EP1860279A1 - Geschweisste ND-Turbinenwelle - Google Patents

Geschweisste ND-Turbinenwelle Download PDF

Info

Publication number
EP1860279A1
EP1860279A1 EP06010925A EP06010925A EP1860279A1 EP 1860279 A1 EP1860279 A1 EP 1860279A1 EP 06010925 A EP06010925 A EP 06010925A EP 06010925 A EP06010925 A EP 06010925A EP 1860279 A1 EP1860279 A1 EP 1860279A1
Authority
EP
European Patent Office
Prior art keywords
inflow
shaft
gew
inflow part
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06010925A
Other languages
English (en)
French (fr)
Inventor
Thorsten-Ulf Dr. Kern
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP06010925A priority Critical patent/EP1860279A1/de
Priority to PCT/EP2007/051743 priority patent/WO2007137884A1/de
Priority to JP2009511422A priority patent/JP5036811B2/ja
Priority to CN200780019467.9A priority patent/CN101454541B/zh
Priority to EP07712292A priority patent/EP2024605A1/de
Priority to US12/227,468 priority patent/US8083492B2/en
Publication of EP1860279A1 publication Critical patent/EP1860279A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/06Rotors for more than one axial stage, e.g. of drum or multiple disc type; Details thereof, e.g. shafts, shaft connections
    • F01D5/063Welded rotors
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/04Heavy metals
    • F05C2201/0433Iron group; Ferrous alloys, e.g. steel
    • F05C2201/0466Nickel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/131Molybdenum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/13Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
    • F05D2300/132Chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S464/00Rotary shafts, gudgeons, housings, and flexible couplings for rotary shafts
    • Y10S464/902Particular material

Definitions

  • the invention relates to a turbomachine which has a low-pressure region, with at least one shaft, wherein the low-pressure region has an inflow region.
  • Such a turbomachine is designed for example as a steam turbine.
  • Such turbomachines have an inflow region and adjoining flow regions or outflow regions, the flow regions having a blade lattice formed from rotor blades and guide vanes.
  • double-flow turbomachines are formed, wherein a flow medium, for example steam, flows over the inflow area into the flow areas arranged to the left and right in the axial direction or in the longitudinal direction flows.
  • a flow medium for example steam
  • the flow medium flows in the opposite direction with respect to the respective other flow region.
  • the invention is therefore based on the object to improve a turbomachine of the type mentioned, in particular the at least one shaft in the low pressure region of the turbomachine with simple means to the effect that these higher temperatures or operating temperatures can be suspended.
  • the shaft has a heat-resistant material at least at its inlet part arranged in the inflow region.
  • the inflow part preferably comprises a material of the 1-2.5% Cr steels, in particular a material with the designation 22CrNiMoWV8-8 (material number 1.6945).
  • the shaft at opposite to the inflow arranged Abström a cold-tough material, preferably a material of 2-4% Ni steels, in particular a material 26NiCrMoV14-5 (material number 1.6957).
  • a cold-tough material preferably a material of 2-4% Ni steels, in particular a material 26NiCrMoV14-5 (material number 1.6957).
  • 26NiCrMoV11-5 material number 1.6948) and / or 22NiCrMo9-9 have.
  • the shaft is formed in several parts from an inflow part and an outflow part assigned to it on both sides.
  • the inflow part is connected with its oppositely arranged ends cohesively with the respective further outflow parts.
  • a welded connection can preferably be used.
  • a gas-shielded welding process in particular a TIG welding
  • TIG narrow gap welding it is also possible to carry out a TIG narrow gap welding.
  • UP Unterpulverversch spaung
  • combined welding processes can also be carried out, the "root position" being carried out, for example, in the TIG process and the "filling or covering layers" in the UP process.
  • the inflow part is arranged in the region of the steam inflow of the turbomachine, the outflow parts being arranged laterally in the longitudinal direction of the turbomachine, ie in the outflow region.
  • the inflow part consists of the material 22CrMoNiWV8-8, wherein the outflow parts can each consist of one of the following exemplary materials 26NiCrMoV14-5, 26NiCrMoV11-5 and / or 22CrNiM09-9.
  • the inflow part of the material 22CrMoNiWV8-8 can be conveniently produced as a disk body with a diameter of up to 3000mm, wherein for the disk body no ESU melting ( E lektro- S chlacke- U mschmelzung) is necessary even with the largest shaft diameters, as well Conventional melting process sufficiently homogeneous properties can be achieved.
  • the disk body becomes corresponding machined to fulfill its function in the flow cross-section.
  • the inflow can be easily produced as a disc body and the special ESU-melting (which is necessary for monobloc waves of the same diameter) can be omitted, also advantageously increases the number of suppliers for the procurement of the inflow due to the elimination of required manufacturing standards and tolerances or special requirements for suppliers.
  • the inflow part advantageously fulfills the necessary high long-term strength and toughness requirement in turbomachines, in particular in the inflow region.
  • Figure 1 shows a shaft 1 of a turbomachine in a half-section up to a central axis X.
  • the shaft 1 is mirror-inverted to the central axis X executed.
  • the shaft 1 is part of a double-flow low pressure area.
  • the turbomachine may be, for example, a steam turbine. The possibly upstream medium-pressure areas or high-pressure areas of the turbomachine are not shown.
  • the turbomachine has an inflow region, which is represented by the arrow 2.
  • a medium for example, steam flows into the low-pressure region of the turbomachine, wherein the medium flow, with respect to the approximately centrally arranged inflow region 2, is divided into two flow directions 3.
  • Each partial flow 3 flows through a blade grid, not shown.
  • the low-pressure region of the fluid-flow machine thus has an inflow region 2 and two flow regions or outflow regions 4 arranged laterally to the latter, seen in the longitudinal direction or axial direction.
  • the shaft 1 is formed in several parts from an inflow part 6 and two outflow parts 7, which are seen laterally in the longitudinal direction.
  • the inflow part 6 is materially connected to the respectively laterally arranged outflow parts 7.
  • the cohesive connection can be designed as a welded connection.
  • the TIG process may be provided, preferably as TIG narrow gap welding.
  • a submerged arc welding (UP) can be provided.
  • the respective weld bears the reference numeral 8.
  • the inflow part 6 is made as a disk body, which consists of the material 22CrNiMoWV8-8.
  • FIG. 2 shows a temperature diagram in the longitudinal direction of the shaft 1.
  • the shaft 1 in the inflow region 2 of the turbomachine can be operated over a temperature> 350 ° C.
  • the temperature decreases seen in the longitudinal direction in both outflow areas 4.
  • the temperature curve 9 achievable by means of the material 22CrNiMoWV8-8 used in accordance with the invention is shown in dashed lines, wherein below a conventional temperature curve 10 is shown, which does not exceed the amount of 350 ° C.
  • an improved shaft 1 which can be exposed to higher temperature loads (> 350 ° C.) in the inflow region on account of the material 22CrNiMoWV8-8 of the inflow part 6 used according to the invention.
  • the welds 8 are conveniently arranged in a temperature range ⁇ 350 ° C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Arc Welding In General (AREA)

Abstract

Die Erfindung betrifft eine Strömungsmaschine, die einen Niederdruckbereich aufweist, mit zumindest einer Welle (1), wobei der Niederdruckbereich einen Einströmbereich (2) aufweist. Die Welle (1) weist zumindest an ihrem, im Einströmbereich (2) angeordneten Einströmteil (6) einen warmfesten Werkstoff, vorzugsweise den Werkstoff 22CrMoNiWV8-8 auf.

Description

  • Die Erfindung betrifft eine Strömungsmaschine, die einen Niederdruckbereich aufweist, mit zumindest einer Welle, wobei der Niederdruckbereich einen Einströmbereich aufweist.
  • Eine derartige Strömungsmaschine ist beispielsweise als Dampfturbine ausgeführt. Derartige Strömungsmaschinen weisen einen Einströmbereich und sich daran anschließende Strömungsbereiche bzw. Abströmbereiche auf, wobei die Strömungsbereiche ein aus Lauf- und Leitschaufeln gebildetes Schaufelgitter aufweisen.
  • Ist ein solches Schaufelgitter in axialer Richtung gesehen jeweils links und rechts des Einströmbereiches angeordnet, sind so genannte doppelflutige Strömungsmaschinen gebildet, wobei ein Strömungsmedium, beispielsweise Dampf, über den Einströmbereich in die in axialer Richtung bzw. in Längsrichtung gesehen jeweils links und rechts davon angeordneten Strömungsbereiche strömt.
  • In dem in axialer Richtung gesehen jeweils links und rechts des Einströmbereiches angeordneten Strömungsbereichen strömt das Strömungsmedium bezogen auf den jeweils anderen Strömungsbereich in entgegengesetzter Richtung.
  • Bekannt ist beispielsweise für doppelflutige Strömungsmaschinen die Welle aus dem Werkstoff 26NiCrMoV14-5 zu bilden. Als ein Hauptnachteil dieses bekannten Werkstoffs ist anzusehen, dass die Einsatztemperatur aus Gründen der Versprödung und des Zeitstandverhaltens auf T < 350°C zu beschränken ist.
  • Um den Wirkungsgrad der Strömungsmaschine verbessern zu können, wurde insbesondere der Niederdruckteil, bzw. die Welle im Niederdruckbereich theoretisch dahingehend diskutiert, dass ein diesbezüglich verbesserter Werkstoff eingesetzt werden könnte. Dieser theoretisch andiskutierte Werkstoff ist der Werkstoff 26NiCrMoV14-5mod (Superclean). Bei diesem Werkstoff ist die Versprödungsneigung zwar reduziert, wohingegen das Problem des gefügeabhängigen Zeitstandverhaltens aber nicht verbessert wird. Der Einsatz des andiskutierten modifizierten Werkstoffs ist theoretisch möglich, wobei die Werkstoffkosten allerdings um mehr als ca. 25 Prozent steigen, und Daten zum Zeitstandverhalten Rp0,2 > 600 MPa nicht ausgewertet vorliegen.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Strömungsmaschine der eingangs genannten Art, insbesondere die zumindest eine Welle im Niederdruckbereich der Strömungsmaschine mit einfachen Mitteln dahingehend zu verbessern, dass diese höheren Temperaturen bzw. Einsatztemperaturen ausgesetzt werden kann.
  • Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass die Welle zumindest an ihrem, im Einströmbereich angeordneten Einströmteil einen warmfesten Werkstoff aufweist. Bevorzugt weist der Einströmteil dabei einen Werkstoff der 1-2,5% Cr-Stähle, insbesondere einen Werkstoff mit der Bezeichnung 22CrNiMoWV8-8 (Werkstoffnummer 1.6945) auf.
  • Günstig im Sinne der Erfindung ist, wenn die Welle an gegenüberliegend zum Einströmteil angeordneten Abströmteilen einen kaltzähen Werkstoff, bevorzugt einen Werkstoff der 2-4% Ni-Stähle, insbesondere einen Werkstoff 26NiCrMoV14-5 (Werkstoffnummer 1.6957)aufweist. Natürlich kann der jeweilige Abströmteil aber auch beispielsweise einen Werkstoff 26NiCrMoV11-5 (Werkstoffnummer 1.6948) und/oder 22NiCrMo9-9 aufweisen.
  • Zweckmäßig im Sinne der Erfindung ist, wenn die Welle mehrteilig aus einem Einströmteil und einem diesem jeweils beidseitig zugeordneten Abströmteil gebildet ist. Das Einströmteil ist dabei mit seinen gegenüberliegend angeordneten Enden stoffschlüssig mit den jeweils weiteren Abströmteilen verbunden. Als stoffschlüssige Verbindung kann bevorzugt eine Schweißverbindung eingesetzt werden. Denkbar ist hierbei, wenn als Schweißverfahren ein Schutzgasschweißverfahren, insbesondere eine WIG-Schweißung durchgeführt wird. Möglich ist auch, eine WIG-Engspaltschweißung durchzuführen. Möglich ist aber auch eine Unterpulverschweißung (UP) durchzuführen. Natürlich können aber auch kombinierte Schweißverfahren durchgeführt werden, wobei die "Wurzellage" beispielsweise im WIG-Verfahren und die "Füll- bzw. Decklagen" im UP-Verfahren ausgeführt sind.
  • Der Einströmteil ist im Bereich der Dampfeinströmung der Strömungsmaschine angeordnet, wobei die Abströmteile in Längsrichtung der Strömungsmaschine jeweils seitlich dazu, also im Abströmbereich angeordnet sind. Im Bereich der Dampfeinströmung, also am Einströmteil herrschen die höchsten Temperaturen an der Welle, bzw. an deren Einströmteil. Günstiger Weise ist daher vorgesehen, dass der Einströmteil aus dem Werkstoff 22CrMoNiWV8-8 besteht, wobei die Abströmteile jeweils aus einem der folgenden beispielhaften Werkstoffen 26NiCrMoV14-5, 26NiCrMoV11-5 und/oder 22CrNiM09-9 bestehen können.
  • Insgesamt sind mit dem verwendeten Werkstoff 22CrMoNiWV8-8 für den Einströmbereich des Niederdruckteils der Welle, also des Einströmteils höhere Einströmtemperaturen (T > 350°C) realisierbar.
  • Der Einströmteil aus dem Werkstoff 22CrMoNiWV8-8 kann dabei günstigerweise als Scheibenkörper mit einem Durchmesser bis zu 3000mm hergestellt werden, wobei für den Scheibenkörper keine ESU-Erschmelzung (Elektro-Schlacke-Umschmelzung) auch bei größten Wellendurchmessern notwendig ist, da auch über konventionelle Erschmelzungsverfahren ausreichend homogene Eigenschaften erreichbar sind. Der Scheibenkörper wird entsprechend bearbeitet, um seine Funktion im Strömungsquerschnitt zu erfüllen.
  • Dadurch, dass der Einströmteil einfach als Scheibenkörper hergestellt werden kann und die spezielle ESU-Erschmelzung (die für Monoblockwellen gleichen Durchmessers notwendig ist) entfallen kann, erhöht sich auch vorteilhaft die Lieferantenanzahl für die Beschaffung des Einströmteils aufgrund des Wegfalls von erforderlichen Herstellungsstandards und Toleranzen bzw. spezieller Anforderungen an die Lieferanten.
  • Der Einströmteil erfüllt vorteilhaft aufgrund des neuen Werkstoffs bzw. der erfindungsgemäßen Verwendung des Werkstoffs 22CrMoNiWV8-8 die notwendig hohe Langzeitfestigkeit und Zähigkeitsanforderung in Strömungsmaschinen insbesondere im Einströmbereich.
  • Eine Verschweißung der beiden unterschiedlichen Werkstoffe, also des Werkstoffs des Einströmteils mit dem Werkstoff der beiden gegenüberliegenden Abströmteile ist bereits bekannt, wobei die entstehenden Schweißnähte selbstverständlich vorzugsweise in den Bereich mit einer Temperatur T < 350°C angeordnet werden können.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen, sowie der folgenden Figurenbeschreibung offenbart. Es zeigen:
  • Fig. 1
    eine Welle eines Niederdruckbereiches einer Strömungsmaschine im Halbquerschnitt, und
    Fig. 2
    ein Temperaturdiagramm.
  • Figur 1 zeigt eine Welle 1 einer Strömungsmaschine in einem Halbquerschnitt bis zu einer Mittelachse X. Selbstverständlich ist die Welle 1 spiegelbildlich zur Mittelachse X ausgeführt. Die Welle 1 ist Bestandteil eines doppelflutigen Niederdruckbereichs. Die Strömungsmaschine kann z.B. eine Dampfturbine sein. Die möglicherweise vorgeschalteten Mitteldruckbereiche bzw. Hochdruckbereiche der Strömungsmaschine sind nicht dargestellt.
  • Die Strömungsmaschine weist einen Einströmbereich auf, der Mittels des Pfeils 2 dargestellt ist. Als Medium strömt beispielsweise Dampf in den Niederdruckbereich der Strömungsmaschine, wobei sich der Mediumstrom, bezogen auf den etwa mittig angeordneten Einströmbereich 2 in zwei Strömungsrichtungen 3 aufteilt. Jeder Teilstrom 3 durchströmt ein nicht dargestelltes Schaufelgitter. Der Niederdruckbereich der Strömungsmaschine weist somit einen Einströmbereich 2 und zwei, in Längsrichtung bzw. axialer Richtung gesehen, seitlich zu diesem angeordnete Strömungsbereiche bzw. Abströmbereiche 4 auf.
  • Die Welle 1 ist mehrteilig aus einem Einströmteil 6 und zwei in Längsrichtung gesehen jeweils seitlich dazu angeordneten Abströmteilen 7 gebildet. Das Einströmteil 6 ist mit den jeweils seitlich angeordneten Abströmteilen 7 stoffschlüssig verbunden. Die stoffschlüssige Verbindung kann als Schweißverbindung ausgeführt sein. Als Schweißverfahren kann das WIG-Verfahren, vorzugsweise als WIG-Engspaltschweißung vorgesehen sein. Natürlich kann auch eine Unterpulver-Schweißung (UP) vorgesehen sein. Die jeweilige Schweißnaht trägt das Bezugszeichen 8.
  • Der Einströmteil 6 ist als Scheibenkörper hergestellt, der aus dem Werkstoff 22CrNiMoWV8-8 besteht. Der Werkstoff 22CrNiMoWV8-8 umfasst 0,20-0,24 Gew.-% C; <=0,10 Gew.-% Si; 0,60-0,80 Gew.-% Mn; <=0,01 Gew.-% P; <=0,007 Gew.-% S; 2,00-2,20 Gew.-% Cr; 0,80-0,90 Gew.-% Mo; 0,70-0,80 Gew.-% Ni; 0,25-0,35 Gew.-% V und 0,60-0,70 Gew.-% W.
  • Die Abströmteile 7 sind jeweils aus einem der folgenden Werkstoffe herstellbar:
    • 26NiCrMoV14-5: Dieser Werkstoff umfasst 0,22-0,32 Gew.-% C; 0<=0,15 Gew.-% Si; 0,15-0,40 Gew.-% Mn; <=0,010 Gew.-% P; <=0,007 Gew.-% S; 1,20-1,80 Gew.-% Cr; 0,25-0,45 Gew.-% Mo; 3,40-4,00 Gew.-% Ni und 0,05-0,15 Gew.-% V.
    • 26NiCrMoV11-5: Dieser Werkstoff umfasst 0,22-0,32 Gew.-% C; <=0,15 Gew.-% Si; 0,15-0,40 Gew.-% Mn; <=0,010 Gew.-% P; <=0,007 Gew.-% S; 1,20-1,80 Gew.-% Cr; 0,25-0,45 Gew.-% Mo; 2,40-3,10 Gew.-% Ni und 0,05-0,15 Gew.-% V.
    • 22CrNiMo9-9: Dieser Werkstoff umfasst 0,22-0,25 Gew.-% C; <=0,15 Gew.-% Si; 0,15-0,40 Gew.-% Mn; <=0,010 Gew.-% P; <=0,007 Gew.-% S; 2,00-2,60 Gew.-% Cr; 0,50-0,90 Gew.-% Mo; 2,00-2,50 Gew.-% Ni und 0,05-0,15 Gew.-% V.
  • In Figur 2 ist ein Temperaturdiagramm in Längsrichtung der Welle 1 dargestellt. Mittels des erfindungsgemäß verwendeten Werkstoffs 22CrNiMoWV8-8 des Einströmteils 6 kann die Welle 1 im Einströmbereich 2 der Strömungsmaschine über eine Temperatur >350°C betrieben werden. Die Temperatur nimmt in Längsrichtung gesehen in beiden Abströmbereichen 4 ab. In Figur 2 ist die mittels des erfindungsgemäß verwendeten Werkstoffs 22CrNiMoWV8-8 erreichbare Temperaturkurve 9 gestrichelt dargestellt, wobei unterhalb eine herkömmliche Temperaturkurve 10 dargestellt ist, welche den Betrag von 350°C nicht übersteigt.
  • Somit ist eine verbesserte Welle 1 zur Verfügung gestellt, welche im Einströmbereich aufgrund des erfindungsgemäß verwendeten Werkstoffs 22CrNiMoWV8-8 des Einströmteils 6 höheren Temperaturbelastungen (>350°C) ausgesetzt werden kann. Die Schweißnähte 8 sind dabei günstiger Weise in einem Temperaturbereich <350°C angeordnet.

Claims (7)

  1. Strömungsmaschine,
    die einen Niederdruckbereich aufweist,
    mit zumindest einer Welle (1),
    wobei der Niederdruckbereich einen Einströmbereich (2) aufweist,
    dadurch gekennzeichnet, dass
    die Welle (1) zumindest an ihrem im Einströmbereich (2) angeordneten Einströmteil (6) einen warmfesten Werkstoff aufweist.
  2. Strömungsmaschine nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Welle (1) an ihrem Einströmteil einen Werkstoff 22CrMoNiWV8-8 aufweist
  3. Strömungsmaschine nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Welle (1) an gegenüberliegend zum Einströmteil (6) angeordneten Abströmteilen (7) einen kaltzähen Werkstoff aufweist.
  4. Strömungsmaschine einem der vorhergehenden Ansprüchen,
    dadurch gekennzeichnet, dass
    die Welle (1) an gegenüberliegend zum Einströmteil (6) angeordneten Abströmteilen (7) einen Werkstoff 26NiCrMoV14-5 und/oder 26NiCrMoV11-9 und/oder 22CrNiMo9-9 aufweist.
  5. Strömungsmaschine nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Welle (1) mehrteilig aus dem Einströmteil (6) und einem diesem jeweils beidseitig zugeordneten Abströmteil (7) gebildet ist.
  6. Strömungsmaschine nach Anspruch 5,
    dadurch gekennzeichnet, dass
    der Einströmteil (6) mit seinen gegenüberliegenden Abströmteilen (7) stoffschlüssig verbunden ist.
  7. Strömungsmaschine nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Einströmteil (6) als Scheibenkörper hergestellt ist.
EP06010925A 2006-05-26 2006-05-26 Geschweisste ND-Turbinenwelle Withdrawn EP1860279A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06010925A EP1860279A1 (de) 2006-05-26 2006-05-26 Geschweisste ND-Turbinenwelle
PCT/EP2007/051743 WO2007137884A1 (de) 2006-05-26 2007-02-23 Geschweisste nd-turbinenwelle
JP2009511422A JP5036811B2 (ja) 2006-05-26 2007-02-23 溶接された低圧タービン軸
CN200780019467.9A CN101454541B (zh) 2006-05-26 2007-02-23 焊接的低压-涡轮机轴
EP07712292A EP2024605A1 (de) 2006-05-26 2007-02-23 Geschweisste nd-turbinenwelle
US12/227,468 US8083492B2 (en) 2006-05-26 2007-02-23 Welded low-pressure turbine shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06010925A EP1860279A1 (de) 2006-05-26 2006-05-26 Geschweisste ND-Turbinenwelle

Publications (1)

Publication Number Publication Date
EP1860279A1 true EP1860279A1 (de) 2007-11-28

Family

ID=37075789

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06010925A Withdrawn EP1860279A1 (de) 2006-05-26 2006-05-26 Geschweisste ND-Turbinenwelle
EP07712292A Ceased EP2024605A1 (de) 2006-05-26 2007-02-23 Geschweisste nd-turbinenwelle

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07712292A Ceased EP2024605A1 (de) 2006-05-26 2007-02-23 Geschweisste nd-turbinenwelle

Country Status (5)

Country Link
US (1) US8083492B2 (de)
EP (2) EP1860279A1 (de)
JP (1) JP5036811B2 (de)
CN (1) CN101454541B (de)
WO (1) WO2007137884A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100202891A1 (en) * 2008-08-11 2010-08-12 Shin Nishimoto Low-pressure turbine rotor
US8925894B2 (en) 2012-02-17 2015-01-06 Vetco Gray Inc. Ball valve enclosure and drive mechanism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10590508B2 (en) 2014-10-10 2020-03-17 Mitsubishi Hitachi Power Systems, Ltd. Method for manufacturing shaft body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1448063A (en) * 1973-01-26 1976-09-02 Alsthom Cgee Turbine rotor
DE2906371A1 (de) * 1979-02-19 1980-08-21 Kloeckner Werke Ag Turbinenlaeufer und verfahren zu seiner herstellung
US20020081197A1 (en) * 2000-12-27 2002-06-27 Crawmer Gerald Richard Fabricating turbine rotors composed of separate components
WO2004051056A1 (de) * 2002-12-05 2004-06-17 Siemens Aktiengesellschaft Turbinenwelle sowie herstellung einer turbinenwelle
WO2004101209A1 (de) * 2003-05-14 2004-11-25 Alstom Technology Ltd Verfahren zum verschweissen von bauteilen sowie ein nach einem solchen verfahren hergestellter rotor
EP1577494A1 (de) * 2004-03-17 2005-09-21 Siemens Aktiengesellschaft Geschweisste Turbinenwelle und Verfahren zur deren Herstellung
WO2006048401A1 (de) * 2004-11-02 2006-05-11 Alstom Technology Ltd Optimierte turbinenstufe einer turbinenanlage sowie auslegungsverfahren

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050002A (ja) * 1999-08-04 2001-02-23 Toshiba Corp 低圧タービンロータおよびその製造方法ならびに蒸気タービン

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1448063A (en) * 1973-01-26 1976-09-02 Alsthom Cgee Turbine rotor
DE2906371A1 (de) * 1979-02-19 1980-08-21 Kloeckner Werke Ag Turbinenlaeufer und verfahren zu seiner herstellung
US20020081197A1 (en) * 2000-12-27 2002-06-27 Crawmer Gerald Richard Fabricating turbine rotors composed of separate components
WO2004051056A1 (de) * 2002-12-05 2004-06-17 Siemens Aktiengesellschaft Turbinenwelle sowie herstellung einer turbinenwelle
WO2004101209A1 (de) * 2003-05-14 2004-11-25 Alstom Technology Ltd Verfahren zum verschweissen von bauteilen sowie ein nach einem solchen verfahren hergestellter rotor
EP1577494A1 (de) * 2004-03-17 2005-09-21 Siemens Aktiengesellschaft Geschweisste Turbinenwelle und Verfahren zur deren Herstellung
WO2006048401A1 (de) * 2004-11-02 2006-05-11 Alstom Technology Ltd Optimierte turbinenstufe einer turbinenanlage sowie auslegungsverfahren

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100202891A1 (en) * 2008-08-11 2010-08-12 Shin Nishimoto Low-pressure turbine rotor
EP2312127A1 (de) * 2008-08-11 2011-04-20 Mitsubishi Heavy Industries, Ltd. Rotor für eine niederdruckturbine
EP2312127A4 (de) * 2008-08-11 2015-01-07 Mitsubishi Heavy Ind Ltd Rotor für eine niederdruckturbine
US8925894B2 (en) 2012-02-17 2015-01-06 Vetco Gray Inc. Ball valve enclosure and drive mechanism

Also Published As

Publication number Publication date
CN101454541A (zh) 2009-06-10
JP5036811B2 (ja) 2012-09-26
US8083492B2 (en) 2011-12-27
WO2007137884A1 (de) 2007-12-06
EP2024605A1 (de) 2009-02-18
CN101454541B (zh) 2011-09-07
US20090263249A1 (en) 2009-10-22
JP2009538397A (ja) 2009-11-05

Similar Documents

Publication Publication Date Title
DE60036253T2 (de) Dampfturbinenschaufel für ein Dampfkraftwerk
DE3789776T2 (de) Hitzebeständiger Stahl und daraus hergestellte Gasturbinenteile.
DE69726524T2 (de) Beschaufelung für eine Dampfturbine eines Gas-Dampf-Kombikraftwerks
EP2872664A1 (de) Austenitische stahllegierung mit ausgezeichneter zeitstandfestigkeit sowie oxidations- und korrosionsbeständigkeit bei erhöhten einsatztemperaturen
AT411441B (de) Verbundwerkzeug
EP1715140A1 (de) Turbinenschaufel mit einer Deckplatte und einer auf der Deckplatte aufgebrachte Schutzschicht
EP2683523A1 (de) Hartlotfolie auf nickel-basis, verfahren zum herstellen einer hartlotfolie, gegenstand mit einer lötnaht und verfahren zum hartlöten
WO2020221689A1 (de) Verfahren zur herstellung eines stahlbauteils und stahlbauteil
EP1033478A2 (de) Gehäuse für eine thermische Turbomaschine
CH699716A1 (de) Bauteil für eine hochtemperaturdampfturbine sowie hochtemperaturdampfturbine.
EP2551050B1 (de) Verfahren zum Schweißen von dünnwandigen Rohren mittels Spitzentemperaturanlassschweißen
EP1860279A1 (de) Geschweisste ND-Turbinenwelle
DE102006062348A1 (de) Oberflächengestrahlte Dampferzeugerbauteile oder Kraftwerkskomponenten
EP1567749B1 (de) Turbinenwelle sowie herstellung einer turbinenwelle
WO2010133244A1 (de) Ferritisch martensitische eisenbasislegierung, ein bauteil und ein verfahren
DE3004758A1 (de) Verschweissverfahren fuer eine zu verschweissende rostfreie stahlueberzugsschicht
DE102004024299A1 (de) Geschweisstes Bauteil
EP1577494A1 (de) Geschweisste Turbinenwelle und Verfahren zur deren Herstellung
DE3903588C2 (de)
WO2011042007A1 (de) Fügeverfahren
EP1194603B1 (de) Austenitische ni-cr-mo-fe-legierung
EP0174920A1 (de) Verwendung einer Legierung als Schweisszusatzwerkstoff
WO2009019152A1 (de) Verfahren zur herstellung eines turbinengehäuses sowie turbinengehäuse
DE69633140T2 (de) Dampfturbinenkraftanlage
EP1865155B1 (de) Turbinengehäuse für eine Dampfturbine und/oder eine Gasturbine und Verfahren zu dessen Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080529

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566