EP1848674A1 - Verbunde keramischer hohlfasern, verfahren zu deren herstellung und deren verwendung - Google Patents
Verbunde keramischer hohlfasern, verfahren zu deren herstellung und deren verwendungInfo
- Publication number
- EP1848674A1 EP1848674A1 EP06706346A EP06706346A EP1848674A1 EP 1848674 A1 EP1848674 A1 EP 1848674A1 EP 06706346 A EP06706346 A EP 06706346A EP 06706346 A EP06706346 A EP 06706346A EP 1848674 A1 EP1848674 A1 EP 1848674A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ceramic
- hollow fibers
- green
- composite
- hollow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 48
- 239000000919 ceramic Substances 0.000 title claims description 63
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 229910010293 ceramic material Inorganic materials 0.000 claims abstract description 27
- 238000005245 sintering Methods 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 15
- 239000012530 fluid Substances 0.000 claims abstract description 7
- 239000012510 hollow fiber Substances 0.000 claims description 102
- 239000007789 gas Substances 0.000 claims description 29
- 229920000642 polymer Polymers 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 239000002243 precursor Substances 0.000 claims description 16
- 229910052574 oxide ceramic Inorganic materials 0.000 claims description 12
- 239000011224 oxide ceramic Substances 0.000 claims description 12
- 239000011174 green composite Substances 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 9
- 238000007669 thermal treatment Methods 0.000 claims description 7
- 238000002360 preparation method Methods 0.000 claims description 5
- 238000000578 dry spinning Methods 0.000 claims description 2
- 238000001125 extrusion Methods 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims description 2
- 238000002074 melt spinning Methods 0.000 claims description 2
- 238000002166 wet spinning Methods 0.000 claims description 2
- 238000009940 knitting Methods 0.000 claims 2
- 239000012779 reinforcing material Substances 0.000 claims 2
- 238000009954 braiding Methods 0.000 claims 1
- 239000003054 catalyst Substances 0.000 claims 1
- 238000005553 drilling Methods 0.000 claims 1
- 230000003014 reinforcing effect Effects 0.000 claims 1
- 238000009941 weaving Methods 0.000 claims 1
- 239000000835 fiber Substances 0.000 abstract description 13
- 238000009987 spinning Methods 0.000 description 9
- 239000012528 membrane Substances 0.000 description 6
- 238000000926 separation method Methods 0.000 description 5
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000012700 ceramic precursor Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000012432 intermediate storage Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000412 polyarylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62231—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
- C04B35/62236—Fibres based on aluminium oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/02—Hollow fibre modules
- B01D63/026—Wafer type modules or flat-surface type modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0041—Inorganic membrane manufacture by agglomeration of particles in the dry state
- B01D67/00411—Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
- B01D69/087—Details relating to the spinning process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
- B01D71/0271—Perovskites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62231—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
- C04B35/6225—Fibres based on zirconium oxide, e.g. zirconates such as PZT
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62231—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
- C04B35/62259—Fibres based on titanium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62272—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/62227—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
- C04B35/62272—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
- C04B35/62277—Fibres based on carbides
- C04B35/62281—Fibres based on carbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/001—Joining burned ceramic articles with other burned ceramic articles or other articles by heating directly with other burned ceramic articles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/021—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/008—Bodies obtained by assembling separate elements having such a configuration that the final product is porous or by spirally winding one or more corrugated sheets
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00793—Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/0081—Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/526—Fibers characterised by the length of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5208—Fibers
- C04B2235/5264—Fibers characterised by the diameter of the fibers
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
- C04B2235/5284—Hollow fibers, e.g. nanotubes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/32—Ceramic
- C04B2237/34—Oxidic
- C04B2237/343—Alumina or aluminates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/50—Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
- C04B2237/76—Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
- C04B2237/765—Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc at least one member being a tube
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249922—Embodying intertwined or helical component[s]
Definitions
- the present invention relates to composites of ceramic hollow fibers, which are particularly suitable for liquid and gas filtrations, for
- Example high-temperature applications such as gas separations, with the exception of the oxygen separation, are suitable and have a particularly high stability.
- Ceramic hollow fibers are known per se. Their preparation is described, for example, in US-A-4,222,977 or in US-A-5,707,584.
- Membranes made of ceramic materials can be made porous or gas-tight, on the other hand, selected ceramic materials have a gas permeability and can therefore be used for the separation of gases from gas mixtures. Possible applications of such ceramics are, in particular, high-temperature turanassembleen, such as gas separation or novel membrane reactors.
- the known processes for producing ceramic hollow fibers comprise a spinning process in which, in a first step, elastic green fibers are produced from a spinnable mass comprising precursors of the ceramic material and polymer. The polymer fraction is then burned at high temperatures and there are purely ceramic hollow fibers.
- the fibers produced in this way are mechanically relatively stable; however, they naturally show the brittleness and breaking sensitivity typical of ceramic materials.
- ceramic hollow fibers made of selected materials can be combined with other shaped parts or with further ceramic hollow fibers to form more complex structures and can be joined by sintering. This can be done without the use of temporary adhesives. The result is structures with significantly higher stability, their handling, especially with regard to safety considerations, significantly improved.
- the present invention is based inter alia on the surprising finding that precursors of selected ceramic materials when heated at the contact points with other materials sinter together very efficiently, without the need for an aid such as an adhesive or a slip would be required.
- the technical problem underlying the present invention is to provide structures of one or more ceramic hollow fibers or ceramic hollow fibers with other shaped parts, wherein these structures are distinguished by a particularly high stability and improved handleability.
- Another technical problem of the present invention is the provision of easy-to-implement methods for producing these stability-enhanced structures, in which conventional devices for producing ceramic shaped bodies can be used.
- the present invention relates to a composite comprising at least one hollow fiber of a gas- or liquid-transporting ceramic material whose outer surface is in contact with the outer surface of the same hollow fiber or another hollow fiber of gas or liquid-transporting ceramic material and the contact points are connected by sintering.
- a further embodiment of the present invention relates to a composite comprising at least one hollow fiber of gas or liquid-transporting ceramic material, and at least one, on one, preferably at both end faces of the hollow fiber arranged connection element (s) for the supply or discharge of
- Fluids wherein the hollow fiber is connected to the at least one connecting element by sintering.
- Such composites according to the invention are distinguished by an improved stability compared to the prior art with walls as thin as possible and a large specific surface area.
- the hollow fibers used according to the invention may have any desired cross-sections, for example angular, elliptical or in particular circular cross-sections.
- hollow fibers are to be understood to mean structures which have a hollow interior and whose outer dimensions, that is, diameters or linear dimensions, can be arbitrary.
- hollow fibers is to be understood as meaning not only the classic meaning of this term but also capillaries with outer diameters of 0.5 to 5 mm and tubes with outer diameters of more than 5 mm.
- Hollow fibers range up to 5 mm. Particular preference is given to using hollow fibers with outer diameters of less than 3 mm.
- Hollow fibers in the context of this description are hollow fibers of arbitrary lengths. Examples of these are hollow monofilaments or hollow staple fibers (monofilaments of finite length).
- the composites of the invention may be any combination of ceramic hollow fibers of gas or liquid transporting ceramic material.
- the following composites can be created:
- the fibers Due to the flexibility and elasticity of the green fibers, where the proportion of the ceramic (precursor) phase is not too high, many other geometries are possible. As a result of this structure, the fibers retain their original functionality, ie their liquid or gas permeability.
- Such composites can then be further joined together to form membrane modules.
- These systems are particularly suitable for use in high temperature applications, for example in the
- the hollow fibers used according to the invention can be produced by a spinning process known per se. This may be a solution spinning process, such as dry or wet spinning, or a melt spinning process.
- the material to be spun comprises, in addition to the finely divided ceramic material or its precursor, a spinnable polymer.
- the content of spinnable polymer in the material to be spun can vary within wide ranges, but is typically Sch sample 2 to 30 wt.%, Preferably from 5 to 10 wt.%, Based on the total mass to be spun or dope.
- the content of finely divided ceramic material or its precursor in the material to be spun can also vary within wide limits, but is typically 20 to 90 wt.
- % preferably from 40 to 60 wt.%, Based on the total mass to be spun or dope.
- the content of solvent in the material to be spun may vary within wide ranges, but is typically 10 to 80% by weight, preferably from 35 to 45% by weight, based on the total spinning solution.
- Type and amount of spinnable polymer and finely divided ceramic material or its precursor are preferably chosen so that just spinnable masses are obtained, wherein the content of spinnable polymer is to be selected as low as possible.
- the spinning is carried out by extruding the spinning solution or the heated and plasticized dope through an annular die, followed by cooling in air and / or introduction into a precipitation bath which contains a non-solvent for the polymer used in the dope.
- the obtained green hollow fiber can be subjected to further processing steps, for example cutting into stacks or winding for intermediate storage.
- the resulting green hollow fiber is combined to form the desired composite.
- This may involve the combination of a plurality of identical or different green hollow fibers or else the combination of one or more green hollow fibers with at least one connection element for the supply or removal of fluids, such as liquids or in particular, arranged on their end face or end faces gases.
- the combination of the green hollow fibers can be done by any techniques. Examples include the manual combination, such as the juxtaposition of parallel hollow fibers, but also textile surface-forming techniques, such as the production of crocheted, woven, knitted, knitted or braided structures.
- the polymer is removed in a conventional manner by thermal treatment.
- This step also includes forming a ceramic from the precursor for the ceramic material and / or sintering the finely divided ceramic particles together.
- the hollow fibers combined according to the invention consist of gas or liquid-transporting ceramic material.
- the ceramic material used according to the invention is a gas or liquid-transporting ceramic material.
- These may be conventional ceramics or oxide ceramics, such as Al 2 O 3 , ZrO 2 , TiO 2 or else SiC.
- functional ceramics such as perovskites or other liquid or
- Gas-conducting ceramics are used. However, excluded from the subject of this teaching are oxygen-conducting or -transporting ceramics.
- the invention therefore also relates to doped ceramics, for example Y-doped zirconium oxide.
- composites that is to say combinations of ceramics, for example metals or combinations of ceramics with ceramic or metal coatings, for example spinel nanoparticles, which are layered on ceramics to adjust the pore size, or hydrogen-conducting Pd alloys, which are layered on the ceramics.
- the ceramics used according to the invention may be porous, that is to say in particular microporous or nanoporous, or gas-tight.
- the invention also relates to a process for producing the composites described above, comprising the measures: i) production of a green hollow fiber by extruding a composition comprising, in addition to a polymer, a ceramic, in particular oxide ceramic, or a precursor for a ceramic, by a ring nozzle in a manner known per se,
- step ii) forming a green composite from one or more of the green hollow fibers produced in step i) by making contacts between the outer surface (s) of the green hollow fiber (s), and
- step iii) thermal treatment of the green composite produced in step ii) to remove the polymer, optionally form the ceramic, in particular oxide ceramic, and to connect the hollow fiber (s) at the contact points by sintering.
- the invention relates to a method for producing the composite defined above, comprising the measures:
- a green hollow fiber by extruding a composition comprising, in addition to a polymer, a ceramic, in particular oxide ceramic, or a precursor for a ceramic, by a ring nozzle in a manner known per se,
- step iv) producing a green composite from one or more of the green hollow fibers produced in step i) and at least one connecting element for the cement. or removal of fluids at at least one end face of the green hollow fibers, and
- step iv) thermal treatment of the green composite produced in step iv) in order to remove the polymer, if necessary to form the ceramic, in particular oxide ceramic, and to connect the hollow fiber (s) and the at least one connecting element at the contact points by sintering.
- the ceramic employed prior to spinning, is in the desired structure and crystallinity.
- it can also be provided to carry out the extrusion step (step i) with ceramic precursors and to form the ceramic only during the thermal treatment (steps iii or v).
- Outer diameter (D a ) and inner diameter (Dj) of the hollow fibers produced according to the invention can vary within wide ranges.
- Examples of D a are 0.1 to 5 mm, in particular 0.5 to 3 mm.
- Examples of Dj are 0.01 to 4.5 mm, especially 0.4 to 2.8 mm.
- hollow fibers in the form of monofilaments whose cross-sectional shape is round, oval or n-shaped, where n is greater than or equal to 3.
- D 3 is the largest dimension of the outer cross section and D 1 is the largest dimension of the inner cross section.
- the polymers known per se for the production of ceramic fibers can be used. In principle, this can be any polymer which can be spun from the melt or from solution. Examples of these are polyesters, polyamides, polysulfones, polyarylene sulfides, polyethersulfones and cellulose.
- the ceramic compositions known per se for the production of ceramic fibers which have a conductivity for the gas or liquid to be separated, or precursors thereof can be used.
- gas or liquid-transporting ceramic compositions have already been mentioned above.
- the precursors of these ceramic compositions may be, for example, mixtures which are non-crystalline or partially crystalline in the shaping and which do not change into the desired crystal structure until the molds have been sintered.
- the green hollow fiber is introduced into a precipitation bath or cooling bath, preferably into a water bath, and then wound up.
- the take-off speed is usually 1 to 100 m per
- the green hollow fibers may contain, in addition to the ceramic materials or their precursors and the polymers, other auxiliaries.
- stabilizers for the slip such as polyvinyl alcohol, polyethylene glycol, surfactants, ethylenediaminetetraacetic acid or citric acid, additives for adjusting the viscosity of the slip, such as polyvinylpyrrolidone, or salts as sources of cations for doping the ceramic.
- the green hollow fibers After the green hollow fibers have been produced, they are combined into composites in the manner described above, ie with other green hollow fibers and / or with feeds and discharges for fluids.
- the inlets and outlets may be shaped bodies of metals, ceramics or precursors of ceramics.
- the green composites are tempered. This can be done in air or in a protective gas atmosphere. Temperature program and sintering times must be adapted to the individual case.
- the annealing step results in densification of the green precursor.
- the polymer disappears and, on the other hand, the pores of the resulting ceramics close due to suitably selected tempering conditions, so that, if required, gas-tight composites can also be obtained.
- the composites according to the invention can be used in all industrial fields.
- the invention also relates to the use of the above described composites for the recovery of certain gases or liquids from gas or liquid mixtures.
- Example 1 Production of a green hollow fiber
- a ceramic powder of the composition AI2O 3 were stirred with polysulfone (Udel P-3500, Solvay and 1-methyl-2-pyrrolidone (NMP) ( ⁇ 99.0%, Merck) to form a slurry. This was subsequently in a ball mill homogenized.
- polysulfone Udel P-3500, Solvay and 1-methyl-2-pyrrolidone (NMP) ( ⁇ 99.0%, Merck)
- the dope obtained in this way was spun through a hollow-core die with outer diameter (D a ) of 1.7 mm and inner diameter (Dj) of 1.2 mm.
- the dope was poured into a pressure vessel and pressurized with nitrogen. After opening the tap on the pressure vessel, the dope flowed out and was pressed through the hollow core nozzle. The green fiber strand was passed through a precipitating water bath and then dried.
- Example 2 Production of a composite of ceramic hollow fibers
- This composite of green hollow fibers was sintered for 2 hours at 1500 ° C in a hanging furnace.
- the individual hollow fibers possessed a length of 30 - 35 cm, and diameter D 3 of 0.8 - 0.9 mm and D-, from 0.5 - 0.6 mm.
- Example 2 Several hollow fibers made according to Example 1 were manually intertwined and thermally treated according to the method described in Example 2.
- Example 1 Several hollow fibers produced according to Example 1 were manually combined with one another on the surface of a rod-shaped mold such that they were arranged as a tubular multi-channel element whose individual capillaries were hollow fibers running parallel to one another.
- the resulting green multi-channel element was thermally treated according to the method described in Example 2.
- the interior of the multi-channel element was empty after sintering and removal of the rod-shaped mold. It became a multi-channel ment obtained from mutually parallel and sintered together hollow fibers.
- Example 5 Production of a further composite of ceramic hollow fibers
- the resulting green multi-channel element was thermally treated according to the method described in Example 2.
- the interior of the multi-channel element was empty after sintering and removal of the rod-shaped mold.
- a multi-channel element consisting of parallel and helical mutually sintered hollow fibers was obtained.
- Example 6 Production of a Composite of Ceramic Hollow Fibers with Connection Elements for the Supply and Exhaustion of Gases
- Example 1 Several hollow fibers produced according to Example 1 were manually combined so that they arranged themselves in the form of a multi-channel element whose individual capillaries were parallel hollow fibers. The interior of the multi-channel element was completely filled with hollow fibers when viewed in cross-section. At both end faces of the green multi-channel element metallic connection elements for the supply and discharge of gases were placed.
- the resulting green composite was thermally treated according to the method described in Example 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Inorganic Fibers (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200510005467 DE102005005467A1 (de) | 2005-02-04 | 2005-02-04 | Verbunde keramischer Hohlfasern, Verfahren zu deren Herstellung und deren Verwendung |
PCT/EP2006/000539 WO2006081957A1 (de) | 2005-02-04 | 2006-01-21 | Verbunde keramischer hohlfasern, verfahren zu deren herstellung und deren verwendung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1848674A1 true EP1848674A1 (de) | 2007-10-31 |
Family
ID=36123082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06706346A Withdrawn EP1848674A1 (de) | 2005-02-04 | 2006-01-21 | Verbunde keramischer hohlfasern, verfahren zu deren herstellung und deren verwendung |
Country Status (5)
Country | Link |
---|---|
US (1) | US20080176056A1 (ja) |
EP (1) | EP1848674A1 (ja) |
JP (1) | JP2008528283A (ja) |
DE (1) | DE102005005467A1 (ja) |
WO (1) | WO2006081957A1 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005005464B4 (de) * | 2005-02-04 | 2007-06-14 | Uhde Gmbh | Verbunde keramischer Hohlfasern, Verfahren zu deren Herstellung und deren Verwendung |
DE102008036379A1 (de) * | 2008-08-05 | 2010-02-11 | Mann + Hummel Gmbh | Verfahren zur Herstellung eines keramischen Filterelements |
DE102009033716B4 (de) * | 2009-07-13 | 2011-06-16 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren für die Herstellung einer offenporigen von einem Fluid durchströmbaren Struktur sowie eine Verwendung der mit dem Verfahren hergestellten Struktur |
EP2828222B1 (en) * | 2012-03-22 | 2019-05-01 | Saint-Gobain Ceramics & Plastics Inc. | Extended length tube structures |
US9290311B2 (en) | 2012-03-22 | 2016-03-22 | Saint-Gobain Ceramics & Plastics, Inc. | Sealed containment tube |
EP2828221B1 (en) * | 2012-03-22 | 2020-06-10 | Saint-Gobain Ceramics & Plastics Inc. | Sinter-bonded ceramic articles |
FR3038616B1 (fr) | 2015-07-06 | 2020-11-06 | Gl Biocontrol | Procede de purification et de concentration d'acides nucleiques. |
CN106673636A (zh) * | 2016-12-13 | 2017-05-17 | 南京工业大学 | 一种复合金属氧化物中空纤维的制备方法 |
KR101913178B1 (ko) | 2017-08-08 | 2018-10-31 | 한국화학연구원 | 세라믹 중공사막의 제조방법 및 이에 따라 제조되는 세라믹 중공사막 |
GB202110213D0 (en) * | 2021-07-15 | 2021-09-01 | Microtech Ceramics Ltd | Methods of manufacturing green bodies and substrates |
US20230032454A1 (en) * | 2021-07-29 | 2023-02-02 | Taiwan Semiconductor Manufacturing Company Ltd. | Makeup air handling unit in semiconductor fabrication building and method for cleaning air using the same |
CN114920549B (zh) * | 2022-05-30 | 2023-04-25 | 东南大学 | 一种以前驱液为粘结剂制备氧化物陶瓷纳米纤维膜的方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB390199A (en) * | 1930-09-29 | 1933-03-29 | Hermsdorf Schomburg Isolatoren | Improvements in or relating to ceramic containers for fluid resistances and methods for the production thereof |
US3137602A (en) * | 1959-08-21 | 1964-06-16 | Continental Can Co | Ceramic honeycomb |
US4446024A (en) * | 1977-02-22 | 1984-05-01 | E. I. Du Pont De Nemours & Company | Hollow filament product |
US4268278A (en) * | 1978-05-16 | 1981-05-19 | Monsanto Company | Inorganic anisotropic hollow fibers |
US4222977A (en) * | 1978-05-16 | 1980-09-16 | Monsanto Company | Process to produce inorganic hollow fibers |
US4175153A (en) * | 1978-05-16 | 1979-11-20 | Monsanto Company | Inorganic anisotropic hollow fibers |
US4292348A (en) * | 1980-01-14 | 1981-09-29 | Johnson Matthey, Inc. | Low density ceramic insulating |
DE3161104D1 (en) * | 1980-04-22 | 1983-11-10 | Ciba Geigy Ag | Process for the preparation of oh or chloro derivatives of quinizarine bisubstituted in position 5 and 8 |
US4900698A (en) * | 1987-05-26 | 1990-02-13 | W. R. Grace & Co.-Conn. | Ceramic product and process |
US5127783A (en) * | 1989-05-25 | 1992-07-07 | The B.F. Goodrich Company | Carbon/carbon composite fasteners |
NL9300642A (nl) * | 1993-04-15 | 1994-11-01 | Tno | Werkwijze voor de vervaardiging van keramische holle vezels, in het bijzonder holle vezelmembranen voor microfiltratie, ultrafiltratie en gasscheiding. |
DE4425209A1 (de) * | 1994-07-16 | 1996-01-18 | Jenoptik Jena Gmbh | Verfahren zum stoffschlüssigen Fügen von kompakten gesinterten Keramikteilen und Keramikfolie zur Durchführung des Verfahrens |
JPH09217618A (ja) * | 1996-02-09 | 1997-08-19 | Isuzu Ceramics Kenkyusho:Kk | 排気ガス浄化装置 |
NL1007456C2 (nl) * | 1997-11-05 | 1999-05-07 | Tno | Werkwijze voor het vervaardigen van holle vezelmembranen voor microfiltratie, ultrafiltratie of gasscheiding. |
US6712131B1 (en) * | 1998-03-12 | 2004-03-30 | Nederlandse Organisatie Voor Toegepast - Natuurwetenschappelijk Onderzoek Tno | Method for producing an exchanger and exchanger |
JP3277918B2 (ja) * | 1999-06-15 | 2002-04-22 | 住友電気工業株式会社 | セラミック多孔体を用いた濾過器 |
DE10043666C1 (de) * | 2000-08-29 | 2001-10-25 | Fraunhofer Ges Forschung | Verfahren zur Herstellung eines keramischen Dämmstoffes |
-
2005
- 2005-02-04 DE DE200510005467 patent/DE102005005467A1/de not_active Ceased
-
2006
- 2006-01-21 JP JP2007553498A patent/JP2008528283A/ja active Pending
- 2006-01-21 US US11/883,673 patent/US20080176056A1/en not_active Abandoned
- 2006-01-21 WO PCT/EP2006/000539 patent/WO2006081957A1/de active Search and Examination
- 2006-01-21 EP EP06706346A patent/EP1848674A1/de not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO2006081957A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP2008528283A (ja) | 2008-07-31 |
US20080176056A1 (en) | 2008-07-24 |
WO2006081957A8 (de) | 2006-12-14 |
WO2006081957A1 (de) | 2006-08-10 |
DE102005005467A1 (de) | 2006-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102005005464B4 (de) | Verbunde keramischer Hohlfasern, Verfahren zu deren Herstellung und deren Verwendung | |
EP1848674A1 (de) | Verbunde keramischer hohlfasern, verfahren zu deren herstellung und deren verwendung | |
DE102005008900B4 (de) | Verfahren zur Herstellung gasdichter und temperaturbelastbarer Module mit keramischen Hohlfaser- oder Kapillarmembranen | |
EP1018495B1 (de) | Verfahren zur Herstellung von Mikrohohlfasern aus keramischem Material | |
EP1370348A1 (de) | Verfahren zur herstellung eines hohlfaser- oder kapillarmembranmoduls | |
US8771404B2 (en) | Hollow ceramic fibers, precursors for manufacture thereof utilizing nanoparticles, methods of making the same, and methods of using the same | |
DE10226969B4 (de) | Aktivierte Kohlenstofffasern und Verfahren zu ihrer Herstellung | |
US8747525B2 (en) | Composite hollow ceramic fibers, precursors for, methods of making the same, and methods of using the same | |
WO2013019783A1 (en) | Hollow ceramic fibers, precursors for manufacture thereof utilizing pore formers, methods of making the same, and methods of using the same | |
EP3148681A1 (de) | Keramische mehrschichtige filtermembran, insbesondere in form einer hohlfaser | |
WO2011023371A2 (de) | Verfahren zur pottung keramischer kapillarmembranen | |
WO2013026742A1 (de) | Keramische zusammensetzung | |
DE19701751B4 (de) | Mikrohohlfaser aus keramischen Material, ein Verfahren zu deren Herstellung sowie deren Verwendung | |
DE102009033716B4 (de) | Verfahren für die Herstellung einer offenporigen von einem Fluid durchströmbaren Struktur sowie eine Verwendung der mit dem Verfahren hergestellten Struktur | |
DE19758431B4 (de) | Verfahren zur Herstellung von Mikrohohlfasern und deren Weiterverarbeitung zu Formkörpern | |
WO2008074460A1 (de) | Keramische hohlfasern, verfahren zu deren herstellung, membranreaktor enthaltend diese sowie vorrichtung und verfahren zur herstellung von keramischen hohlfasern | |
AT337659B (de) | Katalysatortrager und verfahren zu seiner herstellung | |
DE102006060970A1 (de) | Herstellverfahren für keramische Kapillaren mit äußerer Vorzugsform | |
DE102006060971A1 (de) | Vorrichtung und Verfahren zur Herstellung von keramischen Kapillaren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070904 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20080717 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20081128 |