EP1857429B1 - Antrieb zur Beschleunigung von Geschossen - Google Patents

Antrieb zur Beschleunigung von Geschossen Download PDF

Info

Publication number
EP1857429B1
EP1857429B1 EP06405217A EP06405217A EP1857429B1 EP 1857429 B1 EP1857429 B1 EP 1857429B1 EP 06405217 A EP06405217 A EP 06405217A EP 06405217 A EP06405217 A EP 06405217A EP 1857429 B1 EP1857429 B1 EP 1857429B1
Authority
EP
European Patent Office
Prior art keywords
inert
weight
propulsion system
cas
plasticising
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06405217A
Other languages
English (en)
French (fr)
Other versions
EP1857429A1 (de
Inventor
Ulrich Schaedeli
Hanspeter Andres
Kurt Ryf
Dominik Antenen
Beat Vogelsanger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitrochemie Wimmis AG
Original Assignee
Nitrochemie Wimmis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitrochemie Wimmis AG filed Critical Nitrochemie Wimmis AG
Priority to PL06405217T priority Critical patent/PL1857429T3/pl
Priority to EP06405217A priority patent/EP1857429B1/de
Priority to ES06405217T priority patent/ES2423495T3/es
Priority to CA2589014A priority patent/CA2589014C/en
Priority to US11/798,878 priority patent/US8353994B2/en
Priority to JP2007158049A priority patent/JP5405006B2/ja
Publication of EP1857429A1 publication Critical patent/EP1857429A1/de
Application granted granted Critical
Publication of EP1857429B1 publication Critical patent/EP1857429B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/18Compositions containing a nitrated organic compound the compound being nitrocellulose present as 10% or more by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/34Compositions containing a nitrated organic compound the compound being a nitrated acyclic, alicyclic or heterocyclic amine
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/04Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive
    • C06B45/06Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component
    • C06B45/10Compositions or products which are defined by structure or arrangement of component of product comprising solid particles dispersed in solid solution or matrix not used for explosives where the matrix consists essentially of nitrated carbohydrates or a low molecular organic explosive the solid solution or matrix containing an organic component the organic component containing a resin
    • C06B45/105The resin being a polymer bearing energetic groups or containing a soluble organic explosive

Definitions

  • the invention relates to a monobasic drive for accelerating projectiles, which is based on nitrocellulose and a method for producing a drive.
  • LOVA propellants Low Vulnerability Ammunition
  • CM insensitive ammunition
  • LOVA propellants Low Vulnerability Ammunition
  • Typical explosives in LOVA propellants are cyclotetramethylene tetranitramine (HMX) and cyclotrimethylene trinitramine (RDX).
  • Previous LOVA propellant charge powders typically consist of a synthetic inert or energetic elastomeric polymer binder in which the crystals of the respective explosive are embedded.
  • Typical binders are CAB and HTPB (inert) and GAP, poly-AMMO and poly-BAMO.
  • propellant charge powders for weapons applications, a distinction is made between “homogeneous” and “composite” (heterogeneous) formulations, wherein homogeneous formulations include single and dibasic propellants.
  • homogeneous formulations include single and dibasic propellants.
  • In-depth IM testing has shown that inert starch-based LOVA propellant powder has advantages over cook-off as compared to conventional powders.
  • such formulations can detonate under mechanical action, which hitherto prevented their widespread introduction and use (cf., for example, US Pat LM Barrington, Australian Defense Force (ADF), DSTO-TR-0097 ).
  • EP1 164 116 describes a high-energy material with a shingled Karn containing a high-energy plasticizer and a polymer pulp.
  • LOVA-TLP with an energetic synthetic binder is in US 6,228,190 wherein the binder consists of a nitratoalkyl-substituted alkyl ether prepolymer having reactive hydroxy end groups and a crosslinker based on a polyvalent isocyanate compound. It is known from practice that powders built up from such binders are cold-prone and that their production is very expensive and difficult.
  • LOVA-TLP with an elastomeric polyurethane-containing binder represent another known class of LOVA-TLP and are inter alia in US 4,925,503 . US 4,923,536 and US 5,468,312 described.
  • the chain-extended polyurethanepolyacetal elastomer binder is obtained by reacting a dihydroxy terminated polyacetal homopolymer with an alkylenediisocyanate, then reacting the resulting isocyanate terminated prepolymer with a dihydroxy terminated polyacetal copolymer and finally reacting this elastomeric intermediate with an organic polyisocyanate. Since the preparation of this elastomeric binder system takes place via several synthesis steps, the costs are very high.
  • LOVA-TLP uses cellulose acetate or derivatives thereof (eg cellulose acetate butyrate, CAB) as elastomeric binders.
  • cellulose acetate or derivatives thereof eg cellulose acetate butyrate, CAB
  • Such formulations are, inter alia, in US 6,984,275 described.
  • the object of the invention is to provide a drive belonging to the technical field mentioned above, which has a low sensitivity to mechanical effects, good "cook-off" properties and at the same time a high performance potential.
  • the monobasic drive contains nitrocellulose as a base, as well as a crystalline fuel based on nitramine, which is RDX or HMX in 1-25% by weight.
  • at least two inert plasticizing additives are provided wherein at least one first inert plasticizing additive is present in a matrix of the drive substantially homogeneously distributed and a second inert plasticizing additive in near-surface zones to a maximum penetration depth of 400 microns has an increased concentration.
  • inert plasticizing additives by adding only relatively small amounts (e.g., ⁇ 10% by weight) of inert plasticizing additives, the resistance to mechanical stimuli can be significantly improved.
  • inert additives can be used to set the desired thermodynamic properties such as performance or temperature characteristics.
  • the grain structure of such drives is adapted to the specific application (setting the burn-up characteristic on pipe length, bullet weight, etc. of the weapon system).
  • energetic plasticizers e.g. based on Metyl-NENA (CAS No. 17096-47-0), Ethyl-NENA (CAS No. 85068-73-1) or Butyl-NENA (CAS No. 82486-82-6).
  • Comparable monobasic drives that do not contain the novel combination of additives have no IM properties.
  • Another major advantage of the drive according to the invention is its surprisingly high degree of energy conversion, which leads to a high internal ballistic performance.
  • the thermal efficiency i. the proportion of TLP energy content converted into kinetic muzzle energy is up to 44% for full caliber ammunition.
  • thermal efficiencies of up to 36% were found. This corresponds to an increase in energy conversion capacity of up to 10% at a comparable level of performance compared to conventional monobasic propellant powders. This manifests itself in the aforementioned increase in inside ballistic performance potential without deterioration of pipe erosion, since the flame temperature is practically not increased compared to a normal monobasic TLP.
  • the drives according to the invention are also characterized by a largely neutral temperature characteristic. This means that, regardless of the powder bed temperature over a wide temperature range, practically the same internal ballistic performance data is achieved, which makes it suitable for use in hot and cold climates is very desirable. For example, in a 30 mm full caliber ammunition for an airburst application, it has been found that the muzzle velocity varies only by 12 m / s within the temperature range of -32 ° C to + 52 ° C. The highest muzzle velocity is typically around 21 ° C and decreases with increasing warming resp. Cooling off continuously. An analogous course was also found for the peak gas pressure.
  • monobasic TLPs typically exhibit a linear increase in muzzle velocity of 0.5 - 1.0 m / s per ° C, so with monobasic TLP, the muzzle velocity varies by 40-80 m / s over the same temperature range.
  • the drive according to the invention is not based primarily on the crystalline energy carrier. Rather, the proportion of nitrocellulose on the total weight (> 50 wt .-%, in particular> 60 wt .-%) predominates.
  • the use of nitrocellulose ensures that the mean distances between the individual crystals of the crystalline energy carrier are sufficiently large, resp. that the individual crystals mostly do not touch.
  • the shock pulse can not be passed from one explosive crystal to the adjacent crystals. It is prevented that the primary shock pulse is multiplied and transmitted over the entire amount of powder.
  • Another difference between the invention and the previously known LOVA formulations is that the hydrogen content in the combustion gases is not increased. Compared to the previously known LOVA formulations with crystalline energy sources, therefore, pipe erosion is avoided because of high proportions of hydrogen. It can easily be fired several thousand rounds, as prescribed by the usual acceptance conditions.
  • Nitrocellulose is obtained by nitration of cellulose (cotton linters, pulp) and has been the most important raw material for the production of one-, two- and three-base propellant powders for more than a hundred years. Nitrocellulose is available in large quantities at low prices and comes with a wide range of different chemical-physical properties such as nitrogen content, molecular weight or Viscosity offered. These differences allow nitrocellulose to be processed into the various homogeneous types of propellant charge powder. The energy content of nitrocellulose is adjusted via the nitrogen content. In monobasic formulations, nitrocellulose is the sole energy carrier, which means that the energy density of nitrocellulose is relatively high compared to other synthetic binder polymers.
  • nitrocellulose can be used as starting material for the production of drives with IM properties.
  • a crystalline nitramine compound makes it possible to significantly improve the chemical stability in comparison with a nitramine-free drive. This massively improves the resistance to thermal stimuli, whereby the desired improvement of the cook-off temperature can be realized.
  • Another advantage is that the raw materials are inexpensive and readily available and that no exceptional ("exotic") process steps are required in the manufacturing process.
  • the drive is preferably designed in the form of grains (English: grain), which z. B. have a circular cylindrical geometry with axially extending longitudinal channels (e.g., 1 channel, or 7 or 19 channels).
  • a propellant powder is pourable, which is important for the industrial filling of pods.
  • the propellant powder can thus be handled similar to a liquid during filling in the sleeves.
  • the material can also be in the form of strips or extruded directly into a specific, suitable for guns form. (However, it's not about a large-volume, cast block, as it is used for solid rockets.)
  • the length of the circular cylinder is for example in the range of 0.3 - 10 mm and the diameter in the range of 0.3 - 10 mm.
  • strip shapes can also be used. This typically includes shapes where the width is much smaller (e.g., at least 5 times or at least 10 times) than the length, and the thickness in turn is much smaller (e.g., at least 5 times or at least 10 times) than the width. (The thickness is, for example, 1-2 mm, the width is 10 mm or more, and the length is 100-150 mm.)
  • shaped bodies i. hollow cylindrical shapes for an ammunition in which the sleeve is missing or replaced by the arranged behind the ignition "moldings" is replaced.
  • R radical
  • the proportion of the nitramine structural element in the total molecule should be as high as possible in order to achieve a correspondingly high energy content.
  • nitramine compound of the type RO-NO 2 for example, a nitrate ester would be conceivable. However, the latter is chemically less stable than the nitramine compound.
  • the crystalline nitramine compound is used in a concentration in the range of 1-25 wt .-%. Particularly preferred are concentrations in the range of 5-25 wt .-%. At higher proportions by weight of crystalline energy carrier, the crystals are statistically too close to each other and the vulnerability increases sharply. With weights up to 20%, vulnerability remains at a very low level.
  • the vulnerability can be somewhat mitigated at the given weight fraction of the crystalline nitramine compound. It is thus readily possible to work at the upper limit (i.e., at about 25% by weight crystalline nitramine).
  • RDX has two effects. First, it acts as an energy carrier or supplier (known property). Secondly, in the context according to the invention, it increases the chemical stability of the drive (new property). The stabilizing property is already from about 1 wt .-% to fruition. It increases thereafter with increasing weight proportion only insignificantly.
  • the nitramine compound is provided as an energy carrier, then its proportion by weight in the powder grain will usually be more than 10%.
  • active substances such as, for example, Akardit II can be used.
  • hexogen cyclotrimethylenetrinitramine, CAS # 121-82-4
  • octogen HMX, tetramethylenetetranitramine, CAS # 2691-41-0, hexanitroisowurtzitane (CL-20, CAS # 14913-74-7 )
  • Nitroguanidine NIGU, NQ, CAS # 70-25-7
  • N-metymitramine tetryl, N-methyl-N, 2,4,6-tetranitrobenzenamine, CAS # 479-45-8
  • NTO nitrotriazolone
  • TATB triaminotrinitrobenzene
  • RDX is the most interesting of all these crystalline energy sources. It should be noted that the "insensitive" RDX offered on the market (also called I-RDX or RS-RDX) in the context according to the invention does not bring any improvement, although the I-RDX variant is offered precisely because of allegedly less vulnerability.
  • Octogen is relatively expensive compared to RDX.
  • Other nitramine compounds (such as NIGU, etc.) have relatively little power compared to RDX.
  • the inert plasticizing additive (s) are generally distributed throughout the grain (i.e., in the grain matrix). They are more or less homogeneously distributed in the grain matrix and more concentrated in near-surface areas than in the interior of the powder grain. The latter enhances the desired effect.
  • the homogeneously distributed in the grain matrix inert plasticizing plasticizer preferably have a concentration in the range of 1.0 to 20 wt .-%. Preferably, the concentration is in the range of 1.0-10% by weight. In particular, already 1 to 5% by weight suffice.
  • the plasticizing plasticizers homogeneously distributed in the grain matrix should have a weight fraction below 10%, especially for medium caliber applications.
  • the weight fraction of the plasticizer may well increase to 15% by weight (due to the ratio of surface area to volume in the propellant charge powder).
  • the inert plasticizing plasticizer in the grain matrix may, for. B. a substantially water-insoluble organic polyoxo compound such.
  • the inert plasticizer enriched in the near-surface zones of the drive is in particular a practically water-insoluble organic compound (typically organic compound containing carboxyl groups (preferably camphor and / or aromatic urea compounds).
  • the plasticizer may be bathed in water during the production process to wash out the residual solvents (such as alcohol, diethyl ether or ethyl acetate) contained in the powder dough for extrusion.
  • the water-insoluble plasticizer thus remains in the grain.
  • the solvent can also be removed by air drying. It is then not necessary for the plasticizer to be water-insoluble.
  • water-insoluble citrate esters adipic acid esters, sebacic acid esters or phthalic acid esters (or hydrogenated cyclohexyl derivatives thereof) having a molecular weight of 100-20,000 g / mol or combinations thereof.
  • plasticizers which are good gelatinators for nitrocellulose.
  • a plasticizing additive which is introduced in the near-surface zones of the powder grain
  • a carboxyl-containing organic compound having a molecular weight of 100-5000 g / l is preferred.
  • the proportion by weight of the total grain is preferably not more than 10% by weight, in particular less than 6% by weight.
  • concentration ranges of the inert plasticizer located in the near-surface zones of the drive below 15% by weight may also be suitable. However, with 1-2 wt .-% at medium caliber good results. Below 1.0 wt .-%, only an insufficient effect could be found.
  • the inert plasticizing additive located on the near-surface zones of the driver is preferably camphor (CAS # 76-22-2). Also included are aromatic urea derivatives such as diethyldiphenylurea (CAS # 85-98-3), dimethyldiphenylurea (CAS # 61 1-92-7), ethyldiphenylcarbamates (CAS # 603-52-1), N-methyl-N-phenylurethanes ( CAS # 2621-79-6) or ester compounds such as diethyl phthalate (CAS # 84-66-2), dibutyl phthalate (CAS # 84-74-2), diamyl phthalate (CAS # 131-18-0), di- n-propyl adipate (CAS # 106-19-4) in question or compounds analogous to those homogeneously distributed in the grain matrix.
  • the inert plasticizing additive can also be applied as a combination of several individual compounds.
  • inert plastic additive examples include acetyl triethyl citrate (CAS #: 77-89-4), triethyl citrate (CAS #: 77-93-0), tri-n-butyl citrate (CAS #: 77-94-1), Tributyl acetylcitrate (77-90-7), acetyltri-n-butyl citrate (CAS #: 77-90-7), acetyltri-n-hexyl citrate (CAS #: 24817-92-3), n-butyryltri-n -hexyl citrate (CAS #: 82469-79-2), di-n-butyl adipate, diisopropyl adipate (CAS #: 6938-94-9), diisobutyl adipate (CAS #: 141-04-8 ), Di-ethylhexyl adipate (CAS #: 103-23-1), nonyl undecyl adipate, n-decyl
  • dioctyl sebacate (CAS #: 122-62-3), dimethyl sebacate (CAS #: 106-79-6), di-n-butyl phthalate (CAS # : 84-74-2), di-n-hexyl phthalate (CAS #: 84-75-3), di-nonyl undecyl phthalate (CAS No.
  • inert plasticizing additives are also available under the following trade names: Hexamoll Dinch from BASF, Citroflex types from Reilly-Morflex Inc., Greensboro, North Carolina USA, and others A-2, A-4, A-6, C- 2, C-4, C6, B-6, Paraplex types from CP Hall Co. Chicago, Illinois USA, including G25, G30, G51, G54, G57, G59, Santicizer types from Ferro Corporation, Cleveland, Ohio USA, 261, 278 , Palatinol types of BASF, Germany.
  • the inert plasticizing additive which is located in the near-surface zones of the powder grain, in particular has a penetration depth of a few 100 micrometers.
  • the penetration depth i.e., the depth to which at least 95% by weight of the additive is contained
  • the penetration depth is at most 400 micrometers. This can be achieved with minimal amounts of the greatest possible effect.
  • the grain volume contains more inert substances at night than necessary, which results in the largest possible amount of energy-containing material for a given amount of powder.
  • penetration depths in the range of 100-300 micrometers are used.
  • the drive according to the invention is excellently suited for small and medium caliber ammunition, i. the powder grains have a maximum geometric extension of 20 mm.
  • the geometric dimensions of the inventive propellant charge powder are determined primarily by the caliber range.
  • the powder grains for small caliber applications (caliber range from about 5.56 to about 20 mm) on the one hand have cylindrical geometries with a diameter of about 0.5 - 3 mm, the length of a powder grain is typically about 0.5-2.0x of the value of the respective grain diameter ,
  • cylindrical powders may contain longitudinal channels extending in the axial direction to influence the burning behavior.
  • 1-, 7- and 19-hole geometries have particularly proven, wherein the diameter of the hole zones is typically between 0.05 to 0.5 mm.
  • the cylindrical grain geometry with a diameter of about 3 to 25 mm has been found to be useful, the length of a powder grain typically being 0.5 to 2 times the value of the respective grain diameter is.
  • longitudinal channels are normally included in the powder grain.
  • strip powders have proven themselves for large-caliber applications.
  • Their cross section is typically rectangular with a thickness of 0.5-5 mm and a width of 3.0-20 mm. The length is typically in the range of 5 - 50 cm.
  • the drive according to the invention can also be designed as a so-called shaped body.
  • the drive additionally assumes the function of the sleeve and comes in so-called caseless ammunition used.
  • Conceivable applications are in the caliber ranges of 4.6 - 155 mm, the geometry of such moldings is adapted to the particular application.
  • a method for producing a drive according to the invention is characterized in that a green grain is produced by pressing a solvent-containing powder dough of nitrocellulose and a crystalline energy carrier based on nitramine in a strand press or by extrusion.
  • the drives resulting from the combination according to the invention of a crystalline energy carrier based on nitramine with one or more inert additives in a grain matrix and the surface regions whose binder consists predominantly of nitrocellulose can be produced on existing production facilities.
  • the solid formulation components may e.g. be mixed with a solvent mixture.
  • the resulting kneading dough can be kneaded in a kneader and then extruded in a press to the desired geometry.
  • the completion to the desired drive can be done by washing, drying and cutting to the desired grain length.
  • the crystalline nitramine compound may be subjected to a suitable pretreatment.
  • the bulk densities of the novel drives are high and, depending on the geometry, can amount to well over 1060 g / l, which is important for achieving the high internal ballistic performance.
  • a powder dough is used which results in a green grain having at least 60% by weight of nitrocellulose, the nitrogen content of the nitrocellulose being between 11-13.5% by weight.
  • the nitrogen content of the nitrocellulose is particularly preferably between 12.6-13.25% by weight;
  • the inert plasticizing plasticizer homogeneously distributed in the matrix is a polyester compound (preferably polyester compound having 2-10 ester groups per molecule such as citrates, phthalates, sebacinates and adipates having a molecular weight of 100-5000 g / mol, and the inert plasticizer enriched in the near-surface zones of the drive is an organic substance containing oxygen atoms and having a molecular weight of 100-5000 g / mol.
  • Camphor is particularly suitable.
  • the production of the drives includes, among other things, the process steps "kneading with solvents", “extrusion through die”, “drying” and “finishing” (surface treatment).
  • the crystalline nitramine compound which may need to be subjected to a pretreatment to improve the attachment to the matrix, and in the matrix homogeneously distributed inert plasticizing plasticizers are added to the putty.
  • the inert plasticizing plasticizer located in the near-surface zone of the drive is applied either by impregnation of a "green grain" in aqueous emulsion or in a surface treatment process (finishing) together with other additives such as graphite.
  • the extruded powder grains have 2.53 mm outer diameter, 3.08 mm length, 0.53 mm wall thickness and 0.12 mm hole diameter.
  • the green powder thus prepared is placed in a preheated to 60 ° C polishing drum made of copper with about 50 liters of internal volume.
  • the powder mass 7.5 g of powdered graphite (0.15 wt .-%) are added, followed by a solution of 200 g of camphor in 225 ml of ethanol. Then allowed to act at a speed of 24 revolutions per minute for 2 hours, the solvent evaporates gradually through the open front opening. Thereafter, the powder is removed from the polishing drum and dried at 60 ° C for 24 hours.
  • the resulting bulk powder has the following properties:
  • Fig. 1 shows that vulnerability in Bullet Impact leads to a type V (burn-up) reaction.
  • Fig. 2 illustrates the result when bombarded by hot fragments.
  • Fig. 3 shows the result when bombarded with a shaped charge jet. It should be noted that in both cases there is a type V (burn-up) reaction. It remains a single piece, but the powder is burned.
  • the propellant charge powder according to the invention has a flat temperature profile.
  • the speed variation of 12 m / s in the range of -32 ° C to + 52 ° C is low.
  • the muzzle velocity is higher by 30 m / s.
  • the peak gas pressure is smaller, which allows a higher speed (about +50 m / s) with optimum utilization of the approved gas pressure.
  • a 7-hole green powder with 5.49 mm outer diameter, 13.60 mm length, 0.43 mm hole diameter and 1.05 mm wall thickness composed of the solid portions of 10 wt .-% RDX, 2.0 wt .-% Akardit II, 2.0 wt .-% potassium sulfate, 5.0 wt .-% of a phthalic acid ester (which consists of predominantly linear C9-C11 alcohols having an average molecular weight of 450 g / mol and having an average dynamic viscosity (20 ° C) of 73 mPa * s and nitrocellulose having a nitrogen content of 12.6% by weight (supplement to 100%) in the manner mentioned by pressing a solvent-moist kneading dough through a die.
  • the resulting powder has the following properties:
  • Vulnerability 1 Test: 35mm combination test (after Rheinmetall, Unterlüss, Germany). Action of shaped charge jet: reaction type V (burnup), action of hot fragments: reaction type V (burnup).
  • a 7-hole green powder with 2.05 mm outside diameter, 2.30 mm in length, 0.13 mm hole diameter and 0.41 mm wall thickness composed of the solid portions of 25 wt .-% RDX, 1.5 wt .-% acardite II, 0.4 Wt .-% potassium sulfate, 2.5 wt .-% of a phthalic acid ester (composed of predominantly linear C9-C11 alcohols having an average molecular weight of 450 g / mol and having an average dynamic viscosity (20 ° C) of 73 mPa * s) and Nitrocellulose with a nitrogen content of 13.2 wt .-% (supplement to 100%) prepared by pressing a solvent-moist kneading dough through a die.
  • Fig. 4 shows an ammunition after the Bullet Impact in a 35 mm steel sleeve; There is a reaction type V (burnup).
  • the propellant charge powder used in the M919 ammunition was shot with a charge mass of 101.0 g.
  • Powder from Example 4 charge 100 g 21 ° C 50 ° C 71 ° C -54 ° C Muzzle velocity [m / s] 1430 1439 1445 1403 Top gas pressure [bar] 4135 4333 4409 3896 Action time [ms] 2.88 2.78 2.79 3.19 Thermal efficiency [%] 34.5 35.4 35.7 33.2
  • Comparative powder charge 101 g 21 ° C 50 ° C 71 ° C -54 ° C Muzzle velocity [m / s] 1425 - 1430 1361
  • Top gas pressure [bar] 4150 - 4404 3436 Action time [ms] 3.12 - 2.87 3.62 Thermal efficiency [%] 32.7 - 33.0 29.9
  • the action time is shorter, i. burnup is faster.
  • the speed is 1430 m / s instead of only 1425 m / s.
  • Particularly noteworthy is the better use of energy, e.g. 34.5% compared to 32.7%.
  • test shows that, despite 130 J / g lower energy content compared to the prior art comparative example, one obtains outstanding performance at lower gas pressure.
  • a 7-hole green powder with 2.32 mm outer diameter, 2.62 mm length, 0.14 mm hole diameter and 0.47 mm wall thickness composed of the solid portions of 25 wt .-% RDX, 1.5 wt .-% Akardit II, 0.4% by weight potassium sulfate, 2.0% by weight of a phthalic acid ester (composed of predominantly linear C 9 -C 11 -alcohols having an average molecular weight of 450 g / mol and having an average dynamic viscosity (20 ° C.) of 73 mPas) and nitrocellulose having a nitrogen content of 13.2% by weight (supplement to 100%) by pressing a solvent-moist kneading dough through a die.
  • a phthalic acid ester composed of predominantly linear C 9 -C 11 -alcohols having an average molecular weight of 450 g / mol and having an average dynamic viscosity (20 ° C.) of 73 mPas
  • the muzzle velocity at + 21 ° C is about 70 m / s higher than with a normal monobasic TLP.
  • the temperature characteristic over the very wide temperature range of -54 ° C to + 71 ° C is extremely flat.
  • the t 4 -action times are very short over the entire temperature range and serve as evidence for the surprisingly rapid thermal conversion of the new powder type.
  • the thermal efficiency is 40%, ie the internal energy of the new powder type is very well implemented.
  • the nitrocellulose-containing propellant charge powders according to the invention which contain a crystalline energy carrier based on nitramine and an inert plasticizing additive, in the caliber ranges from 5.56 mm (small caliber) to 155 mm (medium to large caliber, mortar) on a broad front Acceleration of the respective projectile can be used.
  • the new drives have a high ballistic performance and can therefore be used in high-performance applications such as KE ammunition (arrow ammunition) or in full-caliber applications (airburst, ammunition in tanks, artillery and aircraft) without compromise.
  • TLPs are relatively brittle or become brittle as they age. In mechanical action, as occurs during the firing or by enemy bombardment of ammunition, such powder grains can break down, resulting in dangerous pressure increases resp. leads to detonative reactions.
  • the new IM drives have better chemical stability compared to conventional monobasic and nitroglycerin-containing two- and three-base TLPs, resulting in Improvements in cook-off strength (shelf life at high temperatures) is reflected. This is of great advantage for applications in aircraft ammunition with high thermal load peaks or when using the ammunition in warm climates.
  • the new IM drives are characterized by the fact that their content of chemical energy (heat content) can be converted in high conversion rates into kinetic muzzle energy of the powered projectile.
  • heat content chemical energy
  • the efficiencies are up to 36%, while maintaining the weapon-side system requirements, at a high speed level, as previously only available from TLPs, e.g. from EP 1'164'116 B1 ("EI®-TLP") has been achieved (i.e., about 50 m / s more than conventional monobasic TLP).
  • EI®-TLP EP 1'164'116 B1
  • efficiencies of up to 44% are achieved, while maintaining weapon-side system requirements (compared to 39% with EI®-TLP).
  • the new IM drives are generally characterized by a very neutral temperature characteristic, which can be targeted and controlled via the layered structure. This means that the values of peak gas pressure and muzzle velocity at hot and cold temperatures differ only slightly compared to those recorded at 21 ° C. This causes the ammunition to be fired over virtually the entire temperature range with virtually the same internal ballistic performance regardless of the ambient temperature. This behavior, already familiar from EI®-TLP, brings advantages in terms of first hit probability, exploitation of system-related power reserves and constructive simplicity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Air Bags (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft einen einbasigen Antrieb zur Beschleunigung von Geschossen, welcher auf Nitrocellulose basiert sowie ein Verfahren zur Herstellung eines Antriebs.
  • Stand der Technik
  • Eine für Munitionshersteller wichtige Erkenntnis der in neuerer Zeit ausgetragenen kriegerischen Konflikte besteht darin, dass die im Einsatz stehenden Waffen- und Munitionsplattformen nur einen ungenügenden Schutz gegenüber feindlichen Angriffen zu bieten vermögen. Diese neuen Bedrohungsszenarien bestehen im Wesentlichen in einem feindlichen Beschuss von leicht- und mittelschwer gepanzerten Fahrzeugen, wobei deren Panzerung relativ leicht durchschlagen wird. Die Bedrohung wird zusätzlich verschärft, indem die Waffen, von welchen die Bedrohung ausgeht, leicht transportierbar sind und sich in grossen Stückzahlen unkontrolliert im Umlauf befinden. Es besteht hiermit ein ausgeprägter Verbesserungsbedarf bezüglich der Widerstandsfähigkeit gegenüber mechanischen Einwirkungen, hervorgerufen durch Beschuss der Munition mit z.B. einem Hohlladungsstrahl, heißen Metall-Fragmentsplittern oder Gewehrkugeln. Die Verwundbarkeit einer Munition ist zwar ein Systemaspekt, wobei das Treibladungspulver jedoch einen starken Einfluss ausübt.
  • Zudem hat die jüngere Vergangenheit aufgezeigt, dass das Risiko von Konflikten in warmen Klimazonen als deutlich zunehmend einzustufen ist. Derartige "out-of-area"-Einsätze in warmen Klimazonen verlangen generell nach einer Verbesserung der chemischen Stabilität eines Treibladungspulvers, damit dessen Sicherheit während Handhabung, Gebrauch und Lagerung vollumfänglich gewährleistet bleibt. Weitere Beispiele, wo eine Verbesserung der chemisch-thermischen Stabilität gefordert wird, sind die in modernen Kampfflugzeugen auftretenden extrem starken thermischen Wechselbelastungen der mitgeführten Munition mit Temperaturspitzen von über 100°C ("fast cook-off"), oder die Widerstandsfähigkeit einer Munition gegenüber Bränden ("slow cook-off"). Die chemische Stabilität eines Treibladungspulvers, welche sowohl dessen Gebrauchslebensdauer als auch dessen "cook-off" Temperatur bestimmt, stellt hiermit ein weiteres Tätigkeitsgebiet mit Verbesserungsbedarf dar.
  • Seit mehreren Jahren sind daher Entwicklungen im Gange, welche darauf abzielen, Treibladungspulver mit hohem Leistungspotenzial und verbesserten Eigenschaften bezüglich Verwundbarkeit (d. h. bezüglich mechanischer Einwirkung) und "Cook-off" (d.h. bezüglich thermischer Einwirkungen) bereitzustellen. Hierbei besteht die Herausforderung darin, dass ein für militärische Zwecke zu nutzendes Treibladungspulver eine möglichst hohe Energiedichte aufweisen muss, gleichzeitig jedoch eine möglichst geringe Verwundbarkeit bei mechanischen und thermischen Einwirkungen aufweisen sollte. Diese Anforderung ist für geschlossene Räume wie etwa in Panzern, Schützenpanzern oder Kriegsschiffen von herausragender Bedeutung.
  • Seit geraumer Zeit wird versucht, diese Anforderung mittels so genannter "Insensitiver Munition" (IM) zu erfüllen, wozu neue LOVA-Treibladungspulver (Low Vulnerability Ammunition) entwickelt wurden. Diese Treibladungspulver enthalten typischerweise zwischen 60 - 80 Gew.-% eines kristallinen Explosivstoffes und zirka 10 - 25 Gew.-% eines inerten oder energetischen Binders. Typische Explosivstoffe in LOVA-Treibladungspulver sind Cyclotetramethylenetetranitramine (HMX) und Cyclotrimethylenetrinitramine (RDX). Bisherige LOVA-Treibladungspulver bestehen typischerweise aus einem synthetischen inerten oder energetischem elastomeren Polymerbinder, in welchen die Kristalle des jeweiligen Sprengstoffes eingebettet sind. Typische Binder sind CAB und HTPB (inert) und GAP, poly-AMMO und poly-BAMO.
  • Bei Treibladungspulvern (kurz: TLP) für Waffenanwendungen unterscheidet man zwischen "homogenen" und "composite" (heterogenen) Formulierungen, wobei homogene Formulierungen ein- und zweibasige Treibladungspulver umfassen. In ausführlichen IM-Tests wurde gefunden, dass ein auf einem inerten Binder basierendes LOVA-Treibladungspulver gegenüber thermischer Einwirkung (cook-off) Vorteile im Vergleich zu konventionellen Pulvern aufweist. Demgegenüber wurde gezeigt, dass derartige Rezepturen bei mechanischer Einwirkung detonieren können, was deren breite Einführung und Gebrauch bisher verhinderte (vgl. z.B. L.M. Barrington, Australian Defence Force (ADF), DSTO-TR-0097).
  • EP1 164 116 beschreibt ein hochenergetisches Material mit shichtartig strukturiertem Karn enthaltend einen energiereichen Weichmacher und einen Polymeren Pulegmatisator.
  • Ein Beispiel eines LOVA-TLP mit einem energetischen synthetischen Binder ist in US 6,228,190 beschrieben, wobei der Binder aus einem nitratoalkyl-substituierten Alkylether-Prepolymer mit reaktiven Hydroxy-Endgruppen und einem Vernetzer auf Basis einer mehrwertigen Isocyanat-Verbindung besteht. Aus der Praxis ist bekannt, dass aus derartigen Bindern aufgebaute Pulver kaltspröde sind und dass deren Herstellung sehr teuer und schwierig ist.
  • LOVA-TLP mit einem elastomeren polyurethanhaltigen Binder stellen eine weitere bekannte Klasse von LOVA-TLP dar und sind u.a. in US 4,925,503 , US 4,923,536 und US 5,468,312 beschrieben. Der kettenverlängerte Polyurethane-polyacetal Elastomer Binder wird durch Reaktion eines dihydroxy-terminierten Polyacetal-Homopolymers mit einem Alkylene-diisocyanate, anschliessender Umsetzung des resultierenden isocyanatterminierten Prepolymers mit einem dihydroxy-terminierten Polyacetal-copolymer und finaler Reaktion dieser elastomeren Zwischenstufe mit einem organischen Polyisocyanat erhalten. Da die Herstellung dieses elastomeren Bindersystems über mehrere Syntheseschritte erfolgt, sind die Kosten sehr hoch. Zudem hat sich in der Vergangenheit gezeigt, dass die Reproduzierbarkeit grosse Probleme bereitet, so dass die erhaltenen LOVA-TLP nicht mit der gewünschten Gleichförmigkeit der Produkteeigenschaften gefertigt werden können. Aus diesen Gründen haben sich LOVA-TLP auf dieser Basis bisher nicht auf breiter Front durchsetzen können.
  • Eine weitere Klasse von LOVA-TLP verwendet Cellulose-acetat oder Derivate hiervon (z.B. Cellulose-acetat-butyrat, CAB) als elastomere Binder. Derartige Rezepturen sind u. a. in US 6,984,275 beschrieben.
  • Die bekannten LOVA-Rezepturen sind unbefriedigend, da ihre Reproduzierbarkeit nicht ausreichend gewährleistet ist und die Herstellungskosten relativ hoch sind. Sie sind daher praktisch nicht zur Anwendung gekommen.
  • Darstellung der Erfindung
  • Aufgabe der Erfindung ist es, einen dem eingangs genannten technischen Gebiet zugehörenden Antrieb zu schaffen, welcher eine geringe Sensitivität auf mechanische Einwirkungen, gute "Cook-off" Eigenschaften und gleichzeitig ein hohes Leistungspotenzial hat.
  • Die Lösung der Aufgabe ist durch die Merkmale des Anspruchs 1 definiert. Gemäss der Erfindung enthält der einbasige Antrieb als Basis Nitrocellulose, sowie einen kristallinen Energieträger auf Nitramin-Basis, wobei es sich um RDX oder HMX in 1 - 25 Gew.-% handelt. Zudem sind mindestens zwei inerte plastifizierende Zusatzstoffe vorgesehen wobei wenigstens ein erster inerter plastifizierender Zusatzstoff in einer Matrix des Antriebs im Wesentlichen homogen verteilt vorhanden ist und ein zweiter inerter plastifizierender Zusatzstoff in oberflächennahen Zonen auf eine Eindringtiefe von maximal 400 Mikrometer begrenzt eine erhöhte Konzentration aufweist.
  • Überraschend ist, dass durch Zufügen von nur relativ kleinen Mengen (z.B. < 10 Gew.-%) an inerten plastifizierenden Zusatzstoffen die Widerstandsfähigkeit gegenüber mechanischen Stimuli deutlich verbessert werden kann. Je nach Anwendung können Kombinationen von mehreren inerten Zusatzstoffen zur Einstellung der gewünschten thermodynamischen Eigenschaften wie Leistung oder Temperaturcharakteristik eingesetzt werden. Der Kornaufbau derartiger Antriebe wird auf die spezifische Anwendung angepasst (Einstellen der Abbrandcharakteristik auf Rohrlänge, Geschossgewicht etc. des Waffensystems).
  • Zum Verbessern bzw. Optimieren der gewünschten Effekte können optional zusätzlich geringe Mengen (von meist weniger als 5 Gew.-%) energetischer Weichmacher, z.B. auf Basis Metyl-NENA (CAS-Nr. 17096-47-0), Ethyl-NENA (CAS-Nr. 85068-73-1) oder Butyl-NENA (CAS-Nr. 82486-82-6) verwendet werden.
  • Vergleichbare einbasige Antriebe, welche die neuartige Kombination von Zusatzstoffen nicht enthalten, weisen keine IM-Eigenschaften auf.
  • Ein weiterer grosser Vorteil der erfindungsgemässen Antrieb ist deren überraschenderweise hoher Energieumsetzungsgrad, was zu einem hohen innenballistischen Leistungsvermögen führt. So wurde gefunden, dass der thermische Wirkungsgrad, d.h. der in kinetische Mündungsenergie umgesetzte Anteil des TLP-Energieinhalts, bei Vollkaliber-Munition bis zu 44% beträgt. Bei unterkalibriger KE-Munition (KE = Kinetische Energie), d.h. bei Munition mit einem Treibspiegel, wurden thermische Wirkungsgrade von bis zu 36% gefunden. Dies entspricht im Vergleich zu konventionellen einbasigen Treibladungspulvern einer Erhöhung des Energieumsetzungsvermögens von bis zu 10% auf vergleichbarem Leistungsniveau. Dies äussert sich in der zuvor erwähnten Erhöhung des innenballistischen Leistungspotenzials ohne Verschlechterung der Rohrerosion, da die Flammtemperatur im Vergleich zu einem normalen einbasigen TLP praktisch nicht erhöht wird.
  • Die erfindungsgemässen Antriebe zeichnen sich zudem durch eine weitgehend neutrale Temperaturcharakteristik aus. Dies bedeutet, dass sich unabhängig von der Pulverbetttemperatur über einen weiten Temperaturbereich praktisch dieselben innerballistischen Leistungsdaten einstellen, was für einen Einsatz in heissen und kalten Klimazonen sehr erwünscht ist. So wurde beispielsweise in einer 30 mm Vollkaliber-Munition für eine Airburst-Anwendung gefunden, dass die Mündungsgeschwindigkeit innerhalb der Temperaturspanne von -32°C bis +52°C nur um 12 m/s variiert. Die höchste Mündungsgeschwindigkeit stellt sich typischerweise um 21°C ein und nimmt mit zunehmender Erwärmung resp. Abkühlung kontinuierlich ab. Ein analoger Verlauf wurde auch für den Spitzengasdruck gefunden. Konventionelle einbasige TLP weisen typischerweise einen linearen Anstieg der Mündungsgeschwindigkeit von 0.5 - 1.0 m/s pro °C auf, so dass bei einbasigen TLP die Mündungsgeschwindigkeit in demselben Temperaturbereich um 40 - 80 m/s schwankt.
  • Im Unterschied zu den weiter oben genannten, vorbekannten LOVA-Rezepturen basiert der erfindungsgemässe Antrieb nicht hauptsächlich auf dem kristallinen Energieträger. Vielmehr überwiegt der Anteil an Nitrocellulose am Gesamtgewicht (> 50 Gew.-%, insbesondere >60 Gew.-%). Durch die Verwendung von Nitrocellulose wird erreicht, dass die mittleren Abstände zwischen den einzelnen Kristallen des kristallinen Energieträgers ausreichend gross sind, resp. dass sich die einzelnen Kristalle überwiegend nicht berühren. Dies führt dazu, dass bei Einwirkung externer mechanischer Stimuli der Schockimpuls nicht von einem Explosivstoff-Kristall an die benachbart liegenden Kristalle weitergegeben werden kann. Es wird verhindert, dass der primär einwirkende Schockimpuls multipliziert und über die gesamte Pulvermenge übertragen wird.
  • Ein weiterer unterschied zwischen der Erfindung und den vorbekannten LOVA-Rezepturen besteht darin, dass der Wasserstoff-Gehalt in den Verbrennungsgasen nicht erhöht ist. Im Vergleich zu den vorbekannten LOVA-Rezepturen mit kristallinen Energieträgern wird somit die Rohrerosion wegen hohen Wasserstoff-Anteilen vermieden. Es können ohne Probleme mehrere tausend Schuss gefeuert werden, wie es die üblichen Abnahmebedingungen vorschreiben.
  • Nitrocellulose wird durch Nitrierung von Cellulose (Baumwoll-Linters, Zellstoff) gewonnen und stellt seit über hundert Jahren das wichtigste Ausgangsmaterial für die Herstellung von ein-, zwei- und dreibasigen Treibladungspulvern dar. Nitrocellulose ist in grossen Mengen zu günstigen Preisen verfügbar und wird mit einer grossen Spannbreite an verschiedenen chemisch-physikalischen Eigenschaften wie Stickstoffgehalt, Molekulargewicht oder Viskosität angeboten. Diese Unterschiede erlauben, dass sich Nitrocellulose zu den verschiedenen homogenen Treibladungspulvertypen verarbeiten lässt. Der Energieinhalt von Nitrocellulose wird über den Stickstoffgehalt eingestellt. In einbasigen Rezepturen ist Nitrocellulose der alleinige Energieträger, was bedeutet, dass die Energiedichte von Nitrocellulose im Vergleich zu anderen synthetischen Binderpolymeren relativ hoch ist.
  • Im Rahmen der Erfindung wurde nun überraschenderweise gefunden, dass sich Nitrocellulose als Ausgangsmaterial zur Herstellung von Antrieben mit IM-Eigenschaften verwenden lässt. Einerseits wurde unerwartet festgestellt, dass bereits durch Einarbeitung von relativ geringen Anteilen einer kristallinen Nitraminverbindung sich die chemische Stabilität im Vergleich zu einem nitraminfreien Antrieb deutlich zu verbessern vermag. Hiermit wird die Widerstandsfähigkeit gegenüber thermischen Stimuli massiv verbessert, wodurch die erwünschte Verbesserung der Cook-off-Temperatur realisiert werden können.
  • Ein weiterer Vorteil besteht darin, dass die Ausgangsstoffe preiswert und leicht verfügbar sind und dass keine aussergewöhnlichen ("exotischen") Prozessschritte im Fertigungsprozess erforderlich sind.
  • Der Antrieb ist vorzugsweise in Form von Körnern (engl. grain) ausgebildet, welche z. B. eine kreiszylindrische Geometrie haben mit in axialer Richtung verlaufenden Längskanälen (z.B. 1 Kanal, oder 7 oder 19 Kanäle). Ein solches Treibladungspulver ist infolgedessen schüttbar (bzw. rieselfähig), was wichtig für die industrielle Abfüllung von Hülsen ist. Das Treibladungspulver kann während des Abfüllens in die Hülsen also ähnlich wie eine Flüssigkeit gehandhabt werden. Für grosskalibrige Munition kann das Material auch in Form von Streifen vorliegen oder direkt in eine bestimmte, für Rohrwaffen geeignete Form extrudiert werden. (Allerdings geht es nicht um einen grossvolumigen, gegossenen Block, wie er für Feststoffraketen verwendet wird.)
  • Das zylindrische Pulverkorn hat als Verhältnis von Länge (L) zu Durchmesser (D) typischerweise (aber nicht zwingend) einen Wert im Bereich von L/D = 0.25 bis L/D = 5. Die Länge des Kreiszylinders liegt z.B. im Bereich von 0.3 - 10 mm und der Durchmesser im Bereich von 0.3 - 10 mm.
  • Statt Zylinderformen können auch Streifenformen verwendet werden. Darunter fallen typischerweise Formen, bei denen die Breite viel kleiner (z.B. mindestens 5 Mal oder mindestens 10 Mal) ist als die Länge und die Dicke ihrerseits viel kleiner ist (z.B. mindestens 5 Mal oder mindestens 10 Mal) ist als die Breite. (Die Dicke liegt z.B. bei 1-2 mm, die Breite bei 10 mm oder mehr und die Länge bei 100 - 150 mm.)
  • Ebenfalls denkbar sind sog. "Formkörper", d.h. hohlzylindrische Formen für eine Munition, bei welcher die Hülse fehlt bzw. durch den hinter der Anzündung angeordneten "Formkörper" ersetzt ist.
  • Vorzugsweise enthält die kristalline Nitraminverbindung ein Strukturelement der allgemeinen chemischen Strukturformel R-N-NO2 (R = Rest). Dabei soll der Anteil des Nitramin-Strukturelements am Gesamtmolekül möglichst hoch sein, um einen einsprechend hohen Energiegehalt zu erreichen.
  • Anstelle einer Nitraminverbindung von der Art R-O-NO2 wäre z.B. auch ein Nitratester denkbar. Allerdings ist letzterer chemisch weniger stabil als die Nitraminverbindung.
  • Die kristalline Nitraminverbindung wird in einer Konzentration im Bereich von 1- 25 Gew.-% eingesetzt. Besonders bevorzugt sind Konzentrationen im Bereich von 5-25 Gew.-%. Bei höheren Gewichtsanteilen an kristallinem Energieträger sind die Kristalle statistisch betrachtet zu nahe aufeinander und die Verwundbarkeit steigt stark an. Bei Gewichtsanteilen bis zu 20 % bleibt die Verwundbarkeit auf einem sehr tiefen Niveau.
  • Mit einem inerten plastifizierenden Weichmacher in der Kornmatrix und einer Oberflächenbeschichtung kann die Verwundbarkeit bei gegebenem Gewichtsanteil der kristallinen Nitraminverbindung etwas abgeschwächt werden. Es ist dadurch ohne weiteres möglich, an der oberen Grenze (d.h. bei ca. 25 Gew.-% kristallinem Nitramin) zu arbeiten.
  • Es hat sich im Rahmen der Erfindung gezeigt, dass RDX zwei Effekte hat. Zum ersten wirkt es als Energieträger bzw. -lieferant (bekannte Eigenschaft). Zum zweiten steigert es in dem erfindungsgemässen Kontext die chemische Stabilität des Antriebs (neue Eigenschaft). Die Stabilisierungseigenschaft kommt schon ab ca. 1 Gew.-% zum Tragen. Sie steigt danach mit zunehmendem Gewichtsanteil nur noch unwesentlich an.
  • Ist die Nitraminverbindung als Energieträger vorgesehen, dann wird ihr Gewichtsanteil im Pulverkorn meist mehr als 10% betragen. Zur Stabilisierung können auch an sich bekannte Wirkstoffe wie z.B. Akardit II verwendet werden.
  • Als kristalline Nitraminverbindung eignen sich Hexogen (RDX, Cyclotrimethylentrinitramin, CAS-# 121-82-4), Oktogen (HMX, Tetramethylenetetranitramin, CAS-# 2691-41-0, Hexanitroisowurtzitan (CL-20, CAS-# 14913-74-7), Nitroguanidin (NIGU, NQ, CAS-# 70-25-7, N-Metymitramin (Tetryl, N-Methyl-N,2,4,6-tetranitrobenzolamin, CAS-# 479-45-8) sowie Nitrotriazolon (NTO, CAS# 932-64-9) unt Triaminotrinitrobenzol (TATB, CAS# 3058-38-6). Diese Verbindungen können einzeln oder miteinander kombiniert eingesetzt werden. Die kristalline Nitraminverbindung ist z.B. RDX mit einer mittleren Korngrösse von 6 Mikrometer.
  • RDX ist von allen genannten kristallinen Energieträgern der interessanteste. Festzustellen ist, dass das im Markt angebotene "insensitive" RDX (auch I-RDX oder RS-RDX genannt) im erfindungsgemässen Kontext keine Verbesserung mit sich bringt, obwohl die I-RDX-Variante gerade wegen angeblich geringerer Verwundbarkeit angeboten wird.
  • Oktogen ist relativ teuer im Vergleich zu RDX. Andere Nitraminverbindungen (wie z.B. NIGU etc.) haben relativ wenig Leistung im Vergleich zu RDX.
  • Der oder die inerten plastifizierenden Zusatzstoffe (Weichmacher) sind grundsätzlich im ganzen Korn (d.h. in der Kornmatrix) verteilt. Sie sind dabei in der Kornmatrix mehr oder weniger homogen verteilt und in oberflächennahen Bereichen stärker konzentriert als im Inneren des Pulverkorns. Letzteres verstärkt die angestrebte Wirkung.
  • Die homogen in der Kornmatrix verteilten inerten plastifizierenden Weichmacher weisen bevorzugt eine Konzentration im Bereich von 1.0 - 20 Gew.-% auf. Vorzugsweise liegt die Konzentration im Bereich von 1.0-10 Gew.-%. Insbesondere genügen schon 1 - 5 Gew.-%. Je geringer der Anteil an inertem Weichmacher ist, desto höher kann der Anteil an energiereichen Stoffen im Korn sein. Die homogen in der Kornmatrix verteilten plastifizierenden Weichmacher sollten einen Gewichtsanteil unter 10% haben, namentlich für Mittelkaliberanwendungen.
  • Bei Kleinkaliberanwendungen kann der Gewichtsanteil des Weichmachers dagegen durchaus auf 15 Gew.-% steigen (bedingt durch das Verhältnis von Oberfläche zu Volumen im Treibladungspulver).
  • Der inerte plastifizierende Weichmacher in der Kornmatrix kann z. B. eine im Wesentlichen wasserunlösliche organische Polyoxoverbindung wie z. B. eine Polyester- oder Polyetherverbindung mit einem Molekulargewicht von 50 - 20'000 g/mol sein. Der in den oberflächennahen Zonen des Antriebs angereicherte inerte Weichmacher ist insbesondere eine praktisch wasserunlösliche organische Verbindung (typischerweise organische Verbindung enthaltend Carboxylgruppen (bevorzugt Campher und/oder aromatische Harnstoffverbindungen).
  • Indem der Weichmacher praktisch wasserunlöslich ist, kann das Pulver im Verlauf des Produktionsprozesses in Wasser gebadet werden, um die Restlösungsmittel (wie Alkohol, Diäthyläther oder Äthylacetat) auszuwaschen, welches für die Extrusion im Pulverteig enthalten ist. Der wasserunlösliche Weichmacher bleibt somit im Korn. Alternativ kann das Lösungsmittel auch durch Lufttrocknung entfernt werden. Es ist dann nicht nötig, dass der Weichmacher wasserunlöslich ist.
  • Als besonders geeignet haben sich (wasserunlösliche) Citratester, Adipinsäureester, Sebacinsäureester oder Phtalsäureester (resp. hydrierte Cyclohexylderivate hiervon) mit einem Molekulargewicht von 100 - 20'000 g/mol oder Kombinationen hiervon erwiesen.
  • In der Kunststoffindustrie (vgl. z. B. Handbook of Plasticizers, ISBN 1-895198-29-1) sind verschiedenste Weichmacher (engl. plasticizer) bekannt, die gute Gelatinatoren für Nitrocellulose sind.
  • Als plastifizierender Zusatzstoff, welcher in den oberflächennahen Zonen des Pulverkorns eingebracht ist, wird eine carboxylgruppenhaltige organische Verbindung mit einem Molekulargewicht von 100 - 5000 g/l bevorzugt. Der Gewichtsanteil am Gesamtkorn ist vorzugsweise nicht mehr als 10 Gew.-%, insbesondere weniger als 6 Gew.-%.
  • Es können aber auch Konzentrationsbereiche des in den oberflächennahen Zonen des Antriebs lokalisierten inerten Weichmachers unter 15 Gew. °6 geeignet sein. Allerdings erreicht man mit 1-2 Gew.-% bei Mittelkaliber gute Ergebnisse. Unterhalb von 1.0 Gew.-% konnte nur eine ungenügende Wirkung festgestellt werden.
  • Der inerte plastifizierende Zusatzstoff, welcher auf den oberflächennahen Zonen des Antriebs lokalisiert ist, ist vorzugsweise Campher (CAS-# 76-22-2). Ebenfalls kommen aromatische Harnstoffderivate wie Diethyldiphenylharnstoff (CAS-# 85-98-3), Dimethyldiphenylharnstoff (CAS-# 61 1-92-7), Ethyldiphenylcarbamate (CAS-# 603-52-1), N-Methyl-N-phenylurethane (CAS-# 2621-79-6) oder Esterverbindungen wie Diethylphthalat (CAS-# 84-66-2), Dibutylphthalat (CAS-# 84-74-2), Diamylphthalat (CAS-# 131-18-0), Di-n-propyladipat (CAS-# 106-19-4) in Frage oder Verbindungen analog denjenigen, welche homogen in der Kornmatrix verteilt sind. Der inerte plastifizierende Zusatzstoff kann auch als Kombination mehrerer Einzelverbindungen appliziert werden.
  • Beispiele für den inerten plastischen Zusatzstoff sind Acetyltriethylcitrat (CAS-#: 77-89-4), Triethylcitrat (CAS-#: 77-93-0), Tri-n-butylcitrat (CAS-#:77-94-1), Tributyl-acetylcitrat (77-90-7), Acetyltri-n-butylcitrat (CAS-#: 77-90-7), Acetyltri-n-hexylcitrat (CAS-#: 24817-92-3), n-Butyryltri-n-hexylcitrat (CAS-#: 82469-79-2), Di-n-butyl-adipat, Diisopropyl-adipat (CAS-#: 6938-94-9), Diisobutyl-adipat (CAS-#: 141-04-8), Di-ethylhexyl-adipat (CAS-#: 103-23-1), Nonyl-undecyl-adipat, n-Decyl-n-octyl-adipat (CAS-#: 110-29-2), Dibutoxy-ethoxy-ethyladipat, Dimethyl-adipat (CAS-#: 627-93-0), Hexyl-octyl-decyl-adipat, Diisononyl-adipat (CAS-#: 33703-08-1), di-n-Butyl-sebacat (CAS-#: 109-43-3), Dioctyl-sebacat (CAS-#: 122-62-3), Dimethyl-sebacat (CAS-#: 106-79-6), Di-n-butyl-phthalat (CAS-#: 84-74-2), Di-n-hexyl-phthalate (CAS-#: 84-75-3), Di-nonyl-undecyl-phthalat (CAS-Nr. 111381-91-0), Nonyl-undecyl-phthalat (685-15-43-5), Gemische weitgehend linearer C4-C11-alkylphthalate (CAS-#: 85507-79-5, 111381-91-0, 68515-45-7, 68515-44-6, 68515-43-5, 111381-89-6, 111381-90-9, 28553-12-0), Dioctyl-terephthalat (CAS-#: 6422-86-2), Dioctyl-isophthalate (CAS-#: 137-89-3), 1,2-Cyclohexandicarbonsäurediisononylester (CAS-#: 166412-78-8), Dibutyl-maleat (CAS-#: 105-76-0), Dinonyl-maleat (CAS-#: 2787-64-6), Diisooctyl-maleat (CAS-#: 1330-76-3), Dibutyl-fumarat (CAS-#: 105-75-9), Dinonylfumarat (CAS-#: 2787-63-5), Dimethyl-sebacat (CAS-#: 106-79-6), Dibutyl-sebacat (CAS-#: 109-43-3), Diisooctyl-sebacat (CAS-#: 27214-90-0), Dibutyl-azelat (CAS-#: 2917-73-9), Diethyleneglycol-dibenzoat (CAS-#: 120-55-8), Trioctyl-trimelliat (CAS-#: 89-04-3), Trioctylphosphat (CAS-#: 78-42-2), Butylstearat (CAS-#: 123-95-5), Glycerol-triacetat (CAS-#: 102-76-1), epoxidiertes Sojabohnenoel (CAS-#: 8013-07-8), epoxidiertes Leinensamenoel (CAS-#: 8016-11-3).
  • Die inerten plastifizierenden Zusatzstoffe werden zum Teil auch unter folgenden Handelsnamen angeboten: Hexamoll Dinch der Firma BASF, Citroflex Typen der Firma Reilly-Morflex Inc., Greensboro, North Carolina USA, u.a. A-2, A-4, A-6, C-2, C-4, C6, B-6, Paraplex Typen der Firma C. P. Hall Co. Chicago, Illinois USA, u.a. G25, G30, G51, G54, G57, G59, Santicizer Typen der Firma Ferro Corporation, Cleveland, Ohio USA, 261, 278 , Palatinol-Typen der Firma BASF, Deutschland.
  • Der inerte plastifizierende Zusatzstoff, welcher in den oberflächennahen Zonen des Pulverkorns lokalisiert ist, hat insbesondere eine Eindringtiefe von einigen wenigen 100 Mikrometern. Die Eindringtiefe (d.h. die Tiefe, bis zu welcher mindestens 95 Gew.-% des Zusatzstoffes enthalten sind), beträgt maximal 400 Mikrometer. Damit kann mit minimalen Mengen ein grösstmöglicher Effekt erreicht werden. Das heisst, das Kornvolumen beinhaltet nacht mehr inerte Stoffe als nötig, was bei vorgegebener Pulvermenge eine grösstmögliche Menge an energiehaltigem Material ergibt. Vorzugsweise wird mit Eindringtiefen im Bereich von 100 - 300 Mikrometern gearbeitet.
  • Der erfindungsgemässe Antrieb eignet sich vorzüglich für Klein- und Mittelkaliber-Munition, d.h. die Pulverkörner haben eine maximale geometrische Ausdehnung von 20 mm.
  • Die geometrischen Abmessungen der erfindungsgemässen Treibladungspulver werden primär durch den Kaliberbereich bestimmt. So können die Pulverkörner für KleinkaliberAnwendungen (Kaliberbereich von ca. 5.56 bis ca. 20 mm) einerseits zylinderförmige Geometrien mit Durchmesser von ca. 0.5 - 3 mm aufweisen, wobei die Länge eines Pulverkorns typischerweise ca. 0.5-2.0x des Wertes des jeweiligen Korndurchmessers beträgt. Zudem können zylinderförmige Pulver zur Beeinflussung des Abbrandverhaltens in axialer Richtung verlaufende Längskanäle enthalten. In der Praxis haben sich 1-, 7- und 19-Lochgeometrien besonders bewährt, wobei der Durchmesser der Lochzonen typischerweise zwischen 0.05 bis 0.5 mm beträgt.
  • Für Mittelkaliber-Anwendungen (Kaliberbereich von 20 mm bis ca. 50 mm) hat sich erfahrungsgemäss die zylinderförmige Korngeometrie mit Durchmesser von ca. 1.0 - 10 mm bewährt, wobei die Länge eines Pulverkorns typischerweise ca. 0.5-2.0x des Wertes des jeweiligen Korndurchmessers beträgt. Zur Steuerung der Abbrandcharakteristik sind normalerweise mehrere in axialer Richtung verlaufende Längskanäle im Pulverkorn enthalten. Besonders bewährt haben sich Pulverkörner mit 1, 7 oder 19 Längskanälen, deren Durchmesser typischerweise 0.05 - 0.5 mm betragen.
  • Für Grosskaliber-Anwendungen (Kaliberbereich von 60 mm bis ca. 155 mm) hat sich erfahrungsgemäss die zylinderförmige Korngeometrie mit Durchmesser von ca. 3 - 25 mm bewährt, wobei die Länge eines Pulverkorns typischerweise ein 0.5- bis 2-faches des Wertes des jeweiligen Korndurchmessers beträgt. Zur Steuerung der Abbrandcharakteristik sind normalerweise mehrere in axialer Richtung verlaufende Längskanäle im Pulverkorn enthalten. Besonders bewährt haben sich Pulverkörner mit 7, 19 und 51 Längskanälen, deren Durchmesser typischerweise 0.05 - 0.5 mm betragen. Zudem haben sich für Grosskaliber-Anwendungen auch so genannte Streifenpulver bewährt. Deren Querschnitt ist typischerweise rechteckig mit einer Dicke von 0.5 - 5 mm und einer Breite von 3.0 - 20 mm. Die Länge liegt typischerweise im Bereich von 5 - 50 cm.
  • Der erfindungsgemässe Antrieb kann auch als so genannter Formkörper ausgebildet sein. Hierbei übernimmt der Antrieb zusätzlich die Funktion der Hülse und kommt in so genannter hülsenloser Munition zum Einsatz. Denkbare Einsatzgebiete liegen in den Kaliberbereichen von 4.6 - 155 mm, wobei die Geometrie derartiger Formkörper der jeweiligen Anwendung angepasst ist.
  • Ein Verfahren zur Herstellung eines erfindungsgemässen Antriebs zeichnet sich dadurch aus, dass ein Grünkorn durch Verpressen eines lösungsmittelhaltigen Pulverteigs aus Nitrocellulose und einem kristallinen Energieträger auf Nitramin-Basis in einer Strangenpresse oder mittels Extrusion produziert wird.
  • Die durch die erfindungsgemässe Kombination eines kristallinen Energieträgers auf Nitramin-Basis mit einem oder mehreren inerten Zusatzstoffen in einer Kornmatrix und den oberflächenahen Bereichen, deren Binder vorwiegend aus Nitrocellulose besteht, resultierenden Antriebe können auf bestehenden Fertigungsanlagen hergestellt werden. Die festen Rezepturkomponenten können z.B. mit einem Lösungsmittel-Gemisch versetzt werden. Der resultierende Knetteig kann in einem Kneter geknetet und hiernach in einer Presse auf die gewünschte Geometrie extrudiert werden. Die Fertigstellung zum gewünschten Antrieb kann durch Wässerung, Trocknung und Schneiden auf die gewünschte Kornlänge erfolgen. Zur Verbesserung der Anbindung an die gelierte Nitrocellulose-Kornmatrix und damit zur Optimierung der gewünschten Effekte kann die kristalline Nitramin-Verbindung einer geeigneten Vorbehandlung unterzogen werden. Die Schüttdichten der neuartigen Antriebe sind hoch und können, je nach Geometrieform, bis weit über 1060 g/l betragen, was zur Erreichung der hohen innenballistischen Leistung von Bedeutung ist.
  • Vorzugsweise wird ein Pulverteig verwendet, der zu einem Grünkorn mit mindestens 60 Gew.-% Nitrocellulose führt, wobei der Stickstoffgehalt der Nitrocellulose zwischen 11 - 13.5 Gew.-% liegt.
  • Besonders bevorzugt beträgt der Stickstoffgehalt der Nitrocellulose zwischen 12.6 - 13.25 Gew.-%, der homogen in der Matrix verteilte inerte plastifizierende Weichmacher ist eine Polyesterverbindung (bevorzugt Polyesterverbindung mit 2-10 Estergruppen pro Molekül wie Citrate, Phthalate, Sebacinate und Adipate mit einem Molekulargewicht von 100 - 5000 g/mol, und der in den oberflächennahen Zonen des Antriebs angereicherte inerte Weichmacher ist eine organische Substanz enthaltend Sauerstoffatome und mit einem Molekulargewicht von 100 - 5000 g/mol. Ganz besonders geeignet ist Campher.
  • Für das erfindungsgemässe Pulver können selbstverständlich auch weitere, an sich bekannte Zusätze verwendet werden. Zur Stabilitätserhöhung können etwa Natriumhydrogenkarbonat (CAS-#:1.44-55-8), Calziumkarbonat (CAS-#: 471-34-1), Magnesiumoxid (CAS-#: 1309-48-4), Akardit II (CAS-#: 724-18-5), Centralit I (CAS-#: 90-93-7), Centralit II (CAS-#: 611-92-7), 2-Nitrodiphenylamin (CAS-#: 836-30-6) und Diphenylamin (CAS-#: 122-39-4), zur Rohrschonung etwa Magnesiumoxid (CAS-#: 1303-48-4), Molybdäntrioxid (CAS-#: 1313-27-5), Magnesiumsilikat (CA5-#: 14807-96-6), Calciumkarbonat (CAS-#: 471-34-1) oder Titandioxid (CAS-#: 13463-67-7), Wolframtrioxid (CAS-#: 1314-35-8), und zur Feuerscheindämpfung etwa Natriumoxalat (CAS-#: 62-76-0), Kaliumbitarat (CAS-#: 868-14-4), Natriumhydrogenkarbonat (CAS-#: 144-55-8), Kaliumhydrogenkarbonat (CAS-#: 298-14-6), Natriumoxalat (CAS-#: 62-76-0), Kaliumsulfat (CAS-#: 7778-80-5) oder Kaliumnitrat (CAS-#: 7757-79-1) eingesetzt werden. Ferner kann das Grünpulver noch weitere bekannte Zusätze, etwa zur Verbesserung des Anzündverhaltens und zur Modulierung des Abbrandverhaltens, enthalten.
  • Aus der nachfolgenden Detailbeschreibung und der Gesamtheit der Patentansprüche ergeben sich weitere vorteilhafte Ausführungsformen und Merkmalskombinationen der Erfindung.
  • Kurze Beschreibung der Zeichnungen
  • Die zur Erläuterung des Ausführungsbeispiels verwendeten Zeichnungen zeigen:
  • Fig. 1
    Eine Munition nach der Einwirkung eines Hohlladungsstrahls;
    Fig. 2
    eine Munition nach der Einwirkung heisser Fragmente;
    Fig. 3
    eine Munition nach der Einwirkung eines Hohlladungsstrahls,
    Fig. 4
    eine Munition nach dem Kugeleinschuss (eng!. Bullet Impact) in einer 35 mm Stahlhülse;
    Wege zur Ausführung der Erfindung
  • Bei den nachfolgend erläuterten Beispielen sind alle erwähnten Zusätze während der Grünkornherstellung dem Pulverteig zugegeben worden, d.h. sie sind gleichmässig in der Matrix verteilt. Die Gesamtmenge dieser Zusätze im Grünkorn liegt zw. 0-10 Gew.-% gegenüber der Nitrocellulose, bevorzugt zwischen 2-7 Gew.-% . Die Herstellung der Antriebe beinhaltet unter anderem die Prozessschritte "Kneten mit Lösungsmitteln", "Extrusion durch Matrize", "Trocknung" und "Finishing" (Oberflächenbehandlung). Die kristalline Nitraminverbindung, welche zur Verbesserung der Anbindung an die Matrix gegebenenfalls einer Vorbehandlung unterzogen werden muss, und der in der Matrix homogen verteilte inerte plastifizierende Weichmacher werden der Knetmasse zugegeben. Der in der oberflächennahen Zone des Antriebs lokalisierte inerte plastifizierende Weichmacher wird entweder durch Imprägnierung eines "Grünkorns" in wässriger Emulsion oder in einem Oberflächenbehandlungsprozess (Finishing) zusammen mit weiteren Zusatzstoffen wie z.B. Graphit aufgebracht.
  • Beispiel 1
  • Es werden 5 kg eines auf 60°C aufgeheizten 7-Loch-Grünpulvers hergestellt, indem ein Pulverteig aus den festen Anteilen von 25 Gew.-% RDX, 1.8 Gew.-% Akardit-II, 0.4 Gew.-% Kaliumsulfat, 0.2 Gew.-% Kalk, 0.1 Gew.-% Manganoxid, 1.5 Gew.-% eines Phthalsäureesters (welcher vorwiegend aus linearen C9-C11-Alkoholen mit einem mittleren Molekulargewicht von 450 g/mol und mit einer mittleren dynamischen Viskosität bei 20°C von 73 mPa*s aufgebaut ist) und Nitrocellulose mit einem Stickstoffgehalt von 13.20 Gew.-% (Ergänzung auf 100%) zu einem lösungsmittelfeuchten Knetteig verarbeitet werden und dieser durch eine Matrize gepresst (d.h. extrudiert) wird. Die extrudierten Pulverkörner haben 2.53 mm Aussendurchmesser, 3.08 mm Länge, 0.53 mm Wandstärke und 0.12 mm Lochdurchmesser. Das so hergestellte Grünpulver wird in eine auf 60°C vorgeheizte Poliertrommel aus Kupfer mit zirka 50 Liter Innenvolumen gegeben.
  • Anschliessend werden der Pulvermasse 7.5 g pulverförmiges Graphit (0.15 Gew.-%) zugegeben, gefolgt von einer Lösung von 200 g Campher in 225 ml Ethanol. Anschliessend lässt man bei einer Drehzahl von 24 Umdrehungen pro Minute während 2 Stunden einwirken, wobei das Lösungsmittel durch die geöffnete Frontöffnung allmählich abdampft. Danach wird das Pulver aus der Poliertrommel entnommen und während 24 Stunden bei 60°C getrocknet.
  • Das resultierende Schüttpulver hat folgende Eigenschaften:
  • Physikalische Eigenschaften: Schüttdichte = 1024 g/l, Wärmeinhalt = 3580 J/g.
  • Chemische Stabilität: Verpuffungstemperatur = 179 °C. Wärmeflusskalorimetrie (STANAG 4582) = 12 J/g resp. 14.4 µW (Anforderung nach STANAG 4582: maximale Wärmeentwicklung nach 5 J/g: <114 µW).
  • Fig. 1 zeigt, dass die Verwundbarkeit bei Bullet Impact zu einer Reaktion Typ V (Abbrand) führt.
  • Fig. 2 veranschaulicht das Ergebnis bei Beschuss durch heisse Fragmente. Fig. 3 zeigt das Ergebnis beim Beschuss mit einem Hohlladungsstrahl. Es ist festzustellen, dass in beiden Fällen eine Reaktion Typ V (Abbrand) vorliegt. Es verbleibt ein einziges Stück, aber das Pulver ist abgebrannt.
  • Innenballistische Eigenschaften:
  • System: 30 mm Vollkaliber-Munition mit Geschossmasse von 405 g, Hülse 30 mm x 173, 30 mm Bushmaster II Druckprüfgerät (MANN-Barrel), Geschwindigkeitsmessung optisch in 2 m und 5 m nach Laufmündung, Druckmessung Kistler 6215 piezoelektrisch.
  • Einbasiges Vergleichspulver: Länge = 2.17 mm, Durchmesser = 2.29 mm, Wandstärke = 0.5 mm, Lochdurchmesser = 0.11 mm, Energieinhalt = 3403 J/g, Schüttdichte = 1039 g/l.
    Beschusstemperatur -54°C -32°C +21°C +52°C +71°C
    Pulver aus Herstellungsbeispiel 1
    Ladungsmasse = 174 g
    Mündungsgeschwindigkeit [m/s] 1099 1112 1124 1118 1103
    Spitzengasdruck [bar] 3641 3933 4189 3951 3589
    Einbasiges Vergleichspulver
    Ladungsmasse = 174 g
    Mündungsgeschwindigkeit [m/s] 1091
    Spitzengasdruck [bar] 4329
  • Aus der Tabelle ergibt sich, dass das erfindungsgemässe Treibladungspulver einen flachen Temperaturverlauf hat. Die Geschwindigkeitsvariation von 12 m/s im Bereich von -32°C bis +52°C ist gering. Im Vergleich zum Stand der Technik (einbasiges Vergleichspulver) ist die Mündungsgeschwindigkeit um 30 m/s höher. Zudem ist der Spitzengasdruck kleiner, was eine höhere Geschwindigkeit (ca. +50 m/s) bei optimaler Ausnützung des zugelassenen Gasdrucks erlaubt.
  • Beispiel 2: (Vergleichsbeispiel)
  • Analog zum Beispiel 1 wird ein 7-Loch-Grünpulver mit 5.49 mm Aussendurchmesser, 13.60 mm Länge, 0.43 mm Lochdurchmesser und 1.05 mm Wandstärke, aufgebaut aus den festen Anteilen von 10 Gew.-% RDX, 2.0 Gew.-% Akardit-II, 2.0 Gew.-% Kaliumsulfat, 5.0 Gew.-% eines Phthalsäureesters (welcher aus vorwiegend linearen C9-C11-Alkoholen mit einem mittleren Molekulargewicht von 450 g/mol und mit einer mittleren dynamischen Viskosität (20°C) von 73 mPa*s aufgebaut ist) und Nitrocellulose mit einem Stickstoffgehalt von 12.6 Gew.-% (Ergänzung auf 100%) auf die genannte Weise durch Verpressen eines lösungsmittelfeuchten Knetteigs durch eine Matrize hergestellt. Das resultierende Pulver hat folgende Eigenschaften:
  • Physikalische Eigenschaften: Schüttdichte = 855 g/l, Wärmeinhalt = 3190 J/g.
  • Chemische Stabilität: Verpuffungstemperatur = 178 °C. Wärmeflusskalorimetrie (STANAG 4582) = 7.8 J/g resp. 8 µW (Anforderung nach STANAG 4582: maximale Wärmeentwicklung nach 5 J/g: <114 µW). Stabilitätstest 132°C TL: 2.75 ml NaOH.
  • Verwundbarkeit 1: Test: 35mm-Kombinationstest (nach Rheinmetall, Unterlüss, Deutschland). Einwirkung Hohlladungsstrahl: Reaktion Typ V (Abbrand), Einwirkung heisse Fragmente: Reaktion Typ V (Abbrand).
  • Beispiel 3:
  • Analog Herstellungsbeispiel 1 wird ein 7-Loch-Grünpulver mit 2.05 mm Aussendurchmesser, 2.30 mm Länge, 0.13 mm Lochdurchmesser und 0.41 mm Wandstärke, aufgebaut aus den festen Anteilen von 25 Gew.-% RDX, 1.5 Gew.-% Akardit-II, 0.4 Gew.-% Kaliumsulfat, 2.5 Gew.-% eines Phthalsäureesters (aufgebaut aus vorwiegend linearen C9-C11-Alkoholen mit einem mittleren Molekulargewicht von 450 g/mol und mit einer mittleren dynamischen Viskosität (20°C) von 73 mPa*s) und Nitrocellulose mit einem Stickstoffgehalt von 13.2 Gew.-% (Ergänzung auf 100%) durch Verpressen eines lösungsmittelfeuchten Knetteigs durch eine Matrize hergestellt. Analog zu Beispiel 1 werden 5 kg dieses Grünpulvers in der Poliertrommel bei 60°C mit 10 g Graphit (0.2 Gew.-%) und 125 g Campher (2.5 Gew.-%), gelöst in 180 ml Ethanol, behandelt. Das resultierende Pulver hat folgende Eigenschaften:
  • Physikalische Eigenschaften: Schüttdichte = 1042 g/l, Wärmeinhalt = 3808 J/g.
  • Chemische Stabilität: Verpuffungstemperatur = 178 °C. Stabilität 132°C TL: 5.52 ml NaOH.
  • Fig. 4 zeigt eine Munition nach dem Kugeleinschuss (engl. Bullet Impact) in einer 35 mm Stahlhülse; Es liegt eine Reaktion Typ V (Abbrand) vor.
  • Innenballistische Eigenschaften: Energieinhalt = 3824 J/g)
  • System: 25 mm APFSDS-T-Pfeilmunition mit Geschossmasse von 129g (M919), Hülse 25mm x 137, 25mm Bushmaster M242 Druckprüfgerät (MANN-Barrel), Geschwindigkeitsmessung optisch in 4.2m und 14.9m nach Laufmündung, Druckmessung Kistler 6215 piezoelektrisch. Ladungsmasse = 100.0 g.
  • Zu Vergleichszwecken wurde das in der M919-Munition seriemässig eingesetzte Treibladungspulver (Energieinhalt 3956 J/g) mit einer Ladungsmasse von 101.0 g mitgeschossen.
    Pulver aus Beispiel 4, Ladung 100 g 21 °C 50°C 71 °C -54°C
    Mündungsgeschwindigkeit [m/s] 1430 1439 1445 1403
    Spitzengasdruck [bar] 4135 4333 4409 3896
    Aktionszeit [ms] 2.88 2.78 2.79 3.19
    Thermischer Wirkungsgrad [%] 34.5 35.4 35.7 33.2
    Vergleichspulver, Ladung 101 g 21 °C 50°C 71 °C -54°C
    Mündungsgeschwindigkeit [m/s] 1425 - 1430 1361
    Spitzengasdruck [bar] 4150 - 4404 3436
    Aktionszeit [ms] 3.12 - 2.87 3.62
    Thermischer Wirkungsgrad [%] 32.7 - 33.0 29.9
  • Man erkennt, dass die Mündungsgeschwindigkeit trotz tieferem Energieinhalt und geringerer Ladungsmasse bei 21°C um 5 m/s höher liegt als beim eingeführten Referenzpulver. Im Kaltbereich ist der Abfall von V0 und Pmax deutlich geringer, d.h. die Temperaturcharakteristik ist vorteilhaft. Zudem sind die Aktionszeiten und die thermischen Wirkungsgrade (Energieumsetzung) über den gesamten Temperaturbereich deutlich besser, was in der Praxis zu massiven Vorteilen führt (rückstandsfreie Verbrennung, besseres Trefferbild).
  • Die Aktionszeit ist kürzer, d.h. der Abbrand verläuft schneller. Die Geschwindigkeit liegt bei 1430 m/s statt nur bei 1425 m/s. Hervorzuheben ist insbesondere die bessere Energienutzung z.B. 34,5% gegenüber 32,7%.
  • Der Test zeigt, dass man trotz 130 J/g geringerem Energieinhalt gegenüber dem Vergleichsbeispiel nach Stand der Technik eine herausragende Leistung bei niedrigerem Gasdruck erhält.
  • Beispiel 4
  • Analog zu Beispiel 1 wird ein 7-Loch-Grünpulver mit 2.32 mm Aussendurchmesser, 2.62 mm Länge, 0.14 mm Lochdurchmesser und 0.47 mm Wandstärke, aufgebaut aus den festen Anteilen von 25 Gew.-% RDX, 1.5 Gew.-% Akardit-II, 0.4 Gew.-% Kaliumsulfat, 2.0 Gew.-% eines Phthalsäureesters (aufgebaut aus vorwiegend linearen C9-C11-Alkoholen mit einem mittleren Molekulargewicht von 450 g/mol und mit einer mittleren dynamischen Viskosität (20°C) von 73 mPa*s) und Nitrocellulose mit einem Stickstoffgehalt von 13.2 Gew.-% (Ergänzung auf 100%) durch Verpressen eines lösungsmittelfeuchten Knetteigs durch eine Matrize hergestellt. Analog zu Beispiel 1 werden 5 kg dieses Grünpulvers in der Poliertrommel bei 60°C mit 12.5 g Graphit (0.25 Gew.-%) und 100 g Campher (2.0 Gew.-%), gelöst in 170 ml Ethanol, behandelt. Das resultierende Pulver hat folgende Eigenschaften:
  • Physikalische Eigenschaften: Schüttdichte = 1051 g/l, Wärmeinhalt = 3900 J/g.
  • Innenballistische Eigenschaften in 25 mm-Vollkalibermunition mit einer Geschossmasse von 205 g, Hülse 25mm x 137, 25mm Bushmaster M242 Druckprüfgerät (MANN-Barrel), Geschwindigkeitsmessung optisch in 12.5m und 17.2m nach Laufmündung, Druckmessung Kistler 6215 piezoelektrisch. Die Ladungsmasse betrug 92.0 g, was einem Füllgrad von 0.939 entspricht.
    • +21 °C: v0 = 1151 m/s bei 4095bar. Aktionszeit t4 = 3.55ms.
    • +50°C: v0= 1154m/s bei 4136bar. Aktionszeit t4 = 3.50ms.
    • +71 °C: v0 = 1158m/s bei 4275bar. Aktionszeit t4 = 3.43ms.
    • -54°C: v0 = 1150m/s bei 4084bar. Aktionszeit t4 = 3.56ms.
  • Die Mündungsgeschwindigkeit liegt bei +21°C um zirka 70 m/s höher als mit einem normalen einbasigen TLP. Zudem ist die Temperaturcharakteristik über den sehr breiten Temperaturbereich von -54°C bis +71°C extrem flach. Die t4-Aktionszeiten sind über den gesamten Temperaturbereich sehr kurz und dienen als Beweis für die überraschend rasche thermische Umsetzung des neuen Pulvertyps. Bei +21°C beträgt der thermische Wirkungsgrad 40%, d.h. die innere Energie des neuen Pulvertyps wird sehr gut umgesetzt.
  • Beispiel 5:
  • Analog zu Beispiel 1 wird ein 7-Loch-Grünpulver mit 5.56 mm Aussendurchmesser, 13.59 mm Länge, 0.48 mm Lochdurchmesser und 1.03 mm Wandstärke, aufgebaut aus den festen Anteilen von 15 Gew.-% RDX, 2.0 Gew.-% Akardit-II, 2.0 Gew.-% Kaliumsulfat, 2.5 Gew.-% eines Phthalsäureesters (aufgebaut aus vorwiegend linearen C9-C11-Alkoholen mit einem mittleren Molekulargewicht von 450 g/mol und mit einer mittleren dynamischen Viskosität (20°C) von 73 mPa*s) und Nitrocellulose mit einem Stickstoffgehalt von 12.6 Gew.-% (Ergänzung auf 100%) auf in der Pulvertechnik bekannte Weise durch Verpressen eines lösungsmittelfeuchten Knetteigs durch eine Matrize hergestellt. Analog Beispiel 1 werden 5 kg dieses Grünpulvers in der Poliertrommel bei 60°C mit 10 g Graphit (0.2 Gew.-%) und 150 g Campher (3.0 Gew.-%), gelöst in 200 mi Ethanoi, behandelt. Das resultierende Pulver hat folgende Eigenschaften:
    • Physikalische Eigenschaften: Schüttdichte = 916 g/l, Wärmeinhalt = 3255 J/g.
    • Chemische Stabilität: Verpuffungstemperatur = 179 °C. Wärmeflusskalorimetrie (STANAG 4582) = 12.1 J/g resp. 14 µW (Anforderung nach STANAG 4582: maximale Wärmeentwicklung nach 5 J/g: <114 µW).
    • Verwundbarkeit 1: Test: 35mm-Kombinationstest (nach Rheinmetall, Unterlüss, Deutschland). Einwirkung Hohlladungsstrahl: Reaktion Typ A (V, Abbrand), Einwirkung heisse Fragmente: Reaktion Typ A (V, Abbrand)).
    • Verwundbarkeit 2: Test: Bullet Impact Test in UN-Stahlrohr: Reaktion Typ V (Abbrand)
  • Zusammenfassend ist festzustellen, dass die erfindungsgemässen nitrocellulosehaltigen Treibladungspulver, welche einen kristallinen Energieträger auf Nitramin-Basis und einen inerten plastifizierenden Zusatzstoff enthalten, in den Kaliberbereichen von 5.56 mm (Kleinkaliber) bis gegen 155 mm (Mittel- bis Grosskaliber, Mörser) auf breiter Front zur Beschleunigung des jeweiligen Geschosses eingesetzt werden können. Die neuartigen Antriebe haben eine hohe ballistische Leistungsfähigkeit und können damit in Hochleistungsanwendungen wie KE-Munition (Pfeilmunition) oder auch in Vollkaliber-Applikationen (Airburst, Munition in Panzer, Artillerie und Flugzeugen) ohne Abstriche verwendet werden.
  • Die Verwendung von Nitrocellulose als Hauptbestandteil der Kornmatrix (= Binder) bietet Vorteile, weil die Ausgangsstoffe frei verfügbar, erneuerbar und kostengünstig sind, weil die Herstellung der Treibladungspulver mit bekannten Prozessen in bestehenden Serieanlagen produziert werden können, sowie bessere Reproduzierbarkeit (hohe Gleichmässigkeit) der Produkteeigenschaften mit sich bringen.
  • Die Verwendung von relativ hohen Mengen an Nitrocellulose in der Matrix wirkt sich positiv auf die mechanischen Eigenschaften aus, insbesondere im Kaltbereich bei Temperaturen von < 0°. Die mechanischen Eigenschaften von kunststoffgebundenen LOVA-TLP mit hohen Füllgraden an kristallinem Energieträger sind weniger gut, d.h. derartige TLP sind relativ spröde oder werden mit zunehmender Alterung spröde. Bei mechanischer Einwirkung, wie sie während der Schussabgabe oder durch feindlichen Beschuss der Munition auftritt, können sich derartige Pulverkörner zerlegen, was zu gefährlichen Druckanstiegen resp. zu detonativen Umsetzungen führt. Die neuen zu schützenden IM-TLP weisen hiermit Vorteile bezüglich Kältversprödung auf. Gefährliche Druckanstiege beim Verschiessen der Munition und detonative Umsetzungen der Munition bei feindlichem Beschuss der Munition durch heisse Fragmente, Kugeln oder Hohlladungsstrahlen werden damit wirkungsvoll unterbunden.
  • Die neuen IM-Antriebe weisen im Vergleich zu konventionellen einbasigen und nitroglyzerinhaltigen zwei- und dreibasigen TLP eine bessere chemische Stabilität auf, was sich in Verbesserungen bezüglich Cook-off-Festigkeit (Lagerfähigkeit bei hohen Temperaturen) niederschlägt. Dies ist für Anwendungen in Flugzeugmunition mit hohen thermischen Belastungsspitzen oder beim Einsatz der Munition in warmen Klimazonen von grossem Vorteil.
  • Die neuen IM-Antriebe zeichnen sich dadurch aus, dass deren Inhalt an chemischer Energie (Wärmeinhalt) in hohen Umsetzungsraten in kinetische Mündungsenergie des angetriebenen Geschosses umgesetzt werden kann. In unterkalibrigen Munitionstypen liegen die Wirkungsgrade unter Einhaltung der waffenseitigen Systemanforderungen bei bis zu 36%, und zwar auf einem hohen Geschwindigkeitsniveau, wie es bisher nur von TLP, wie sie z.B. aus der EP 1'164'116 B1 ("EI®-TLP") bekannt sind, erreicht wurde (d.h. ca. 50 m/s mehr als bei konventionellen einbasigen TLP). In Vollkaliber-Anwendungen werden Wirkungsgrade von bis zu 44% unter Einhaltung der waffenseitigen Systemanforderungen erreicht (zum Vergleich: 39% mit EI®-TLP).
  • Die neuen IM-Antriebe zeichnen sich generell durch eine sehr neutrale Temperaturcharakteristik aus, welcher sich über den schichtartigen Aufbau gezielt und steuerbar einsetzen lässt. Dies bedeutet, dass die Werte von Spitzengasdruck und Mündungsgeschwindigkeit bei Warm- und Kalttemperaturen im Vergleich zu den bei 21°C erschossenen Werten nur relativ geringfügig abweichen. Dies bewirkt, dass die Munition unabhängig von der Umgebungstemperatur über den gesamten Temperaturbereich mit praktisch denseiben innenballistischen Leistungsdaten verschossen werden kann. Dieses bereits von EI®-TLP bekannte Verhalten bringt Vorteile im Bezug auf Ersttrefferwahrscheinlichkeit, Ausnützung der systembedingten Leistungsreserven und konstruktiver Einfachheit.

Claims (13)

  1. Einbasiger Antrieb zur Beschleunigung von Geschossen, welcher auf Nitrocellulose basiert und einen kristallinen Energieträger auf Nitramin-Basis, nämlich Hexogen (RDX) oder Oktogen (Hmx) in 1-25 Gew.-%, und mindestens zwei oder mehrere inerte plastifizierende Zusatzstoffe zur Verbesserung der Widerstandsfähigkeit gegenüber mechanischen Stimuli enthält, dadurch gekennzeichnet, dass wenigstens ein erster inerter plastifizierender Zusatzstoff in einer Matrix des Antriebs im Wesentlichen homogen verteilt vorhanden ist und ein zweiter inerter plastifizierender Zusatzstoff in oberflächennahen Zonen auf eine Eindringtiefe von maximal 400 Mikrometer begrenzt eine erhöhte Konzentration aufweist.
  2. Antrieb nach Anspruch 1, dadurch gekennzeichnet, dass er aus Körnern besteht, die eine kreisrylindrische Geometrie und in axialer Richtung verlaufende Längskanäle haben.
  3. Antrieb nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass der erste inerte plastifizierende Zusatzstoff in der Kornmatrix eine Konzentration im Bereich von 0.5 - 20 Gew.-%. insbesondere im Bereich von 1 - 5 Gew.-% hat.
  4. Antrieb nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der erste inerte plastifizierende Zusatzstoff eine im Wesentlichen wasserunlösliche organische Polyoxoverbindung, insbesondere eine Polyester- oder Polyetherverbindung mit einem Molekulargewicht von 50 - 20'000 g/mol ist.
  5. Antrieb nach Anspruch 4, dadurch gekennzeichnet, dass der erste inerte plastifizierende Zusatzstoff einen wasserunlöslichen Citratester, einen Adipinsäureester, einen Sebacinsäureester oder einen Phtalsäureester und/oder hydrierte Cyclohexylderivate hiervon mit einem Molekulargewicht von 100 - 20'000 g/mol enthält.
  6. Antrieb nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der zweite inerte plastifizierende Zusatzstoff in den oberflächennahen Zonen einen Gewichtsanteil am Gesamtkorn von nicht mehr als 10 Gew.-%, insbesondere von weniger als 6 Gew.-%, hat.
  7. Antrieb nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die zweiten inerten plastifizierenden Zusatzstoffe carboxylgruppenhaltige organische Verbindungen mit einem Molekulargewicht von 100 - 5000 g/mol sind.
  8. Antrieb nach Anspruch 7, dadurch gekennzeichnet, dass der zweite inerte plastifizierende Zusatzstoff in den oberflächennahen Zonen im Wesentlichen Campher ist.
  9. Antrieb nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es aus Körnern einer maximalen geometrischen Ausdehnung von 20 mm besteht.
  10. Antrieb nach Anspruch 1, dadurch gekennzeichnet, dass der erste inerte plastifizierende Zusatzstoff in der Matrix des Antriebs ein Phthalsäurester, aufgebaut aus linearen C9-C11-Alkoholen, ist.
  11. Verfahren zur Herstellung eines einbasigen Antriebs, welcher auf Nitrocellulose basiert, dadurch gekennzeichnet, dass ein lösungsmittelhaltiger Pulverteig auf der Basis von Nitrocellulose und einem kristallinen Energieträger auf Nitramin-Basis, nämlich RDX oder HMX in 1 - 25 Gew.-%, und einem ersten inerten plastifizierenden Zusatzstoff hergestellt wird und dass durch Extrudieren des lösungsmittelhaltigen Pulverteigs ein Grünkorn hergestellt wird, welches anschliessend mit einem zweiten inerten plastifizierenden Zusatzstoff oberflächenbehandelt oder imprägniert wird, so dass der zweite Inerte plastiflzlerende Zusatzstoff In den oberflächennahen Zonen auf eine Eindringtiefe von maximal 400 Mikrometer begrenzt einen Gewichtsanteil von nicht mehr als 10 Gew.-%, insbesondere von weniger als 6 Gew.-%, hat.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass der Pulverteig mindestens 60 Gew.-% Nitrocellulose enthält, wobei der Stickstoffgehalt der Nitrocellulose zwischen 11 - 13.5 Gew.-% liegt.
  13. Verfahren nach einem der Ansprüche 11 bis 12, dadurch gekennzeichnet, dass die Imprägnierung des Grünkorns mit einem zweiten plastifizierenden Zusatzstoff durch Imprägnierung des Grünkorns in wässriger Emulsion erfolgt.
EP06405217A 2006-05-19 2006-05-19 Antrieb zur Beschleunigung von Geschossen Active EP1857429B1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PL06405217T PL1857429T3 (pl) 2006-05-19 2006-05-19 Układ napędowy do przyspieszania pocisków
EP06405217A EP1857429B1 (de) 2006-05-19 2006-05-19 Antrieb zur Beschleunigung von Geschossen
ES06405217T ES2423495T3 (es) 2006-05-19 2006-05-19 Propulsor para la aceleración de proyectiles
CA2589014A CA2589014C (en) 2006-05-19 2007-05-14 Propulsion system for the acceleration of projectiles
US11/798,878 US8353994B2 (en) 2006-05-19 2007-05-17 Propulsion system for the acceleration of projectiles
JP2007158049A JP5405006B2 (ja) 2006-05-19 2007-05-18 発射体を加速させるための推進系

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP06405217A EP1857429B1 (de) 2006-05-19 2006-05-19 Antrieb zur Beschleunigung von Geschossen

Publications (2)

Publication Number Publication Date
EP1857429A1 EP1857429A1 (de) 2007-11-21
EP1857429B1 true EP1857429B1 (de) 2013-03-27

Family

ID=37680707

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06405217A Active EP1857429B1 (de) 2006-05-19 2006-05-19 Antrieb zur Beschleunigung von Geschossen

Country Status (6)

Country Link
US (1) US8353994B2 (de)
EP (1) EP1857429B1 (de)
JP (1) JP5405006B2 (de)
CA (1) CA2589014C (de)
ES (1) ES2423495T3 (de)
PL (1) PL1857429T3 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5655303B2 (ja) * 2009-12-25 2015-01-21 日油株式会社 シングルベース発射薬
BR112014005789B1 (pt) 2011-09-15 2020-06-23 Nitrochemie Wimmis Ag Sistema propelente multiperfurado isento de nitroglicerina, seu uso e método para produzir propelentes multiperfurados
JP6165269B2 (ja) * 2013-01-29 2017-07-19 ニトロヒェミー ヴィミス アクチエンゲゼルシャフトNitrochemie Wimmis AG 迫撃砲システム用砲弾を加速させるための火薬
EP2978731B1 (de) * 2013-03-27 2020-07-29 BAE Systems PLC Phthalatfreie treibmittel
FR3014431B1 (fr) * 2013-12-05 2015-12-25 Herakles Propergols composites stabilises
WO2017004726A1 (de) 2015-07-03 2017-01-12 Nitrochemie Wimmis Ag Treibladungssystem für artilleriegeschosse
KR101649517B1 (ko) * 2016-02-17 2016-08-19 국방과학연구소 니트라민 산화제를 포함하는 추진제 조성물
PE20200683A1 (es) * 2017-06-23 2020-06-11 Simmel Difesa Spa Composicion para polvo propulsor de base unica para municiones y municiones provistas con dicha composicion
FR3096047B1 (fr) 2019-05-13 2022-06-24 Eurenco France Grains de poudre propulsive comprenant des canaux au moins partiellement obtures

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US261278A (en) 1882-07-18 Bridle-bit
US3798085A (en) * 1971-09-03 1974-03-19 Hercules Inc Manufacture of a burning rate deterrent coated propellant
US3743554A (en) * 1971-09-03 1973-07-03 Hercules Inc Nitrocellulose propellant containing diffused linear polyester burning rate deterrent
FR2165093A5 (de) * 1971-12-17 1973-08-03 Poudres & Explosifs Ste Nale
US4092188A (en) * 1977-05-16 1978-05-30 Lovelace Alan M Acting Adminis Nitramine propellants
GB2258230B (en) * 1982-06-25 1993-10-13 Poudres & Explosifs Ste Nale Production of double-base propergol propellant blocks
US5500060A (en) * 1986-07-04 1996-03-19 Royal Ordnance Plc Energetic plasticized propellant
GB8625904D0 (en) * 1986-10-29 1998-11-04 Royal Ordnance Plc Gun propellants
US4923536A (en) 1988-02-17 1990-05-08 Olin Corporation Explosives and propellant compositions containing a polyurethane polyacetal elastomer binder and method for the preparation thereof
US4925503A (en) 1988-02-17 1990-05-15 Olin Corporation Solid explosive and propellant compositions containing a polyurethane polyacetal elastomer binder and method for the preparation thereof
US5218166A (en) * 1991-09-20 1993-06-08 Mei Corporation Modified nitrocellulose based propellant composition
FR2688498B1 (fr) 1992-03-11 1994-05-06 Poudres Explosifs Ste Nale Poudre propulsive a faible vulnerabilite sensible a l'allumage.
US5682009A (en) * 1994-07-21 1997-10-28 Primex Technologies, Inc. Propellant containing a thermoplatic burn rate modifer
JPH10139578A (ja) * 1996-10-31 1998-05-26 Nof Corp コンソリデート用発射薬、コンソリデート発射薬およびその製造方法
JPH10167871A (ja) * 1996-12-05 1998-06-23 Asahi Chem Ind Co Ltd 発射薬組成物
JP4342640B2 (ja) * 1998-06-12 2009-10-14 ダイセル化学工業株式会社 プリテンショナー用ガス発生剤組成物
DE19907809C2 (de) * 1999-02-24 2002-10-10 Nitrochemie Gmbh Verfahren zur Herstellung von ein-, zwei- oder dreibasigen Triebladungspulvern für Rohrwaffenmunition
ATE287863T1 (de) * 2000-06-15 2005-02-15 Nitrochemie Wimmis Ag Verfahren zur herstellung eines funktionalen hochenergetischen materials
US6345577B1 (en) * 2000-09-27 2002-02-12 The United States Of America As Represented By The Secretary Of The Navy Energetic deterrent coating for gun propellant
US6984275B1 (en) 2003-02-12 2006-01-10 The United States Of America As Represented By The Secretary Of The Navy Reduced erosion additive for a propelling charge
DK1616845T3 (da) * 2004-07-16 2014-02-03 Nitrochemie Wimmis Ag Hældbart drivladningspulver

Also Published As

Publication number Publication date
JP2007308367A (ja) 2007-11-29
CA2589014C (en) 2015-03-17
ES2423495T3 (es) 2013-09-20
CA2589014A1 (en) 2007-11-19
EP1857429A1 (de) 2007-11-21
JP5405006B2 (ja) 2014-02-05
US8353994B2 (en) 2013-01-15
PL1857429T3 (pl) 2013-08-30
US20120138201A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
EP1857429B1 (de) Antrieb zur Beschleunigung von Geschossen
EP2388244B1 (de) Treibladung
EP1031548B1 (de) Verfahren zur Herstellung von ein-, zwei- oder dreibasigen Treibladungspulvern für Rohrwaffenmunition
AU2011264361B2 (en) Nitroglycerine-free multi-perforated high-performing propellant system
KR101649517B1 (ko) 니트라민 산화제를 포함하는 추진제 조성물
EP3317606B1 (de) Treibladungssystem für artilleriegeschosse
AU2014328459B2 (en) Burn rate modifier
EP2951137B1 (de) Pulver zur beschleunigung von geschossen für mörsersysteme
DE4307731C2 (de) Treibladungspulver für Waffen
EP1164116B1 (de) Verfahren zur Herstellung eines funktionalen hochenergetischen Materials
DE2900020C2 (de) Verfahren zur Herstellung eines mehrbasigen Treibladungspulvers
EP2978730B1 (de) Unempfindliche munitionstreibmittel
DE2756259C3 (de) Einstückige Pulver-Treibladung, ihre Herstellung und Verwendung
EP1241152B1 (de) Temperaturunabhängiges Treibladungspulver
DE2809279C3 (de) Treibladungsmassen für Rohrwaffen
EP2784054A1 (de) Unempfindliche Munitionstreibmittel
DE2644987C1 (de) Nitrocellulosefreies Treibladungspulver
EP1616845B1 (de) Schüttbares Treibladungspulver
DE2921212C2 (de)
DE977704C (de) Raketentreibstoffe
GB2512345A (en) Insensitive munition propellants
CH284418A (de) Treibmittel für Geschosse und Verfahren zu dessen Herstellung.
DE2436743A1 (de) Formbare zusammensetzungen auf polyvinylnitratbasis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080124

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20120209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 603294

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER AND PARTNER PATENTANWAELTE AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006012650

Country of ref document: DE

Effective date: 20130523

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130628

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130327

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2423495

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130727

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20140103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006012650

Country of ref document: DE

Effective date: 20140103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130519

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 603294

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130519

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: EIGERSTRASSE 2 POSTFACH, 3000 BERN 14 (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130519

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060519

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: NITROCHEMIE WIMMIS AG, CH

Free format text: FORMER OWNER: NITROCHEMIE WIMMIS AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006012650

Country of ref document: DE

Representative=s name: MUELLER SCHUPFNER & PARTNER PATENT- UND RECHTS, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230526

Year of fee payment: 18

Ref country code: FR

Payment date: 20230525

Year of fee payment: 18

Ref country code: DE

Payment date: 20230519

Year of fee payment: 18

Ref country code: CZ

Payment date: 20230515

Year of fee payment: 18

Ref country code: CH

Payment date: 20230602

Year of fee payment: 18

Ref country code: BG

Payment date: 20230526

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230517

Year of fee payment: 18

Ref country code: SE

Payment date: 20230519

Year of fee payment: 18

Ref country code: PL

Payment date: 20230419

Year of fee payment: 18

Ref country code: FI

Payment date: 20230523

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230519

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 18

Ref country code: ES

Payment date: 20230724

Year of fee payment: 18