EP1857682B1 - Trockenlaufende Drehkolbenmaschine mit Reaktionsschalldämpfer - Google Patents

Trockenlaufende Drehkolbenmaschine mit Reaktionsschalldämpfer Download PDF

Info

Publication number
EP1857682B1
EP1857682B1 EP06010289.4A EP06010289A EP1857682B1 EP 1857682 B1 EP1857682 B1 EP 1857682B1 EP 06010289 A EP06010289 A EP 06010289A EP 1857682 B1 EP1857682 B1 EP 1857682B1
Authority
EP
European Patent Office
Prior art keywords
chamber
rotary piston
sound absorber
piston machine
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06010289.4A
Other languages
English (en)
French (fr)
Other versions
EP1857682A1 (de
Inventor
Christian-Philipp Hage
Hans-Ulrich Fleige
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerzener Maschinenfabrik GmbH
Original Assignee
Aerzener Maschinenfabrik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerzener Maschinenfabrik GmbH filed Critical Aerzener Maschinenfabrik GmbH
Priority to ES06010289.4T priority Critical patent/ES2581731T3/es
Priority to EP06010289.4A priority patent/EP1857682B1/de
Publication of EP1857682A1 publication Critical patent/EP1857682A1/de
Application granted granted Critical
Publication of EP1857682B1 publication Critical patent/EP1857682B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/061Silencers using overlapping frequencies, e.g. Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running

Definitions

  • the invention relates to a dry-running rotary piston machine with ChristsSWlldämpfer for gases or gas-vapor mixtures, which at least two mounted in a housing via shafts and bearing assemblies rotary pistons, which mesh with each other in opposite directions to define a delivery chamber, said waves operationally via toothed timing wheels coupled together.
  • dry running is to be understood that the rotary piston itself not through.
  • Lubricating lubricants such as lubricating oil or the like.
  • Dry-running rotary piston engines in particular rotary screw compressors and Rotary blowers of the type Roots, but also rotary piston expansion machines, work today with relatively high differential pressures (up to 7 bar) and speeds (up to about 20,000 1 / min).
  • a problem which generally exists in these rotary piston machines is that a part of the already compressed medium from the pressure-side pipe strikes back into the delivery chamber when the delivery chamber is opened, thus leading to strong pulsations or oscillations both in the compressor and in the downstream delivery-side delivery line. These pulsations are responsible for the high noise level of such machines, especially in the low frequency range.
  • Rotary engines of this type are for Example from the DE 32 38 015 known.
  • screw compressors having an internal compression due to the highly twisted piston in addition to the phenomenon described above, depending on the backpressure when opening the delivery chamber to the pressure side, a sudden outflow of the previously over-compressed fluid may occur.
  • silencers are used, two types being basically to be distinguished. These are on the one hand absorption silencers, which work with different absorption materials such as steel or mineral wool, and on the other hand the so-called resonance or reaction silencers, which work without such materials only by the special shape and dimensions of the silencer.
  • Absorption mufflers damp particularly high frequencies very well, but have several disadvantages. On the one hand, they dampen the lower frequency range only poorly or not at all, due to the very small thickness of the absorptive material compared to the sound wave length. Because of their close-meshed structure, absorption mufflers also become dirty, especially in the case of exhaust gases loaded by liquids or solids, which increasingly prevents the correct functioning of the muffler. In addition, fibers or other components can be discharged from the absorbent material, which can lead to serious problems in the downstream system and is therefore undesirable.
  • Reflection mufflers generally consist of an inner tube and an outer tube (the chamber), which are connected together to allow the passage of gas. They work on the principle that by the smaller Inner tube with the gas flow into the chamber entering sound is reflected due to the abrupt change in cross section.
  • the cut-off frequency and the strength of the insulation depends to a great extent on the geometry of the silencer.
  • the ratio of the diameter of the chamber to the diameter of the inner tube (D / d) must be as large as possible.
  • the limit frequency f gr above which the Schalldämm Koch drops sharply, inversely proportional to the diameter of the chamber (f gr ⁇ 1 / D)
  • the outer diameter of the chamber must not be too large to allow the insulation of high frequencies.
  • a way out is the parallel arrangement of several inner tubes and the simultaneous subdivision of the outer tube (the so-called Mehrflutmaschine).
  • An example is in the EP 1 117 965 shown.
  • the diameter of the chamber D is halved, so that the limit frequency of the insulation can be approximately doubled.
  • Helmholtz inner tubes in which holes are provided at a certain axial position in the inner tube shell. These can be evenly distributed over the entire shell, such as in the US 2,241,010 described, or may be present only at certain points by means of perforated plates, see, for example EP 0 798 694 ,
  • the outer tube is often divided into axially arranged chambers of different lengths (and thus different resonance frequencies), wherein each of the chambers are connected via the holes in the inner tube shell with the sound-conducting inner tube.
  • An example is in the document DE 296 12 322 shown.
  • the insulation be effective not only in terms of the amplitude of the sound at certain frequencies but over the entire frequency range.
  • the invention is concerned with the connection openings in the shell of a Helmholtz inner tube. It has been found that more holes (or better a larger area of the holes) better Insulation properties bring with it. This can be done by enlarging the individual holes themselves. Extrapolating to the limiting case, the holes become slits, which are formed predominantly transversely to the axial extent, that is to say in the circumferential direction on the jacket of the inner tube. Only a few webs remain for the mechanical connection of the inner tube available. Measurements have shown that by using the slots instead of holes, the insulation effect is surprisingly greatly improved.
  • the present invention provides a dry-running rotary muffler with reaction muffler comprising at least two rotatably mounted in a housing via shafts and bearing assemblies rotors which mesh with each other in opposite directions to define a delivery space, the waves are operatively coupled via control wheels, and wherein the Muffler has a silencing chamber, an inlet opening and an outlet opening,.
  • the rotary engine with reaction muffler is characterized in that the sound-damping chamber is divided by one or more parallel to the axial direction partitions (55,63a, 65) into two or more chamber parts (51b-e, 61b, d), which together define a multi-flow chamber wherein an inner tube (52b-e, 62b, d) is provided through each chamber member, which gas passes through the sound attenuation chamber, and on the inner tubes a plurality of slots are provided substantially in the circumferential direction, wherein the majority of the gas flows through the inner tube.
  • the slots are separated in the circumferential direction by webs. In this way, almost the entire circumference can be used for the slot surface, wherein the webs simultaneously ensure the stability of the tube.
  • the ratio of web area to slot area is preferably less than 30%, particularly preferably less than 25%, and in particular less than 20%. These values are significantly better than the corresponding values for perforated plates and provide improved leakage of sound pressure through the slots without jeopardizing tube stability.
  • the slots are provided in the flow direction on the front third and / or the middle third and / or the rear third of the inner tube. Measurements have shown that thereby the conditions of use (frequency spectrum and amplitude of the sound from the rotary piston engine, pipe diameter, type of gas application) adapted optimum insulation effect can be achieved.
  • the muffler is preferably divided by at least one partition wall such that they define / define a plurality of sound damping chambers in the flow direction, wherein an inner pipe leads through at least one sound damping chamber.
  • These Schalldämpfschn can be used for insulation around different resonance frequencies around or serve as distribution or collection chambers.
  • the partition wall or walls divide the muffler in the flow direction into chambers, so that arise at a deflected flow so-called folded arrangements, wherein the flow direction in a chamber in opposite directions or perpendicular to the flow direction in an adjacent, through the Partition wall is divided chamber.
  • one or more sound-damping chambers is or are divided by one or more partitions parallel to the axial direction into two or more chamber parts, which together form a multi-flow chamber or chambers define, wherein an inner tube is provided by each chamber part.
  • the respective inner tubes are usually parallel to each other.
  • the axes of the inlet opening and the outlet opening of the muffler form an angle of substantially 90 ° to one another.
  • This arrangement is particularly favorable for such rotary engines, which are made due to their relatively small size on the silencer and use this as a basis.
  • a first embodiment is shown.
  • the outlet of a rotary engine 10 is connected via flanges 11 and a pipe 12 to the inlet of a reflection muffler 20.
  • the muffler 20 into which the sounding gas ejected from the rotary piston engine flows consists of a muffler chamber 21 and an inner tube 22 through which the same cross section as the pipe 12 and the outlet of the rotary machine 10 pass, as small as possible To generate pressure drop.
  • slots 24 are provided in the flow direction (indicated by arrows) in the front and middle third, the size of which may be different.
  • the slots 24 are separated in the circumferential direction by webs 25, so that in Fig.
  • FIG. 4 illustrates an embodiment in which a muffler 30, as previously described in FIG Fig. 1 is connected to a rotary piston machine 10, divided by two partition walls 33 in a distribution chamber 31 a, a sound-damping chamber 31 b and a collecting chamber 31 c is.
  • a sound-damping chamber 31b performs an inner tube 32, which has slots 34 on its jacket in the flow direction in the front, middle and rear third, through which the sound pressure in the muffler chamber 31b can escape.
  • the manifold chamber 31a and 31c cause deceleration and subsequent acceleration of the gas entering the muffler 30 respectively before and after being damped in the muffler chamber 31b.
  • the chamber 31a and 31c thus also work as muffler chambers, but according to the conventional reflection principle.
  • FIG Fig. 3 An arrangement in which the rotary piston engine 10 uses the muffler 40 as a base is shown in FIG Fig. 3 illustrated.
  • the axes of inlet 48 and outlet 49 form an angle of 90 °.
  • the muffler 40 is divided by two partition walls 43 into an inlet chamber 41 a, a deflection chamber 41 b and an end chamber 41 c.
  • the gas ejected from the machine 10 is first guided into the inlet chamber 41a, from where it passes through a passage tube 45 into the deflection chamber 41b. From there it flows through a closed tube 42a again through the inlet chambers 41a and into the end chamber 41c, in which there is provided with circumferential slots 44 (without webs) in the front and middle third inner tube 42b.
  • the "deflection" of the gas flow is also called a "folded" silencer arrangement.
  • FIG. 4a An embodiment of the invention in which the Mehrflutmaschine is used is in FIG. 4a shown.
  • a muffler 50 serves as a base for the rotary engine 10, so that the axes of inlet and outlet of the muffler 50 form a 90 ° angle.
  • Two partition walls 53 divide the muffler 50 into an inlet chamber (manifold chamber) 51a, an outlet chamber (plenum) 51f, and a muffler chamber therebetween.
  • inlet chamber manifold chamber
  • plenum plenum
  • a muffler 60 is disposed above the rotary piston machine 10.
  • a plurality of partition walls 63a, b, c, d divide the muffler 60 in the flow direction into chambers 61a, b, c, d, e, with the partition wall 63a arranged horizontally and the remaining partition walls vertically.
  • the chamber 61b is divided by a vertical partition 65 into two chambers 61b 'and 61b''double-flow.
  • the chamber 61d is traversed by an inner tube 62d of square cross section, while the chambers 61b 'and 61b "are traversed by square inner tubes 62b' and 62b" respectively, the sum of their cross sections being equal to the cross section of the inner tube 62d.
  • All the inner tubes 62b ', 62b "and 62d have circumferential slots 64 in the direction of flow in the front and middle third portions the axes of the muffler inlet 68 and outlet 69 arranged parallel and offset from one another.

Description

    Technisches Gebiet
  • Die Erfindung betrifft eine trockenlaufende Drehkolbenmaschine mit Reaktionsschälldämpfer für Gase oder Gas-Dampf-Gemische, welche mindestens zwei in einem Gehäuse über Wellen und Lageranordnungen gelagerte Drehkolben, die miteinander gegenläufig kämmen, um einen Förderraum zu definieren, aufweist, wobei die Wellen über verzahnte Steuerräder betrieblich miteinander gekoppelt sind. Unter trockenlaufend ist dabei zu verstehen, dass die Drehkolben selbst nicht durch. Schmiermittel wie Schmieröl oder dergleichen geschmiert werden.
  • Stand der Technik
  • Trockenlaufende Drehkolbenmaschinen, insbesondere Schraubenverdichter und Drehkolbengebläse der Bauart Roots, aber auch Drehkolbenexpansionsmaschinen, arbeiten heutzutage mit relativ hohen Differenzdrücken (bis zu 7 bar) und Drehzahlen (bis zu etwa 20.000 1/min). Ein bei diesen Drehkolbenmaschinen generell bestehendes Problem ist, dass ein Teil des bereits komprimierten Mediums aus der druckseitigen Leitung beim Öffnen der Förderkammer zur Druckseite in die Förderkammer zurückschlägt und so zu starken Pulsationen beziehungsweise Schwingungserscheinungen sowohl im Verdichter als auch in der nachgeschalteten, druckseitigen Förderleitung führt. Diese Pulsationen sind für den hohen Lärmpegel solcher Maschinen, insbesondere im Niederfrequenzbereich, verantwortlich. Drehkolbenmaschinen dieser Art sind zum Beispiel aus der DE 32 38 015 bekannt. Bei Schraubenverdichtern, die aufgrund der stark verwundenen Kolben eine innere Verdichtung aufweisen, kann neben dem oben beschriebenen Phänomen je nach Gegendruck beim Öffnen der Förderkammer zur Druckseite auch ein schlagartiges Ausströmen des zuvor überkomprimiertem Fördermediums auftreten.
  • Aufgrund der heute üblichen, hohen Drehzahlen weist zudem das Frequenzspektrum des abgegebenen Schalls auch noch bei Frequenzen im Kilohertz-Bereich hohe Lärmpegel auf. Dieser Frequenzbereich wird vom menschlichen Gehör zumeist als störender empfunden. Um diese Lärmpegel auf die erforderlichen bzw. gesetzlich vorgeschriebenen Werte zu senken, werden Schalldämpfer verwendet, wobei grundsätzlich zwei Arten zu unterscheiden sind. Dies sind einerseits Absorptionsschalldämpfer, die mit verschiedenen Absorptionsmaterialien wie Stahl- oder Mineralwolle arbeiten, und andererseits die so genannten Resonanz- oder Reaktionsschalldämpfer, die ohne solche Materialien lediglich durch die besondere Form und Dimensionierung des Schalldämpfers arbeiten.
  • Absorptionsschalldämpfer dämpfen insbesondere hohe Frequenzen sehr gut, haben jedoch mehrere Nachteile. Zum einen dämpfen sie den unteren Frequenzbereich aufgrund der im Vergleich zur Schallwellenlänge sehr geringen Dicke des Absorptiönsmaterials nur schlecht oder überhaupt nicht. Auch verschmutzen Absorptionsschalldämpfer aufgrund ihrer engmaschigen Struktur leicht, insbesondere bei durch Flüssigkeiten oder Feststoffe belasteten Abgasen, was die korrekte Funktion des Schalldämpfers zunehmend verhindert. Zudem können Fasern oder andere Bestandteile aus dem Absorptionsmaterial ausgetragen werden, was in der nachgeschalteten Anlage zu schwerwiegenden Problemen führen kann und daher unerwünscht ist.
  • Reflexionsschalldämpfer bestehen im allgemeinen aus einem Innenrohr und einem Außenrohr (der Kammer), die miteinander verbunden sind, um den Gasdurchtritt zu erlauben. Sie funktionieren nach dem Prinzip, dass der durch das kleinere Innenrohr mit dem Gasstrom in die Kammer eintretende Schall aufgrund der abrupten Querschnittsänderung zurückgeworfen wird.
  • Die Grenzfrequenz und die Stärke der Dämmung hängt hier in hohem Maße von der Geometrie des Schalldämpfers ab. Um eine möglichst starke Dämmung zu erhalten, muss das Verhältnis von Durchmesser der Kammer zum Durchmesser des Innenrohrs (D/d) möglichst groß sein. Da die Grenzfrequenz fgr, oberhalb derer die Schalldämmwirkung stark abfällt, in erster Näherung umgekehrt proportional zum Durchmesser der Kammer ist (fgr ~ 1/D) darf andererseits der Außendurchmesser der Kammer nicht zu groß werden, um die Dämmung hoher Frequenzen zur ermöglichen.
  • Aus Platzgründen möchte man den Durchmesser der Kammer nicht zu groß machen, so dass man versuchen könnte, das Verhältnis der Durchmesser groß zu halten und den Außendurchmesser zu begrenzen, indem man den Durchmesser des Innenrohrs verkleinert. Dadurch wird jedoch auch der Strömungswiderstand vergrößert, was natürlich unerwünscht ist, da dadurch eine höhere Leistungsaufnahme der vorgeschalteten Drehkolbenmaschine bewirkt wird.
  • Einen Ausweg bietet die parallele Anordnung mehrerer Innenrohre und die gleichzeitige Unterteilung des Außenrohrs (die so genannte Mehrflutigkeit). Ein Beispiel ist in der EP 1 117 965 gezeigt. Der Innendurchmesser der einzelnen Rohre wird so gewählt, dass sich der gleiche Strömungswiderstand wie bei einem einzigen, großen Innenrohr ergibt. Bei 4 Innenrohren ist z.B. dklein = dgroß / 2. Der Durchmesser der Kammer D hingegen wird halbiert, sodass die Grenzfrequenz der Dämmung etwa verdoppelt werden kann.
  • Um die Dämmung auf anderem Wege zu verbessern, werden so genannte Helmholtz-Innenrohre verwendet, bei denen Löcher an einer bestimmten axialen Position im Innenrohr-Mantel vorgesehen sind. Diese können gleichmäßig über den gesamten Mantel verteilt sein, wie z.B. in der US 2,241,010 beschrieben, oder können nur an bestimmten Stellen mittels Lochblechen vorhanden sein, siehe z.B. EP 0 798 694 .
  • Weiterhin ist das Außenrohr häufig in axial angeordnete Kammern verschiedener Länge (und damit verschiedener Resonanzfrequenzen) aufgeteilt, wobei jede der Kammern über die Löcher im Innenrohrmantel mit dem Schall führenden Innenrohr verbunden sind. Ein Beispiel ist in der Druckschrift DE 296 12 322 gezeigt.
  • Aus den Dokumenten DE 1166970 und DE 19855708 sind zwei weitere Lösungen in Form von Resonanz-Schalldämpfern bekannt.
  • Jedoch kann keine der genannten Lösungen befriedigend mit den eingangs genannten Drehkolbenmaschinen eingesetzt werden, die wie erwähnt sehr hohe Lärmpegel erzeugen. Insbesondere würden solche Schalldämpfer entweder sehr groß und damit Platz raubend und teuer sein oder einen zu großen Druckabfall mit sich bringen, was sich negativ auf die Leistungsaufnahme, Effizienz und Kosten der Drehkolbenmaschine auswirkt.
  • Darstellung der Erfindung
  • Es ist somit eine Aufgabe der vorliegenden Erfindung, eine trockenlaufende Drehkolbenmaschine mit Reaktionsschälldämpfer zu entwickeln, die eine große Dämmungswirkung bei möglichst geringer zusätzlicher Leistungsaufnahme aufgrund des Schalldämpfers aufweist. Diese Aufgabe wird durch eine trockenlaufende Drehkolbenmaschine mit Reaktionsschalldämpfer mit den in Anspruch 1 definierten Merkmalen gelöst.
  • Weitere vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.
  • Des weiteren ist erwünscht, dass die Dämmung nicht nur in Bezug auf die Amplitude des Schalls an gewissen Frequenzen sondern über den gesamten Frequenzbereich wirkungsvoll ist.
  • Im Hinblick auf die Dämmungswirkung befasst sich die Erfindung mit den Verbindungsöffnungen im Mantel eines Helmholtz-Innenrohrs. Es hat sich herausgestellt, dass mehr Löcher (oder besser gesagt ein größerer Flächenanteil der Löcher) bessere Dämmungseigenschaften mit sich bringen. Dies kann zum Einen durch Vergrößerung der einzelnen Löcher selbst geschehen. Zum Grenzfall extrapolierend werden die Löcher zu Schlitzen, die vorwiegend quer zur axialen Ausdehnung, das heißt in Umfangsrichtung auf dem Mantel des Innenrohrs gebildet werden. Lediglich einige Stege bleiben zur mechanischen Verbindung des Innenrohrs vorhanden. Messungen haben ergeben, dass durch Verwenden der Schlitze anstatt von Löchern die Dämmungswirkung überraschend stark verbessert wird.
  • Somit stellt die vorliegende Erfindung eine trockenlaufende Drehkolbenmaschine mit Reaktionsschalldämpfer bereit, die mindestens zwei in einem Gehäuse über Wellen und Lageranordnungen gelagerte Drehkolben umfasst, die miteinander gegenläufig kämmen, um einen Förderraum zu definieren, wobei die Wellen über Steuerräder betrieblich miteinander gekoppelt sind, und wobei der Schalldämpfer eine Schalldämpfungskammer, eine Einlassöffnung und eine Auslassöffnung aufweist,. Die Drehkolbenmaschine mit Reaktionsschalldämpfer ist dadurch gekennzeichnet, dass die Schalldämpfungskammer durch eine oder mehrere zur axialen Richtung parallele Trennwände (55,63a, 65) in zwei oder mehr Kammerteile (51b-e, 61b,d) aufgeteilt ist, die zusammen eine mehrflutige Kammer definieren, wobei durch jeden Kammerteil ein Innenrohr (52b-e, 62b,d) vorgesehen ist, welches Gas durch die Schalldämpfungskammer führt, und auf den Innenrohren mehrere Schlitze im Wesentlichen in Umfangsrichtung orientiert vorgesehen sind, wobei der Großteil des Gases durch das Innenrohr strömt.
  • Im Vergleich zum Stand der Technik ergibt dadurch sich eine deutliche verbesserte Dämmung des Schalldrucks, der von der Drehkolbenmaschine erzeugt wird.
  • Zum Anderen kann ein größerer Flächenanteil der Löcher durch mehrere Positionen erreicht werden, an denen die Löcher konzentriert werden. Mathematisch berechenbar/modellierbar sind Fälle, bei denen es im Innenrohr zwei statt einer Position gibt, an der die Löcher angeordnet sind. Experimentelle Messungen der Anmelderin haben ergeben, dass eine Anordnung der Löcher vorne und in der Mitte des Innenrohrs (ggf. wiederholt für jeden Kammerabschnitt) die beste Schalldämmung ergibt.
  • Bevorzugt sind die Schlitze in Umfangsrichtung durch Stege getrennt. Auf diese Weise kann nahezu der gesamte Umfang für die Schlitzfläche genutzt werden, wobei die Stege gleichzeitig für die Stabilität des Rohrs sorgen.
  • Bevorzugt ist das Verhältnis von Stegfläche zu Schlitzfläche kleiner als 30%, besonders bevorzugt kleiner als 25%, und insbesondere kleiner als 20%. Diese Werte sind wesentlich besser als die entsprechenden Werte für Lochbleche und sorgen für verbesserten Austritt des Schalldrucks durch die Schlitze, ohne die Rohrstabilität zu gefährden.
  • In einer bevorzugten Ausführungsform sind die Schlitze in Strömungsrichtung auf dem vorderen Drittel und/oder dem mittleren Drittel und/oder dem hinteren Drittel des Innenrohrs vorgesehen. Messungen haben ergeben, dass dadurch eine den Einsatzbedingungen (Frequenzspektrum und Amplitude des Schalls von der Drehkolbenmaschine, Rohrdurchmesser, Art der Gasbeaufschlagung) angepasste optimale Dämmwirkung erzielt werden kann.
  • Der Schalldämpfer wird vorzugsweise durch mindestens eine Teilungswand derart geteilt, dass diese in Strömungsrichtung mehrere Schalldämpfungskammern definiert/definieren, wobei durch zumindest eine Schalldämpfungskammer ein Innenrohr führt. Diese Schalldämpfkammern können zur Dämmung um verschiedene Resonanzfrequenzen herum verwendet werden oder als Verteiler- oder Sammelkammern dienen. Es ist zu bemerken, dass die Teilungswand bzw. -wände den Schalldämpfer in Strömungsrichtung in Kammern unterteilen, so dass bei einer umgelenkten Strömung so genannte gefaltete Anordnungen entstehen, wobei die Strömungsrichtung in einer Kammer gegenläufig oder auch senkrecht zur Strömungsrichtung in einer benachbarten, durch die Teilungswand abgeteilten Kammer ist.
  • Bevorzugt ist bzw. sind eine oder mehrere Schalldämpfungskammern durch eine oder mehrere zur axialen Richtung parallele Trennwände in zwei oder mehr Kammerteile aufgeteilt, die zusammen eine mehrflutige Kammer bzw. Kammern definieren, wobei durch jeden Kammerteil ein Innenrohr vorgesehen ist. Hierbei sind die jeweiligen Innerohre gewöhnlich parallel zueinander. Somit wird auf effiziente Weise.die Grenzfrequenz der Schalldämmwirkung vervielfacht, ohne den Strömungswiderstand des Schalldämpfers und somit den Energieverbrauch der Drehkolbenmaschine zu erhöhen.
  • Bevorzugt bilden bei der erfindungsgemäßen Drehkolbenmaschine mit Reaktionsschalldämpfer die Achsen der Einlassöffnung und der Auslassöffnung des Schalldämpfers einen Winkel von im Wesentlichen 90° zueinander. Diese Anordnung ist für solche Drehkolbenmaschinen besonders günstig, die aufgrund ihrer relativ geringen Größe auf den Schalldämpfer gestellt werden und diesen als Basis benutzen.
  • Kurze Beschreibung der Zeichnungen
    • Figur 1 stellt schematisch eine Drehkolbenmaschine mit einem angeschlossenen einflutigen Einkammer-Reaktionsschalldämpfer dar;
    • Figur 2 stellt schematisch eine Drehkolbenmaschine mit einem angeschlossenen einflutigen Mehrkammer-Reaktionsschalldämpfer dar;
    • Figur 3 stellt schematisch eine Drehkolbenmaschine mit einem angeschlossenen einflutigen, gefalteten Mehrkammer-Reaktionsschalldämpfer dar;
    • Figur 4a zeigt schematisch eine Drehkolbenmaschine mit einem mehrflutigen geraden Mehrkammer-Reaktionsschalldämpfer entsprechend der Erfindung;
    • Figur 4b ist ein Schnitt durch den Schalldämpfer entlang der Linie A-A in Fig. 4a;
    • Figur 5a ist eine schematische Darstellung einer Drehkolbenmaschine mit einem mehrflutigen, gefalteten Mehrkammer-Reaktionsschalldämpfer entsprechend der Erfindung; und
    • Figur 5b ist ein Schnitt durch die Anordnung der Fig. 5a entlang der Linie A-A.
    Wege zur Ausführung der Erfindung
  • In Fig.1 ist eine erste Ausführungsform gezeigt. Der Auslass einer Drehkolbenmaschine 10 ist über Flansche 11 und ein Rohr 12 mit dem Einlass eines Reflexionsschalldämpfers 20 verbunden. Der Schalldämpfer 20, in den das aus der Drehkolbenmaschine ausgestoßene, schallbeaufschlagte Gas strömt, besteht aus einer Schalldämpferkammer 21 und einem durch diese durchgehenden Innenrohr 22, das den selben Querschnitt wie das Rohr 12 bzw. der Auslass der Drehkolbenmaschine 10 aufweist, um einen möglichst geringen Druckabfall zu erzeugen. Auf dem Innenrohr 22 sind in Strömungsrichtung (durch Pfeile angedeutet) im vorderen und mittleren Drittel Schlitze 24 vorgesehen, deren Größe unterschiedlich sein kann. Die Schlitze 24 sind in Umfangsrichtung durch Stege 25 getrennt, so dass in Fig. 1 außer den sichtbaren weitere Schlitze 24 auf der dem Betrachter abgewandten Seite vorhanden sind. Durch die Schlitze kann ein großer Teil des Schalldrucks, den das einströmende Gas trägt, in die Schalldämpferkammer 21 expandieren, ohne dass nennenswerte Mengen an Gas aus dem Innenrohr 22 selbst in die Schalldämpferkammer 21 austreten. Es ergibt sich somit eine überraschend gute, breitbandige Schalldämmwirkung, die mit herkömmlichen Lochblechen nicht erreichbar ist.
  • Figur 2 veranschaulicht eine Ausführungsform, in welcher ein Schalldämpfer 30, der wie zuvor in Fig. 1 an eine Drehkolbenmaschine 10 angeschlossen ist, durch zwei Teilungswände 33 in eine Verteilerkammer 31a, eine Schalldämpfungskammer 31b und eine Sammelkammer 31c aufgeteilt ist. Durch die Schalldämpfungskammer 31b führt ein Innenrohr 32, das auf seinem Mantel in Strömungsrichtung im vorderen, mittleren und hinteren Drittel Schlitze 34 aufweist, durch die der Schalldruck in die Schalldämpferkammer 31b austreten kann. Hier bewirken die Verteiler- bzw. Sammelkammer 31a und 31c eine Verzögerung und jeweils anschließende Beschleunigung des in den Schalldämpfer 30 eintretenden Gases, bevor bzw. nachdem in der Schalldämpferkammer 31b gedämmt wird. Die Kammer 31a und 31c arbeiten demnach ebenfalls als Schalldämpferkammern, jedoch nach dem konventionellen Reflexionsprinzip.
  • Eine Anordnung, in der die Drehkolbenmaschine 10 den Schalldämpfer 40 als Basis nutzt, ist in Fig. 3 veranschaulicht. Die Achsen von Einlass 48 und Auslass 49 bilden hierbei einen Winkel von 90°. Der Schalldämpfer 40 ist durch zwei Teilungswände 43 in eine Einlasskammer 41a, eine Umlenkkammer 41b und eine Endkammer 41c aufgeteilt. Das aus der Maschine 10 ausgestoßene Gas wird zunächst in die Einlasskammer 41a geführt, von wo es durch ein Durchgangsrohr 45 in die Umlenkkammer 41b gelangt. Von dort strömt es durch ein geschlossenes Rohr 42a wieder durch die Einlasskämmer 41a und in die Endkammer 41c, in der ein mit umlaufenden Schlitzen 44 (ohne Stege) im vorderen und mittleren Drittel versehenes Innenrohr 42b vorhanden ist. Durch die "Umlenkung" des Gasstroms spricht man auch von einer "gefalteten" Schalldämpferanordnung.
  • Ein Ausführungsbeispiel der Erfindung, in dem die Mehrflutigkeit eingesetzt wird, ist in Figur 4a gezeigt. Wieder dient ein Schalldämpfer 50 als Basis für die Drehkolbenmaschine 10, so dass die Achsen von Ein- und Auslass des Schalldämpfers 50 einen 90°-Winkel bilden. Zwei Teilungswände 53 unterteilen den Schalldämpfer 50 in eine Einlasskammer (Verteilerkammer) 51a, eine Auslasskammer (Sammelkammer) 51f und eine dazwischen liegende Schalldämpferkammer. Wie in Fig. 4b gezeigt, wird letztere durch zwei in Strömungsrichtung in der Schalldämpferkammer senkrecht zueinander angeordnete Trennwände 55 in vier im Wesentlichen parallel zueinander angeordnete Kammerteile 51b,c,d,e unterteilt, wobei durch jeden der Kammerteile ein zugehöriges Innenrohr 52b,c,d,e führt. Die Schalldämpferkammer ist also mehrflutig unterteilt. Auf jedem Innenrohr 52b,c,d,e sind jeweils im vorderen und hinteren Drittel Schlitze 54 vorgesehen, die einen Schalldruckaustritt in die Kammerteile 51b,c,d,e ermöglichen. Die Summe der Querschnitte der Innenrohre entspricht dabei dem Querschnitt eines entsprechenden einflutigen Innenrohrs bzw. dem Durchmesser des Einlassstutzens des Schalldämpfers, so dass keine Erhöhung des Strömungswiderstands auftritt. Gleichzeitig kann ein hohes Verhältnis von Kammerteildurchmesser (Außendurchmesser) zum Innenrohrdurchmesser beibehalten werden.
  • In Fig. 5a schließlich ist eine weitere Ausführungsform der Erfindung gezeigt. Hier ist ein Schalldämpfer 60 oberhalb der Drehkolbenmaschine 10 angeordnet. Mehrere Teilungswände 63a, b, c, d unterteilen den Schalldämpfer 60 in Strömungsrichtung in Kammern 61a, b, c, d, e, wobei die Teilungswand 63a horizontal und die restlichen Teilungswände vertikal angeordnet sind. Weiter ist die Kammer 61b durch eine vertikale Trennwand 65 in zwei Kammern 61b' und 61b'' zweiflutig aufgeteilt. Die Kammer 61d wird von einem Innenrohr 62d mit quadratischem Querschnitt durchquert, während die Kammern 61b' und 61b" jeweils von quadratischen Innenrohren 62b' bzw. 62b" durchquert werden, wobei die Summe ihrer Querschnitte gleich dem Querschnitt des Innenrohrs 62d ist. Alle Innenrohre 62b', 62b" und 62d weisen in Strömungsrichtung im vorderen und mittleren Drittel umlaufende Schlitze 64 auf. Die Kammer 61d ist bei gleichem Querschnitt von Kammer und Innenrohr länger als die Kammer 61b und hat somit eine andere Resonanzfrequenz. Weiter sind in diesem Ausführungsbeispiel die Achsen vom Schalldämpfereinlass 68 und -auslass 69 parallel und zueinander versetzt angeordnet.

Claims (8)

  1. Trockenlaufende Drehkolbenmaschine (10) mit Reaktionsschalldämpfer (50 , 60), umfassend
    mindestens zwei in einem Gehäuse über Wellen und Lageranordnungen gelagerte Drehkolben, die miteinander gegenläufig kämmen, um einen Förderraum zu definieren,
    wobei die Wellen über Steuerräder betrieblich miteinander gekoppelt sind,
    wobei der Schalldämpfer eine Schalldämpfungskammer (51, 61), eine Einlassöffnung (58, 68) und eine Auslassöffnung (59, 69) aufweist,
    dadurch gekennzeichnet, dass die Schalldämpfungskammer durch eine oder mehrere zur axialen Richtung parallele Trennwände (55,63a, 65) in zwei oder mehr Kammerteile (51b-e, 61b,d) aufgeteilt ist, die zusammen eine mehrflutige Kammer definieren, wobei durch jeden Kammerteil ein Innenrohr (52b-e, 62b,d) vorgesehen ist, welches Gas durch die Schalldämpfungskammer führt, und
    auf den Innenrohren mehrere Schlitze (54, 64) im Wesentlichen in Umfangsrichtung orientiert vorgesehen sind, wobei der Großteil des Gases durch das Innenrohr strömt.
  2. Drehkolbenmaschine (10) mit Reaktionsschalldämpfer nach Anspruch 1, dadurch gekennzeichnet, dass die Schlitze in Umfangsrichtung durch Stege (25) getrennt sind.
  3. Drehkolbenmaschine (10) mit Reaktionsschalldämpfer nach Anspruch 2, dadurch gekennzeichnet, dass das Verhältnis von Stegfläche zu Schlitzfälche kleiner als 30% ist.
  4. Drehkolbenmaschine (10) mit Reaktionsschalldämpfer nach Anspruch 2, dadurch gekennzeichnet, dass das Verhältnis von Stegfläche zu Schlitzfläche kleiner als 25% ist.
  5. Drehkolbenmaschine (10) mit Reaktionsschalldämpfer nach Anspruch 2, dadurch gekennzeichnet, dass das Verhältnis von Stegfläche zu Schlitzfläche kleiner als 20% ist.
  6. Drehkolbenmaschine (10) mit Reaktionsschalldämpfer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Schlitze (24, 34, 44, 54, 64) in Strömungsrichtung auf dem vorderen Drittel und/oder dem mittleren Drittel und/oder dem hinteren Drittel des Innenrohrs (22, 32, 42, 52, 62) vorgesehen sind.
  7. Drehkolbenmaschine (10) mit Reaktionsschalldämpfer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Schalldämpfer (30, 40, 50, 60) durch mindestens eine Teilungswand (33, 43, 53, 63) derart geteilt wird, dass diese in Strömungsrichtung mehrere Schalldämpfungskammern (31a-c; 41a-c; 51a,c; 61a-e) definiert/definieren, wobei durch zumindest eine Schalldämpfungskammer ein Innenrohr (32; 42a, b; 52b-d; 62b, d) führt.
  8. Drehkolbenmaschine (10) mit Reaktionsschalldämpfer nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Achsen der Einlassöffnung (48, 58) und der Auslassöffnung (49, 59) des Schalldämpfers (40, 50) einen Winkel von im Wesentlichen 90° zueinander bilden.
EP06010289.4A 2006-05-18 2006-05-18 Trockenlaufende Drehkolbenmaschine mit Reaktionsschalldämpfer Active EP1857682B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES06010289.4T ES2581731T3 (es) 2006-05-18 2006-05-18 Máquina de émbolos rotativos de funcionamiento en seco con silenciador reactivo
EP06010289.4A EP1857682B1 (de) 2006-05-18 2006-05-18 Trockenlaufende Drehkolbenmaschine mit Reaktionsschalldämpfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06010289.4A EP1857682B1 (de) 2006-05-18 2006-05-18 Trockenlaufende Drehkolbenmaschine mit Reaktionsschalldämpfer

Publications (2)

Publication Number Publication Date
EP1857682A1 EP1857682A1 (de) 2007-11-21
EP1857682B1 true EP1857682B1 (de) 2016-05-04

Family

ID=37075668

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06010289.4A Active EP1857682B1 (de) 2006-05-18 2006-05-18 Trockenlaufende Drehkolbenmaschine mit Reaktionsschalldämpfer

Country Status (2)

Country Link
EP (1) EP1857682B1 (de)
ES (1) ES2581731T3 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120020824A1 (en) * 2010-07-20 2012-01-26 Paul Xiubao Huang Roots supercharger with a shunt pulsation trap
CN103603795B (zh) * 2012-09-05 2016-01-27 厦门嘉达环保建造工程有限公司 液压消声器
CN107170436A (zh) * 2017-07-26 2017-09-15 安徽理工大学 一种折叠式共振消音方法与复合装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR945632A (fr) * 1946-04-24 1949-05-10 Vokes Ltd Procédé et silencieux à filtres pour assourdir le bruit de gaz d'admission ou d'échappement
DE1166970B (de) * 1955-11-21 1964-04-02 Aerzener Maschinenfabrik G M B Resonanzschalldaempfer fuer zweiwellige Drehkolbenmaschinen
US5214937A (en) * 1991-10-28 1993-06-01 Carrier Corporation Integral oil separator and muffler
DE9113962U1 (de) * 1991-11-09 1992-02-27 Wilms, Peter, 4355 Waltrop, De
NL1006892C2 (nl) * 1997-08-29 1999-03-02 Q E International Bv Pulsatiedemper.
FI113892B (fi) * 1998-09-30 2004-06-30 Metso Paper Inc Reaktiivinen äänenvaimennin teollisuuden ilmakanavia varten ja sen käyttö
DE19855708B4 (de) * 1998-12-03 2009-04-30 Denker, Dietrich, Prof. Dr.-Ing. Rohrkammerdämpfer

Also Published As

Publication number Publication date
EP1857682A1 (de) 2007-11-21
ES2581731T3 (es) 2016-09-07

Similar Documents

Publication Publication Date Title
EP1715189B1 (de) Schalldämpfer ausgebildet und bestimmt für einen Kompressor
DE60120769T2 (de) Zweischichtiger akustischer überzug und fluiddruckbeaufschlagungsvorrichtung
DE2404001C2 (de) Schallunterdrückungsverkleidung für Strömungskanäle von Gasturbinentriebwerken
EP1732062B1 (de) Schalldämpfer
EP0791135B1 (de) Schalldämpfer
DE112006003265T5 (de) Auspufftopfeinheit mit schalldämpfendem Element
DE102010061994A1 (de) Gebläse-Anordnung
WO2010040837A2 (de) Schalldämpfer für ein hilfstriebwerk eines flugzeugs
EP1913310A1 (de) Schalldämpfer, insbesondere für ein hausgerät
EP1510667A2 (de) Schalldämpfer
DE2545364C3 (de)
WO2013149912A1 (de) Schalldämpfer mit ankopplung endrohr über kopplungskammer
EP1857682B1 (de) Trockenlaufende Drehkolbenmaschine mit Reaktionsschalldämpfer
EP0990851B1 (de) Brennkammer für eine Gasturbine
DE2844287A1 (de) Mehrflutige gasdynamische druckwellenmaschine
DE2706957C2 (de) Abgasschalldämpfer
CH712704B1 (de) Turbolader mit Schalldämpfer.
DE102020100162B4 (de) Vorrichtung zur Absenkung von Luft- und Körperschall
DE19538178C1 (de) Dämpferplatte für den Einbau in Rohrleitungen
DE69917917T2 (de) Reaktiver schalldämpfer für lüftungskanäle und dessen verwendung
DE102010028763B4 (de) Schalldämpfer für einen Turboverdichter und Verfahren zum Auslegen eines Schalldämpfers
EP3388678B1 (de) Pulsations-schalldämpfer für kompressoren
EP2567076B1 (de) Breitbandig dämpfende vorrichtung zur schalldämpfung bei industrieeinrichtungen, grossanlagen oder maschinen
DE2816159A1 (de) Reflexionsschalldaempfer fuer brennkraftmaschinen
EP1873364A1 (de) Schalldämpfer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HAGE, CHRISTIAN-PHILIPP

Inventor name: FLEIGE, HANS-ULRICH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 797162

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006014912

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2581731

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160907

Ref country code: NL

Ref legal event code: MP

Effective date: 20160504

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160805

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160905

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006014912

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

26N No opposition filed

Effective date: 20170207

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160518

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 797162

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160518

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160518

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230523

Year of fee payment: 18

Ref country code: FR

Payment date: 20230516

Year of fee payment: 18

Ref country code: ES

Payment date: 20230602

Year of fee payment: 18

Ref country code: DE

Payment date: 20220615

Year of fee payment: 18

Ref country code: CZ

Payment date: 20230421

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230515

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230519

Year of fee payment: 18