EP1856007A1 - Mehrmodaler sprengstoff - Google Patents

Mehrmodaler sprengstoff

Info

Publication number
EP1856007A1
EP1856007A1 EP05728237A EP05728237A EP1856007A1 EP 1856007 A1 EP1856007 A1 EP 1856007A1 EP 05728237 A EP05728237 A EP 05728237A EP 05728237 A EP05728237 A EP 05728237A EP 1856007 A1 EP1856007 A1 EP 1856007A1
Authority
EP
European Patent Office
Prior art keywords
explosive
powder
microns
single crystal
silicon single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05728237A
Other languages
English (en)
French (fr)
Inventor
Karl Rudolf
Heinz Hofmann
Dimitri Kovalev
Joachim Diehner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl BGT Defence GmbH and Co KG
Original Assignee
Diehl BGT Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102005011535A external-priority patent/DE102005011535B4/de
Application filed by Diehl BGT Defence GmbH and Co KG filed Critical Diehl BGT Defence GmbH and Co KG
Publication of EP1856007A1 publication Critical patent/EP1856007A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B25/00Compositions containing a nitrated organic compound
    • C06B25/34Compositions containing a nitrated organic compound the compound being a nitrated acyclic, alicyclic or heterocyclic amine
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B33/00Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
    • C06B33/08Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide with a nitrated organic compound

Definitions

  • the invention relates to an explosive according to the preamble of claim 1.
  • nanostructured porous reactive substances consist of reactive bodies whose voids are in the size range of 1 to 1000 nm, which are provided with oxidizing agents.
  • the reactive substances consist of mutually independent, protective-layer-coated reactive ones
  • Particles There is also described a process for producing such reactive substances, wherein nm-sized fuel particles having 1 to 1000 nm-sized interstices, first by annealing at 20 to 1000 ° C in air or by chemical or electrochemical processes or by vapor deposition with a protective layer and then the interspaces are provided with an oxidizing agent.
  • the fuel particles provided with the protective layer and the oxidizing agent can be pressed into a reactive body.
  • the fuel particles may consist of silicon, boron, titanium or zirconium.
  • the invention has for its object to provide an explosive, especially for Blastladungen, of the aforementioned type, which has an improved blast behavior above and below water.
  • Silicon Single Crystal Powders also shows no signs of oxidation for years. This is true even when storing silicon nanopowders in ambient air. Silicon single crystal powders have almost the same heat of combustion and reactivity as pure aluminum powder, ie non-oxidized aluminum powder.
  • hydrogen-passivated silicon powder is a significantly more interesting additive than the aluminum powder used in secondary explosive mixtures, since an immediate co-reaction takes place in the detonation front as a result of the non-oxidized crystal surfaces of the silicon powder, which also extends into the after-reaction period with increasing crystal sizes. It is so with increasing crystal sizes a so-called sliding effect, d. H. achieved a temporal extension of the detonation pressure pulse. For example, with long-term stable d. H. unoxidized silicon powder having a particle size of about 1 .mu.m during the Explosengstoffumsetzu ⁇ g achieved an immediate significant contribution to the detonation front and when using a coarse grain of z. B. 350 microns achieved an additional post-reaction and thus a sliding effect.
  • the explosive according to the invention in particular for Blastladungen, which has a hydrogen-passivated addition of silicon powder to secondary explosives to increase performance, which is formed of silicon single crystal powder, for example, starting with a grain size of 350 microns (average) of the first particle size range of the silicon single crystal powder of silicon Single crystal powder may be formed, which has a grain size of about 1 micron - 8 microns, and it may be the second grain size range of the silicon single crystal powder at about 40 microns and in the third range of 200 to 500 microns, preferably from about 350 microns, namely after application only one Grain size range or a mixture of the aforementioned fractions.
  • the proportion of silicon single crystal powder may be 15-55 wt.%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Silicon Compounds (AREA)

Abstract

Es wird ein mehrmodaler Sprengstoff, insbesondere für Blastladungen, beschrieben, der zur Leistungssteigerung einen Pulverzusatz aufweist, der von einem wasserstoffterminierten Silizium-Einkristallpulver mindestens eines Korngrößenbereiches gebildet ist, das den Vorteil aufweist, dass auch über Jahre hinweg keine Oxidationserscheinung - selbst bei Lagerung an Umgebungsluft - stattfindet. Infolge der nichtoxidierten Kristalloberflächen erfolgt in vorteilhafter Weise eine sofortige Mitreaktion mit dem Sprengstoff in der Detonationsfront, die mit zunehmenden Kristallgrößen auch in den Nachreaktionszeitraum reicht, so dass je nach Zusatz eine unterschiedliche Schiebewirkung erzielt wird.

Description

Diehl BGT Defeπce GmbH & Co. KG, Alte Nußdorfer Straße 13, 88662 Überlingen
Mehrmodaler Sprengstoff
Die Erfindung betrifft einen Sprengstoff gemäß dem Oberbegriff des Anspruches 1.
Bei Sprengstoffen insbesondere für Blastladungen werden bislang zur Leistungssteigerung, d. h. zur Steigerung der Druckwirkung, Aluminiumpulver als Pulverzusatz eingesetzt. Als Sprengstoff kommt z.B. RDX (= Hexogen) oder HMX (= Oktogen) zur Anwendung. Die theoretisch erzielbare Erhöhung des Detonationsdruckes infolge Wärmefreisetzung bei der Reaktion mit den großen Anteilen freigesetzter Kohlenstoffatome von beispielsweise RDX oder HMX ist bei Verwendung von Aluminiumpulver als Pulverzusatz nur in sehr seltenen
Fällen beobachtbar. Bei Verwendung von nichtoxidiertem Aluminiumpulver kann beispielsweise eine Erhöhung der Splittergeschwindigkeit um ca. 12 % beobachtet werden. Diese Erhöhung der Splittergeschwindigkeit geht jedoch innerhalb weniger Wochen verloren, da Reinaluminiumpulver an der Pulveroberfläche schnell eine Vielzahl Aluminiumoxidlagen aufbaut. Dabei können sich an der Aluminiumpulveroberfläche mehrere Tausend Lagen Aluminiumoxid bilden. Diese Oxidschicht besitzt eine hohe Schmelztemperatur und eine hohe Verschleißbeständigkeit, so dass eine Nachreaktion erst im Millisekundenbereicht stattfinden kann, und erst dann ein verbessertes Blastverhalten über und unter Wasser eintritt. Bisherige Untersuchungen haben jedoch ergeben, dass insgesamt nur ein verhältnismäßig geringer Anteil des Aluminiumpulvers zur Reaktion kommt. Dieser geringe zur Reaktion kommende Aluminiumpulveranteil liegt größenordnungsmäßig bei maximal 20 %.
Aus der DE 102 04 895 A1 sind nanostrukturierte poröse Reaktivstoffe bekannt, die aus Reaktivkörpem bestehen, deren Hohlräume im Größenbereich von 1 bis 1000 nm liegen, die mit Oxidationsmitteln versehen sind. Die Reaktivstoffe bestehen aus voneinander unabhängigen, schutzschichtummantelten reaktiven
Partikeln. Dort wird außerdem ein Verfahren zur Herstellung solcher Reaktivstoffe beschrieben, wobei nm-große Brennstoffpartikel, die 1 bis 1000 nm-große Zwischenräumen aufweisen, zunächst durch Tempern bei 20 bis 1000 ° Celsius in Luft oder durch chemische oder elektrochemische Verfahren oder durch Aufdampfverfahren mit einer Schutzschicht und anschließend die Zwischenräume mit einem Oxydationsmittel versehen werden. Die mit der Schutzschicht und dem Oxidationsmittel versehenen Brennstoffpartikel können zu einem Reaktivkörper verpresst werden. Die Brennstoffpartikel können aus Silizium, Bor, Titan oder Zirkoπ bestehen.
Der Erfindung liegt die Aufgabe zugrunde, einen Sprengstoff, insbesondere für Blastladungen, der eingangs genannten Art zu schaffen, der über und unter Wasser ein verbessertes Blastverhalten besitzt.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Anspruches 1 gelöst. Bevorzugte Aus- bzw. Weiterbildungen des erfindungsgemäßen Sprengstoffes sind in den Unteransprüchen gekennzeichnet.
Im Zuge der Beschäftigung mit quasi reinem Silizium konnte überraschenderweise festgestellt werden, dass aufgrund ihrer
Oberflächeneigenschaften wasserstoffpassivierte Silizium-Einkristallpulver auch über Jahre hinweg keine Oxidationserscheinungen zeigt. Das gilt selbst bei der Lagerung von Silizium-Nanopulvern an Umgebungsluft. Silizium- Einkristallpulver besitzen nahezu die gleiche Verbrennungswärme und Reaktionsbereitschaft wie Reinaluminiumpulver, d.h. nichtoxidiertes Aluminiumpulver.
Bei Versuchen mit Oxidatoren zeigten Silizium-Nanokristalle ein sehr heftiges Reaktionsverhalten.
Es hat sich gezeigt, dass wasserstoffpassiviertes Siliziumpulver ein wesentlich interessanterer Zusatzstoff ist als das bislang zur Anwendung gelangende Aluminiumpulver in Sekundärsprengstoffmischungen, da infolge der nichtoxidierten Kristalloberflächen des Siliziumpulvers eine sofortige Mitreaktion in der Detonationsfront erfolgt, die mit zunehmenden Kristallgrößen auch in den Nachreaktionszeitraum reicht. Es wird also mit zunehmenden Kristallgrößen eine sogenannte Schiebewirkung, d. h. eine zeitliche Verlängerung des Detonationsdruckimpulses erreicht. So wird beispielsweise mit langzeitstabilem d. h. nichtoxidiertem Siliziumpulver mit einer Korngröße von etwa 1 μm während der Sprengstoffumsetzuπg ein sofortiger deutlicher Beitrag zur Detonationsfront erzielt und bei der Verwendung eines Grobkorns von z. B. 350 μm eine zusätzliche Nachreaktion und somit eine Schiebewirkung erzielt.
Bei dem erfindungsgemäßen Sprengstoff, insbesondere für Blastladungen, der zur Leistungssteigerung einen wasserstoffpassivierten Siliziumpulverzusatz zu Sekundärsprengstoffen aufweist, der von Silizium-Einkristallpulver gebildet ist, kann beispielsweise bei beginnend mit einer Kornstufe von 350 μm (Mittelwert) der erste Korngrößenbereich des Silizium-Einkristallpulvers von Silizium- Einkristallpulver gebildet sein, das eine Korngrößer von etwa 1 μm - 8 μm besitzt, und es kann der zweite Korngrößenbereich des Silizium- Einkristallpulvers bei etwa 40 μm und im dritten Bereich von 200 bis 500 μm, vorzugsweise von ca. 350 μm, liegen und zwar nach Anwendung nur ein Korngrößenbereich oder auch ein Gemisch der vorgenannten Fraktionen. Der Anteil an Silizium-Einkristallpulver kann 15 - 55 Gew.% betragen.
Die Anwendungsfälle mit bevorzugtem Einsatz derartiger Siliziumeinkristalle sind:
• Sehr schnelle Mitreaktion von 1 - 8 μm für erhöhte Metallbeschleunigungsfähigkeit.
• Verlängerte Druckbeaufschlagung bei ca. 40 μm bei Unterwasser- und schiebender Anwendung.
• Stark verlängerte Druckbeaufschlagung bei ca. 350 μm in nahezu oder ganz geschlossenen Bauten.

Claims

Diehl BGT Defeπce GmbH & Co. KG, Alte Nußdorfer Straße 13, 88662 ÜberlingenAnsprüche
1. Mehrmodaler Sprengstoff, insbesondere für Blastladungen, der zur Leistungssteigerung von Sekundärsprengstoffen einen Pulverzusatz aufweist, dadurch gekennzeichnet, dass der Pulverzusatz von einem wasserstoffterminierten Silizium-
Einkristallpulver mindestens eines oder mehreren Korngrößenbereiches des mehrmodalen Sprengstoffes gebildet ist.
2. Sprengstoff nach Anspruch 1 , dadurch gekennzeichnet, dass ein erster Korngrößenbereich des Silizium-Einkristallpulvers von Siliziumpulver 1 μm bis 8 μm gebildet ist.
3. Sprengstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Silizium-Einkristallpulver eine Korngröße von 20 μm bis 50 μm, vorzugsweise 40 μm besitzt.
4. Sprengstoff nach Anspruch 1 , dadurch gekennzeichnet, dass ein dritter Korngrößenbereich des Silizium-Einkristallpulvers eine Korngröße im Bereich von 200 bis 500 μm, vorzugsweise von ca.350 μm, besitzt.
5. Sprengstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Gewichtsanteil des Silizium-Einkristallpulvers 15 - 55 Gew.% beträgt.
EP05728237A 2005-03-10 2005-03-18 Mehrmodaler sprengstoff Withdrawn EP1856007A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005011535A DE102005011535B4 (de) 2004-03-10 2005-03-10 Mehrmodaler Sprengstoff
PCT/EP2005/002902 WO2006094531A1 (de) 2005-03-10 2005-03-18 Mehrmodaler sprengstoff

Publications (1)

Publication Number Publication Date
EP1856007A1 true EP1856007A1 (de) 2007-11-21

Family

ID=34965859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05728237A Withdrawn EP1856007A1 (de) 2005-03-10 2005-03-18 Mehrmodaler sprengstoff

Country Status (4)

Country Link
US (1) US7985308B2 (de)
EP (1) EP1856007A1 (de)
NO (1) NO20074851L (de)
WO (1) WO2006094531A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012089854A1 (es) 2010-12-31 2012-07-05 Madronero De La Cal Antonio Almacenamiento de hidrógeno y otros gases en materiales absorbentes sólidos tratados con radiaciones ionizantes
US20220073356A1 (en) * 2017-01-25 2022-03-10 The George Washington University Low temperature, high yield synthesis of hydrogen terminated highly porous amorphous silicon, and nanomaterials and composites from zintl phases

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3457126A (en) * 1967-05-16 1969-07-22 Ici Australia Ltd Aqueous explosive composition containing a porous water insoluble synthetic organic polymeric cellular material
US3462324A (en) * 1968-04-24 1969-08-19 Dow Chemical Co Explosive composition comprising a salt component contiguous to an over-fueled salt component
US3996078A (en) * 1971-05-29 1976-12-07 Dynamit Nobel Aktiengesellschaft Explosive composition and eutectic mixture therefor
DE2248218B2 (de) * 1972-10-02 1976-11-11 Fa. Diehl, 8500 Nürnberg Hochenergiehaltiger sekundaersprengstoff
US4331080A (en) * 1980-06-09 1982-05-25 General Electric Co. Composite high explosives for high energy blast applications
AT390787B (de) * 1988-01-05 1990-06-25 Advanced Explosives Ges Verfahren zur herstellung eines sprengund/oder festtreibstoffes
US6019861A (en) * 1997-10-07 2000-02-01 Breed Automotive Technology, Inc. Gas generating compositions containing phase stabilized ammonium nitrate
EP1335889B1 (de) * 2000-10-26 2007-04-25 SMG Technologies Africa (PTY) Ltd Metall und metalloxyd enthaltendes granulat und verfahren zur herstellung
DE20201938U1 (de) * 2002-02-06 2003-06-12 Diehl Munitionssysteme GmbH & Co. KG, 90552 Röthenbach Nanostrukturierte Reaktivstoffe
DE10204895B4 (de) * 2002-02-06 2004-07-29 Diehl Munitionssysteme Gmbh & Co. Kg Verfahren zur Herstellung von Reaktivstoffen
DE10204834B4 (de) * 2002-02-06 2005-05-25 Trw Airbag Systems Gmbh & Co. Kg Explosionsfähige Zusammensetzung und Verfahren zu deren Herstellung
WO2004069771A1 (en) * 2003-02-05 2004-08-19 Metlite Alloys Gauteng (Pty) Ltd. Explosive composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006094531A1 *

Also Published As

Publication number Publication date
WO2006094531A1 (de) 2006-09-14
US20080178974A1 (en) 2008-07-31
NO20074851L (no) 2007-10-04
US7985308B2 (en) 2011-07-26

Similar Documents

Publication Publication Date Title
EP0800496B1 (de) Blei- und barium-freie anzündsätze
DE4435523C1 (de) Festtreibstoff auf der Basis von phasenstabilisiertem Ammoniumnitrat
EP2027080A1 (de) Anzündsatz
US7931763B2 (en) Burn rate sensitization of solid propellants using a nano-titania additive
DE102010005923B4 (de) Pressbares insensitives Sprengstoffgemisch
EP1973863A2 (de) Anzündsatz
EP1856007A1 (de) Mehrmodaler sprengstoff
EP1876160B1 (de) Blast-Wirkladung
EP1162183B1 (de) Anzündmischung zur Verwendung in Gasgeneratoren
DE102005011535B4 (de) Mehrmodaler Sprengstoff
WO1998017607A1 (de) Gaserzeugendes, azidfreies feststoffgemisch
EP2646400A2 (de) Perchloratfreie pyrotechnische mischung
EP0781260B1 (de) Anzündelemente und fein abstufbare zündsätze
EP3939952A1 (de) Schnellbrennender festtreibstoff mit einem oxidator, einem energetischen binder und einem metallischen abbrandmodifikator sowie verfahren zu dessen herstellung
DE102005003579B4 (de) Pyrotechnischer Satz, Verfahren zu dessen Herstellung und seine Verwendung
DE4126981C1 (de)
US20060180253A1 (en) Method for manufacture of microcrystalline nitrocellulose
WO2010052269A1 (de) Anzündsätze mit verbesserter anzündleistung
DE19531130A1 (de) Gaserzeugende Masse mit einem Verschlackungsmittel
EP1886983A1 (de) Verfahren zur Herstellung mikrokristalliner Nitrocellulose
EP1966120A2 (de) Salze der styphninsäure
WO2006039892A2 (de) Stoffgemisch als thermisch initiierbare anzündmischung
EP1647538B1 (de) Verbrennbare Treibladungshülse
DE4204442C1 (en) Explosive esp. permissible explosive - contg. fine high explosive powder and additive for safety in fire-damp, which is more powerful than nitroglycerin and esp. economical in coal mining
DE172869C (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CZ DE FR GB SE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOFMANN, HEINZ

Inventor name: RUDOLF, KARL

Inventor name: DIEHNER, JOACHIM

Inventor name: KOVALEV, DIMITRI

17Q First examination report despatched

Effective date: 20080214

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CZ DE FR GB SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151001