers or unauthorised individuals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • A61N1/3787Electrical supply from an external energy source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3956Implantable devices for applying electric shocks to the heart, e.g. for cardioversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/002Magnetotherapy in combination with another treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/06Magnetotherapy using magnetic fields produced by permanent magnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0587Epicardial electrode systems; Endocardial electrodes piercing the pericardium
    • A61N1/0597Surface area electrodes, e.g. cardiac harness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system

Definitions

  • the invention relates to an electromedical implantable or extracorporeal applicable device for organ treatment and for organ monitoring and a method for therapeutic organ treatment.
  • Electro-medical devices for the treatment and monitoring (diagnosis) of the heart are known. Due to the fact that the activation of the muscle cells of the heart is triggered by electrical voltages (potentials, currents), devices have been developed which make it possible to measure and visualize these voltages (potentials, currents) of the heart.
  • An important application of such a voltage or potential measurement is the electrocardiogram (ECG), with which the electrical excitation process of the heart is made visible. Any contraction of the heart is triggered by electrical stimulation of the heart muscle cells. The course of the electrical excitation is therefore an image of the contraction course. by virtue of The electrical conductivity of the body can be deduced measurements of the excitation of the skin surface. These measurements can be used to diagnose arrhythmias, heart attacks, heart enlargement, etc. Therapy of the heart with the help of the ECG is not possible.
  • defibrillators are known, which are used for rhythmizing a tachycardiac or flickering heart. These are used when rhythm disturbances are so pronounced that the pumping power of the heart is no longer sufficient.
  • the electrical current impulses that can be delivered by the defibrillators are delivered from outside (skin surface of the thorax) via surface electrodes (patches) or from the inside via transvenous electrodes when the defibrillator has been implanted.
  • the ECG can be measured via the electrodes, which are used for shock delivery, in order to release the shocks ECG synchronously with the ECG.
  • implantable defibrillators can also take on the function of a pacemaker and be used for bradycardic rhythm therapy.
  • heart failure itself is not treatable with these systems.
  • Pacemakers can take over the function of the sinus node as a pulse generator or replace other nodes in the conduction system of the heart.
  • Single-chamber pacemakers only act as impulses in the right ventricle and / or atrium, but can not provide therapy for heart failure.
  • Dual-chamber pacemakers are the right and left ventricles of the heart can stimulate through impulses. These have a favorable effect on the function of the left ventricle of the heart, if in this the conduction is interrupted or delayed. They thus improve the function of the heart, because the stimulation of the left ventricle stimulates cardiac muscle cells in the stimulation area and thus causes them to contract, which are no longer detected by the natural excitement. Dual-chamber pacemakers improve the function of the heart through impulse delivery, but can not trigger heart failure therapy in the sense of curing the disease.
  • the invention is based on the object to offer an electro-medical implantable or externally applicable device, can be stimulated with the healing processes in diseased organs.
  • the device should be programmable and allow telemetric communications. Since tissue impedances are altered by the healing process, the device should be able to measure them.
  • the inventive electromedical implantable or extracorporeal applicable device for organ treatment and organ monitoring contains an electrical micro-roströme and / or electromagnetic energy generating and receiving, programmable generator and receiver unit, which is conductively connected to electrodes, one integrated in the generator and receiver unit Telemetry unit with transmitter and receiver for data exchange with extracorporeal devices and a power supply unit.
  • the inventive method for therapeutic organ treatment is characterized in that a diseased organ tissue electrical microcurrents, voltages and / or electrical, electromagnetic or magnetic fields (electromagnetic energy) is exposed.
  • the units are arranged partially or completely extracorporeally.
  • the electrodes are designed to deliver electrical or electromagnetic energy to the tissues of the heart or other organs and to receive signals from them.
  • the electrodes are advantageously combined with sensors that can measure the wall motion of the heart. It is furthermore advantageous that electrodes of pacemakers or defibrillators can be used as electrodes for the micro-current delivery.
  • the generator or receiver unit prefferably be designed with cardiac pacemakers or defibrillators as a combination, e.g. in the same housing, creating a functionally new entity that can stimulate stimulation or contribute to the rhythm of the heart (defibrillator) while releasing micro-currents that can be used to heal the heart.
  • the electrodes are designed so that they are also applicable for stimulation by pacemakers or defibrillators.
  • a further embodiment of the invention provides that, in order to regulate and modify collagen (I and III) in the intracellular region of an organ, the organ tissue is exposed to microcurrents or electromagnetic energy.
  • a further embodiment provides that the use of electrical microcurrents regulates the content of proinflammatory cytokines (for example interleukin-6 content).
  • proinflammatory cytokines for example interleukin-6 content.
  • a further embodiment provides that by using the electrical microcurrents and electrical or electromagnetic fields of the MMP (metalloproteases) - and the TIMP (tissue inhibitor of metalloproteases) content is regulated.
  • MMP metaloproteases
  • TIMP tissue inhibitor of metalloproteases
  • a further embodiment provides that growth hormones are regulated by the use of electrical microcurrents and electric or magnetic fields.
  • the device according to the invention electrical currents or voltages are advantageously applied or applied to the organ, which act in such a way that the extracellular matrix or even the cells of the organ are e.g. be favorably influenced by the buildup, dismantling or remodeling of collagens.
  • the currents or voltages may be both direct and alternating voltage or currents, which may be transmitted in pulsed form.
  • the device according to the invention is designed so that the electrical or electromagnetic energy is transmitted via special implantable electrodes. Power is supplied to the device with a rechargeable battery when the system's power consumption with regular batteries only allows for lifetimes of less than two years.
  • the device according to the invention is telemetrically programmable, whereby the success of the current therapy can be checked by the device itself and transmitted telemetrically by measuring impedances of the tissue and by measuring other parameters, for example directly at the heart, such as ECG and wall movement.
  • the same electrodes are used, via which the electrical energy is delivered to the tissue.
  • the sensors which measure the wall movements of the heart, are attached directly to the heart muscle. Depending on the movement of the heart wall, measurable electrical signals are emitted.
  • a further advantage of the invention is that the results of the therapy and the treatment by means of modern telecommunications can be transmitted worldwide to a competent body, from which also the monitoring of the patient takes place.
  • the device according to the invention can be combined with other forms of therapy of cardiac insufficiency, e.g. be combined with a heart support system.
  • the device according to the invention can be applied both internally (implantable unit) or externally via skin electrodes.
  • the size of the implanted part corresponds approximately to that of a cardiac pacemaker.
  • the form of current to be applied depends on the type of disease or is based on the results of the tissue examination of the heart muscle or other organs.
  • the applied currents are in the range of 0.001 and 10 inA.
  • a further advantage of the invention is that the vitality of the cells of an organ tissue is maintained under the microcurrent action, which is confirmed by the detection of conexin 40, 43 and 45.
  • 1 shows an arrangement of an implanted variant in the heart area in the view from the front
  • 2 shows an arrangement of an implantable variant with a view from the side
  • Fig. 3 shows an external variant of the device according to the invention with a view from the front and
  • Fig. 4 shows an external variant of the system with a view from behind.
  • Heart failure is characterized in that the physiological ability of the heart to pump blood is limited. This only affects the onset of the disease under stress conditions. In the advanced stage of the disease, this is also observed under resting conditions.
  • a generally accepted classification of the stages of heart failure is the classification of NYHA (New York Heart Association), in which the heart failure is divided into four stages.
  • the aim of the treatment of heart failure is to improve the function of the heart or to delay a functional deterioration as long as possible.
  • bi-ventricular pacing resynchronization treatment is often used, and in the later stages the treatment of choice is cardiac transplantation or implantation of a cardiac assist system or cardiac replacement system.
  • Treatment with electrical microcurrent or with electromagnetic energy is a new method of treatment of heart failure. This treatment can be used in all stages of heart failure.
  • the Application of microcurrent or electromagnetic energy can be carried out in various ways, as shown in FIGS. 1, 2, 3 and 4.
  • a front electrode 4 and a back electrode 5 which directly surround a heart 2 of a patient 1, or externally via electrodes placed on the skin in the heart region.
  • the application of magnetic energy can be done without direct skin contact.
  • the direct internal application is carried out as follows:
  • the front and rear electrodes 4 and 5 directly surrounding the heart 1 are positioned around the heart 1. This can be done by opening the thorax by median stomotomy, by lateral access, or during cardiac surgery performed for other reasons (e.g., bypass surgery, heart valve surgery, implantation of a cardiac assist system, heart transplantation, etc.).
  • FIGS. 1 and 2 show the patient 1 with an implanted generator and receiver part 3, with an implanted telemetry unit 6 and a power supply unit 7 in a schematic representation while in FIGS. 3 and 4 the generator and receiver part 3, the telemetry unit 6 and the power supply unit 7 are arranged outside the patient 1.
  • the front electrode 4 and the back electrode 5 are made of highly flexible plastic (eg silicone) with an electrically conductive side, which is aligned to the heart side.
  • highly flexible plastic eg silicone
  • the electrodes that contain permanent magnets or small coils that can build up a magnetic field.
  • electric fields corresponding electrodes are used.
  • the electrodes are then electrically connected to an implant, which is placed comparatively like a pacemaker in a thoracic or abdominal pocket.
  • Another way to place the electrodes is by sub-xyphoid access to the heart, which eliminates the need to open the thorax.
  • the electrodes can be placed intrapericardially or extrapericardially. This approach is preferred in patients who do not require further heart surgery and who have no pericarial adhesions.
  • the implant that generates the necessary electrical signals is preferably placed in an abdominal pocket in this approach.
  • Electrodes used for stimulation or defibrillation may be used. If implantable mono- or biventricular pacemakers or defibrillators equipped with a microcurrent generator are used, the same electrodes can be used for microcurrent application and for stimulation or defibrillation.
  • electrically conductive electrodes are brought into direct contact with the skin in an electrically conductive manner.
  • the electrodes are placed so that the largest possible area of the heart is detected by microcurrent. This can By electrodes, which are only frontal or by electrodes, which are additionally placed on the back. Magnetic electrodes or electrodes for electric fields can also be used without direct skin contact.
  • the generator 3 is switched on via the telemetry 6 (FIGS. 1 and 2) located in the implant and the corresponding current shape is selected.
  • the success of the procedure is controlled by regular monitoring of contractility of the heart muscle, the function (ejection fraction, ejection fraction) of the heart, the size of the left and right ventricles, and the wall velocity by means of echocardiography.
  • the duration of treatment depends on the improvement achieved with echocardiography.
  • the application of the method should be carried out until after an optimization of the current strength and current shape and frequency no improvement of the heart is observed.
  • microcurrent or electromagnetic energy can be used to reduce rejection.
  • the method is used in the same way as in patients with heart failure as described above.
  • the method can be used to treat liver, lung and kidney diseases associated with a loss of function or fibrosis of the organ. LIST OF REFERENCE NUMBERS

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Electrotherapy Devices (AREA)

Abstract

Die Erfindung betrifft eine elektromedizinische implantier- bare oder extrakorporal anwendbare Vorrichtung für die Or- ganbehandlung und für die Organüberwachung und ein Verfah- ren zur therapierenden Organbehandlung. Der Erfindung liegt nun die Aufgabe zugrunde, eine elektro- medizinische implantierbare oder auch extern anwendbare Vorrichtung anzubieten, mit der Heilungsprozesse in kranken Organen angeregt werden können. Die Lösung der Aufgabe erfolgt durch eine elektromedizini- sche implantierbare oder extrakorporal anwendbare Vorrich- tung für die Organbehandlung und Organüberwachung, enthal- tend eine elektrische Mikroströme und elektromagnetische Energie erzeugende und empfangende, programmierbare Genera- tor- und Empfangseinheit (3), die mit Elektroden (4, 5) leitend verbunden ist, einer in der Generator- und Emp- fangseinheit (3) integrierten Telemetrieeinheit (6) mit Sender und Empfänger für den Datenaustausch mit extrakorpo- ralen Geräten und einer Energieversorgungseinheit (7).

Description

Elektromedizinische implantierbare oder extrakorporal anwendbare Vorrichtung für die Organbehandlung und Organüberwachung und Verfahren zur therapierenden Organbehandlung
Beschreibung
Die Erfindung betrifft eine elektromedizinische implantierbare oder extrakorporal anwendbare Vorrichtung für die Organbehandlung und für die Organüberwachung und ein Verfahren zur therapierenden Organbehandlung.
Elektromedizinische Geräte zur Behandlung und Überwachung (Diagnostik) des Herzens sind bekannt. Aufgrund der Tatsache, dass die Aktivierung der Muskelzellen des Herzens durch elektrische Spannungen (Potentiale, Ströme) ausgelöst wird, sind Geräte entwickelt worden, die es ermöglichen, diese Spannungen (Potentiale, Ströme) des Herzens zu messen und sichtbar zu machen. Eine bedeutende Anwendung einer solchen Spannungs- bzw. Potentialmessung ist das Elektrokardiogramm (EKG) , mit dem der elektrische Erregungsablauf des Herzens sichtbar gemacht wird. Jede Kontraktion des Herzens wird durch eine elektrische Erregung der Herzmuskelzellen ausgelöst. Der Verlauf der elektrischen Erregung ist deshalb ein Abbild des Kontraktionsverlaufes. Aufgrund der elektrischen Leitfähigkeit des Körpers können Messungen der Erregung von der Hautoberfläche abgeleitet werden. Anhand dieser Messungen können Rhythmusstörungen, Herzinfarkte, Herzvergrößerungen usw. diagnostiziert werden. Eine Therapie des Herzens mit Hilfe des EKGs ist allerdings nicht möglich.
Weiterhin sind sogenannte externe und implantierbare De- fibrillatoren bekannt, die zur Rhythmisierung eines tachy- karden oder flimmernden Herzens eingesetzt werden. Diese werden angewandt, wenn RhythmusStörungen so ausgeprägt sind, dass die Pumpleistung des Herzens nicht mehr ausreichend ist. Der elektrische Sromimpuls, der von den De- fibrillatoren abgegeben werden kann, wird von außen (Hautoberfläche des Thorax) über Flächenelektroden (Patches) o- der von innen über transvenöse Elektroden abgegeben, wenn der Defibrillator implantiert worden ist. Über die Elektroden, die zur Schockabgabe genutzt werden, kann gleichzeitig das EKG gemessen werden, um die Schocks EKG synchron mit dem EKG abgeben zu können. Implantierbare Defibrillatoren können gleichzeitig heute auch die Funktion eines Herzschrittmachers übernehmen und zur bradykarden Rhythmustherapie genutzt werden. Eine Herzinsuffizienz selbst ist mit diesen Systemen allerdings nicht behandelbar.
Eine weitere Möglichkeit bradykarde RhythmusStörungen zu behandeln, bieten die Herzschrittmacher. Schrittmacher können die Funktion des Sinusknotens als Impulsgeber übernehmen oder auch andere Knoten im Reizleitungssystem des Herzens ersetzen. Einkammerherzschrittmacher fungieren nur als Impulsgeber im rechten Ventrikel und/oder Vorhof, können aber keine Therapie einer Herzinsuffizienz bewirken.
Weiter sind sogenannte Zweikammer-Herzschrittmacher bekannt, die den rechten und den linken Ventrikel des Herzens durch Impulse stimulieren können. Diese wirken sich günstig auf die Funktion des linken Ventrikels des Herzens aus, wenn in diesem die Reizleitung unterbrochen oder verzögert ist. Sie bewirken damit eine Funktionsverbesserung des Herzens, weil durch die Stimulation des linken Ventrikels Herzmuskelzellen in dem Stimulationsbereich erregt und damit zur Kontraktion gebracht werden können, die durch die natürliche Erregung nicht mehr erfasst werden. Zweikammerschrittmacher bewirken eine Funktionsverbesserung des Herzens durch Impulsabgabe, können aber keine Therapie der Herzinsuffizienz im Sinne einer Heilung der Erkrankung auslösen.
Der Erfindung liegt nun die Aufgabe zugrunde, eine elektro- medizinische implantierbare oder auch extern anwendbare Vorrichtung anzubieten, mit der Heilungsprozesse in kranken Organen angeregt werden können. Darüber hinaus soll die Vorrichtung programmierbar sein und eine telemetrische Kommunikationen zulassen. Da durch den Heilungsprozess Gewebeimpedanzen geändert werden, soll die Vorrichtung in der Lage sein, diese zu messen.
Darüber hinaus soll ein Verfahren angegeben werden, mit dem eine Therapie kranker Organe möglich ist.
Die Lösung der Aufgabe erfolgt mit den Merkmalen der Ansprüche 1 und 9.
Es wurde festgestellt, dass durch die Einwirkung von elektrischer oder elektromagnetischer Energie auf den Herzmuskel (Myocard) Regenerationsprozesse eingeleitet werden, die vor allem die extrazellulären Bereiche des Herzmuskels und andere Organe wie Leber und Lunge und in diesen den Kollagenauf- und -umbau betreffen. So enthält die erfindungsgemäße elektromedizinische implantierbare oder extrakorporal anwendbare Vorrichtung für die Organbehandlung und Organüberwachung eine elektrische Mik- roströme und/oder elektromagnetische Energie erzeugende und empfangende, programmierbare Generator- und Empfangseinheit, die mit Elektroden leitend verbunden ist, einer in der Generator- und Empfangseinheit integrierten Telemetrie- einheit mit Sender und Empfänger für den Datenaustausch mit extrakorporalen Geräten und einer Energieversorgungseinheit .
Das erfindungsgemäße Verfahren zur therapierenden Organbehandlung ist dadurch gekennzeichnet, dass ein krankes Organgewebe elektrischen Mikroströmen, Spannungen und/oder elektrischen, elektromagnetischen oder magnetischen Feldern (elektromagnetische Energie) ausgesetzt wird.
Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.
In einer Ausgestaltung der erfindungsgemäßen Vorrichtung sind die Einheiten teilweise oder vollständig extrakorporal angeordnet .
Weiterhin ist es zweckmäßig, als Elektroden sogenannte Patchelektroden einzusetzen.
Vorteilhafterweise sind die Elektroden so ausgebildet, dass sie elektrische oder elektromagnetische Energie an die Gewebe des Herzens oder anderer Organe abgeben und Signale von ihr aufnehmen können.
Darüber hinaus sind die Elektroden vorteilhafterweise mit Sensoren kombiniert, die die Wandbewegung des Herzens messen können. Es ist weiterhin vorteilhaft, dass als Elektroden für die Mikrostromabgabe Elektroden von Schrittmachern oder De- fibrillatoren verwendbar sind.
In einer weiteren, erfindungsgemäßen Ausgestaltung ist es vorteilhaft, dass die Generator- oder Empfangseinheit mit Herzschrittmachern oder Defibrillatoren als Kombination ausgebildet sind, z.B. im selben Gehäuse, und so eine funktionell neue Einheit entsteht, die Stimulationsimpulse zur Erregung abgeben oder zur Rhytmisierung des Herzens beitragen kann (Defibrillator) und gleichzeitig Mikroströme abgibt, mit denen das Herz geheilt werden kann.
In einer weiteren vorteilhaften Ausgestaltung sind die Elektroden so ausgebildet, dass sie auch für die Stimulation durch Schrittmacher oder Defibrillatoren anwendbar sind.
In einer weiteren Ausgestaltung des erfindungsgemäßen Therapieverfahrens werden elektrische Mikroströme im Bereich zwischen 0,001 bis 10 rtiA angewendet.
Eine weitere Ausgestaltung der Erfindung sieht vor, dass zur Regulierung und Modifizierung von Kollagen (I und III) im etrazellulären Bereich eines Organs das Organgewebe Mi- kroströmen oder elektromagnetischer Energie ausgesetzt wird.
Eine weitere Ausgestaltung sieht vor, dass durch Anwendung von elektrischen Mikroströmen der Gehalt proinflammatorischer Cytokine (z.B. Interleukin-6-Gehalt) reguliert wird.
Eine weitere Ausgestaltung sieht vor, dass durch Anwendung der elektrischen Mikroströme sowie elektrischer oder elektromagnetischer Felder der MMP (Metalloproteasen) - und der TIMP (Tissueinhibitor der Metalloproteasen) -Gehalt reguliert wird.
Eine weitere Ausgestaltung sieht vor, dass durch die Anwendung von elektrischen Mikroströmen sowie elektrischen oder magnetischen Feldern Wachstumshormone reguliert werden.
Mit der erfindungsgemäßen Vorrichtung werden vorteilhafterweise elektrische Ströme oder Spannungen an das Organ abgegeben bzw. angelegt, die so wirken, dass die extrazelluläre Matrix oder auch die Zellen des Organs z.B. durch den Auf-, Ab- oder Umbau von Kollagenen günstig beeinflusst werden. Die Ströme oder Spannungen können hierbei sowohl Gleich- als auch Wechselspannung bzw. -ströme sein, die ggf. gepulst übermittelt werden.
Die erfindungsgemäße Vorrichtung ist so ausgelegt, dass die elektrische oder elektromagnetische Energie über spezielle implantierbare Elektroden übertragen wird. Die Energieversorgung der Vorrichtung erfolgt mit einem nachladbaren Akku, wenn der Leistungsverbrauch des Systemes mit normalen Batterien nur Lebenszeiten von unter zwei Jahren möglich macht .
Die erfindungsgemäße Vorrichtung ist telemetrisch programmierbar, wobei der Erfolg der Stromtherapie durch Messung von Impedanzen des Gewebes und durch Messung anderer Parameter beispielsweise direkt am Herzen, wie EKG und Wandbewegung, durch das Gerät selbst überprüft und telemetrisch übertragen werden können. Dazu werden die gleichen Elektroden benutzt, über die auch die elektrische Energie an das Gewebe abgegeben wird. Die Sensoren, die die Wandbewegungen des Herzens messen, werden direkt am Herzmuskel befestigt. In Abhängigkeit von der Bewegung der Herzwand werden messbare elektrische Signale abgegeben. Ein weiterer Vorteil der Erfindung ist, dass die Ergebnisse der Therapie und der Behandlung mittels moderner Telekommunikation weltweit zu einer kompetenten Stelle übertragen werden können, von der auch die Überwachung des Patienten erfolgt .
Die erfindungsgemäße Vorrichtung kann mit anderen Therapieformen der Herzinsuffizienz, z.B. mit einem Herzunterstützungssystem kombiniert werden.
Die erfindungsgemäße Vorrichtung kann sowohl intern (implantierbare Einheit) oder extern über Hautelektroden angewandt werden.
Ein weiterer Vorteil der erfindungsgemäßen Vorrichtung ist, dass die Größe des implantierten Teiles in etwa dem eines Herzschrittmachers entspricht. Die zu applizierende Stromform hängt dabei von der Art der Erkrankung ab bzw. orientiert sich an den Ergebnissen der Gewebeuntersuchung des Herzmuskels oder anderer Organe. Die applizierten Stromstärken liegen im Bereich von 0,001 und 10 inA.
Ein weiterer Vorteil der Erfindung besteht darin, dass die Vitalität der Zellen eines Organgewebes unter der Mikrostromeinwirkung erhalten bleibt, was durch den Nachweis von Conexin 40, 43 und 45 bestätigt wird.
Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen und Zeichnungen näher erläutert.
Es zeigen
Fig. 1 eine Anordnung einer implantierten Variante im Herzbereich in der Sicht von vorne, Fig. 2 eine Anordnung einer implantierbaren Variante mit Blick von der Seite,
Fig. 3 eine externe Variante der erfindungsgemäßen Vorrichtung mit Blick von vorne und
Fig. 4 eine externe Variante des Systems mit Blick von hinten.
Eine Herzinsuffizienz ist dadurch gekennzeichnet, dass die physiologische Fähigkeit des Herzens Blut zu pumpen eingeschränkt ist. Dies wirkt sich bei Beginn der Erkrankung nur unter Belastungszuständen aus. Im fortgeschrittenen Stadium der Erkrankung ist dies auch unter Ruhebedingungen zu beobachten.
Eine allgemein akzeptierte Einteilung der Stadien der Herzinsuffizienz ist die Klassifikation der NYHA (New York Heart Association) , in der die Herzinsuffizienz in vier Stadien eingeteilt wird.
Das Ziel der Behandlung der Herzinsuffizienz ist die Funktion des Herzens zu verbessern bzw. eine Funktionsverschlechterung möglichst lange aufzuhalten.
Im frühen Stadium wird sie mit Medikamenten behandelt, im fortgeschrittenen Stadium wird heute häufig die sog. Re- synchronisationsbehandlung durch bi-ventrikuläres Pacing angewandt und im Spätstadium ist die Behandlung der Wahl die Herztransplantation bzw. die Implantation eines Herzunterstützungssystems oder Herzersatzsystems.
Die Behandlung mit elektrischem Mikrostrom oder mit elektromagnetischer Energie stellen eine neue Methode der Behandlung der Herzinsuffizienz dar. Diese Behandlung kann in allen Stadien der Herzinsuffizienz angewandt werden. Die Applikation von Mikrostrom oder elektromagnetischer Energie kann auf verschiedene Art und Weise durchgeführt werden, wie in Fig. 1, 2, 3 und 4 dargestellt ist.
Grundsätzlich erfolgt sie intern über eine Vorderelektrode 4 und eine Hinterelektrode 5, die ein Herz 2 eines Patienten 1 direkt umschließen, oder extern über auf der Haut in der Herzregion aufgelegte Elektroden. Die Applikation von magnetischer Energie kann ohne direkten Hautkontakt erfolgen.
Die direkte interne Applikation wird wie folgt durchgeführt:
Die das Herz 1 direkt umschließenden Vorder- und Hinterelektroden 4 und 5 werden um das Herz 1 positioniert. Dies kann geschehen durch Öffnen des Thorax durch mediane Ster- notomie, durch einen lateralen Zugang oder während einer Herzoperation, die aus anderen Gründen durchgeführt wird (z.B. Bypassoperation, Herzklappenoperation, Implantation eines Herzunterstützungssystems, bei einer Herztransplantation, etc . ) .
Fig. 1 und 2 zeigen den Patienten 1 mit einem implantierten Generator- und Empfangsteil 3, mit einer implantierten Te- lemetrieeinheit 6 und einer Energieversorgungseinheit 7 in schematischer Darstellung während in Fig. 3 und 4 das Generator- und Empfangsteil 3, die Telemetrieeinheit 6 und die Energieversorgungseinheit 7 außerhalb des Patienten 1 angeordnet sind.
Die Vorderelektrode 4 und die Hinterelektrode 5 bestehen aus hochflexiblem Kunststoff (z.B. Silikon) mit einer elektrisch leitenden Seite, die zur Herzseite ausgerichtet wird. Zur Applikation von elektromagnetischer Energie wer- den Elektroden benutzt, die Permanentmagnete beinhalten oder kleine Spulen, die ein Magnetfeld aufbauen können. Für die Applikation von elektrischen Feldern werden entsprechende Elektroden benutzt.
Die Elektroden werden dann mit einem Implantat elektrisch leitend verbunden, das vergleichsweise wie eine Schrittmacher in einer thorakalen oder abdominellen Tasche platziert wird.
Eine andere Möglichkeit, die Elektroden zu platzieren, besteht über einen sub-xyphoidalen Zugang zum Herzen, der das Öffnen des Thorax überflüssig macht. Bei diesem Zugang können die Elektroden intra-perikardial oder extra-perikardial platziert werden. Dieser Zugang wird bei Patienten bevorzugt, die sich keiner weiteren Herzoperation unterziehen müssen und die keine perikarialen Verwachsungen aufweisen. Das Implantat, das die notwendigen elektrischen Signale erzeugt, wird bei diesem Zugang vorzugsweise in einer abdominellen Tasche platziert.
Eine weitere Möglichkeit, Mikrostrom an das Herz zu applizieren, besteht über transvenöse Elektroden. Vorzugsweise können Elektroden benutzt werden, die zur Stimulation oder Defibrillation benutzt werden. Wenn implantierbare mono- oder biventrikuläre Schrittmacher oder Defibrillatoren angewandt werden, die mit einem Mikrostromgenerator versehen sind, können dieselben Elektroden zur Mikrostromapplikation und zur Stimulation oder Defibrillation genutzt werden.
Bei externer Anwendung von Mikrostrom oder elektromagnetischer Energie werden elektrisch leitende Elektroden direkt mit der Haut elektrisch leitend in Kontakt gebracht. Die Elektroden werden so platziert, dass ein möglichst großes Areal des Herzens von Mikrostrom erfasst wird. Dies kann durch Elektroden geschehen, die nur frontal oder durch Elektroden, die zusätzlich am Rücken platziert werden. Magnetische Elektroden oder Elektroden für elektrische Felder können auch ohne direkten Hautkontakt angewandt werden.
Nach der Platzierung der Elektroden wird der Generator 3 über die im Implantat befindliche Telemetrie 6 (Fig. 1 und 2) angeschaltet und die entsprechende Stromform gewählt. Der Erfolg der Prozedur wird durch regelmäßige Kontrolle der Kontraktilität des Herzmuskels, der Funktion (Auswurf- fraktion, ejection fraction) des Herzens, der Größe des linken und des rechten Ventrikels und der Wandgeschwindigkeit mit Hilfe der Echokardiographie kontrolliert. Die Dauer der Behandlung hängt von der erzielten Verbesserung gemessen mit der Echokardiographie ab. Die Anwendung des Verfahrens sollte solange durchgeführt werden, bis nach einer Optimierung der Stromstärke und Stromform und Frequenz keine Verbesserung des Herzens mehr zu beobachten ist.
Bei Patienten nach Herztransplantation kann die Applikation von Mikrostrom oder elektromagnetischer Energie genutzt werden, um Abstoßungsreaktionen abzuschwächen. Die Anwendung der Methode erfolgt in gleicher Weise wie bei Patienten mit Herzinsuffizienz wie oben beschrieben.
In gleicher Weise wie beschrieben, kann die Methode angewandt werden, um Leber-, Lungen- und Nierenerkrankungen, die mit einem Funktionsverlust oder einer Fibrosierung des Organs einhergehen, zu behandeln. Bezugszeichenliste
Patient
Herz
Generator- und Empfangsteil
Vorderelektrode
Hinterelektrode
Telemetrieeinheit
Energieversorgungseinheit

Claims

Patentansprüche
1. Elektromedizinische implantierbare oder extrakorporal anwendbare Vorrichtung für die Organbehandlung und Organüberwachung, enthaltend eine elektrische Mikroströme und elektromagnetische E- nergie erzeugende und empfangende, programmierbare Generator- und Empfangseinheit (3) , die mit Elektroden (4, 5) leitend verbunden ist, einer in der Generator- und Empfangseinheit (3) integrierten Telemetrieeinheit (6) mit Sender und Empfänger für den Datenaustausch mit extrakorporalen Geräten und einer Energieversorgungseinheit (7).
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Einheiten (3, 6, 7) teilweise oder vollständig extrakorporal angeordnet sind.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Elektroden (4, 5) als Patchelektroden ausgeführt sind.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Elektroden (4, 5) so ausgebildet sind, dass sie elektrische oder elektromagnetische Energie an Organgewebe abgeben und Signale von Organgeweben aufnehmen können .
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass
Sensoren zur Erfassung der Wandbewegungen des Herzens in den Elektroden (4, 5) integriert sind.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als Elektroden (4, 5) für die Mikrostromabgabe Elektroden von Schrittmachern oder Defibrillatoren verwendbar sind.
Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Generator- und Empfangseinheit (3) sowie ein Schrittmacher und/oder ein Defibrillator in einem gleichen Gehäuse angeordnet sind.
Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Elektroden (4, 5) so ausgebildet sind, dass sie auch für die Stimulation durch Schrittmacher und/oder Defibrillatoren verwendbar sind.
9. Verfahren zur therapierenden Organbehandlung, dadurch gekennzeichnet, dass ein krankes Organgewebe elektrischen Mikroströmen, Spannungen und/oder elektrischen, elektromagnetischen oder magnetischen Feldern (elektromagnetische Energie) ausgesetzt wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass elektrische Mikroströme im Bereich 0,001 bis 10 inA angewendet werden.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass zur Regulierung und Modifizierung von Kollagen (I und III) im extrazellulären Bereich eines Organs das Organgewebe Mikroströmen oder elektromagnetischer Energie ausgesetzt wird.
12. Verfahren nach Anspruch 9 bis 11, dadurch gekennzeichnet, dass mit Mikroströmen oder elektromagnetischer Energie der Gehalt proinflammatorischer Cytokine (z.B. Interleukin- 6-Gehalt) reguliert wird.
13. Verfahren nach Anspruch 9 bis 12, dadurch gekennzeichnet, dass mit Mikroströmen oder elektromagnetischer Energie der Gehalt an MMP (Metalloproteasen) - und TIMP (Tissuein- hibitor der Metalloproteasen) -Gehalt reguliert wird.
14. Verfahren nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass eine Herzinsuffizienz, Leber-, Lungen- oder Nierenerkrankung therapiert werden.
15. Verfahren nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, dass zur Abschwächung von Abstoßungsreaktionen bei Transplantationen Mikrostrom und elektromagnetische Energie eingesetzt werden.
16. Verfahren nach einem der Ansprüche 9 bis 15, dadurch gekennzeichnet, dass Wachstumshormone reguliert werden.
EP06743257A 2005-04-06 2006-04-06 Elektromedizinische implantierbare oder extrakorporal anwendbare vorrichtung für die organbehandlung und organüberwachung und verfahren zur therapierenden organbehandlung Withdrawn EP1868682A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005016811 2005-04-06
DE102005054654 2005-11-11
PCT/EP2006/061395 WO2006106132A1 (de) 2005-04-06 2006-04-06 Elektromedizinische implantierbare oder extrakorporal anwendbare vorrichtung für die organbehandlung und organüberwachung und verfahren zur therapierenden organbehandlung

Publications (1)

Publication Number Publication Date
EP1868682A1 true EP1868682A1 (de) 2007-12-26

Family

ID=36889450

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06743257A Withdrawn EP1868682A1 (de) 2005-04-06 2006-04-06 Elektromedizinische implantierbare oder extrakorporal anwendbare vorrichtung für die organbehandlung und organüberwachung und verfahren zur therapierenden organbehandlung

Country Status (4)

Country Link
US (1) US9457184B2 (de)
EP (1) EP1868682A1 (de)
JP (1) JP2008534196A (de)
WO (1) WO2006106132A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160361559A1 (en) 2007-10-12 2016-12-15 Berlin Heals Holding Ag Electromedical implantable or extracorporeally applicable device for the treatment or monitoring of organs, and method for therapeutic organ treatment
US20080287788A1 (en) * 2007-05-14 2008-11-20 Lifescience Solutions, Llc Systems and methods for organ monitoring
US9468754B2 (en) 2009-05-29 2016-10-18 Medtronic, Inc. Leads for selective sensing and virtual electrodes
WO2011153127A1 (en) 2010-06-01 2011-12-08 Cardiac Pacemakers, Inc. Integrating sensors and biomarker assays to detect worsening heart failure
EP2729214B1 (de) * 2011-07-05 2019-09-04 CardioInsight Technologies, Inc. System zur einfacheren behandlungsverabreichung an einen patienten
WO2013116544A1 (en) * 2012-01-31 2013-08-08 Cardiac Pacemakers, Inc. Systems and methods for controlling a cardiac resynchronisation device/therapy using biomarker panel data
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
CN105307719B (zh) * 2013-05-30 2018-05-29 格雷厄姆·H.·克雷西 局部神经刺激仪
US20150306375A1 (en) 2014-04-25 2015-10-29 Medtronic, Inc. Implantable extravascular electrical stimulation lead having improved sensing and pacing capability
EP3174595B1 (de) 2014-07-31 2023-06-07 Berlin Heals GmbH Segmentierte flächenelektrode
US10765858B2 (en) 2014-11-05 2020-09-08 Medtronic, Inc. Extravascular lead designs for optimized pacing and sensing having segmented, partially electrically insulated defibrillation coils
EP3974020A1 (de) 2014-12-09 2022-03-30 Medtronic, Inc. Extravaskulärer implantierbarer elektrischer leiter mit wellenförmiger konfiguration
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
WO2017021255A2 (de) 2015-07-31 2017-02-09 Berlin Heals Holding Ag Implantierbare gleichstromelektrodenanordnung
ES2951967T3 (es) 2017-07-11 2023-10-26 Berlin Heals Gmbh Conjunto implantable de electrodos de corriente continua
JP2021510608A (ja) 2017-11-07 2021-04-30 ニューロスティム オーエービー インコーポレイテッド 適応回路を有する非侵襲性神経アクティベーター
CA3144957A1 (en) 2019-06-26 2020-12-30 Neurostim Technologies Llc Non-invasive nerve activator with adaptive circuit
JP2023506713A (ja) 2019-12-16 2023-02-20 ニューロスティム テクノロジーズ エルエルシー 昇圧電荷送達を用いた非侵襲性神経アクティベータ
DE102020104563A1 (de) 2020-02-20 2021-08-26 Christoph Miethke Gmbh & Co Kg Vorrichtung zum Positionieren eines Herzimplantates
WO2021198314A1 (en) 2020-03-30 2021-10-07 Berlin Heals Gmbh A process of treatment of internal organ oedema using an electric current delivering electrode system and system therefor
WO2021198315A1 (en) 2020-03-30 2021-10-07 Berlin Heals Gmbh An electric field or electric voltage delivering electrode system for the treatment of internal organ oedema
WO2021198203A1 (en) 2020-03-30 2021-10-07 Berlin Heals Gmbh An electric field or electric voltage delivering electrode system for the treatment of internal organ oedema

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5109842A (en) * 1990-09-24 1992-05-05 Siemens Pacesetter, Inc. Implantable tachyarrhythmia control system having a patch electrode with an integrated cardiac activity system
US6009349A (en) 1993-11-16 1999-12-28 Pacesetter, Inc. System and method for deriving hemodynamic signals from a cardiac wall motion sensor
US5480412A (en) * 1993-11-16 1996-01-02 Pacesetter, Inc. System and method for deriving hemodynamic signals from a cardiac wall motion sensor
US7167748B2 (en) * 1996-01-08 2007-01-23 Impulse Dynamics Nv Electrical muscle controller
US6208894B1 (en) * 1997-02-26 2001-03-27 Alfred E. Mann Foundation For Scientific Research And Advanced Bionics System of implantable devices for monitoring and/or affecting body parameters
US6141585A (en) * 1998-05-08 2000-10-31 Intermedics Inc. Implantable cardiac stimulator with electrode-tissue interface characterization
AU1620300A (en) 1998-11-12 2000-05-29 Emed Corporation Electrically mediated angiogenesis
US6123724A (en) * 1999-04-14 2000-09-26 Denker; Stephen Heart assist method and apparatus employing magnetic repulsion force
US7171263B2 (en) * 1999-06-04 2007-01-30 Impulse Dynamics Nv Drug delivery device
EP1365835A2 (de) 2001-03-05 2003-12-03 Medtronic, Inc. Stimulierung zur abgabe einer molekulären therapie
US6901294B1 (en) * 2001-05-25 2005-05-31 Advanced Bionics Corporation Methods and systems for direct electrical current stimulation as a therapy for prostatic hypertrophy
WO2003015862A2 (en) 2001-08-15 2003-02-27 Biomed Solutions, Llc Process for treating biological organisms
US7096064B2 (en) 2001-08-28 2006-08-22 Medtronic, Inc. Implantable medical device for treating cardiac mechanical dysfunction by electrical stimulation
US6731979B2 (en) * 2001-08-30 2004-05-04 Biophan Technologies Inc. Pulse width cardiac pacing apparatus
US7236830B2 (en) * 2002-12-10 2007-06-26 Northstar Neuroscience, Inc. Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders
US20040260346A1 (en) * 2003-01-31 2004-12-23 Overall William Ryan Detection of apex motion for monitoring cardiac dysfunction
US7840263B2 (en) * 2004-02-27 2010-11-23 Cardiac Pacemakers, Inc. Method and apparatus for device controlled gene expression
US8805491B2 (en) * 2004-04-20 2014-08-12 Zoll Medical Corporation Microperfusive electrical stimulation
US7610092B2 (en) * 2004-12-21 2009-10-27 Ebr Systems, Inc. Leadless tissue stimulation systems and methods
US7402134B2 (en) * 2004-07-15 2008-07-22 Micardia Corporation Magnetic devices and methods for reshaping heart anatomy
US20060235289A1 (en) * 2005-04-19 2006-10-19 Willem Wesselink Pacemaker lead with motion sensor
US20070043412A1 (en) * 2005-08-18 2007-02-22 Herve Janssens Cardiac electrode assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006106132A1 *

Also Published As

Publication number Publication date
US9457184B2 (en) 2016-10-04
JP2008534196A (ja) 2008-08-28
WO2006106132A1 (de) 2006-10-12
US20080195163A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
EP1868682A1 (de) Elektromedizinische implantierbare oder extrakorporal anwendbare vorrichtung für die organbehandlung und organüberwachung und verfahren zur therapierenden organbehandlung
DE60104706T2 (de) Einheitlicher, nur subkutan implantierbarer kardiovertierer-defibrillator und wahlweiser herzschrittmacher
EP2060299B1 (de) Biventrikulärer Herzstimulator
DE60019881T2 (de) Implantierbare aktive Vorrichtung des Typs multisite mit Mitteln zum Resynchronisieren der Ventrikeln
DE69734454T2 (de) Vorhofdefibrillationsanordnung mit zwei stromwegen
DE60114507T2 (de) Verfahren und Vorrichtung zur biventrikulären Stimulation und zur Überwachung des Einfanges
US8838238B2 (en) Ventricular pacing
DE60204286T2 (de) Implantierbare vorrichtung
DE3914662A1 (de) Vorrichtung zum uebertragen elektrischer signale zwischen einem implantierbaren medizinischen geraet und elektrisch erregbarem menschlichen gewebe
CN107072581A (zh) 电刺激脉冲递送之后的心脏事件感测以及心律检测的恢复
CN101175530A (zh) 用于器官处理和器官监测的可植入或可体外使用的电子医疗装置以及用于治疗的器官处理的方法
DE202007018529U1 (de) Implantierbarer Funkfrequenzdefibrillator R.F.
US9884194B2 (en) Use of an implantable cardiac pacing, defibrilation and/or resynchronization generator as a VNS generator for vagus nerve stimulation
EP2603285B1 (de) Kardioverter zur beseitigung von vorhofflimmern
US11185687B2 (en) Electromedical implantable or extracorporeally applicable device for the treatment or monitoring of organs, and methods for therapeutic organ treatment
EP2540341B1 (de) Herzstimulator zur Abgabe einer kardialen Konktraktilitätsmodulationstherapie
EP2628503B1 (de) Herzstimulator für eine kardiale Kontraktilitätsmodulation
DE69635958T2 (de) Vorrichtung zur zeitlichen elektrischen erzwingung des kardialen ausstosses, als sicherungssystem für tachykardie-patienten
EP3586914B1 (de) Vorrichtung zur aktivierung von zellstrukturen mittels elektromagnetischer energie
US20080249584A1 (en) Method and device for cardiosympathetic inhibition
DE19632705A1 (de) Vorrichtung zur Stimulation der Corpora Cavernosi Penis
DE202007018531U1 (de) Zweikammerstimulationsspulen für die Vorhofdefibrillation und Kammerstimulation
EP3476432B1 (de) Vorrichtung zur hochspannungstherapie
EP3854449A1 (de) Implantierbares medizinisches gerät zur stimulation eines menschlichen oder tierischen herzens
DE102018126468A1 (de) Vorrichtung und Methode zur Aktivierung von Zellstrukturen mittels elektromagnetischer Energie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080226

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHARMER, FRIEDERIKE

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080909