EP1838339A2 - Ager-peptide und deren verwendung - Google Patents

Ager-peptide und deren verwendung

Info

Publication number
EP1838339A2
EP1838339A2 EP06706286A EP06706286A EP1838339A2 EP 1838339 A2 EP1838339 A2 EP 1838339A2 EP 06706286 A EP06706286 A EP 06706286A EP 06706286 A EP06706286 A EP 06706286A EP 1838339 A2 EP1838339 A2 EP 1838339A2
Authority
EP
European Patent Office
Prior art keywords
ager
rme
cdp
antibody
antibodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06706286A
Other languages
English (en)
French (fr)
Inventor
Alfred Hahn
Ralph Loebbert
Nicole Teusch
Achim Möller
Ulrich Prof. Dr. Ebert
Martin Dr. Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Abbott GmbH and Co KG
Original Assignee
Abbott GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200510002353 external-priority patent/DE102005002353A1/de
Priority claimed from DE200510015832 external-priority patent/DE102005015832A1/de
Application filed by Abbott GmbH and Co KG filed Critical Abbott GmbH and Co KG
Publication of EP1838339A2 publication Critical patent/EP1838339A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants

Definitions

  • the present invention relates to the identification, functionality and use of domains from the N-terminus of the advanced glycation end product receptor (AGER or RAGE). These domains, termed Receptor Multimerization Epitope (RME), are highly conserved in all AGER protein sequences. They are the mediators of AGER self-association and heteromerization with other proteins. Likewise, the invention relates to the identification, functionality and use of peptides derived from the AGER C-domain (AGER-CDP).
  • AGER-CDP AGER C-domain
  • the AGER-RMEs according to the invention and AGER-CDPs are suitable as target for the identification of AGER ligands which modulate the natural ligand exchange; as an immunogen for the active or passive immunization of individuals, as diagnostic agents for the identification of immunogenic reactions and as peptide ligands for the modulation of protein-protein interactions involving AGER.
  • WO-A-2004/016229 describes N-terminal AGER fragments which possess the ligand binding ability (RAGE-LBE) and proposes their use inter alia (as a fusion protein with an immunoglobulin element) for the treatment of AGER-associated diseases.
  • diseases include amyloidoses, cancer, arthritis, Crohn's disease, chronic inflammatory diseases, acute inflammatory diseases, cardiovascular diseases, diabetes, diabetic complications, prion-associated diseases, vascular disease, nephropathies, retinopathies and neuropathies.
  • AGER-associated diseases are mentioned: Alzheimer's disease, rheumatoid arthritis, osteoarthritis, bowel disease, multiple sclerosis, psoriasis, lupus, autoimmune diseases in general, sepsis, arteriosclerosis and restenosis.
  • AGER fragments with a length of 118 - 344 amino acids (beginning at the first N-terminal residue of the receptor) to use. Shorter fragments are not described.
  • the WO document gives a general indication of the possible therapeutic usefulness of isolated antibodies which are specifically immunoreactive with an epitope of the AGER amino acid sequence. However, neither specific epitopes are suggested nor are specific antibodies produced.
  • the above object has surprisingly been achieved by isolating and characterizing specific receptor multimerization epitopes (RME) and peptides of the Ig-like C domain of AGER.
  • RME receptor multimerization epitopes
  • FIG. 1 shows a sequence comparison (ClustAII W alignment) of RAGE from human, mouse, rat and bovine.
  • the sequence segment corresponding to NtermR31 is marked with "
  • the information on the sequence match can be found in the last line of a sequence block.
  • Identical amino acid positions are marked with " * ", ".”
  • V-type Ig-like domain (V domain) is highlighted for the human sequence by bold underline, and the Ig-like C2 type 1 domain is for the human sequence highlighted by dotted underline, the Ig-like C2-type 2 domain is highlighted for the human sequence by bold interrupted underlining.
  • FIG. 2 shows the plasmid map of the plasmid pAPtag5 / PPC / hNOGO66Nr.5 used according to the invention
  • Figure 3 shows the plasmid maps of various plasmids used according to the invention: pIRES hNgR hp75 NgR (SEQ ID NO: 18) ( Figure 3a) pcDNA3 hRhoA wt (SEQ ID NO: 23) ( Figure 3b) pcDNA4 His Myc (mycHis) A hRhoA wt (SEQ ID NO: 21) ( Figure 3c) pcDNA3.1 (V5-His) hp75 # 16 (SEQ ID NO: 16) ( Figure 3d) FIG.
  • FIG. 4a shows the immunological detection of expressed Rho by means of positive clones isolated according to the invention (# 1 to # 8) of the triplet transfectant HEK293 RhoA / NgR / p75 (clones 1 to 9), positive control (C) obtained by transient transfection with 100 ng pcDNA4 (mycHis) A hRhoA wt; as marker (M) was used: Benchmark Prestain Protein Ladder, Invitrogen, Order # 10748-010;
  • Figure 4b shows the result of a FACS analysis on expressed cell surface receptors hNgR and hp75 of a HEK293 triplet transfectant prepared according to the invention (clone # 4 and # 8) as well as untransformed HEK293 cells (top), respectively for analyzes with anti-p75 and anti NgR antibodies.
  • Figure 5 shows the result of an ELISA with which serum of immunized rabbit antibodies to the N-terminal peptide NtermR31 were detected.
  • Figure 6 shows the result of an ELISA which detected the relative amount of antibody to NtermR31 in different patient plasmas.
  • 1 healthy control
  • 2 AP23, MCIF06.7.F
  • 3 LAP30, Alzheimer's dementia, F00.0, early onset, F
  • 4 LAP39, MCIF06.7, F
  • 5 LAP45, MCIF06.7.M
  • 6 LAP53, MCIF06.7, F
  • 7 LAP60, Alzheimer's dementia, late onset, M.
  • FIG. 7a shows the result of a dot blot method for characterizing the polyclonal anti-NtermR31 serum (lower half) with various peptides or sRAGE forms produced according to the invention. In the upper half are shown appropriate control approaches with preimmune serum.
  • FIG. 8 shows the binding of NtermR31 and NtermR13 to sRAGE in the Alphascreen assay as a function of the peptide concentration used.
  • FIG. 9 shows the binding of various control peptides to sRAGE in the alphascreen assay as a function of the peptide concentration.
  • Figure 10A illustrates the competition of AP-Nogo-66 binding (0.1 nM) to the Nogo receptor (NogoR) by sRAGE (circles) and soluble His-NogoR (triangles) as a function of the respective competitor concentration;
  • FIG. 10B shows the competition of AP-Nogo66 binding (0.1 nM) to the Nogo receptor by NtermR31 as a function of the respective competitor concentration.
  • FIG. 11A shows microscopic images of unstimulated or AP-Nogo66-stimulated HEK293 RhoA / NgR / p75 cells. Upon stimulation with AP-Nogo66, a significant change in cell geometry through contraction is observed.
  • FIG. 11B shows the concentration-dependent reduction of the percentage of contracted HEK cells at different concentrations of NtermR31 or sRAGE. The lighter, left-hand bar of a pair of bars shows the result of the experiment for the respectively assigned, unstimulated control batch (without AP-Nogo66).
  • lanes 1 to 7 1: no treatment; 2: NtermR31 (0.2 ⁇ M); 3: NtermR31 (1 ⁇ M); 4: NtermR31 (5 ⁇ M); 5: sRAGE (0.2 ⁇ M); 6: sRAGE (1 ⁇ M); 7: sRAGE (5 ⁇ M)
  • FIG. 12a shows immunohistological studies on thin sections of transgenic APP mouse brain using commercial anti-RAGE antibody.
  • NtermR31 antiserum (biotrend) according to the invention does not stain in the young animal (10 weeks) (left picture) but with a similar pattern to commercial antiserum in the old animal (10 months) (right picture).
  • Figure 13 shows the result of an ELISA with which sRAGE was detected in mouse plasma. It can be clearly seen that in 12-month-old animals (bar 1) a significantly higher plasma concentration of sRAGE can be found than in 10 weeks young animals (bar 2).
  • Figure 14 shows the result of a competition experiment of the sRAGE / A ⁇ -oligomer interaction by anti-NtermR31 antibodies (circles) and anti-sRAGE antibodies (squares) (AF1145) as a function of the immunoglobulin concentration (nM) used in an HTRF assay .
  • a rabbit IgG non-immune serum (triangles) was also used.
  • the control approaches without sRAGE show no change in the measured fluorescence values with increasing antibody concentration.
  • the addition of rabbit control serum causes no decrease in fluorescence and thus no inhibition of sRAGE-A ⁇ interaction.
  • polyclonal anti-sRAGE antibodies and polyclonal anti-NtermR31 antibodies a significant inhibition of the sRAGE-A ⁇ interaction is observed.
  • Figure 17 shows the effect of 500 nM Nterm31 on the I / O ratio in LTP studies in male Wistar rats.
  • FIG. 18 shows the competitive inhibition of the sRAGE-A ⁇ -oligomer interaction by the AGER-CDP peptides 6 and 7 according to the invention.
  • Figure 19 shows the A ⁇ oligomer binding by sRAGE (1-331) and the N-terminal truncated sRAGE (102-331), which no longer has a functional V domain.
  • FIG. 20 shows the result of the characterization of two monoclonal anti-RAGE antibodies (ML37-11 H8 and ML37-6A6) according to the invention in dot blots with the complete sRAGE protein (1-331 sRAGE-HIS) (vertical row 1 in each case) and an N -terminal shortened version (102-331 -sRAGE-HIS) (each vertical row 2).
  • FIG. 21 shows the competition of sRAGE-A ⁇ globulomer binding with the monoclonal anti-RAGE antibodies ML37-6A6 and ML37-11H8 in comparison with nonspecific mouse IgGI and 2a.
  • a first subject of the invention relates to the use of the receptor multimerization epitope (RME) of the advanced glycation end-product receptor (AGER), comprising an auto-multimerization-competent peptide fragment of the N-terminal AGER ectodomain, or one of the non V domain AGER domain, such as in particular an Ig-like C domain (such as in particular of the Ig-like C2 domain, type 1 and / or the Ig-like C2 domain type 2) derived peptide (AGER-CDP ), or a functional, immunogenic equivalent of AGER-RME or AGER-CDP, as an immunogen for the production of a polyclonal antiserum or monoclonal antibodies to AGER-RME and AGER-CDP, respectively.
  • RME receptor multimerization epitope
  • AGER advanced glycation end-product receptor
  • AGER-RME is used with a length of about 8 to 50 amino acid residues, which is derived from the human AGER ectodomain having an amino acid sequence according to. Genbank Ref. Seq. Sequence NM_001136 or of a functionally equivalent ectodomain, in particular of the V-type Ig-like domain (V domain).
  • the AGER RME comprises the following sequence:
  • the AGER RME comprises a sequence selected from
  • an AGER-RME useful in accordance with the invention may also comprise a sequence of the following general formula:
  • X 1 represents a hydrogen atom, or the amino acid Q or the dipeptide DQ
  • X 2 is NITARIG (K / E) PL (V / M) L (N / S / K) (SEQ ID NO: 5)
  • X 3 represents a sequence according to SEQ ID NO: 1, 2, 3 or 4;
  • X 4 stands for the peptide sequence WKLN.
  • AGER-CDPs having a length of about 5 to 50 amino acid residues, which are derived from the human AGER ectodomain having an amino acid sequence according to Genbank Ref. Seq. Sequence NM__001136 or a functionally equivalent ectodomain, in particular an Ig-like C-domain, in particular the C2 domain type 1 and / or type 2 thereof (see also Figure 1).
  • Suitable AGER-CDP peptides include one of the following sequences:
  • TLQSELMVTPARGGDPRPTFSCSFSPGLPR SEQ ID NO: 32
  • LPRHRALRTAPIQPRVWEPVPLEEVQLWE SEQ ID NO: 33
  • the AGER-RME or AGER-CDP in particular with one of the abovementioned sequences, can be present as a cyclic peptide.
  • Another object of the invention relates to the use of an AGER-RME or an AGER-CDP as defined above as a diagnostic marker, such as e.g. as a capture antigen, to diagnose disease or disease states where autoantibodies to the AGER-RME occur.
  • a diagnostic marker such as e.g. as a capture antigen
  • Another object of the invention relates to the use of an AGER-RME or AGER-CDP according to the above definition, the AGER ectodomain having an amino acid sequence according to Genbank Ref. Seq. Sequence NM_001136 and N-terminal sub-fragments thereof, as well as muteins and derivatives of these AGER molecules, or AGER-RME or AGER-CDP binding ligands for the preparation of a pharmaceutical agent for the diagnosis or therapy of AGER-mediated diseases or disease stages ,
  • Diseases or stages of disease which can be treated according to the invention are those which have been treated with an AGER / AGER, AGER / ligand, AGER / receptor, AGER / receptor / ligand, AGER / receptor / co-receptor and / or AGER / receptor / counterpart Receptor interaction are associated.
  • Examples of diseases associated with AGER / AGER interaction include: Alzheimer's and amyloidoses; Examples of diseases associated with AGER / ligand interaction include: Alzheimer's and HIV-associated dementia; as examples of diseases associated with an AGER / receptor interaction, may be mentioned: spinal cord injury and head trauma; Examples of diseases associated with an AGER / receptor / co-receptor and / or AGER / receptor / counter receptor interaction may include: multiple sclerosis, sepsis, arteriosclerosis.
  • the diseases or disease states which can be treated and / or diagnosed according to the invention can furthermore be selected from the following groups: a) mechanical injuries to the skull and spinal cord; b) ischemic damage, such as stroke; c) chronic diseases selected from neurodegenerative, inflammatory and autoimmune diseases, in particular multiple sclerosis, Parkinson's, Alzheimer's, HIV-1 associated dementia; d) diabetic sequelae, such as diabetic nephropathy, diabetic neuropathy, and diabetic vasculopathy; e) tumor progression and metastasis; f) altered neurogenesis processes in psychotic disorders such as depression and schizophrenia, and chronic pain conditions caused by excessive necrosis sprouting and / or pathological synaptogenesis, such as phantom pain after amputation; g) disorders of neuronal regeneration, axonal sprouting, neurite extension and neuronal plasticity h) central / peripheral amyloid disorders; and i) arteriosclerosis.
  • the AGER-RME or AGER-CDP binding ligand is an anti-AGER-RME or anti-AGER-CDP antibody.
  • Another object of the invention relates to the use of AGER-RME or AGER-CDP as defined above as target for the detection or identification of AGER-binding ligands.
  • Another object of the invention relates to the use of AGER-RME or AGER-CDP as defined above as an immunogen for active or passive immunization.
  • the invention furthermore relates to a polyclonal anti-AGER-RME or anti-AGER-CDP antiserum obtainable by immunizing a mammal with an antigenic amount of an AGER-RME or of an AGER-CDP peptide as defined above.
  • the invention furthermore relates to monoclonal anti-AGER-RME or anti-GER-CDP antibodies or antigen-binding fragments thereof, optionally in humanized form.
  • Preferred antibodies or antisera have at least one of the following properties: a) improved specificity for an AGER-RME or an AGER-CDP as defined above, improved specificity for a neoepitope formed with the involvement of the AGER-RME or an AGER-CDP as defined above b) inhibition of AGER-RME-mediated multimerization with sRAGE or anti-AGER-RME antibody (especially seen in an alpha-screen or assay); c) specific recognition of an AGER ligand-induced, e.g. A ⁇ 1-42-induced receptor status of sRAGE; d) inducing a receptor configuration of sRAGE which involves the binding of an AGER ligand, e.g. selected from A ⁇ 1-42, A ⁇ 20-42, A ⁇ 12-42 and their globulomers, amyloid, AGE, modulated to sRAGE, e.g. promotes.
  • AGER ligand e.g. selected from A ⁇ 1-42, A ⁇ 20-42, A
  • the invention furthermore relates to monoclonal, bispecific antibodies, comprising a) a first antigen-binding domain derived from a monoclonal antibody as defined above, and b) a second antigen-binding domain with specificity for at least one cell surface receptor which belongs to a Interaction with AGER-RME or AGER-CDP are capable, such as AGER, NgR, or with specificity for a ligand, co- or counter-receptor for one of these receptors, or an antigen-binding fragment thereof, optionally in humanized form.
  • hybrid protein comprising an AGER-RME or an AGER-CDP as defined above.
  • hybrid proteins further comprise a functional portion of a protein selected from immunoglobulins and fragments thereof, e.g. an Ig-Fc fragment operably linked to, for example, the C-terminus of AGER-RME or AGER-CDP.
  • the invention also relates to AGER-RME or AGER-CDP derivatives comprising AGER-RME or AGER-CDP as defined above in PEGylated form or coupled with one, for example optical, enzymatic or radioactive, markers.
  • a further subject of the invention relates to pharmaceutical compositions comprising in a pharmaceutically acceptable carrier at least one active ingredient selected from: a) AGER-RME or AGER-CDP as defined above; b) nucleic acid sequences encoding AGER-RME as defined above; c) monoclonal or polyclonal anti-AGER-RME or anti-AGER-CDP antibodies as defined above; d) bispecific antibodies as defined above, and e) hybrid proteins and derivatives as defined above.
  • compositions according to the invention may additionally contain as further active ingredient an active ingredient selected from: a) neurotrophic factors, such as nerve growth factors, e.g. NGF, NT-3, BNDF; inosine; Neuroimmunophilins such as FK506, GPI1046; Chondroitin sulfate proteoglycan degrading enzymes, such as chondroitinase ABC; b) antibodies to neurite outgrowth inhibitors; Nogo-A, like the antibodies IN-1, 7B12; LIKE; OMgp; and / or their receptors; like anti-NgR and anti-p75
  • neurotrophic factors such as nerve growth factors, e.g. NGF, NT-3, BNDF; inosine
  • Neuroimmunophilins such as FK506, GPI1046
  • Chondroitin sulfate proteoglycan degrading enzymes such as chondroitinase ABC
  • Nogo-A like the antibodies IN-1, 7B12
  • Antibody c) soluble NgR fragment; Nogo A peptide fragments, such as NEP1-40 and Nogo66, d) inhibitors of the p75-mediated signaling cascade, such as RHO A inhibitors, ROCK inhibitors, such as Y-27632, e) cAMP and functional analogs, protein kinase A, arginase I, Polyamines, ciliary neurotrophis factor.
  • inhibitors of the p75-mediated signaling cascade such as RHO A inhibitors, ROCK inhibitors, such as Y-27632, e) cAMP and functional analogs, protein kinase A, arginase I, Polyamines, ciliary neurotrophis factor.
  • Such pharmaceutical agents are useful, for example, in intrathecal, intravenous, subcutaneous, oral or parenteral, nasal and inhalation administration.
  • the invention further provides an immunogen comprising AGER-RME or AGER-CDP as defined above in a pharmaceutically acceptable carrier and optionally with an adjuvant for active immunization.
  • the invention also provides a method for the detection of effectors of the AGER receptor, wherein a sample in which one suspects an effector, incubated with an AGER-RME or an AGER-CDP polypeptide as defined above and the approach to the Formation of an effector AGER-RME complex or effector AGER-CDP complex.
  • the invention furthermore relates to expression vectors comprising at least one coding nucleic acid sequence for a linear AGER-RME or AGER-CDP according to the above definition, operatively linked to at least one regulatory nucleic acid sequence.
  • the invention also relates to recombinant microorganisms which at least carry such a vector.
  • the invention also hybridoma cell lines which produce a monoclonal antibody as defined above.
  • the invention further relates to processes for the production of AGER-RME or AGER-CDP as defined above or of a hybrid protein containing it, wherein a recombinant microorganism is cultivated as defined above and the produced protein product is isolated from the culture.
  • the invention further relates to processes for the preparation of a monoclonal antibody as defined above, wherein culturing a hybridoma cell line as defined above and isolating the protein product produced from the culture.
  • the invention further comprises functional, in particular immunogenic, equivalents of AGER-RME as defined above having a degree of homology of less than 100% to SEQ ID NO: 6.
  • Functional equivalents of AGER-RME have at least one of the following properties: a. Inhibition of signal transduction in the actin-cytoskeletal rearrangement (ACR) assay; b. Competing with sRAGE for binding with an AGER ligand, e.g. A ⁇ globulomers, A ⁇ 1-42, A ⁇ 20-42, A ⁇ 12-42, amyloid, AGE; c. Auto-multimerization or multimerization with AGER-RME or s-RAGE.
  • ACR actin-cytoskeletal rearrangement
  • AGER-RME may furthermore have a high positive charge density core sequence of the following general formula:
  • radicals Z independently of one another represent an amino acid residue with a positively charged side chain, in particular lysine and arginine; and the radicals X 1 and X 2 are independently any 1 to 5 same or comparable different amino acid, which carry no positively charged side chains.
  • Another object of the invention relates to combinations of at least a Malawib and at least a second monoclonal antibodies with different antigenic specificity, wherein at least a first monoclonal antibody (or a group of 2 ödere several, such as 2, 3 or 4, the first monoclonal antibody) to a Antigen which is formed in whole or in part by a sequence region of the Ig-like V domain of AGER (or sRAGE) and at least one second monoclonal antibody (or a group of two or more, such as 2, 3 or 4, second monoclonal antibody) binds to an antigen that is wholly or partially formed by a sequence region of an AGER domain other than the Ig-like V domain (non-V domain).
  • the AGER domain other than the Ig-like V domain is an Ig-like C domain (for example, comprehensively C2 type 1 and / or C2 type 2) of AGER.
  • antibody combinations are described wherein at least a first monoclonal antibody and optionally at least a second monoclonal antibody are coupled with the binding of AGER or a soluble equivalent thereof with an AGER binding partner, such as e.g. an A ⁇ globulomer.
  • the invention also relates to the use of such antibody combinations as medicaments.
  • the invention further relates to pharmaceutical compositions comprising an antibody combination as defined above.
  • the invention relates to the use of antibody combinations according to the invention for the production of a pharmaceutical agent for the treatment of diseases or disease states according to the above definition.
  • receptors are, in particular, surface molecules bound to a cell membrane, which molecules are accompanied by a
  • soluble, ligands can interact and as a result of this interaction, for example, a directed into the cell interior signal or a signal cascade (also referred to as signaling) can trigger.
  • Co-receptors refers to membrane structural elements located in the same cell as the receptor, and the co-receptor is required to define and / or modulate the functionality of the receptor.
  • Counter-receptors are membrane-bound surface molecules that are located on two different (neighboring) cells and that can come into contact with one another and thereby trigger a signal ring.
  • a “ligand” refers to a natural, i.e. in vivo or artificially generated, low or high molecular weight binding partner for a "receptor”.
  • the ligand is preferably freely mobile in the extracellular environment.
  • RME receptor multimerization epitope
  • immunogen refers to a peptide fragment according to the invention in glycosylated or non-glycosylated form which is suitable for inducing the formation of antibodies against the immunogen If appropriate, binding of the immunogen (as hapten) to a macromolecular carrier may be advantageous.
  • epitope or antigenic determinant is meant the specificity of an antibody-determining region of an antigen, such as a protein, when this epitope is re-formed, for example, by external influences, such as an interaction of a protein with a ligand, in a portion of the protein or expressed on the accessible molecular surface, this is called a “neoepitope”.
  • a “domain” of a protein or antibody is called a complex, formed within the protein by alpha-helical and / or beta-sheet elements. bordered structure.
  • sRAGE includes V-type Ig-like domains and C2-type 1 and C2-type 2 domains, as illustrated in FIG.
  • SRAGE includes a soluble form of the AGER ectodomain, such as sRAGE 1-331, as shown in SEQ ID NO: 37. Unless otherwise indicated, sRAGE denotes, in particular, sRAGE 1-331.
  • the AGER "V domain” denotes an Ig-like sequence section to be found in the region of the N-terminus of the AGER molecule, as illustrated in FIG. 1 for various AGER molecules, in particular partial sequences corresponding to residues 23-115 (Ala23-VaH15). of the human sequence in FIG. 1.
  • An AGER "non-V domain” can be found C-terminal to the above-mentioned V domain in the AGER molecule. Examples of such non-V domains are the Ig-like C domains, in particular C2 type 1 and type 2 domains, as illustrated in FIG. 1 for various AGER molecules.
  • the invention particularly relates to receptor multimerization epitopes (RME) of the advanced glycation end-product receptor (AGER), comprising an auto-multimerization-competent peptide fragment of the N-terminal AGER ectodomain, or a functional, immunogenic equivalent of AGER-RME.
  • AGER-RME preferred according to the invention are linear or cyclic peptides with a length of about 8 to 50 amino acid residues, derived from the human AGER ectodomain having an amino acid sequence according to Genbank Ref. Seq. Sequence NM_001136 or a functionally equivalent ectodomain.
  • Preferred AGER RMEs can be the following sequence
  • CRGAPKKPPQQLE (SEQ ID NO: 2)
  • CKGAPKKPPQRLE (SEQ ID NO: 3)
  • CKGAPKKPTQKLE (SEQ ID NO A)
  • the invention also AGER-CDP peptides having a length of about 5 to 50 amino acid residues, which are derived from the human AGER ectodomain having an amino acid sequence according to Genbank Ref. Seq. Sequence NM_001136 or a functionally equivalent ectodomain, in particular an Ig-like OD domain thereof.
  • Suitable AGER-CDP peptides include one of the following sequences:
  • DGKPLVPNEKGVSVKEQTRRHPETGLFTLQ (SEQ ID NO: 31) TLQSELMVTPARGGDPRPTFSCSFSPGLPR (SEQ ID NO: 32) and LPRHRALRTAPIQPRVWEPVPLEEVQLWE (SEQ ID NO: 33).
  • “Functional equivalents” or analogues of the specifically disclosed AGER-RME polypeptides in the context of the present invention are different polypeptides, such as those with a degree of homology of less than 100% to SEQ ID NO: 6 (Nterm 31) or SEQ ID NO: 3 (Nterm 13), which, however, continue to possess the desired biological activity, such as inhibition of signal transduction in the actin-cytoskeletal rearrangement (ACR) assay, competition with sRAGE for binding with an AGER ligand, auto-multimerization or Multimerization with AGER-RME or s-RAGE.
  • ACR actin-cytoskeletal rearrangement
  • “Functional equivalents” or analogues of the specifically disclosed AGER-CDP polypeptides are, within the scope of the present invention, different polypeptides, such as, for example, those with a degree of homology of less than 100% to SEQ ID NO: 31, 32 or 33 but which continue have the desired biological activity, such as the inhibition of sRAGE-A ⁇ 1-42 oligomer binding described in the Examples.
  • AGER-RME may also have a characteristic core sequence or high positive charge density lead structure of the following general formula
  • Z is independently an amino acid residue having a positively charged side chain; and the radicals X 1 and X 2 are independently any 1 to 5 identical or different amino acid, which carry no positively charged side chains.
  • “functional equivalents” are understood as meaning, in particular, mutants which, in at least one of the sequence positions of the abovementioned specific sequences, have a different amino acid than the one specifically mentioned but nevertheless possess one of the biological activities mentioned herein.
  • “Functional equivalents” thus include the mutants obtainable by one or more amino acid additions, substitutions, deletions, and / or inversions, wherein said changes may occur in any sequence position, as long as they result in a mutant having the property profile of the invention .
  • functional equivalence also exists when the reactivity patterns between mutant and unmodified polypeptide are qualitatively consistent, i. For example, identical biological effects can only be observed with varying degrees of intensity. Examples of suitable substitutions of amino acid residues are the following:
  • Salts of carboxyl groups can be prepared in a manner known per se and include inorganic salts, such as, for example, sodium, calcium, ammonium, iron and zinc salts, as well as salts with organic bases, such as, for example, amines, such as triethanolamine, arginine, lysine, piperidine, etc.
  • Acid addition salts for example salts with mineral acids, such as hydrochloric acid or sulfuric acid, and salts with organic acids, such as acetic acid and Oxalic acid are also the subject of the invention.
  • “Functional derivatives” of polypeptides of the invention may also be produced at functional amino acid side groups or at their N- or C-terminal end by known techniques
  • Such derivatives include, for example, aliphatic esters of carboxylic acid groups, amides of carboxylic acid groups, obtained by reaction with ammonia or with a primary or secondary amine; N-acyl derivatives of free amino groups prepared by reaction with acyl groups; or O-acyl derivatives of free hydroxy groups prepared by reaction with acyl groups.
  • “Functional equivalents” include, of course, polypeptides which are accessible from other organisms, as well as naturally occurring variants. For example, it is possible to determine regions of homologous sequence regions by sequence comparison and to determine equivalent enzymes on the basis of the specific requirements of the invention.
  • Fusion equivalents are also fusion proteins which comprise one of the abovementioned polypeptide sequences or functional equivalents derived therefrom and at least one further, functionally different, heterologous sequence in functional N- or C-terminal linkage (ie without substantial substantial functional impairment of the fusion protein portions
  • heterologous sequences are, for example, enzymes and immunoglobulins.
  • homologs to the specifically disclosed proteins which have at least 60%, preferably at least 75%, in particular at least 85%, for example 90%, 95% or 99%, homology to one of the specifically disclosed sequences, comprising "functional equivalents" calculated according to the algorithm of Pearson and Lipman, Proc. Natl Acad, Sci. (USA) 85 (8), 1988, 2444-2448
  • a percentage homology of a homologous polypeptide according to the invention means in particular Percent identity of amino acid residues relative to the total length of one of the amino acid sequences specifically described herein.
  • a “derived” amino acid sequence according to the invention means a sequence which has an identity of at least 80% or at least 90%, in particular 91%, 92%, 93%, 94%, 95% with the starting sequence. , 96%, 97%, 98% and 99%.
  • identity between two sequences is meant the identity of the amino acid residues over the entire length of the sequence, such as the identity obtained by comparison using the Vector NTI Suite 7.1 software from Informax (USA) using the Clustal method (Higgins DG, Sharp PM, Fast and sensitive multiple sequential alignments on a microcomputer, Comput Appl., Biosci 1989 Apr; 5 (2): 151-1) is calculated with the following parameters:
  • Pairwise alignment parameter Two alignment parameter:
  • Gap Separation penalty ranks 8 Gap penalty 3
  • equivalents of the invention include proteins of the type described above in deglycosylated or glycosylated form and modified forms obtainable by altering the glycosylation pattern.
  • Homologs of the peptides of the invention can be identified by screening combinatorial libraries of mutants such as truncation mutants.
  • a variegated library of peptide variants can be generated by combinatorial mutagenesis at the nucleic acid level, such as by enzymatic ligation of a mixture of synthetic oligonucleotides.
  • methods that can be used to prepare libraries of potential homologs from a degenerate oligonucleotide sequence. The chemical synthesis of a degenerate gene sequence can be carried out in a DNA synthesizer, and the synthetic gene can then be ligated into a suitable expression vector.
  • degenerate gene set enables the provision of all sequences in a mixture that encode the desired set of potential protein sequences.
  • Methods for the synthesis of degenerate oligonucleotides are known to those skilled in the art (eg Narang, SA (1983) Tetrahedron 39: 3; Itakura et al. (1984) Annu. Rev. Biochem. 53: 323; Itakura et al., (1984) Science 198: 1056; Ike et al. (1983) Nucleic Acids Res. 11: 477).
  • the invention further provides the coding nucleic acid sequences for the above-described AGER-RME or AGER-CDP peptides, as well as nucleic acid sequences derived therefrom.
  • nucleic acid sequences according to the invention can be prepared in a manner known per se by chemical synthesis from the nucleotide units, for example by fragment condensation of individual overlapping, complementary nucleic acid building blocks of the double helix.
  • the chemical synthesis of oligonucleotides can be carried out, for example, in a known manner by the phosphoamidite method (Voet, Voet, 2nd edition, Wiley Press New York, pages 896-897).
  • a "derived" nucleic acid sequence according to the invention means a sequence which has an identity of at least 80% or at least 90%, in particular 91%, 92%, 93%, 94%, 95%, with the starting sequence. , 96%, 97%, 98% and 99%.
  • Identity between two nucleic acids is understood to mean the identity of the nucleotides over the entire nucleic acid length, in particular the identity, which is determined by comparison with the aid of the Vector NTl Suite 7.1 software from Informax (USA) using the Clustal method (see above).
  • the invention also nucleic acid sequences encoding one of the above peptides and their functional equivalents, which are accessible, for example, using artificial Nukleotidanaloga.
  • the invention relates both to isolated nucleic acid molecules which code for peptides according to the invention or biologically active portions thereof, as well as nucleic acid fragments which can be used, for example, as hybridization probes or primers for the identification or amplification of coding nucleic acids according to the invention.
  • nucleic acid molecules of the invention may also contain untranslated sequences from the 3 'and / or 5' end of the coding gene region
  • nucleic acid molecule is separated from other nucleic acid molecules present in the natural source of the nucleic acid and, moreover, may be substantially free of other cellular material or culture medium when produced by recombinant techniques, or free from chemical precursors or other chemicals if it is synthesized chemically.
  • a nucleic acid molecule according to the invention can be isolated by means of standard molecular biological techniques and the sequence information provided according to the invention.
  • cDNA can be isolated from a suitable cDNA library by using one of the specifically disclosed complete sequences or a portion thereof as a hybridization probe and standard hybridization techniques (such as described in Sambrook, J., Fritsch, EF and Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd Ed., CoId Spring Harbor Laboratory, Col. Spring Harbor Laboratory Press, Col. Spring Harbor, NY, 1989).
  • nucleic acid molecule comprising one of the sequences of the present invention or a portion thereof can be isolated by polymerase chain reaction, using the oligonucleotide primers prepared on the basis of this sequence.
  • the thus amplified nucleic acid can be cloned into a suitable vector and characterized by DNA sequence analysis.
  • the oligonucleotides of the invention may be further purified by standard synthetic methods, e.g. with an automatic DNA synthesizer.
  • the invention further comprises the nucleic acid molecules complementary to the specifically described nucleotide sequences or a portion thereof.
  • nucleotide sequences of the present invention enable the generation of probes and primers useful for the identification and / or cloning of homologous sequences in other cell types and organisms.
  • probes or primers usually comprise a nucleotide sequence region which is under stringent conditions at least about 12, preferably at least about 25, such as about 40, 50 or 75 consecutive nucleotides of a sense strand of a nucleic acid sequence of the invention or a corresponding antisense strand hybridizes.
  • nucleic acid sequences according to the invention are derived from coding sequences for the AGER-RMEs according to the invention or AGER-CDPs and differ therefrom by addition, substitution, insertion or deletion of single or multiple nucleotides, but furthermore encode peptides with the desired property profile.
  • nucleic acid sequences which comprise so-called silent mutations or are altered according to the codon usage of a specific source or host organism, in comparison with a specifically mentioned sequence, as well as naturally occurring variants, such as e.g. Splice variants or allelic variants, of which Articles are also provided by conservative nucleotide substitutions (i.e., the amino acid in question is replaced by an amino acid of like charge, size, polarity, and / or solubility).
  • the invention also relates to the molecules derived from sequence polymorphisms of the specifically disclosed nucleic acids. These genetic polymorphisms may exist between individuals within a population due to natural variation. These natural variations usually cause a variance of 1 to 5% in the nucleotide sequence of a gene.
  • the invention also encompasses nucleic acid sequences which hybridize with or are complementary to the abovementioned coding sequences.
  • These polynucleotides can be found by screening genomic or cDNA libraries and optionally multiply therefrom with suitable primers by means of PCR and then isolate, for example, with suitable probes.
  • Another possibility is the transformation of suitable microorganisms with polynucleotides or vectors according to the invention, the multiplication of the microorganisms and thus of the polynucleotides and their subsequent isolation.
  • polynucleotides of the invention can also be chemically synthesized.
  • the ability to "hybridize” to polynucleotides is understood to be the ability of a poly or oligonucleotide to bind under stringent conditions to a nearly complementary sequence, while under these conditions, non-specific binding between noncomplementary partners is avoided 70-100%, preferably 90-100%, to be complementary.
  • the property of complementary sequences to be able to specifically bind to one another is made use of, for example, in the Northern or Southern Blot technique or in primer binding in PCR or RT-PCR. Usually, oligonucleotides starting from a length of 30 base pairs are used for this purpose.
  • Under stringent conditions mean, for example, in the Northern blot technique, using a 50-70 0 C 1 is preferably 60-65 0 C warm wash solution, for example, 0.1x SSC buffer with 0.1% SDS (SSO 2 O x. 3M NaCl, 0.3 M Na citrate, pH 7.0) for the elution of nonspecifically hybridized cDNA probes or oligonucleotides.
  • SSC buffer with 0.1% SDS (SSO 2 O x. 3M NaCl, 0.3 M Na citrate, pH 7.0) for the elution of nonspecifically hybridized cDNA probes or oligonucleotides.
  • SDS SSO 2 O x. 3M NaCl, 0.3 M Na citrate, pH 7.0
  • a further aspect of the invention relates to "antisense nucleic acids.”
  • This comprises a nucleotide sequence that is complementary to a coding "sense" nucleic acid
  • the antisense nucleic acid may be complementary to the entire coding strand or only to a portion thereof another embodiment is the
  • Non-coding region refers to the sequence segments designated as 5 'and 3' untranslated regions.
  • an antisense oligonucleotide may be about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 nucleotides in length.
  • An antisense nucleic acid of the invention may be constructed by chemical synthesis and enzymatic ligation reactions by methods known in the art.
  • An antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or increase the physical stability of the duplex that exists between the antisense and sense antisense nucleic acids. Nucleic acid is formed. For example, phosphorothioate derivatives and acridine-substituted nucleotides can be used.
  • modified nucleotides which can be used to produce the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5- (carboxyhydroxylmethyl) uracil, 5 Carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N ⁇ -isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycar
  • the invention furthermore relates to expression constructs comprising, under the genetic control of regulatory nucleic acid sequences, a nucleic acid sequence coding for an AGER-RME according to the invention or AGER-CDP or functional equivalent or immunoglobulin; and vectors comprising at least one of these expression constructs.
  • Such constructs according to the invention preferably comprise a promoter 5'-upstream of the respective coding sequence and a terminator sequence 3'-downstream and optionally further customary regulatory elements, in each case operatively linked to the coding sequence.
  • "Operational linkage” is understood to mean the sequential arrangement of promoter, coding sequence, terminator and optionally further regulatory elements in such a way that each of the regulatory elements can fulfill its function in the expression of the coding sequence as intended
  • Other regulatory elements include selectable markers, amplification signals, origins of replication, etc. Suitable regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990) ).
  • the natural regulatory sequence may still be present before the actual structural gene. By genetic modification, this natural regulation can optionally be switched off and the expression of the genes increased or decreased.
  • the gene construct can also be constructed more simply, that is, no additional regulatory signals are inserted in front of the structural gene and the natural promoter with its regulation is not removed. Instead, the natural regulatory sequence is mutated so that regulation stops and gene expression is increased or decreased.
  • the nucleic acid sequences may be contained in one or more copies in the gene construct.
  • Examples of useful promoters are: cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, laclq, T7, T5, T3, gal, trc , ara, SP6, lambda PR or lambda PL promoter, which are advantageously used in gram-negative bacteria; and the gram-positive promoters amy and SPO2, the yeast promoters ADC1, MFalpha, AC, P-60, CYC1, GAPDH or the plant promoters CaMV / 35S, SSU, OCS, Iib4, usp, STLS1, B33, not or the ubiquitin or phaseolin promoter.
  • inducible promoters such as light- and in particular temperature-inducible promoters, such as the P r P r promoter.
  • inducible promoters such as light- and in particular temperature-inducible promoters, such as the P r P r promoter.
  • all natural promoters can be used with their regulatory sequences.
  • synthetic promoters can also be used to advantage.
  • the regulatory sequences mentioned are intended to enable targeted expression of the nucleic acid sequences and protein expression. Depending on the host organism, this may mean, for example, that the gene is only expressed or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
  • the regulatory sequences or factors can thereby preferably positively influence the expression and thereby increase or decrease.
  • enhancement of the regulatory elements can advantageously be done at the transcriptional level by using strong transcription signals such as promoters and / or enhancers.
  • an enhancement of the translation is possible by, for example, the stability of the mRNA is improved.
  • an expression cassette is carried out by fusion of a suitable promoter with a suitable coding nucleotide sequence and a terminator or polyadenylation signal.
  • common recombination and cloning techniques are used, as described, for example, in T. Maniatis, E.F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, ColD Spring Harbor Laboratory, ColD Spring Harbor, NY (1989) and in TJ. Silhavy, M.L. Berman and L.W. Enquist, Experiments with Gene Fusions, Colard Spring Harbor Laboratory, ColD Spring Harbor, NY (1984) and in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987).
  • the recombinant nucleic acid construct or gene construct is advantageously inserted into a host-specific vector for expression in a suitable host organism, which enables optimal expression of the genes in the host.
  • Vectors are well known to those skilled in the art and may be taken, for example, from "Cloning Vectors" (Pouwels PH et al., Eds. Elsevier, Amsterdam-New York-Oxford, 1985). the.
  • Vectors other than plasmids are also to be understood as meaning all other vectors known to the person skilled in the art, such as, for example, phages, viruses such as SV40, CMV, baculovirus and adenovirus, transposons, IS elements, phasmids, cosmids, and linear or circular DNA. These vectors can be autonomously replicated in the host organism or replicated chromosomally.
  • fusion expression vectors such as pGEX (Pharmacia Biotech Ine, Smith, DB and Johnson, KS (1988) Gene 67: 31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT 5 (Pharmacia, Piscataway, NJ) glutathione S-transferase (GST), maltose E-binding protein or protein A is fused to the recombinant target protein.
  • Non-fusion protein expression vectors such as pTrc (Amann et al., (1988) Gene 69: 301-315) and pET 11d (Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990). 60-89).
  • Yeast expression vector for expression in the yeast S. cerevisiae such as pYepSed (BaI dari et al., (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30: 933-943) , pJRY88 (Schultz et al. (1987) Gene 54: 113-123) and pYES2 (Invitrogen Corporation, San Diego, CA).
  • Vectors and methods for constructing vectors suitable for use in other fungi, such as filamentous fungi include those described in detail in: van den Hondel, C.A.M.J.J. & Punt, PJ. (1991) Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy et al., Eds., Pp. 1-28, Cambridge University Press: Cambridge.
  • Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith et al., (1983) Mol. Cell BioL 3: 2156-2165) and the pVL Series (Lucklow and Summers (1989) Virology 170: 31-39),
  • Plant expression vectors such as those described in detail in: Becker, D., Kemper, E., Schell, J. and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left Border ", Plant Mol. Biol. 20: 1195-1197; and Bevan, MW (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12: 8711-8721.
  • Mammalian expression vectors such as pCDM ⁇ (Seed, B. (1987) Nature 329: 840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6: 187-195).
  • recombinant organisms can be produced, which are transformed, for example, with at least one vector according to the invention and can be used to produce the polypeptides according to the invention.
  • the above-described recombinant constructs according to the invention are introduced into a suitable host system and expressed.
  • host organisms are in principle all organisms suitable, which allow expression of the nucleic acids according to the invention, their allelic variants, their functional equivalents or derivatives.
  • Host organisms are understood as meaning, for example, bacteria, fungi, yeasts, plant or animal cells.
  • Preferred organisms are bacteria, such as those of the genera Escherichia, such. Escherichia coli, Streptomyces, Bacillus or Pseudomonas, eukaryotic microorganisms such as Saccharomyces cerevisiae, Aspergillus, higher eukaryotic cells from animals or plants, for example Sf9 or CHO cells.
  • the selection of successfully transformed organisms can be carried out by marker genes, which are also contained in the vector or in the expression cassette.
  • marker genes are antibiotic resistance genes and enzymes that catalyze a colorant reaction that causes staining of the transformed cell. These can then be selected by means of automatic cell sorting.
  • Successfully transformed with a vector microorganisms that have a corresponding antibiotic Resistance gene (eg G418 or hygromycin) wear can be selected by appropriate antibiotics-containing media or nutrient media. Marker proteins presented on the cell surface can be used for selection by affinity chromatography.
  • the gene product may also be expressed in transgenic organisms such as transgenic animals, especially mice, sheep or transgenic plants.
  • the invention furthermore relates to processes for the recombinant production of AGER-RME or AGER-CDP peptides according to the invention or functional, biologically active fragments thereof, in which a peptide-producing recombinant host organism is cultivated, where appropriate the expression of the polypeptides is induced and these are isolated from the culture ,
  • the peptides can thus also be produced on an industrial scale, if desired.
  • the recombinant host can be cultured and fermented by known methods. Bacteria can be propagated, for example, in TB or LB medium and at a temperature of 20 to 40 0 C and a pH of 6 to 9. Specifically, suitable culturing conditions are described, for example, in T. Maniatis, EF Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, ColD Spring Harbor Laboratory, ColD Spring Harbor, NY (1989).
  • the cells are then disrupted if the polypeptides are not secreted into the culture medium and the product recovered from the lysate by known protein isolation techniques.
  • the cells may optionally be treated by high frequency ultrasound, high pressure, e.g. in a French pressure cell, by osmolysis, by the action of detergents, lytic enzymes or organic solvents, by homogenizers or by combining several of the listed methods.
  • Purification of the peptides can be achieved by known chromatographic methods, such as molecular sieve chromatography (gel filtration), such as Q-sepharose chromatography, ion exchange chromatography and hydrophobic chromatography, as well as by other conventional methods, such as ultrafiltration, crystallization, salting out, dialysis and native gel electrophoresis. Suitable methods are described, for example, in Cooper, FG, Biochemische Harvey
  • vector systems or oligonucleotides for the isolation of the recombinant peptide, which extend the cDNA by certain nucleotide sequences and thus code for altered polypeptides or fusion proteins, for example, serve a simpler purification.
  • suitable modifications include, for example, so-called “tags” as anchors, such as the modification known as hexa-histidine anchor, or epitopes which can be recognized as antigens of antibodies (described, for example, in Harlow, E. and Lane, D. 1988, Antibodies: A Laboratory Manual, CoId Spring Harbor (NY) Press).
  • These anchors may be used to attach the peptides to a solid support, such as a polymer matrix, which may be filled, for example, in a chromatography column, or used on a microtiter plate or other support.
  • these anchors can also be used to detect the peptides.
  • conventional markers such as fluorescent dyes, enzyme markers which upon reaction with a substrate form a detectable reaction product or radioactive labels alone or in combination with the anchors may be used to derive the peptides to identify the peptides.
  • the present invention relates to monoclonal or polyclonal antibodies which specifically bind to an inventive AGER-RME or AGER-CDP or derivative / equivalent thereof, i. Antibody with specificity for an inventive
  • AGER-RME or derivative / equivalent thereof The present invention also relates to parts of these antibodies, in particular antigen-binding parts thereof, i.
  • Antibody fragments which bind an AGER-RME according to the invention or AGER-CDP or a derivative / equivalent thereof.
  • AGER-RME or AGER-CDP is also understood as meaning precursors such as AGER or sRAGE or other AGER splice variants in different conformational states, which transiently or permanently, for example, by interaction of these molecules with a corresponding binding partner be induced.
  • the antibody according to the invention is selected such that it has a specific binding kinetics (eg high affinity, low dissociation, low off-rate, strong neutralizing activity) for specific binding to AGER-RME according to the invention or AGER-CDP or derivative / equivalent thereof.
  • a specific binding kinetics eg high affinity, low dissociation, low off-rate, strong neutralizing activity
  • the antibodies of the invention may be selected to bind the AGER-RME or AGER-CDP or derivative / equivalent thereof at a k or rate constant of 0.1 s -1 or less.
  • the antibodies are preferably isolated antibodies. In another aspect, the antibodies are neutralizing antibodies.
  • the antibodies according to the invention include, in particular, monoclonal and recombinant antibodies.
  • the antibody of the invention may comprise an amino acid sequence derived entirely from a single species, e.g. a human antibody or a mouse antibody. According to further embodiments, the antibody may be a chimeric antibody or a CDR graft antibody or another form of humanized antibody.
  • antibody is intended to refer to immunoglobulin molecules formed of 4 polypeptide chains, two heavy (H) chains, and two light (L) chains, which chains are usually linked by disulfide bonds composed of a variable region of the heavy chain (abbreviated here as HCVR or VH) and a heavy chain constant region
  • the heavy chain constant region is formed of three domains CH1, CH2 and CH3
  • Each light chain is composed of a variable The light chain region (herein abbreviated as LCVR or VL) and a light chain constant region
  • the light chain constant region is formed from a domain CL
  • the VH and VL regions can be further subdivided into hypervariable regions referred to as Complementarity Determining Regions (CDR) and more conserved regions identified as scaffolds regions (FR for Frame Work Region) are interspersed.
  • CDR Complementarity Determining Regions
  • FR for Frame Work Region are interspersed.
  • Each VH and VL region is made up of three CDRs and four FR
  • antibody portion refers to one or more fragments of an antibody having specificity for AGER-RME or AGER-CDP or derivative / equivalent thereof according to the invention, wherein the fragment or fragments still have the ability to specifically bind the AGER-RME or AGER-CDP or derivative / equivalent thereof. It has been shown that the antigen-binding function of an antibody can be detected by fragments of a complete antibody.
  • binding fragments within the meaning of the term "antigen-binding portion" of an antibody include (i) a Fab fragment, ie a monovalent fragment composed of the VL, VH, CL and CH1 domains, (ii) an F (ab ') 2 fragment, ie a bivalent fragment which contains two Fab fragments linked together in the hinge region via a disulfide bridge, (iii) an Fd fragment composed of the VH and CH 1 domains (iv) an Fv fragment composed of the VL and VH domains of a single arm of an antibody; (v) a dAb fragment (Ward et al., (1989) Nature 341: 544-546) , which consists of a VH domain or VH, CH1, CH2, DH3, or VH, CH2, CH3, and (vi) an isolated complementarity-determining region (CDR).
  • a Fab fragment ie a monovalent fragment composed of the VL, VH, CL and CH1 domains
  • the two domains of the Fv fragment, VL and VH may further be treated with a synthetic linker using recombinant techniques whereby they can be prepared as a single protein chain, wherein the VL and VH regions combine to form monovalent molecules (known as single-chain Fv (ScFv); see, eg, Bird et al. (1988) Science 242: 423-426; and Husson et al. (1988) Proc. Natl. Acad. Be. USA 85: 5879-5883).
  • Single chain Fv Single chain antibodies are also to be understood by the term "antigen-binding portion" of an antibody
  • Other forms of single-chain antibodies such as “diabodies” are also included.
  • Diabodies are bivalent bispecific antibodies in which VH and VL domains are expressed on a single polypeptide chain, however, using a linker that is too short for the two domains to co-assemble on the same chain, thereby forming the domains forces to pair with complementary domains of another chain and form two antigen-binding sites (see, eg, Holliger, P., et al., (1993) Proc Natl Acad., USA 90: 6444-6448, Poljak, RJ, et al. (1994) Structure 2: 1121-1123).
  • an antibody or antigen-binding portion thereof may be part of a larger immunoadhesive molecule formed by covalent or non-covalent association of the antibody or antibody portion with one or more other proteins or peptides.
  • immunoadhesion molecules include the use of the streptavidin core region to produce a more tetrameric scFv molecule (Kipriyanov, SM, et al., (1995) Human Antibodies and Hybridomas 6: 93-101) and the use of a cysteine residue, a marker peptide and a C -terminal PoIy- histidine tags to make bivalent and biotinylated scFv molecules (Kipriyanov, SM, et al. (1994) Mol. Immunol. 31: 1047-1058).
  • Antibody parts such as Fab and F (ab ') 2 fragments, can be made from whole antibodies using conventional techniques, such as digestion with papain or pepsin.
  • antibodies, antibody moieties, and immunoadhesion molecules can be obtained using standard recombinant DNA techniques.
  • An "isolated antibody having specificity for an AGER-RME or AGER-CDP or derivative / equivalent thereof of the present invention" describes an antibody having specificity for an AGER-RME or AGER-CDP or derivative / equivalent thereof of the present invention substantially free of other antibodies with different antigen specificities.
  • neutralizing antibody describes an antibody whose binding to a particular antigen results in the inhibition of the biological activity of the antigen.This inhibition of the biological activity of the antigen can be assessed by measuring one or more indicators of the biological activity of the antigen, using a suitable in vitro or in vivo assay.
  • the term "monoclonal antibody” describes an antibody derived from a hybridoma (eg, an antibody secreted by a hybridoma prepared by hybridoma technology, such as the standard Köhler-Milstein hybridoma methodology.) An antibody derived from a hybridoma with specificity for an inventive AGER-RME or AGER-CDP or derivative / equivalent thereof is therefore referred to as monoclonal antibody.
  • recombinant antibody describes antibodies produced, expressed, generated or isolated by recombinant means, such as antibodies expressed using a recombinant expression vector transfected into a host cell; antibodies isolated from a recombinant combinatorial antibody library; Antibodies isolated from an animal (eg, a mouse) transgenic by human immunoglobulin genes (see, e.g., Taylor, LD, et al., (1992) Nucl. Acids Res. 20: 6287- 6295) or antibodies produced, expressed, generated or isolated in any other manner in which certain immunoglobulin gene sequences (such as human immunoglobulin gene sequences) are assembled with other DNA sequences chimeric, CDR graft and humanized antibodies.
  • human antibody describes antibodies whose variable and constant regions are human germline immunoglobulin sequences as described, for example, by Kabat et al., (See Kabat, et al., (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, US Department of Health and Human Services, NIH Publication No.
  • human antibodies of the invention may include amino acid residues that are not encoded by human germline immunoglobulin sequences (e.g., mutations caused by random or site-specific Mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs, and especially in CDR3 Recombinant human antibodies of the invention have variable regions and may also include constant regions derived from human germ line immunoglobulin sequences (see Kabat, EA , et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, US Department of Health and Human Services, NIH Publication No. 91-3242).
  • such recombinant human antibodies are subjected to in vitro mutagenesis (or if an animal is transgenic through human Ig sequences, in vivo somatic mutagenesis) such that the amino acid sequences of the VH and VL regions are recombinant Antibodies are sequences which, although related to or derived from human germline VH and VL sequences, do not naturally exist in vivo within the human antibody germ line repertoire. In certain embodiments, such recombinant antibodies are the result of selective mutagenesis or reverse mutation, or both.
  • reverse mutation refers to a process in which some or all of the somatic mutated amino acids of a human antibody are replaced with the corresponding germline residues of a homologous germline antibody sequence.
  • the heavy and light chain sequences of a human antibody of the invention are separately compared to the germline sequences in the VBASE database to identify the most homologous sequences. Deviations in the human antibody of the invention are attributed to the germline sequence by mutating at defined nucleotide positions encoding such aberrant amino acids.
  • the direct or indirect significance of each amino acid for antigen binding thus identified as a candidate for reverse mutation should be examined, and an amino acid which, upon mutation, interferes with a desirable property of the human antibody should not be included in the final human antibody.
  • those amino acid positions may remain unchanged which deviate from the closest germ line sequence but with the corresponding amino acid sequence.
  • identical to a second germline sequence provided that the second germline sequence is identical and co-linear with the sequence of the human antibody according to the invention at least in 10 and preferably in 12 amino acids on both sides of the amino acid in question.
  • Reverse mutations can be made at any stage of antibody optimization.
  • chimeric antibody includes antibodies in which individual parts of the molecule are derived from different species, such as, but not limited to, chimeric antibodies, for example, antibodies that contain sequences for the heavy and light chain variable region from one species but in which the sequences of one or more of the CDR regions of VH and / or VL are replaced with CDR sequences of another species
  • the murine heavy and light chain variable regions may comprise one or more of mouse CDRs (eg CDR3) are replaced by human CDR sequences.
  • humanized antibody describes antibodies containing heavy and light chain variable region sequences from a non-human species (e.g., mouse, rat, rabbit, chicken, camelid, goat) but in which at least a portion of the VH protein is and / or VL sequence has been altered to be "more human-like", i. H. to be more similar to human germ line variable sequences.
  • a non-human species e.g., mouse, rat, rabbit, chicken, camelid, goat
  • VH protein e.g., rat, rabbit, chicken, camelid, goat
  • surface plasmon resonance refers to an optical phenomenon that can be used to analyze biospecific interactions by detecting changes in protein concentrations with a biosensor matrix using, for example, the BIAcore system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway For further descriptions, see Jönsson, U., et al. ( * 993) Ann. Biol. Clin. 51: 19-26; Jönsson, U., et al. (1991) Biotechniques 11: 620-627 Johnsson, B., et al., (1995) J. Mol. Recognit., 8: 125-131; and Johnnson, B., et al. (1991) Anal. Biochem. 198: 268-277.
  • K off describes the off-rate constant for the dissociation of an antibody from the antibody / antigen complex.
  • K d describes the dissociation constant of a particular antibody-antigen interaction.
  • the binding affinity of the antibodies of the invention can be assessed using standardized in vitro immunoassays, such as ELISA or BIAcore analyzes.
  • the present invention relates to polylonal anti-AG ER-RM E or anti-AGER-CDP antibodies and their preparation
  • a host is immunized with at least one AGER-RME according to the invention or AGER-CDP or derivative / equivalent thereof; and an antibody-containing serum of the host formed in response to the immunization gains.
  • AGER-RMEs or AGER-CDPs to be used are not or only weakly immunogenic, their immunogenicity can be increased by adding them to carriers, preferably a carrier protein, such as keyhole limpet hemocyanin (KLH), Limulus polyphenus hemocyanin (LPH).
  • KLH keyhole limpet hemocyanin
  • LPH Limulus polyphenus hemocyanin
  • Bovine serum albumin BSA
  • ovalbumin OVA
  • BSA Bovine serum albumin
  • OVA ovalbumin
  • This reaction may conveniently be carried out at ambient temperature, usually room temperature, but it may also be convenient to cool or slightly heat it within a few hours to the desired result, a reaction time of for example 2 h is übl
  • the glutaraldehyde concentration is generally in the ppm to% range, suitably from 10 ppm to 1%, preferably from 100 ppm to 0.5%. Optimization of the reaction parameters is within the skill of the art.
  • compositions generally contain further excipients, in particular adjuvants commonly used for immunization, eg Freund's adjuvant.
  • adjuvants commonly used for immunization
  • complete Freund's adjuvant is used for the first immunization whereas all further immunizations are performed with incomplete Freund's adjuvant.
  • the antigen preferably as the above-described component Mixture, added to the or the excipients.
  • the antigen is emulsified.
  • Rodents or even rabbits are particularly suitable as hosts. These or other suitable hosts are injected with the immunization cocktails, preferably subcutaneously.
  • Antibody titers can be determined by an immunoassay, for example, competitive with a sheep anti-host IgG and labeled AGER-RME or AGER-CDP.
  • AGER-RME labeled by the immunization
  • AGER-CDP AGER-CDP
  • the hosts blood for several weeks or months. Finally, you can bleed the host. From the blood thus obtained, serum can be obtained in a manner known per se which contains the desired antibodies. The whole serum thus obtained may, if necessary, be further purified in an expert manner in order to enrich the antibody fraction contained therein, and in particular the antibodies recognizing AGER-RME or AGER-CDP.
  • At least one antibody of the serum which specifically recognizes the AGER-RME AGER-CDP used as immunogen or a derivative / equivalent thereof is selected.
  • Specificity in this context means a higher binding affinity of the antibody for the immunogen than for other, in particular immunogenically related, proteins, such as APP (amyloid precursor protein).
  • Immunoglobulins which can be used according to the invention are obtainable by use of methods known per se.
  • hybridoma technology allows the production of monospecific antibodies to an antigen of interest.
  • recombinant antibody techniques have been developed, such as the in vitro screening of antibody libraries, with the help of which also such specific antibodies can be produced.
  • This in vivo approach may further include that of the lymphocytes or spleen cells of an animal establishes a series of hybridomas and selects a hybridoma which secretes an antibody specifically binding the antigen.
  • the animal to be immunized may be, for example, a mouse, rat, rabbit, chicken, camelid or sheep or a transgenic version of one of the aforementioned animals, for example a transgenic mouse with human immunoglobulin genes following an antigenic stimulus makes human antibodies.
  • mice with severe combined immunodeficiency that have been reconstituted with human peripheral blood mononuclear cells (chimeric hu-PBMC-SCID mice) or with lymphoid cells or progenitors thereof
  • SCID severe combined immunodeficiency
  • mice treated with lethal whole body irradiation they are subsequently protected against radiation with bone marrow cells from a mouse with severe combined immunodeficiency (SCID) and subsequently transplanted with functional human lymphocytes (the so-called Trimera system).
  • Another type of animal to be immunized is an animal (eg, a mouse) in the genome of which an endogenous gene encoding the antigen of interest has been knocked out, eg, by homologous recombination, such that this animal is immunized with
  • an animal eg, a mouse
  • an endogenous gene encoding the antigen of interest has been knocked out, eg, by homologous recombination, such that this animal is immunized with
  • a recombinant antibody library is screened with the antigen.
  • the recombinant antibody library may be expressed on the surface of bacteriophages or on the surface of yeast cells or on the surface of bacterial cells.
  • the recombinant antibody library may be, for example, an scFv library or a Fab library.
  • antibody libraries are expressible as RNA-protein fusions.
  • the antigen can be allowed to act on the antibody repertoire by immunizing an animal with the antigen in vivo, and then recombinant antibody library or single domain antibody library (eg, heavy and / or light chain) prepared from lymphoid cells of the animal Antigen screent in vitro.
  • the antigen is allowed to act on the antibody repertoire by immunizing an animal with the antigen in vivo and then affinity maturing a recombinant antibody library or single domain library prepared from lymphoid cells of the animal.
  • Another approach is to leave the antigen on the Antibody repertoire by immunizing an animal with the antigen in vivo, then selected individual antibody-producing cells that secrete an antibody of interest, and from these selected cells cDNAs for the heavy and light chain variable region wins (eg by PCR ) and the heavy and light chain variable regions are expressed in vitro in mammalian host cells (referred to as the lymphocyte antibody selection method, or SLAM for "Selected Lymphocyte Antibody Method"), thereby further selecting and manipulating the selected antibody gene sequences
  • monoclonal antibodies can be selected by expression cloning by expressing antibody genes for the heavy and light chains in mammalian cells and selecting those mammalian cells which secrete an antibody with the desired binding affinity.
  • the present invention provides defined antigens in the form of AGER-RMEs or AGER-CDPs for screening and counter-screening.
  • those polyclonal and monoclonal antibodies can be selected which have a property profile desired according to the invention as defined above, such as e.g. specifically recognize AGER-induced receptor status.
  • antibodies different types can be produced. These include, but are not limited to, human antibodies, chimeric antibodies, humanized antibodies and CDR graft antibodies, and antigen-binding portions thereof.
  • monoclonal antibodies can be isolated by standard techniques such as those originally described by Köhler and Milstein (1975, Nature 256: 495-497) (see also Brown et al. (1981) J. Immolol 127 Brown et al., (1980) J Biol Chem 255: 4980-83; Yen et al. (1976) PNAS 76: 2927-31; and Yeh et al. (1982) Int J. Cancer 29: 269 -75) described hybridoma technique can be produced.
  • An immortalized cell line (typically a myeloma) is fused thereto with lymphocytes (typically splenocytes or lymph node cells or peripheral blood lymphocytes) of a mammal immunized with the inventive AGER-RME or AGER-CDP or derivative / equivalent thereof, and the culture supernatants of the resulting hybridoma cells screened to identify a hybridoma producing a monoclonal antibody with specificity for AGER-RME or AGER-CDP of the invention or for a derivative / equivalent thereof.
  • lymphocytes typically splenocytes or lymph node cells or peripheral blood lymphocytes
  • the immortalized cell lines eg, a myeloma cell line
  • murine hybridomas can be established by fusing lymphocytes from a mouse immunized with an immunogenic preparation of the invention to an immortalized mouse cell line.
  • Preferred immortalized cell lines are mouse myeloma cell lines which are sensitive to hypoxanthine, aminopterin and thymidine-containing culture medium (HAT medium).
  • HAT medium thymidine-containing culture medium
  • One of many myeloma cell lines can be used as standard by fusion, eg the P3-NS1 / 1-Ag4-1, P3-x63-Ag8.653 or Sp2 / O-Ag14 myeloma line. These myeloma cell lines are available from the American Type Culture Collection (ATCC), Rockville, MD.
  • ATCC American Type Culture Collection
  • HAT-sensitive mouse myeloma cells are fused to mouse splenocytes using polyethylene glycol (PEG).
  • hybridoma cells resulting from the fusion are then selected using HAT medium, thereby killing unfused and non-productively fused myeloma cells (unfused splenocytes die after several days because they are not transformed).
  • Monoclonal antibody-producing hybridoma cells specifically recognizing an AGER-RME or AGER-CDP or a derivative / equivalent thereof according to the invention are identified by screening the hybridoma culture supernatants for such antibodies, eg by using a standard ELISA assay to amplify those antibodies which can specifically bind AGER-RME or AGER-CDP of the invention or a derivative / equivalent thereof.
  • mice made deficient for a particular endogenous protein by homologous recombination on the corresponding endogenous gene ie, knockout mice
  • mice made deficient for a particular endogenous protein by homologous recombination on the corresponding endogenous gene ie, knockout mice
  • mice made deficient for a particular endogenous protein by homologous recombination on the corresponding endogenous gene ie, knockout mice
  • non-human mammals are useful as hosts for antibody production. These include mice, rats, chickens, camelids, rabbits and goats (and knockout versions thereof), although mice are preferred for hybridoma production.
  • non-human host animal expressing a human antibody repertoire.
  • Such non-human animals include transgenic animals (e.g., mice) carrying human immunoglobulin transgenes (chimeric hu-PBMC-SCID mice) and human / mouse irradiation chimeras, described in more detail below.
  • the animal immunized with an AGER-RME according to the invention or AGER-CDP or derivative / equivalent thereof is a non-human mammal, preferably a mouse transgenic by human immunoglobulin genes, such that the non-human mammal is after a human antigenic stimulus makes human antigens.
  • such animals are introduced into human and human immunoglobulin heavy and light chain transgenes with the animals being engineered so that their endogenous heavy and light chain loci are inactive. Stimulating such animals with antigen (eg, with a human antigen) produces antibodies derived from the human immunoglobulin sequences (ie, human antibodies).
  • human monoclonal antibodies can be made by standard hybridoma technology.
  • transgenic mice with human immunoglobulins see, for example, U.S. Patent Nos. 5,939,598, WO 96/33735, WO 96/34096, WO 98/24893 and WO 99/53049 (Abgenix Inc.), and U.S. Patent No. 5,545,806, No. 5,569,825, No. 5,625,126, No. 5,633, 425, No. 5,661,016, No. 5,770,429, No. 5,814,318, No.
  • the animal immunized with AGER-RME or AGER-CDP of the invention or a derivative / equivalent thereof may be a mouse with severe combined immunodeficiency (SCID) with human peripheral blood mononuclear cells or lymphoid cells or precursors thereof was reconstituted.
  • SCID severe combined immunodeficiency
  • Such mice termed chimeric hu-PBMC-SCID mice, have been shown to produce human immunoglobulin responses to an antigenic stimulus.
  • chimeric hu-PBMC-SCID mice have been shown to produce human immunoglobulin responses to an antigenic stimulus.
  • leaders K.A. et al. (1992) Immunology 76: 229-234; Bombil, F. et al. (1996) Immunobiol. 195: 360-375: Murphy, WJ. et al.
  • the animal immunized with AGER-RME or AGER-CDP or a derivative / equivalent thereof according to the invention is a whole-body lethal radiation treatment mouse followed by bone marrow cells from severe combined immunodeficiency (SCID) mice Radiation-protected, and then transplanted with functional human lymphocytes.
  • SCID severe combined immunodeficiency
  • This type of chimera called the Trimera system, is used to make human monoclonal antibodies by immunizing the mice with the antigen of interest and then producing monoclonal antibodies using standard hybridoma technology.
  • Eren, R. et al. 1998 Immunology 93: 154-161; Reisner, Y and Dagan, S.
  • antibodies according to the invention can be identified and isolated by screening recombinant combinatorial immunoglobulin library with an AGER-RME according to the invention or AGER-CDP or derivative / equivalent thereof, thus members of the immunoglobulin library which are specific bind to the AGER-RME or AGER-CDP or derivative / equivalent thereof.
  • Kits for generating and screening display banks are commercially available (eg, Pharmacia's Recombinant Phage Antibody System, Catalog No. 27-9400-01, and Stratagene's SurfZAP® Phage Display Kit, Cat 240612).
  • the display bank is an scFv bank or a fab bank.
  • WO 97/29131 (describes the production of a recombinant human antibody against a human antigen (human tumor necrosis factor alpha), as well as in vitro affinity maturation of the recombinant antibody) and Salfeld et al.
  • U.S. Provisional Application No. 60 / 126,603 and the patent applications based thereon also describes the production of recombinant human antibodies to human antigen (human interleukin-12), as well as the in vitro affinity maturation of the recombinant antibody).
  • recombinant antibody libraries can be expressed on the surface of yeast cells or bacterial cells. Methods for preparing and screening banks that are expressed on the surface of yeast cells are described in WO 99/36569. Methods for preparing and screening libraries that are expressed on the surface of bacterial cells are described in more detail in WO 98/49286.
  • the DNAs encoding the antibody light and heavy chains are isolated by standard molecular biology techniques, for example, by PCR amplification of DNA from the display package (eg, the phage). that was isolated during the screening of the bank.
  • Nucleotide sequences of genes for light and heavy antibody chains, with which PCR primers can be prepared, are known in the art. Many such sequences are described, for example, in Kabat, E.A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Pat. Department of Health and Human Services, NIH Publication No. 91-3242 and the database of sequences of human germ line VBASE.
  • An antibody or antibody part of the invention can be produced by recombinantly expressing the genes for immunoglobulin light and heavy chains in a host cell.
  • a host cell is transfected with one or more recombinant expression vectors carrying DNA fragments encoding the antibody light and heavy immunoglobulin chains such that the light and heavy chains are expressed in the host cell, and preferably in the host cell Medium in which the host cells are cultured, secreted. From this medium, the antibodies can be obtained. Standardized recombinant DNA methodology is used to obtain genes for heavy and light antibody chains, to insert these genes into recombinant expression vectors, and to introduce the vectors into host cells.
  • a VL or VH-encoding DNA fragment is operatively linked to another DNA fragment encoding another protein, eg, a constant antibody region or a flexible linker.
  • the term "operatively linked” is intended here to mean that the two DNA fragments are linked together so that the amino acid sequences encoded by the two DNA fragments remain in-frame.
  • the isolated DNA encoding the VH region can be converted into a full-length heavy chain gene by amplifying the VH region-encoding DNA with another DNA heavy chain constant region (CH 1, CH 2 and CH 3). Molecule operatively linked.
  • the sequences of human heavy chain constant region genes are well known (see, eg, Kabat, EA, et al., (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, US Department of Health and Human Services, NIH Publication No. 91- 3242), and DNA fragments spanning these regions can be obtained by standard PCR amplification.
  • the heavy chain constant region may be a constant region of IgGI, IgG2, IgG3, IgG4, IgA, IgE, IgM or IgD, with a constant region of IgGI or IgG4 being preferred.
  • the VH-encoding DNA can be operatively linked to another, only the constant region CH1 heavy chain coding DNA molecule.
  • the isolated DNA encoding the VL region can be converted into a full-length light chain gene (as well as a Fab-free chain gene) by mixing the VL-encoding DNA with another, the light-chain constant region CL Chain-coding DNA molecule operatively linked.
  • the sequences of human light chain constant region genes are well known (see Kabat, EA, et al., (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, US Department of Health and Human Services, NIH Publication No. 91 -3242), and DNA fragments spanning these regions can be obtained by standard PCR amplification.
  • the constant region of the light chain may be a constant kappa or lambda region, with a constant kappa region being preferred.
  • the VH and VL-encoding DNA fragments can be operatively linked to another fragment that encodes a flexible linker, eg, the amino acid sequence (Gly 4 -Ser) 3 , such that the VH and VL sequences as a continuous single-chain protein with the VL and VH regions linked together via the flexible linker (see Bird et al., (1988) Science 242: 423-426; Huston et al. (1988) Proc. Natl. Acad U.S.A. 85: 5879-5883; McCafferty et al., Nature (1990) 348: 552-554).
  • a flexible linker eg, the amino acid sequence (Gly 4 -Ser) 3
  • VH and VL single domains with specificity for AGER-RME according to the invention or AGER-CDP or a derivative / equivalent thereof can be isolated from the single-domain libraries by the methods described above.
  • Two VH single domain chains (with or without CH 1) or two VL chains or a pair of VH and VL chains of the desired specificity may be used to prepare AGER-RMEs or AGER-CDPs or derivatives of the invention. Bind equivalents thereof.
  • the DNAs encoding the partial and full length light and heavy chains may be inserted into expression vectors such that the genes are operably linked to transcriptional and translational control sequences.
  • operably linked is intended to mean that an antibody gene is ligated in a vector such that transcriptional and translational control sequences within the vector fulfill their intended function of regulating the transcription and translation of the antibody gene.
  • the expression vector and expression control sequences are chosen to be compatible with the host cell used for expression.
  • the gene for the antibody light chain and the antibody heavy chain gene can be inserted into separate vectors, or both genes are inserted into the same expression vector, which is the usual case.
  • the antibody genes are inserted into the expression vector by standard methods (eg, ligation of complementary restriction sites on the antibody gene fragment and vector, or blunt-ended ligation if no restriction sites are present).
  • the expression vector may already carry constant antibody region sequences.
  • one approach is to convert the VH and VL sequences into full-length antibody genes by inserting them into expression vectors that already encode the heavy or light chain constant regions, such that the VH segment is linked to the one or more CH segment (s) within the vector is operatively linked, and also the VL segment is operatively linked to the CL segment within the vector.
  • the recombinant expression vector may encode a signal peptide that facilitates secretion of the antibody chain from the host cell.
  • the gene for the antibody chain can be cloned into the vector, leaving the signal peptide in reading frame is linked to the N-terminus of the antibody chain gene.
  • the signal peptide may be an immunoglobulin signal peptide or a heterologous signal peptide (ie, a signal peptide from a non-immunoglobulin protein).
  • the expression vectors of the invention may have regulatory sequences which control the expression of the genes for the antibody chain in a host cell.
  • regulatory sequence is intended to include promoters, enhancers and other expression control elements (eg, polyadenylation signals) which control transcription or translation of the antibody chain genes
  • promoters e.g., promoters, enhancers and other expression control elements
  • enhancers e.g, polyadenylation signals
  • polyadenylation signals e.g., polyadenylation signals
  • Preferred regulatory sequences for expression in mammalian host cells include viral elements that result in strong protein expression in mammalian cells, such as promoters and / or enhancers derived from cytomegalovirus (CMV) (such as the CMV promoter / enhancer), simian virus 40 (SV40 ) (such as the SV40 promoter / enhancer), adeno virus (eg the adenovirus major late promoter (AdMLP for Adenovirus Major Late Promoter) and polyoma.
  • CMV cytomegalovirus
  • SV40 simian virus 40
  • AdMLP adenovirus major late promoter
  • the recombinant expression vectors of the invention may have additional sequences, such as sequences that regulate replication of the vector in host cells (e.g., origins of replication) and selectable marker genes.
  • the selectable marker genes facilitate the selection of host cells into which the vector has been introduced (see, e.g., U.S. Patent Nos. 4,399,216, 4,634,665 and 5,179,017, all to Axel et al.).
  • Preferred selectable marker genes include the gene for dihydrofolate reductase (DHFR) (for use in dhff host cells with methotrexate selection / amplification) and the neo gene (for G418 selection).
  • DHFR dihydrofolate reductase
  • neo gene for G418 selection.
  • the expression vector (s) encoding the heavy and light chains are transfected into a host cell using standard techniques.
  • the various forms of the term "transfection” are intended to cover a variety of techniques commonly used in the art Introduction of exogenous DNA into a prokaryotic or eukaryotic host cell, eg, electroporation, calcium phosphate precipitation, DEAE-dextran transfection, and the like.
  • the antibodies of the invention While it is theoretically possible to express the antibodies of the invention in either prokaryotic or eukaryotic host cells, expression of the antibodies is preferred in eukaryotic cells, and particularly in mammalian host cells, since the likelihood that a correctly folded and immunologically active antibody will be assembled and secreted in such eukaryotic cells and in particular mammalian cells is higher than in prokaryotic cells. Prokaryotic expression of antibody genes has been reported to be ineffective for the production of high yields of active antibody (Boss, MA and Wood, CR (1985) Immunology Today 6: 12-13).
  • Mammalian host cells which are preferred for the expression of recombinant antibodies of the invention include CHO cells (including dhfr ' - CHO cells described in Urlaub and Chasin, (1980) Proc Natl Acad., USA 77: 4216-4220 Biol. 159: 601-621), NSO myeloma cells, COS cells and SP2 cells, and are used with a DHFR selectable marker as described, for example, in RJ Kaufman and PA Sharp (1982) Mol.
  • the antibodies are prepared by culturing the host cells until the antibody is expressed in the host cells or, preferably, the antibody is secreted into the culture medium in which the host cells grow ,
  • the antibodies can be recovered from the culture medium using standardized methods for the purification of proteins.
  • Host cells may also be used to produce portions of intact antibodies, such as Fab fragments or scFv molecules. Variations of the procedure described above are of course part of the invention. For example, it may be desirable to transfect a host cell with DNA encoding either the light chain or the heavy chain (but not both) of an antibody of the invention. If light or heavy chains are present which are not required for the binding of the antigen of interest, the DNA encoding either or both of such a light or heavy chain may be partially or completely removed by recombinant DNA technology. Molecules that are expressed by such shortened DNA molecules also belong to the antibodies according to the invention.
  • bifunctional antibodies can be prepared in which one heavy and one light chain are an antibody of the invention and the other heavy and light chain specificity for other than the one of interest Have antigen by cross-linking an antibody according to the invention with a second antibody by means of standardized chemical methods.
  • a recombinant expression vector encoding both the heavy antibody chain and the light antibody chain is introduced into dhff-CHO cells by calcium phosphate-mediated transfection.
  • the heavy and light antibody chain genes are each operatively linked to CMV enhancer / AdMLP promoter regulatory elements to effect strong transcription of the genes.
  • the recombinant expression vector also carries a DHFR gene with which CHO cells transfected with the vector can be selected by using methotrexate selection / amplification. The selected transformed host cells are cultured so that the heavy and light antibody chains are expressed, and intact antibody is recovered from the culture medium.
  • the invention relates to a process for the synthesis of a recombinant antibody according to the invention by culturing a host cell according to the invention in a suitable culture medium until a recombinant antibody according to the invention is synthesized.
  • the method may further include isolating the recombinant antibody from the culture medium.
  • the recombinant antibody library is expressed in the form of RNA-protein fusions as described in WO 98/31700 by Szostak and Roberts, and in Roberts, RW and Szostak, JW (1997) Proc. Natl. Acad. Be. USA 94: 12297-12302.
  • a covalent fusion is generated by in vitro translation of synthetic mRNAs carrying at their 3 'end puromycin, a peptidyl acceptor antibiotic, between an mRNA and the peptide or protein that it encodes.
  • a specific mRNA from a complex mixture of mRNAs can be determined by the properties of the encoded peptide or protein (eg the antibody or a part thereof) such as the binding of the antibody or part thereof to AGER-RME according to the invention AGER-CDP or a derivative / equivalent thereof.
  • Antibody or parts thereof encoding nucleic acid sequences resulting from the screening of such Benches can be expressed by recombinant means in the manner described above (eg, in mammalian host cells) and, in addition, undergo further affinity maturation by either screening mRNA-peptide fusions in further rounds, adding to the originally selected (n ) Sequence (s) introducing mutations or by using other methods of in vitro affinity maturation of recombinant antibodies in the manner described above.
  • the antibodies according to the invention can also be prepared by using a combination of in vivo and in vitro approaches, such as methods in which first AGER-RME according to the invention or AGER-CDP or a derivative / equivalent thereof to an antibody Repertoire in vivo in a host animal to stimulate the production of AGER-RME or AGER-CDP or derivative / equivalent binding antibodies, and then the further antibody selection and / or antibody maturation (ie optimization) using one or more internal In vitro techniques is accomplished.
  • in vivo and in vitro approaches such as methods in which first AGER-RME according to the invention or AGER-CDP or a derivative / equivalent thereof to an antibody Repertoire in vivo in a host animal to stimulate the production of AGER-RME or AGER-CDP or derivative / equivalent binding antibodies, and then the further antibody selection and / or antibody maturation (ie optimization) using one or more internal In vitro techniques is accomplished.
  • such a combined method may involve first obtaining a non-human animal (eg, a mouse, rat, rabbit, chicken, camelid, goat or a transgenic version thereof or a chimeric mouse) with the AGER-RME or AGER of the invention CDP or derivative / equivalent thereof to stimulate an antibody response to the antigen, and subsequently using immunoglobulin sequences from lymphocytes stimulated in vivo by the action of the AGER-RME or AGER-CDP or derivative / equivalent a phage display antibody library and screent.
  • the first step of this combined approach may be performed in the manner described above in the context of the in vivo approaches, while the second step of this approach may be performed in the manner described above in connection with the in vitro approaches.
  • Preferred methods for hyperimmunization of non-human animals followed by in vitro screening of phage display banks prepared from the stimulated lymphocytes include those described by BioSite Inc., see, e.g. WO 98/47343, WO 91/17271, US Pat. No. 5,427,908 and US Pat. No. 5,580,717.
  • a combined method involves first obtaining a non-human animal (eg, a mouse, rat, rabbit, chicken, camelid, goat, or a knockout and / or transgenic version thereof, or a chimeric mouse) with a subject of the invention AGER-RME or AGER-CDP or derivative vat / equivalent thereof to stimulate an antibody response against the AGER-RME or AGER-CDP or derivative / equivalent thereof, and the lymphocytes producing the antibodies with the desired specificity selected (eg from the immunized animals ) Hybridomas screent.
  • a non-human animal eg, a mouse, rat, rabbit, chicken, camelid, goat, or a knockout and / or transgenic version thereof, or a chimeric mouse
  • the genes for the antibodies or single domain antibodies are isolated from the selected clones (by standard cloning methods, such as the reverse transcriptase-polymerase chain reaction) and subjected to in vitro affinity maturation, thereby improving the binding properties of the selected antibody or antibodies.
  • the first step of this approach may be accomplished in the manner described above in connection with the in vivo approaches, while the second step of this approach may be accomplished in the manner described above in connection with the in vitro approaches, in particular using in vitro affinity maturation methods such as those described in WO 97/29131 and WO 00/56772.
  • the recombinant antibodies are generated from single isolated lymphocytes using a procedure known to those skilled in the art as lymphocyte antibody selection (SLAM) methods and described in US Pat. Nos. 5,627,052, WO 92/02551 and Babcock, JS et al. (1996) Proc. Natl. Acad. Be. USA 93: 7843-7848.
  • SLAM lymphocyte antibody selection
  • a non-human animal eg, a mouse, rat, rabbit, chicken, camelid, goat, or a transgenic version thereof, or a chimeric mouse
  • AGER-RME or AGER-CDP e.g, a mouse, rat, rabbit, chicken, camelid, goat, or a transgenic version thereof, or a chimeric mouse
  • AGER-RME or AGER-CDP e.g, a mouse, rat, rabbit, chicken, camelid, goat, or a transgenic version thereof, or a chimeric mouse
  • the AGER-RME or AGER-CDP or the derivative / equivalent thereof, or structurally related molecules of interest can be coupled to sheep erythrocytes, using a linker such as biotin, whereby individual cells secreting antibodies with appropriate specificity, using the hemolytic plaque assay.
  • a linker such as biotin
  • cDNAs for the light and heavy chain variable regions are recovered from the cells by reverse transcriptase PCR, and these variable regions can then be ligated in conjunction with appropriate immunoglobulin constant regions (eg, human constant regions ) in mammalian host cells such as COS or CHO cells.
  • the host cells transfected with the amplified immunoglobulin sequences derived from in vivo selected lymphocytes can then be subjected to further in vitro analysis and selection by, for example, administering the transfected cells to isolate cells expressing antibodies with the desired specificity.
  • the amplified immunoglobulin sequences can be further manipulated in vitro.
  • the present invention also provides pharmaceutical compositions which contain as active ingredient a protein according to the invention (AGER-RME or AGER-CDP, AGER-RME or AGER-CDP-binding ligands, such as anti-AGER-RME or anti-AGER-CDP).
  • Pharmaceutical compositions according to the invention may further comprise at least one additional therapeutic agent, e.g. B. one or more additional therapeutic agents for the treatment of any of the diseases described herein.
  • Pharmaceutically acceptable carriers include all solvents, dispersion media, coatings, antimicrobial agents, isotonizing and absorption delaying agents, and the like, as long as they are physiologically compatible.
  • Pharmaceutically acceptable carriers include, for example, water, saline, phosphate-buffered saline, lactose, dextrose, sucrose, sorbitol, mannitol, starches, acacia, calcium phosphate, alginates, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, Syrup and methylcellulose.
  • the formulations may include pharmaceutically acceptable carriers or conventional adjuvants such as lubricants, for example, tallow, magnesium stearate and mineral oil; Wetting agents; emulsifying and suspending agents; preservatives such as methyl and propyl hydroxybenzoates; antioxidants; Antiirritatives; Chelating agent; coating aids; Emulsion stabilizers film former; gelling agents; Odor masking agents; masking flavors; resins; Hydrocolloids; Solvents; Solubilizing agents; Neutralizing agents; permeation; pigments; quaternary ammonium compounds; Refatting and superfatting agents; Ointment, cream or oil bases; Silicone derivatives; spreading aids; stabilizers; Sterilanzien; suppository bases; Tablet excipients such as binders, fillers, lubricants, disintegrants or coatings; Propellant; Desiccant; Opacifiers; Thickener; waxes; plasticizers; Include white oils.
  • the pharmaceutical compositions may be suitable for parenteral administration, for example.
  • the active ingredient such as the antibody
  • the injectable solutions may be formulated in liquid or lyophilized form in a flint glass or vial, ampoule or filled syringe as a dosage form.
  • the buffer may contain L-histidine (1-50 mM, preferably 5-10 mM) and have a pH of 5.0-7.0, preferably 6.0.
  • Other suitable buffers include, but are not limited to, sodium succinate, sodium citrate, sodium phosphate or potassium phosphate buffer.
  • Sodium chloride may be used to adjust the tonicity of the solution to a concentration of 0-300 mM (preferably 150 mM for a liquid dosage form).
  • Cryoprotectants may be included for a lyophilized dosage form, e.g. Sucrose (e.g., 0-10%, preferably 0.5-1.0% (w / w)).
  • Other suitable cryoprotectants include trehalose and lactose.
  • Fillers may be included for a lyophilized dosage form, e.g. Mannitol (e.g., 1-10%, preferably 2-4% (w / w)).
  • Stabilizers can be used in both liquid and lyophilized dosage forms, e.g.
  • L-methionine e.g., 51-50mM, preferably 5-10mM.
  • suitable fillers include glycine and arginine.
  • surfactants may be used, for example polysorbate-80 (e.g., 0-0.05%, preferably 0.005-0.01% (w / w)).
  • surfactants include polysorbate-20 and BRIJ surfactants.
  • compositions of the invention can take a variety of forms. These include liquid, semi-solid and solid dosage forms such as liquid solutions (eg, injectable and infusible solutions, lotions, eye and ear drops), liposomes, dispersions or suspensions, and solid forms such as powders, powders, granules, tablets, lozenges Sachets, cachets, dragees, capsules such as hard and soft gelatin capsules, suppositories or vaginal drug forms, semi-solid dosage forms such as ointments, creams, hydrogels, pastes or patches. Implanted delivery devices may also be used to deliver drugs of the invention. The preferred form depends on the intended administration. tion and therapeutic use.
  • compositions in the form of injectable or infusible solutions are preferred.
  • a suitable route of administration is parenteral (eg, intravenous, subcutaneous, intraperitoneal, intramuscular).
  • the drug is administered by intravenous infusion or injection.
  • the drug is administered by intramuscular or subcutaneous injection.
  • compositions typically must be sterile and stable under the conditions of manufacture and storage.
  • the compositions may be formulated as a solution, microemulsion, dispersion, liposomal or other ordered structure suitable for high drug concentrations.
  • Sterile injectable solutions can be prepared by incorporating the active compound (such as the antibody) in the required amount into a suitable solvent, optionally with one or a combination of the above ingredients as needed, and then sterile filtering.
  • Dispersions are typically prepared by incorporating the active compound in a sterile vehicle containing a base dispersion medium and optionally other ingredients needed.
  • a sterile lyophilized powder for the preparation of sterile injectable solutions vacuum drying and spray drying are preferred methods of preparation by which a powder of the active ingredient and optionally other desired ingredients is obtained from a previously sterile-filtered solution.
  • the proper flowability of a solution can be maintained by, for example, using a coating such as lecithin, maintaining the required particle size in the case of dispersions, or using surfactants.
  • Prolonged absorption of injectable compositions can be achieved by incorporating an agent which retards absorption, e.g., monostearate salts and gelatin, into the composition.
  • the active compounds of the invention can be administered by a variety of methods known to those skilled in the art, although for many therapeutic applications, subcutaneous injection, intravenous injection or infusion is the preferred mode of administration. The person skilled in the art knows that the route and / or mode of administration depends on the desired result.
  • the active compound may be formulated with a carrier that protects the compound against rapid release, such as a controlled release formulation, including implants, transdermal patches, and microencapsulated delivery systems.
  • a controlled release formulation including implants, transdermal patches, and microencapsulated delivery systems.
  • Biodegradable biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyurea thoester and polylactic acid.
  • the methods for preparing such formulations are well known to those skilled in the art, see, for example, Sustained and Controlled Release Drug Delivery Systems, JR Robinson, ed., Marcel Dekker, Inc., New York, 1978.
  • an active ingredient of the invention may be administered orally, for example in an inert diluent or an assimilable edible carrier.
  • the active substance (and, if desired, further ingredients) can also be enclosed in a hard or soft gelatin capsule, pressed into tablets or added directly to the food.
  • the active ingredients may be mixed with excipients and used in the form of swallowable tablets, buccal tablets, capsules, elixirs, suspensions, syrups and the like. If an active ingredient according to the invention is to be administered by a route other than the parenteral route, it may be necessary to choose a coating of a material which prevents its inactivation.
  • the active compounds of the invention may be administered together with one or more additional therapeutic agents useful in the treatment of the diseases described above.
  • compositions of the present invention will generally contain a therapeutically effective amount or a prophylactically effective amount of at least one active ingredient of the invention.
  • dosage plans can be selected and adjusted. For example, one can administer a single dose, several separate doses over time or administer an increasing or decreasing dosage depending on the requirements of the therapeutic situation. It is particularly advantageous to formulate parenteral compositions in unit dosage form to facilitate administration and to ensure uniformity of dosage.
  • the attending physician can readily determine the most appropriate dosage form, route of administration and dosage for the particular therapy and drug.
  • a therapeutically or prophylactically effective amount of an active ingredient according to the invention may for example be in the range of 0.1-20 mg / kg and preferably 1-10 mg / kg, without being limited thereto. Of course, these amounts may vary depending on the nature and severity of the condition to be alleviated. 6.2 vaccine
  • the AGER-RME or AGER-CDP and derivatives / equivalents thereof of the invention are useful as immunogens for vaccinating a patient to be treated.
  • Vaccines useful for this purpose are generally a pharmaceutical composition containing at least one AGER-RME and / or AGER-CDP according to the invention and / or at least one derivative of the invention / equivalent thereof. Furthermore, the composition may contain a physiologically acceptable carrier and optionally other excipients, for example immunostimulants.
  • the vaccines according to the invention can be formulated in particular in a form suitable for parenteral, for example intravenous, intramuscular and subcutaneous administration.
  • the carrier preferably contains water, saline, alcohol, a fat, a wax and / or a buffer.
  • an adjuvant may be included.
  • Most adjuvants contain a substance intended to protect the antigen from rapid degradation, such as aluminum hydroxide or a mineral oil, as well as a protein derived from lipid A, Bortadella pertussis or Mycobacterium tuberculosis.
  • Suitable adjuvants are usually commercially available, for example complete or incomplete Freund's adjuvant; AS-2; Aluminum salts such as aluminum hydroxide (optionally gel) or aluminum phosphate; Calcium, iron or zinc salts; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; Monophosphoryl lipid A. Cytokines such as GM-CSF or interleukin-2, -7 or -12 may also be used as adjuvants.
  • AGER-associated diseases are, in particular, those associated with an AGER / AGER, AGER / Liga ⁇ d, AGER / receptor, AGER / receptor / ligand, AGER / receptor / co-receptor and / or AGER / receptor / counter-receptor interaction are associated.
  • Ager-associated diseases can also be characterized by an increased expression or other formation of AGER or AGER ligands.
  • AGER-associated diseases are, in particular, the following diseases mentioned in WO 2004/016229 and / or described in the literature:
  • Alzheimer's (Weldon DT et al .: Geriatrics 1997 Sep; 52 Suppl 2: S13-6; Yan SD et al: Biochim Biophys Acta. 2000 JuI 26; 1502 (1): 145-57), rheumatoid arthritis, osteoarthritis (Drinda S et al Rheumatol Int 2004 Mar 26), Bowel Disease (Foell D et al: Good, 2003 Jun; 52 (6): 847-53), Multiple Sclerosis (Yan SS et al: Nat Med.
  • Therapeutic approaches according to the invention are based on the modulating action of at least one of the abovementioned therapeutic agents on an interaction of the type associated with the disease to be treated: AGER / AGER, AGER / ligand, AGER / receptor, AGER / receptor / ligand, AGER / receptor / Co-receptor or AGER / receptor / counter receptor.
  • the therapeutic effect to be observed in the therapy carried out according to the invention can be based on an agonistic, partially agonistic, antagonistic or inverse agonistic effect on at least one of these interactions.
  • the therapeutic effect can be based on: a) the induction, partial inhibition or complete disruption of a signaling pathway; and / or b) the formation of more easily eliminated by the body or physiologically / pathophysiologically ineffective Kompex Modellen.
  • Particularly suitable diagnostic agents according to the invention are AGER-RME and AGER-CDP and derivatives / equivalents as defined above, as well as anti-AGER-RME and anti.AGER-CDP antibodies.
  • the present invention therefore makes it possible in particular to improve the qualitative or quantitative determination of disease states defined above by detecting disease-typical antigens or antibodies.
  • the determination is preferably carried out by immunological methods. In principle, this can be done with any analytical or diagnostic test method in which antibodies are used. These include agglutination and precipitation techniques, immunoassays, immunohistochemical methods and immunoblot techniques, e.g. Western blotting or dot blotting. Also in vivo methods include, for example, imaging methods.
  • immunoassays Suitable are both competitive immunoassays, ie antigen and labeled antigen (tracer) compete for antibody binding, as well as sandwich immunoassays, ie the binding of specific antibodies to the antigen is detected with a second, mostly labeled antibody.
  • sandwich immunoassays ie the binding of specific antibodies to the antigen is detected with a second, mostly labeled antibody.
  • assays can be both homogeneous, ie, without solid and liquid phase separation, as well as heterogeneous, ie, bound labels are separated from unbound, for example, via solid phase-bound antibodies.
  • the different heterogeneous and homogeneous immunoassay formats can be assigned to specific classes depending on the labeling and measuring method, for example RIAs (radioimmunoassays), ELISA (enzyme linked immunosorbent assay), FIA (fluorescence immunoassay), LIA (luminescence immunoassay), TRFIA (time-resolved FIA), IMAC (immune activation), EMIT (enzyme-multiplied immune test), TIA (turbo-dimensional immunoassay), I-PCR (immuno-PCR).
  • RIAs radioimmunoassays
  • ELISA enzyme linked immunosorbent assay
  • FIA fluorescence immunoassay
  • LIA luminescence immunoassay
  • TRFIA time-resolved FIA
  • IMAC immunoactivation
  • EMIT enzyme-multiplied immune test
  • TIA turbo-dimensional immunoassay
  • I-PCR immuno-PCR
  • enzymes have proven to be advantageous.
  • systems based on peroxidases in particular horseradish peroxidase, alkaline phosphatase and ⁇ -D-galactosidase can be used.
  • specific substrates are available, the reaction of which is e.g. can be followed photometrically.
  • Suitable substrate systems are based on p-nitrophenyl phosphate (p-NPP), 5-bromo-4-chloro-3-indolyl phosphate / nitroblue tetrazolium (BCIP / NPT), fast-red / naphthol AS-TS phosphate for alkaline phosphatase; 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), o-phenylenediamine (OPT), 3,3 ', 5,5'-tetramethylbenzidine (TMB), o-dianisidine, 5-aminosalicylic acid , 3-dimethylaminobenzoic acid (DMAB) and 3-methyl-2-benzothiazoline hydrazone (MBTH) for peroxidases; o-Nitrophenyl- ⁇ -D-galactoside (o-NPG), p-nitrophenyl- ⁇ -D-galactoside and 4-methylumbelliphenyl- ⁇
  • labels to peptides or antibodies for the production of tracers can be carried out in a manner known per se.
  • a number of labels suitably modified for conjugation to proteins are available, for example, biotin, avidin, extravidin or streptavidin-conjugated enzymes, maleimide-activated enzymes and the like. These labels can be reacted directly with the molecule to be used according to the invention.
  • the antigen-antibody complex may be separated, for example, by an anti-idiotypic antibody coupled to the carrier, e.g. an antibody directed against rabbit IgG to be bound to the carrier.
  • an anti-idiotypic antibody coupled to the carrier, e.g. an antibody directed against rabbit IgG to be bound to the carrier.
  • Carriers in particular microtiter plates coated with appropriate antibodies, are known and commercially available.
  • kits usually includes several containers for separate arrangement of components. All components may be provided in ready-to-use dilution, as a dilution concentrate or as a dry substance or lyophilizate to dissolve or suspend; any or all of the components may be frozen or stored at ambient temperature until use. Sera are preferably snap frozen, for example at -2O 0 C, so that in these cases an immunoassay prior to use is preferably to be maintained at freezing temperatures.
  • Other components included in the immunoassay may be: standard protein, tracer; Control serum, microtiter plates, preferably coated with antibody, buffer, for example for testing, washing or reaction of the substrate, and the enzyme substrate itself.
  • the invention also provides methods for the detection of effectors of the AGER receptor, wherein a sample in which one suspects an effector, incubated with an AGER-RME or AGER-CDP polypeptide and the approach to the formation of an effector AGER -RME or -AGER-CDP complex.
  • Such effectors may have an agonistic, partially agonistic, antagonistic or inverse agonistic effect. This may be e.g. synthetic low molecular weight suppression, synthetic peptides, natural or synthetic antibody molecules or natural products.
  • Such methods according to the invention are generally carried out as screening methods which can read from a variety of different substances those which appear to be most promising for future use.
  • combinatorial chemistry can be used to create extensive material libraries comprising a large number of potential active substances.
  • the screening of combinatorial substance libraries for substances with desired activity can be automated. Screening robots are used for the efficient evaluation of the individual assays preferably arranged on microtiter plates.
  • the present invention also relates to screening methods, ie both primary and secondary screening methods, in which preferably at least one of the methods described below is used. If several methods are used, this can be done with a time offset or simultaneously on one and the same sample or on different samples of a substance to be investigated.
  • Kits and components for carrying out this assay can be obtained commercially, for example from Amersham Pharmacia Biotech.
  • solubilized or membrane-bound receptors are immobilized on scintillant-containing small fluoromicrospheres. If, for example, a radioligand binds to the immobilized receptors, then the scintillation substance is excited to emit light, since the spatial proximity between scintillant substance and radioligand is given.
  • Kits and components for carrying out this assay may be obtained commercially, for example from NEN Life Science Products. This principle is also based on microtiter plates (96 or 384) coated with scintillant substance.
  • the cells were incubated in RPMI-glutamax medium supplemented with 5% heat-inactivated fetal bovine serum (FBS), HEPES (10 mM), penicillin (100 U / ml), streptomycin (100 mM) and either neomycin (HEK293-RhoA) or Neomycin in combination with Zeocin (HEK293-RhoA / NgR / p75).
  • FBS heat-inactivated fetal bovine serum
  • HEPES 10 mM
  • penicillin 100 U / ml
  • streptomycin 100 mM
  • neomycin HEK293-RhoA
  • Neomycin HEK293-RhoA / NgR / p75
  • ACR assay with immunofluorescence measurement 1 x 10 4 cells were inoculated in 96-well microtiter plates two days before stimulation. The cells were stimulated with a suitable reagent (eg LPA or AP-Nogo-66) in culture medium (RPMI-glutamax) containing 5% FCS. After a 5-10 minute pacing period, activation was disrupted with cold PBS. The cells were fixed with 3-4% paraformaldehyde solution, permeabilized with PBS containing 0.2% Triton X-100 and incubated with phalloidin Alexa 568 or 488 for 30-45 minutes. In addition, a 5 minute incubation with DAPI for nuclear staining was performed. The cells were visualized using an epifluorescence microscope (Axiovert 25). Fluorescence micrographs were taken with a cooled CCD camera from Zeiss.
  • the HEK293 cells were washed with PBS.
  • Adherent cells were detached with PBS containing 5 mM EDTA.
  • 2 ⁇ 10 6 cells were transferred to an Eppendorf tube and centrifuged for 2 minutes at 1300 rpm.
  • the cells were resuspended in PBS containing 1% BSA (1 ml / vial) and centrifuged for 2 minutes at 1300 rpm.
  • the pellets were resuspended with 0.1 ml PBS / 1% BSA including primary antibody (mouse anti-human p75 1: 100, or goat anti-human NogoR 1:50) and incubated at 4 ° C for 90 minutes. Then 0.1 ml of PBS / 1% BSA was added, mixed and centrifuged for 2 minutes at 1300 rpm. The pellets were incubated in PBS containing 1% BSA (0.1 ml / vial) and secondary antibodies (anti-mouse FITC 1: 100 or anti-goat FITC 1: 100); resuspended and incubated at 4 ° C for 60 minutes.
  • primary antibody mouse anti-human p75 1: 100, or goat anti-human NogoR 1:50
  • Mez 402 GCCACCATO4GGATATACAAGGGTGTGATCC (SEQ ID NO: 9); Oligo from amino acid R1055 (italics) with start ATG (underlined) and Kozak sequence (bold)
  • Mez 404 CTTCAGAGAATCAACTAAATCATC (SEQ ID NO: 10); Oligo to amino acid K1120 (bold)
  • cDNA was used as template in frontal cortex with these two oligos (prepared with Superscript first Strand synthesis system for RT-PCR, Invitrogen, Carlsbad, CA) (Novak et al. 183-189) performed a PCR.
  • the reaction was carried out by standard method, as described by Innis et al. (PCR Protocols, A Guide to Methods and Applications, Academic Press (1990)) with Herculase (Stratagene, La JoIIa, USA).
  • the obtained DNA fragment with a size of 207 bp was purified with the QIAEX II Gel Extraction Kit (QIAGEN GmbH, Hilden, Germany) according to the manufacturer's instructions.
  • the amplified, purified fragment was placed in pcDNA3.1V5-His TOPO (pcDNA3.1 / V5-His TOPO TA Expression Kit, # K4800-01).
  • E. coli TOP10 cells (Invitrogen, Carlsbad, Calif.) Were purified with the resulting construct pcDNA3.1V5-His hNOGO66 by standard methods as described in Sambrook et al. (Molecular Cloning, A Laboratory Manual, CoId Spring Harbor, (1989)), transformed. Selection for plasmid-carrying cells was achieved by the antibiotic ampicillin.
  • the Nogo66 coding sequence was excised with XbaI from the above plasmid pcDNA3.1V5-His hNOGO66 and cloned into the plasmid pAP-tag5 (GenHunter Cooperation, Ten, TN 1 USA) via XbaI.
  • the plasmid pAPtag5 / PPC / hNOGO66 no. 5 is obtained. (SEQ ID NO: 11) shown in Figure 2.
  • HEK293 cells were cultured in growth medium (DMEM with 10% fetal bovine serum with the addition of penicillin / streptomycin) at 37 ° C and 5% CO 2 .
  • growth medium DMEM with 10% fetal bovine serum with the addition of penicillin / streptomycin
  • the cells were seeded in plates with 6 wells (1x10 6 per well) and incubated overnight.
  • the cells were transfected with a cocktail containing 1 .mu.g of plasmid DNA (pAP-tag5 / PPC / hNOGO66 no.5) and 3 .mu.l Fugene ⁇ (ROCHE Diagnostics, Mannheim) according to the manufacturer.
  • a HEK293 clone (clone # 5) producing AP-Nogo66 was propagated in culture medium (RPMI Glutamax + 10% FCS, 150 ⁇ g / ml Zeocin, Antibiotic / Antimycotic) by repeated passage (approximately 20) in culture flasks.
  • the AP-Nogo66 expression was checked after every second or third passage in the Dot Blot Test (with NBT / BCIP reagent).
  • the cells were first cultured to near confluency in triple flasks, then changed to expression medium (Pro293a-CDM medium (Biowhittaker, # 12-764Q), 2 mM glutamine, antibiotic / antimycotic).
  • the cells were cultured for 3 to 4 days at 37 ° C, the supernatants were removed and centrifuged (1500 rpm, 5 min). The supernatants were collected at -80 0C. For further processing, they were thawed, added with proteinase inhibitors (PMSF 0.1 mM, Pefabloc SC 1 mM) and concentrated in Amicon Tubes (Millipore) and the AP-Nogo66 concentration was determined (about 3 ⁇ g / ml) (Mw of monomeric AP: 67 kDa and monomeric AP Nogo66 about 75 kDa in SDS gels).
  • proteinase inhibitors PMSF 0.1 mM, Pefabloc SC 1 mM
  • the AP-Nogo66 pool was immunoprecipitated with anti-AP agarose. The precipitate was denatured by heating at 95 ° C. for 10 minutes in the presence of 5% mercaptoethanol and thus removed from the agarose beads, finally verified by West analysis using antibodies specific for AP and Nogo66.
  • Gel chromatography (Superose 12, Amersham Biosciences, eluent: 20 mM sodium phosphate, 140 mM sodium chloride, pH 7.4) determined that AP-Nogo66 is a dimer and has an Mw of about 140 kDa. In preliminary experiments it was found that AP-Nogo66, but not GST-Nogo66, was functionally active. It is therefore thought that NgR ligands may have to exist as dimers in order to be functional. As shown by the crystal structure of the alkaline phosphatase, dimerization is induced by the AP tag (experiments not shown).
  • Mey 36 GCC / ACCATGGGGGCAGGTGCCACC (SEQ ID NO: 13); Oligo with start codon (bold) with Kozak sequence (italics) Mey 35: TCACACTGGGGATGTGGCAG (SEQ ID NO: 12); Oligo with stop codon (bold) a base exchange T instead of C (underlined) since the oligo is derived from the published rat sequence
  • PCR analogous to Nogo 66 cloning, Example 1 with the primer pair Mey 35/71 in cDNA from the cell line SH-SY5Y (human neuroblastoma cell line ATCC # CRL-2266) was performed. PCR with Mey35 / 71 provided a 1348 bp fragment. This was cleaned.
  • Neomycin start 2596 stop: 3390
  • Plasmid pcDNA3.1 hp75 prepared as described above was treated with Spe I and Not I (Roche Diagnostics) using a restriction assay (40 ⁇ l, 1.5 h at 37 ° C.) containing 5 ⁇ g DNA, 2 ⁇ l Spe I, 2 ⁇ l Not I, 4 ⁇ l 10x buffer H (Roche), 32 ⁇ l bidistilled water.
  • the excised fragment was recovered from a DNA gel in a conventional manner using the Qiagen Gel Extraction Kit.
  • restriction fragments thus prepared were ligated using the following approach overnight at 16 0 C: 5 ul hp75 construct 2 ul overall cut pIRES, 1, 5 ul of T4 DNA ligase (Roche) 3 ul 10x buffer T4 ( Roche), 20.5 ⁇ l of water redist.
  • This ligation called pIRES hp75, was then transformed into the bacterial strain SuperComp XL2 Blue (Stratagene).
  • pcDNA hNgR CDS1 commercially purchased from RZPD (German Resource Center for Genome Research GmbH, clone No .: IRAL-p962L1427Q2) containing the coding sequence for human Nogo receptor (hNgR), was amplified using a restriction assay 13 ⁇ l, 1 h at 37 0 C) containing 5 ug DNA, 1, 5 ul Hind IM (Roche), 1, 5 ul 10x buffer B (Roche) and 10 ul of water redist. digested (blunt end). The excised fragment was recovered from a DNA gel in a conventional manner using the Qiagen Gel Extraction Kit.
  • the purified pcDNA h NgR HindIII fragment was then digested with EcoRI using a restriction assay (15 ⁇ l, 1 h at 37 ° C.) containing 10 ⁇ l eluate (from Qiagen Hit clean-up), 1.5 ⁇ l EcoR I (Roche ), 1, 5 .mu.l 10x buffer H (Roche) and 2.0 .mu.l of water redistilled, digested and recovered by restriction using the Qiagen Gel Extraction Kit from a DNA gel.
  • pIRES hp75 was (prepared as above) (ul 27, 1, 5 h at 37 0 C) with EcoR I and Hind Hl using a restriction mixture containing 5 ug DNA, 1, 5 ul of EcoR I, 1, 5 .mu.l Hind III , 4 ⁇ l 10x buffer H (Roche) and 20 ⁇ l bidistilled water. open.
  • the desired hP75 fragment was restriction restricted using the Qiagen Gel Extraction Kit from a DNA gel, and with the hNgR construct prepared above using a ligation batch containing 5 ⁇ NgR construct, 2 ⁇ l of cut pIRES hp75, 1.5 ⁇ l of T4 DNA Ligase (Roche), 3 ⁇ l 10x buffer T4 (Roche) and 20.5 ⁇ l bidistilled water. 16 0 C ligated overnight.
  • the resulting construct pIRES hNgR hp75 ( Figure 3a, SEQ ID NO: 18) was then transformed into the bacterial strain SuperComp XL2 Blue (Stratagene).
  • Plasmid pOTB7 RhoA (commercially purchased from RZPD, German Research Center for Genome Research GmbH, clone No .: IRAL-p962A174) containing the human RhoA GTPase coding sequence was amplified using the following restriction approach (25 ⁇ l, 1, 5 h at 37 0 C) containing 5 .mu.g DNA, 1.5 ul EcoR I, 1, bidest 5 .mu.l Xho I (Roche), 3 ul 10x buffer H (Roche) and 19 .mu.l of water. digested.
  • pcDNA4 (mycHis) (Invitrogen, Carlsbad, USA) was performed using the following restriction mixture (25 uL, 1.5 h at 37 0 C) containing 5 .mu.g DNA, 1.5 ul EcoR I, 1, 5 ⁇ l Xho I (Roche), 3 ⁇ l 10x buffer H (Roche) and 19 ⁇ l bidistilled water. also digested.
  • the preparation is carried out analogously to pcDNA4 (mycHis) A hRhoA wt, but instead of pcDNA4 (mycHis) the above-described plasmid pcDNA3.1V5- His TOPO is used.
  • Neo 2620-3411 amp 4919-5779 compl.
  • HEK293 wild-type cells (cultured in RPMI-glutamax + 10% dial FCS + 1% antibiotic-antimycotic) were transfected in a first transfection step with the plasmid pIRES hNgR hp75.
  • 2 ⁇ g of plasmid DNA in 100 ⁇ l of serum-free RPMI-Gutamax medium and 2 ⁇ 10 6 cells in 12 ⁇ l of LIPOFECTAMINE in 100 ⁇ l serum-free RPMI-Gutamax medium were mixed in culture dishes with 10 wells per batch and incubated for 15 to 20 minutes at room temperature , It was then filled with serum-free medium to a total volume of 1 ml per Trans Stammionsanthesis.
  • Clones were isolated from the dilution giving the first separated clones.
  • Sterile mini-glass cylinders BASF
  • BASF Sterile mini-glass cylinders
  • the end of the mini-glass cylinder wetted with petroleum jelly was carefully placed on the previously selected individual clones.
  • the single clone should be completely enclosed by the mini glass cylinder.
  • 40 ⁇ l of trypsin Gibco, trypsin-EDTA
  • the trypsin was allowed to act on the cells for 1-2 minutes.
  • the cells were resuspended by repeatedly drawing (3-4 times) and dispensing the trypsin with an Eppendorf pipette (sterile tip).
  • the resuspended cells were transferred with the Eppendorf pipette completely from the mini-glass cylinder into a 24-well plate (tissue culture plate, Falcon, Becton Dickinson, each well containing 1 ml medium RPMI-glutamax + 5% dialysed FCS). Positive clones were detected by FACS as described above. The overexpression of the receptors NgR and p75 on the cell surface was determined (results not shown).
  • a positive clone (clone 5) of the HEK293 NgR / p75 cell line prepared in accordance with a) is transfected in an analogous manner with the plasmid pcDNA4 (mycHis) A hRhoA.
  • the mixtures were spliced into RPMI-glutamax (+ 10% dialysed FCS + 1% antibiotic-antimycotic + G418; 800 ⁇ g / ml, + Zeocin 125 ⁇ g / ml)
  • RhoA detection a cell homogenate derived from each clone was separated by SDS-PAGE gel electrophoresis (NuPAGE polyacrylamide gel 4-12%, 1.5 mm thick (Invitrogen Carlsbad, USA), the protein samples were denatured with 5% mercaptoethanol) and after immunoblotting with mouse monoclonal anti-RhoA antibody tested by standard method. A typical result is shown in FIG. 4a. For positive clones, a RhoA band with a molecular weight of about 21 kD is observed.
  • the basis for the expression and purification of recombinant sRAGE protein was the stably transfected with the vector pcDNA3 (-) 6.1 C HIS A HEK 293 cell line "293 / 6.1 sRAGE His 6".
  • RNA from lymphocytes was reverse transcribed with the Superscript RT-PCR system (Invitrogen, Carlsbad, USA), followed by the oligonucleotide primers
  • RAGE-SE CCG AAT TCC GGA AGCAGG ATG GCA GCC G (SEQ ID NO: 25) and RAGE-AS: CCC TCG AGC CCC TCA AGG CCC TCA GTA CTA CT (SEQ ID NO: 26)
  • N-SE A AGTAAC GGC CGC CAG TGT GCT GGA ATT CGG A (SEQ ID NO: 27) and C-SE B: CCG GTA CCA CCT GCA GTT GGC CCC TCC TCG CC (SEQ ID NO: 28)
  • this cell line was grown in 4 X 20 I well stacks in serum-containing MEM (see above). The cells were then in serum-free medium Pro293a-CDM Cultivated (# 12-764Q, BioWhittaker, Verviers, Belgium) at 37 0 C for 3 days before the medium supernatant was removed and about "Hemolflow F-Series High-Flux" columns (Fresenisus Medical Care AG 1 Bad Homburg, Germany) 1400 ml was concentrated.
  • Protein purification was carried out by Immobilized Metal Ion Affinity Chromatography (IMAC) and was carried out by Diarect AG (Freiburg, Germany).
  • IMAC Immobilized Metal Ion Affinity Chromatography
  • Diarect AG Diarect AG (Freiburg, Germany).
  • NiNTA column material "chelating sepharose FF” (Amersham-Bioscience, Upsala Ia, Sweden) was used, equilibration, binding to the column matrix, and purification were according to the manufacturer's instructions Elution of the protein was gradual with increasing imidazole concentrations
  • the purified sRAGE protein Genbank Ref Seq Sequence NM_001136
  • N-Hind HindIII CGA AGC TTG ATG AAC AGG AAT GGA AAG GAG ACCAAG
  • N-trunc Xhol TCC TCG AGC ACC TGC AGT TGG CCC CTC CTC GCC T (SEQ ID NO: 36)
  • the cDNA was cut with the restriction endonucleases HindIII and Xhol to be ligated into the HindIII / XhoI cut vector psecTAG 2A (Invitrogen, Carlsbad, USA) after renewed gel purification , After transformation into E.
  • the newly created plasmid vector "psecTAG / NC trunc sRAGEI” was used with the "FreeStyle” transfection system (Invitrogen, Carlsbad, USA) according to the manufacturer expressed. After 96 hours, the cells were spun down and the serum-free supernatant (60 ml) was used for protein purification.
  • NtermR31 QNITARIGEPLVLKCKGAPKKPPQRLEWKLN (SEQ ID NO: 6)
  • NtermR13 CKGAPKKPPRQRLE (SEQ ID NO: 3)
  • ScraNtermR31 APLACPRELIKGKWEVKPKRNPKNQLTIGQL (SEQ ID NO: 7)
  • ScraNtermRI 3 GKPRAPKCLKPEQ (SEQ ID NO: 8)
  • the basis for the expression and purification of recombinant His-NogoR fusion protein was the HEK 293 cell line "CHO” stably transfected with the vector "pcDNA4 / hNogoR-TM6".
  • the starting point for the production of the NgR-HIS expression plasmid was the cDNA clone pOTB7 I-RALp962L1427Q2, which was purchased from RZPD GmbH (Berlin, Germany). From the plasmid DNA was amplified by PCR using the oligonucleotide primers:
  • hNogoR Hind III CCAAGCTTATGAAGAGGGCGTCCGCTGGAGGGAG (SEQ ID NO: 29)
  • hNogoR Eco RI -TM CCGAATTCTAGGGCACCTGAGCCTTCTGAGTCACC (SEQ ID NO: 30)
  • the cDNA was cut with the restriction endonucleases HindIII and EcoR1 and, after renewed gel purification, ligated into the HindIII / EcoRI cut vector pcDNA4 / MycHIS A (Invitrogen, Carlsbad, USA) to become.
  • HindIII / EcoRI cut vector pcDNA4 / MycHIS A Invitrogen, Carlsbad, USA
  • E. coli Top10 One Shot cells Invitrogen, Carlsbad, USA
  • a positive recombinant clone was amplified, the sequence verified and the plasmid DNA isolated with the Plasmid Mini-Kit (Qiagen, Hilden, Germany).
  • the newly formed plasmid vector "pcDNA4 / hNogoR-TM6” was labeled with the transfection reagent "Fugene 6" (Roche, Mannheim, Germany) according to the
  • Nogo receptor expression and secretion of the protein in the culture medium was checked in dot blot with anti-HIS specific antibodies (# 1922416, Roche, Mannheim, Germany).
  • the cell clone was propagated under normal cell culture conditions and seeded in a well stack. After 21 days of growth under FCS, the medium was replaced with fresh serum-free medium. After 3 days, 40 liters of serum-free cell culture supernatant were recovered. This supernatant was concentrated to 1 liter using a Fresenius Hemoflow F60 (factor 40). Then, 50ml Ni-NTA Superflow beads (Qiagen, Hilden, Germany), which had been pre-equilibrated with PBS, added to the concentrate, and stirred at 4 0 C for 3 hours. The beads were sedimented by switching off the stirrer (overnight at 4 ° C), the supernatant was discarded and the Ni-NTA beads filled into a column.
  • the beads were washed at room temperature with three column volumes of 2M NaM phosphate buffer, 30 mM NaCl pH 8.0. Subsequent washes with 5 column volumes of 2OmM Na phosphate buffer, 30 mM NaCl, 1 mM Imidazole pH ⁇ .O.
  • the bound Hexa-His-tagged NgR was eluted with 20 mM Na phosphate buffer, 30 mM NaCl, 10 mM Imidazole pH8.0.
  • the eluate was dialyzed overnight against 25mM Tris / HCl pH7.0. The dialysate was at room temperature on a Q-Sepharose column (Amersham Biosciences, 1.6 x 3 cm, volume 6 ml). Subsequently, the following buffers were used:
  • Buffer A 50 mM Tris / HCl; pH 7.0
  • Buffer B 50 mM Tris / HCl; 1M NaCl; pH 7.0
  • the peptide was conjugated to bovine thyroglobulin (BTG 1 Sigma, T-1001) carrying maleimide groups (derived from sulfosuccinimidyl 4- (N-maleimidomethyl) cyclohexane-1-carboxylate).
  • BSA bovine serum albumin
  • maleimide groups derived from succinimidyl-6 - [( ⁇ -maleimidopropionamido) hexanoate]
  • NtermR31 was added to BTG using the sulfhydryl group reactive heterobifunctional crosslinker sulfosuccinimidyl 4- (N-maleimidomethyl) cyclohexane-1 carboxylate (sulfo-SMCC) conjugated.
  • the conjugation was carried out using the following two-step method.
  • the peptide NtermR31 was conjugated to BSA using the sulfhydryl group-reactive heterobifunctional crosslinker succinimidyl-6 - [( ⁇ -maleimido-propionamido) hexanoate] (SMPH).
  • SMPH sulfhydryl group-reactive heterobifunctional crosslinker succinimidyl-6 - [( ⁇ -maleimido-propionamido) hexanoate]
  • mice Five mice (8 weeks old) were treated by injection with 100 ⁇ g BTG-peptide conjugate emulsified in complete Freudian adjuvant (Sigma, F-5881). The injection took place in the peritoneal cavity 90 days before fusion. All other injections were administered to the peritoneal cavity according to the following schedule. Incomplete Freud 's adjuvant from Sigma (catalog number F-5506) was used.
  • SP2 / 0-Ag14 was used by the German Collection of Microorganisms and Cell Cultures.
  • the cells do not synthesize or secrete immunoglobulin chains, they are resistant to azaguanine (8-AZG, 20 ⁇ g / ml), do not grow in HAT (hypoxanthine 10 "4 M, aminopterin 10 " 5 M and thymidine 4x10 '5 M) medium.
  • the SP2 / 0 cells were cultured in tissue culture flasks in standard culture medium (DMEM + 10% fetal calf serum (FCS) supplemented with 20 ⁇ g / ml 8-AZG to kill HGPRT + revertants).
  • FCS fetal calf serum
  • mice Three spleens of immunized mice were aseptically removed and minced. Single cell suspensions were prepared therefrom.
  • the spleen lymphocytes were fused with the SP2 / 0 myeloma cell line (ratio: 5 lymphocytes / 1 SP2 / 0) in the presence of polyethylene glycol 3350.
  • the cells thus produced were resuspended in DMEM containing HAT and 20% FCS.
  • the cells were plated in eight 96-well tissue culture plates (Corning Costar) containing cells of peritoneal exudate as a feeder layer. The plates were incubated for 10 days at 37 ° C in a humidified atmosphere containing 5% carbon dioxide. During this phase, the cells were fed twice with HAT medium.
  • a part of the spleen cell suspension was cultured for 10 days in a T-flask.
  • An indirect ELISA designed for the detection of IgG was used for the screening of cell culture supernatants. Assays were performed in flat-bottomed 96-well polystyrene microtiter plates (Greiner, Cat. # 756071) as follows: 100 ⁇ l aliquots of a solution of 0.5 M carbonate / bicarbonate buffer, pH 9.6, containing 4 ⁇ g / ml BSA-NtermR31 Conjugate (based on BSA) was added to each well of the plate.
  • the plates were incubated for 1 hour at room temperature. After several washes, the ELISA plates were challenged with goat anti-mouse IgG (mouse Fc-specific) conjugated with alkaline phosphatase (Sigma, A-2429) (50 ⁇ l / well, diluted in blocking buffer, 1: 5000) 1 Hour incubated at room temperature. After a further washing step, 150 ⁇ l / well subtrate buffer (2 mM 4-nitrophenyl phosphate (SIGMA, N3254) in 5% diethanolamine + 0.5 mM MgCl 2 , pH 9.8) was added to the plates. Substrate conversion was detected in a 12-channel Dynex Opsys MR Microplate Reader at a wavelength of 405 nm.
  • SIGMA 4-nitrophenyl phosphate
  • the initial screening was performed 10 days after the merger. Cells from positive IgG-producing wells were transferred to wells of 24-well plates and cultured for 4 days. An ELISA for BSA-NtermR31 to determine cultures producing the antibody of interest was performed. This propagation procedure was repeated twice after 3 and after 5 days. Thus, among other things, an anti-NtermR31 Ab was isolated with the internal name "Clone 37".
  • Nterm 31 (SEQ ID NO: 6) (comprising 31 N-terminal amino acids of the mature RAGE without leader peptide), biotinylated by Fa. Thermo Electron GmbH; Ulm; OR183539 / 2), 3.9 mg / ml; further diluted for application to 1 ⁇ g / ml in TBS, 0.1% Tween20; 0.1% BSA wash buffer: TBS 0.1% Tween20
  • TBS Tris buffered saline: 20 mM Tris pH 7.4; 0.9% NaCl
  • Substrate 4-nitrophenyl phosphate: Roche; No. 726923; one tablet dissolved in 100 ml of 100 mM Tris / HCl pH 9.8
  • Non AD control female: control plasma
  • Plasmas of patients AP23 MCIF06.7 female; LAP30 Alzheimer dementia female 00.0 early onset; LAP39 MCI F06.7 female; LAP45 MCI
  • Exemplary embodiment 2 Characterization of the polyclonal anti-NtermR31 serum and a monoclonal anti-NtermR31 antibody
  • Nitrocellulose membranes (0.45 ⁇ m pore size, # LC2001, company: Invitrogen) Blocking Reagent (Roche Applied Science; # 1921673)
  • the characterization of the polyclonal anti-NtermR31 serum was carried out by means of a dot blot method.
  • 5 and 50 ng respectively of the above listed protein and peptide samples were applied in a volume of 0.5 ⁇ l.
  • the membrane was blocked overnight at 4 ° C in 1X blocking reagent.
  • the membranes were then incubated with rabbit pre-immune serum and antiserum NtermR31 6304 at a 1: 1000 dilution in 0.5% blocking reagent for one hour. After three washes in 1X PBS at room temperature, the incubation with the secondary antibody Shp X Rb IgG AlkPhos was carried out for one hour at room temperature in 0.5% blocking reagent.
  • the membrane was again washed 3X5 minutes in PBS before staining with NBT / BCIP solution. The staining solution was withdrawn after reaching the desired signal / background ratio and the membranes were rinsed with water.
  • the test result is shown in FIG. 7a).
  • the polyclonal anti-NtermR31 anti-serum recognizes, as expected, the peptide NtermR31 in the dot blot.
  • the proteins sRAGE-6xHIS (AA 23-352, NP_001127), human sRAGE / Fc (R & D Systems; # 1145-RG), and human sRAGE / Fc (1-130 AA) are also recognized with high sensitivity, as indicated by the staining of each 5 ng protein is occupied.
  • These proteins each contain the complete partial sequence of NtermR31 at the N-terminal part that here too the result corresponds to the expectation.
  • the highly conserved RAGE proteins from mouse and rat are also clearly recognized, so that this antiserum can be attributed to a cross-reactivity with mouse and rat RAGE.
  • NtermR13 is a partial sequence (nuclear sequence) of NtermR31 and has the essential binding activity in the homogeneous binding assay (AlphaScreen, see below).
  • a likely explanation for this result could be in the preferred recognition of a conformational eptiope in NtermR31 by the polyclonal antibody. Only if the peptide takes on this conformation through intramolecular interaction will it be clearly recognized by the antiserum. The shorter NtermR13 partial peptide can not take this spatial structure and is therefore not recognized.
  • the complete 31 amino acid sequence or peptides containing this sequence are therefore particularly suitable as an immunogen.
  • NtermR13 Another possible explanation could be a clearly different immunogenicity of the peptide NtermR13 compared to the non-overlapping regions of NtermR31 (range 1-14, range 28-31).
  • Abie Pro 3.0 (ChangBioscience.com)
  • Abie Pro 3.0 shows that four 13-mer peptides with good antigenic properties are predicted, with one peptide corresponding exactly to the sequence NtermR13.
  • Each of the three other peptides is N-termially displaced by one amino acid, so that here, too, there is a large overlap with NtermR13.
  • FIG. 7 b This shows that the specificity of anti-NtermR31 mAb is comparable to the polyclonal rabbit antiserum (detection of NtermR31, no response to scrambled controls and NtermR13, as well as cross species reaction between human, rat, mouse).
  • the AlphaScreen TM system (order number: 6760610M) from Perkin Elmer (Shelton, CT) was used.
  • NtermR13 biotinylated (Thermo Electron, Ulm)
  • NtermR31 biotinylated (Thermo Electron, Ulm)
  • the entire homogeneous assay was performed in 25 mM HEPES, 100 mM NaCl pH 7.4 and 0.1% BSA in 20 ⁇ l volume.
  • the mixture contained 2.5 ng / ⁇ l of the fusion protein sRAGE-6xHIS (amino acids 23-352, NP_001127), 20 ng / ⁇ l of anti-HIS acceptor beads, 20 ng / ⁇ l of streptavidin donor beads and NtermR13 or NtermR31 peptides in the concentrations 0.1, 5, 10, 25, 50, 100, 150 and 300 nM.
  • the individual components were brought together in a defined chronological order: first, sRAGE 6 ⁇ HIS was incubated with the acceptor beads for 30 minutes. biert. The various amounts of peptide were then added to add the donor beads after a further 30 minutes. After a further 60 minutes, the fluorescence measurement was carried out in the AlphaQuest device from Perkin-Elmer with a time delay of one second. Each measuring point was determined as triplicate. The evaluation and graphical processing of the results was carried out with the software package GraphPrism 4.0.
  • the results are shown in FIG.
  • the peptides NtermR31 and NtermR13 bind to sRAGE protein in the experiment described herein with high affinity.
  • the determined EC 50 values in the AlphaScreen binding assay are 62 and 66 nM, respectively.
  • the AlphaScreen TM system (order number: 6760610M) from Perkin Elmer (Shelion, CT) was used.
  • Amyloid A ⁇ -1-42 oligomer prepared according to WO 2004067561
  • NtermR13 C KG A P K K P P Q R LE
  • Non-polar FPVIPALFWIVLM Plus7: RLKRGHA
  • the assay was performed according to the manufacturer's instructions and in 25 mM HEPES, 100 mM NaCl pH 7.4 and 0.1% BSA in 20 ⁇ l volume.
  • the batch contained 2.5 ng / ⁇ l of the fusion protein sRAGE-6xHIS (amino acids 23-352, NP_001127), 20 ng / ⁇ l of anti-HIS acceptor beads, 20 ng / ⁇ l of streptavidin donor beads and the biotinylated peptides in concentrations of 0.10, 30, 100, and 300 nM.
  • the peptides except with servers of Aß 1-42 oligomers are heated at 50 0 C for 10 minutes immediately prior to the attempt to solve possible aggregations.
  • the individual components were brought together in a defined chronological order: First, sRAGE 6 ⁇ HIS was incubated for 30 minutes with the acceptor beads. The different amounts of peptide were then added to add the donor beads after a further 30 minutes. After a further 60 minutes, the fluorescence measurement was carried out in the AlphaQuest device from Perkin-Elmer with a time delay of one second. Each measuring point was determined as triplicate. The evaluation and graphic processing of the results was done with the software package GraphPrims 4.0.
  • the test results are shown in FIG.
  • the control peptides used in this experiment are intended to elucidate the nature of the binding of NtermR31 or NtermR13 to RAGE.
  • the positive control was the binding of A ⁇ oligomer to RAGE.
  • ScraNtermR13 is composed of the same amino acids as NtermR13, but in an arbitrary order.As this control binds to sRAGE with the same or a slightly higher affinity, according to the current data, the amino acid sequence is of relevance only insofar as there are positive charges in a specific density The fact that not even the specific combination of positive charge carriers is necessary for the binding is shown by the peptide AlterChargel, which carries four positive charges as 13mer, but not from 3 lysines and one arginine, as in NtermR13, but from three arginines and one histidine.
  • Embodiment 5 AP-Nogo66 Competition Assay:
  • His-NogoR expressed in CHO-K1 cells and after purification with a purity>
  • Microtiter plates (Nunc Maxisorb) were incubated with 0.1 ml of a solution of His-NogoR (5 ug / ml in sodium carbonate buffer, pH 9) overnight at 4 0C. Subsequently, a 1-hour blocking step with 2% bovine serum albumin (BSA) in Tris-HCl, pH 7.2, was performed at room temperature. For solutions of His-NogoR, sRAGE and NtermR31, starting concentrations of 200 nM were set. These stock solutions were then diluted 3-fold. AP-Nogo66 (3 ⁇ g / ml) was diluted to 0.2 nM with buffer (Tris-HCl, pH 7.2 and 0.1% BSA).
  • BSA bovine serum albumin
  • AP-Nogo66 0.2 nM was added to the respective dilutions of the proteins (0.05 ml) and incubated for 90 minutes at ambient temperature.
  • the respective final concentrations were: 0.1 nM for AP-Nogo66 and 100, 33.3, 11, 1, 3.7, and 1.2 nM for His-NogoR, sRAGE and NtermR31.
  • Phalloidin Alexa 568 or 488 (Molecular Probes, Eugene, USA)
  • DAPI (Molecular Probes, Eugene, USA)
  • an unstimulated control batch (without AP-Nogo66) was prepared. After a 5 to 10 minute stimulation period, the activation became interrupted with cold PBS. The cells were fixed with 3-4% paraformaldehyde solution, permeabilized with PBS containing 0.2% Triton X-100 and incubated with phalloidin Alexa 568 or 488 for 30-45 minutes. In addition, a 5 minute incubation with DAPI for nuclear staining was performed. The cells were visualized using an epifluorescence microscope (Axiovert 25). Fluorescence micrographs were recorded with a cooled CCD camera from Zeiss and the percentage of contracted cells, based on the total cell count, was determined.
  • FIG. 11B The experimental results for NtermR 31 and sRAGE are shown in FIG. 11B.
  • a concentration-dependent reduction of the percentage of contracted HEK cells is observed.
  • FIG. 11A shows microscopic images of unstimulated or AP-Nogo66-stimulated HEK293 RhoA / NgR / p75 cells.
  • the increased proportion of contracted HEK cells after stimulation with AP-Nogo-66 is clearly recognizable.
  • Embodiment 7 FIHC analysis with anti-RAGE in APP mouse brain transgenes
  • TBST wash solution Tris-buffered saline with Tween 20, 10-fold concentrate, DakoCytomation, Glostrup, Denmark S3306) diluted 1:10 with distilled water.
  • Donkey Serum (Serotec GmbH, Dusseldorf, DE) 5% in TBST
  • Primary Antibody Rabbit anti-RAGE (Abcam, Distributor: Acris GmbH, Hiddenhaus, DE, ab3611) diluted 1: 200 in TBST
  • Rabbit anti-RAGE (Biotrend; Why, DE; anti-31-mer-8508) diluted 1: 200 in TBST; anti-NtermR31 serum according to the invention;
  • Esei anti-rabbit Cy3 (Jackson Immuno, Distributor Dianova GmbH, Hamburg, DE) diluted 1: 500 with TBST Vectashield hardset mounting medium (Vector Laboratories, Burligame, UK H-1400)
  • mice (Taconic M & B A / S, Ry, Denmark) carrying the gene for huimanes amyloid precursor protein (APP) b) Experimental procedure:
  • Frozen sections with a thickness of 40 ⁇ m prepared from the dentate gyrus of Tg2576 mice at 10 weeks or 11 months old were incubated with donkey serum for 20 minutes and with one of the primary antibodies overnight. After 3 washes in TBST buffer, sections were incubated with donkey anti-rabbit Cy3 secondary antibody for 60 minutes and finally washed three times with TBST buffer. The sections were then applied to Superfrost Plus glass slides, air dried and covered with a coverslip. Fluoroscopic images of the thin sections were analyzed in an Axioplan Imaging System. (Microscope Axioplan Imaging 2, Carl Zeiss, Jena, Germany).
  • APP transgenic mice show tremendous stimulation of membrane-bound RAGE at a time when no amyloid plaques are yet to be formed.
  • membrane-bound RAGE disappears in favor of soluble RAGE, which can be measured in plasma. Old animals therefore have particularly high sRAGE plasma levels.
  • Microtiter plates (Flexible plate, 96 well, flat bottom, Falcon) Goat anti-mouse RAGE Antibody; R & D Systems; AF1179 Transgenic Mice (Tg2576)
  • Microtiter plates were coated with each 100 .mu.l of antibody solution (goat anti-mouse RAGE; stock solution: 100 ug / ml diluted in a concentration of 1 ug / ml in 50 mM NaHCO 3) coated overnight at 4 0 C. Subsequently, the wells per washed three times with TBS / 0.1% Tween 20. In order to minimize adsorption effects, 100 ml of a 1% BSA solution in TBS / 0.1% Tween20 were incubated for one hour at room temperature. Subsequently, as described above, washed three times each with TBS / 0.1% Tween 20.
  • antibody solution goat anti-mouse RAGE; stock solution: 100 ug / ml diluted in a concentration of 1 ug / ml in 50 mM NaHCO 3
  • FIG. 13 shows the result of measurement of sRAGE in the plasma of 12-month-old (1) and 10-week young (2) transgenic Tg2576 mice. It can be seen that sRAGE is elevated in the plasma of old mice. This can be explained by the fact that with increasing age of the animals the expression of RAGE switches over from the membrane-bound (in young animals) to the soluble form (in old animals) depending on the amyloid production. This result supports the finding according to the invention that NtermR31 antiserum recognizes an "active receptor status" which is not defined by commercial antisera (compare Example 7, FIG. The plasma of the non-transgenic strain C57B16 showed comparable sRAGE plasma concentrations as the young transgenic animals (data not shown).
  • Embodiment 9 Competition of sRAGE / A ⁇ oligomer interaction by anti-NtermR31 and anti-sRAGE antibodies
  • Antibody sRAGE-amyloid beta-oligomer (globulomer) binding displacement experiments were performed using the homogeneous time-resolved fluorescence (HTRF) technology of CIS Bio International (Bagnols, France), the HTRF donor and acceptor components , Anti ⁇ HIS europiumcryptate (CIS Bio catalog number: 61 HISKLA; 500 wells / 13 ⁇ g) and streptavidin XL-665 (CIS Bio catalog number: 611 SAXLA, 500 wells / 250 ⁇ g) were redistilled in 250 ⁇ l H 2 O each. Starting from these stock solutions, 1:50 working dilutions were produced with a final concentration of 7.4 nM AntiöHis Cryptate or 121.2 nM Streptavidin XL-665 in PBS, pH 7.4.
  • HTRF time-resolved fluorescence
  • the negative control used in this experiment was rabbit IgG (Order No .: I5006, Sigma, Taufkirchen, Germany).
  • the polyclonal anti RAGE antibody AF1145 (R & D Systems, Wiesbaden, Germany) was used.
  • the anti NtermR31 immunoglobulins used were acquired, as already described elsewhere, via the company Biotrend (Cologne, Germany).
  • the A beta 1/5 biotin globulomer concentration given here refers to the A ⁇ 1-42 monomers which were used to prepare the globulomers (according to WO 2004 067561). In each case 2 .mu.l of the above-described 7.4 nM AntiöHis cryptate solution and the 121.2 nM streptavidin were added to then incubate this approach for another two hours at now 4 0 C. After the addition of 4 ⁇ l of a 2M KF stock solution, the total batch was measured in the BMG Pherastar fluorescence meter (BMG Labtech GmbH, Offenburg, Germany) in the HTRF mode. The calculated% DeltaF values were transferred to GraphPad Prism 4 (GraphPad Software, San Diego, USA) and evaluated. The concentrations given in the graph refer to the final concentration of the 20 ⁇ l total batch.
  • Embodiment 10 Effect of NtermR31 on excitatory synaptic transmission and long term potentiation
  • LTP Long-term potentiation
  • the induction method (“Theta Bursf” stimulation) used here triggers a so-called “weak” LTP, which falls back to its original values after several hours Changes include (eg, modification of the receptor composition of the postsynaptic membrane) LTP-like states were measured in memory formation in the animal, conversely, LTP induction in the animal affects memory performance better accessibility of substances were measured synaptic transmission and LTP in the brain slice. Derived was in the CA1 region of the hippocampus.
  • the values were determined from the slope of the FeId EPSP derived every 5 minutes for a period of 120 minutes before and 120 minutes after LTP induction.
  • LTP was triggered by so-called theta burst stimulation (4x2 pulses 200 ms apart, with 10 ms double pulse interval). The substance was washed 100 minutes before tetanization.
  • NtermR31 The effect of NtermR31 on synaptic transmission and LTP was investigated.
  • An application of 500 nM NtermR31 clearly suppresses both short-term and long-term potentiation.
  • the effect of the NtermR31 peptide is therefore specific for the amino acid sequence.
  • the short-term potentiation is shown in the LTP curve and corresponds to the first minutes of exponentiation.
  • NtermR31 administration has no effect on basal synaptic transmission.
  • the application of NtermR31 over a period of 90 minutes does not change the size of the EPSPs 1 and thus leaves normal glutamatergic neurotransmission unaffected (see Figure 15).
  • the input / output relation is not affected by NtermR31 (see Figure 17), which also indicates normal synaptic transmission under the action of this peptide.
  • NtermR31 acts specifically on LTP. It follows that NtermR31 specifically interferes with plastic synaptic processes that can be linked to learning and memory.
  • Embodiment 11 Competition of sRAGE / A ⁇ Globulomer Interaction by AGER-CDP
  • a ⁇ 1-42 Globulomer prepared according to WO 2004 067561, biotinylated
  • the attempts to displace the sRAGE-A ⁇ globulomer binding by RAGE peptides were carried out by the homogeneous time-resolved fluorescence (HTRF) technology of ClS Bio International (Bagnols, France) .
  • HTRF time-resolved fluorescence
  • the HTRF donor and acceptor Components, anti- ⁇ HIS europiumcryptate (CIS Bio catalog number: 61 HISKLA; 500 wells / 13 ⁇ g) and streptavidin XL-665 (CIS Bio catalog number: 611SAXLA, 500 wells / 250 ⁇ g) were redistilled in 250 ⁇ l H 2 O each Starting from these stock solutions, 1:50 working dilutions were made with a final concentration of 7.4 nM Anti ⁇ His cryptates or 121.2 nM streptavidin XL-665 in PBS, 0.1% BSA, pH 7.4.
  • Embodiment 12 Binding N-terminally truncated sRAGE fragments to A ⁇ oligomer
  • sRAGE 1-331 (comprising the complete RAGE ectodomain) (see Preparation 3a)
  • sRAGE 102-331 (comprising the N-terminally truncated RAGE ectodomain) (see Preparative Example 3b)
  • HTRF time-resolved fluorescence
  • CIS Bio International Bognols, France
  • the HTRF donor and acceptor components Anti ⁇ HIS Europiumcryptate (CIS Bio Catalog Number: 61 HISKLA; 500 wells / 13 ⁇ g) and Streptavidin XL - 665 (CIS Bio Catalog Number: 611SAXLA, 500 wells / 250 ⁇ g) were distilled in 250 ⁇ l H 2 O bidist. solved. Starting from these stock solutions were prepared 1: 100 working dilutions with a final concentration of 3.7 nM Anti ⁇ His-Cryptate or 60.6 nM streptavidin XL-665 in PBS, 0.1% BSA, pH 7.4.
  • mice Balb / c and AAJ mice (6-8 weeks old) were subcutaneously immunized with 30 ⁇ g sRAGE-HIS antigen in complete Freud's adjuvant. The animals were then injected three times at intervals of three weeks each again with 30 ⁇ g sRAGE antigen which was present for these immunizations in Immuneasy TM (company: Qiagen). Four days before the fusion, the mice were finally vaccinated intravenously with 10 ug sRAGE.
  • Spleen cells from immunized animals were fused with SP2 / 0-Ag14 myeloma cells in a ratio of 5: 1 according to standard methods.
  • PEG 3000 was used and the selection was carried out in a medium containing azaserine and hypoxantin. Seven to ten days post-fusion, on appearance of macroscopically visible colonies, cell culture supernatants were tested both in ELISA for antibodies to sRAGE-HIS and in FACS using stably transfected sRAGE-expressing HEK-293 cells. Positive cells from the ELISA / FACS analysis were further propagated and cloned by serial dilutions.
  • ELISA plates were coated with sRAGE protein (1 .mu.g / ml) in PBS overnight at 4 0C. After blocking the plates with milk, the mouse sera or hybridoma supernatants were diluted in 1x PBS 1 0.1% BSA (Sigma). The dilutions were carried out serially starting with a ratio of 1: 500. For screening, dilutions of 1: 5 were used. 50 ⁇ l of serum or cell culture supernatant were pipetted into each well and incubated for one hour at room temperature.
  • the hybridoma cell lines were expanded in medium containing 5% fetal bovine serum (low IgG content, Invitrogen). The supernatants were harvested and concentrated. Purification of the monoclonal anti-RAGE antibodies was carried out by protein A chromatography and subsequent dialysis in PBS.
  • antibodies named ML37-11 H8 and ML37-6A6 were obtained and further characterized.
  • dot blots were prepared with the complete sRAGE protein (1-331 sRAGE-HIS) and an N-terminally truncated version (102-331-sRAGE-HIS).
  • 1-331 sRAGE-HIS complete sRAGE protein
  • 102-331-sRAGE-HIS N-terminally truncated version
  • Hybond ECL nitrocellulose membranes Amersham, RPN68D
  • the following amounts of protein were each duplicated in a volume of 1 ⁇ l of IxPBS: 30 ng, 10 ng, 3 ng, 1 ng, 0.3 ng, 0.1 ng, 0, 03ng, and 0.01ng.
  • the dried membranes were then shaken for 1 hour in the Western Blocking Reagent (Roche, # 1921673) at a constant rate, then incubated for an additional hour under the same conditions with the monoclonal antibodies ML37-6A6 and ML37-11 H8, respectively
  • the filters were placed in Western Blocking Reagent (Roche, No. 192173) containing the secondary antibody "goat anti mouse IgG AP" (Sigma no. A-7434) in a 1: 2000 fold dilution, shaken for one hour.
  • the filters were incubated in a NBT / BCIP substrate solution (Roche, No. 1697471) prepared according to the manufacturer's instructions. The staining reaction was stopped after 10 minutes with distilled water.
  • HTRF homogeneous-time-resolved fluorescence
  • CIS Bio International Bognols, France
  • the HTRF donor and acceptor components, Anti ⁇ HIS -Europiumcryptate (CIS Bio catalog number: 61 HISKLA; 500 wells / 13 ⁇ g) and streptavidin XL-665 (CIS Bio catalog number: 611SAXLA, 500 wells / 250 ⁇ g) were dissolved in 250 ⁇ l of bidistilled water, starting from these stock solutions 1: 40 working dilutions were made with a final concentration of 10.25 nM Anti6His cryptate or 151.5 nM streptavidin XL-665 in PBS, pH 7.4 Negative controls in this experiment were mouse IgGI and mouse IgG2a (order no .: M-5284 resp M-5409; Sigma, Taufmaschinen, Germany).
  • Antibody ML37-6A6 are able, the ATE-G obulomer - sRAGE binding efficiently etieren to comp '. As shown in the dot blot analysis, the antibodies recognize different parts of the sRAGE protein, unequivocally proving that both terminal as well as N-terminal regions of sRAGE can serve as targets for antagonistic therapeutic reagents.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Neurology (AREA)
  • Diabetes (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Dermatology (AREA)
  • Obesity (AREA)
  • Urology & Nephrology (AREA)
  • Cardiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Rheumatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Cell Biology (AREA)

Abstract

Die vorliegende Erfindung betrifft die Identifizierung, Funktionalität und Verwendung von Domänen aus dem N-Terminus des Rezeptors für Advanced Glycation End Products (AGER). Diese Domänen, mit der Bezeichnung Rezeptor Multimerisierungs Epitop (RME) sind hochkonserviert in sämtlichen AGER Proteinsequenzen. Sie stellen die Mediatoren für die AGER Selbstassoziation und Heteromerisierung mit anderen Proteinen dar. Ebenso betrifft die Erfindung die Identifizierung, Funktionalität und Verwendung von Peptiden, die von der C-Domäne von AGER abgeleitet sind (AGER-CDP). Die erfindungsgemäßen AGER-RMEs und AGER-CDPs eignen sich als Targets zur Identifizierung von AGER-Liganden, welche die natürliche Ligandenwechselwirkung modulieren; als Immunogen für die aktive oder passive Immunisierung von Individuen, als diagnostische Mittel zur Identifizierung immunogener Reaktionen sowie als Peptidliganden zur Modulation von Protein-Protein-Wechselwirkungen unter Beteiligung von AGER.

Description

AGER-Peptide und deren Verwendung
Beschreibung
Die vorliegende Erfindung betrifft die Identifizierung, Funktionalität und Verwendung von Domänen aus dem N-Terminus des Rezeptors für Advanced Glycation End Products (AGER oder RAGE). Diese Domänen, mit der Bezeichnung Rezeptor Multimeri- sierungs Epitop (RME) sind hochkonserviert in sämtlichen AGER Proteinsequenzen. Sie stellen die Mediatoren für die AGER Selbstassoziation und Heteromerisierung mit anderen Proteinen dar. Ebenso betrifft die Erfindung die Identifizierung, Funktionalität und Verwendung von Peptiden, die von der C-Domäne von AGER abgeleitet sind (AGER-CDP). Die erfindungsgemäßen AGER-RMEs und AGER-CDPs eignen sich als Target zur Identifizierung von AGER-Liganden, welche die natürliche Ligandenwech- selwirkung modulieren; als Immunogen für die aktive oder passive Immunisierung von Individuen, als diagnostische Mittel zur Identifizierung immunogener Reaktionen sowie als Peptidliganden zur Modulation von Protein-Protein-Wechselwirkungen unter Beteiligung von AGER.
Stand der Technik
Aus dem Stand der Technik ist bekannt, dass zahlreiche menschliche Erkrankungen mit einem vermehrten Auftreten von AGER oder AGER-bindenden Liganden assoziiert sind (Jerums G et aLArch Biochem Biophys. 2003 Nov 1 ;419(1):55-62.; Bucciarelli LG et aL: Cell Mol Life Sei. 2002 Jul;59(7):1117-28; Hofmann HS et al.:Am J Respir Grit Gare Med. 2004 Sep 1 ;170(5):516-9.; Lotze MT et akCurr Opin Investig Drugs. 2003 Dec;4( 12): 1405-9 ).
Die WO-A-2004/016229 beschreibt N-terminale AGER-Fragmente, welche die Fähigkeit zur Ligandenbindung besitzen (RAGE-LBE) und schlägt deren Verwendung u.a. (als Fusionsprotein mit einem Immunglobulinelement) zur Behandlung von AGER- assoziierten Erkrankungen vor. Als Beispiele für solche Erkrankungen werden genannt, Amyloidosen, Krebs, Arthritis, Crohn'sche Erkrankung, chronische inflammatorische Erkrankungen, akute inflammatorische Erkrankungen, kardiovaskuläre Erkrankungen, Diabetes, Diabeteskomplikationen, Prion-assoziierte Erkrankungen, Vaskularitis, Neph- ropathien, Retinopathien und Neuropathien. Insbesondere werden als AGER- assoziierte Erkrankungen genannt: Alzheimer, rheumatoide Arthritis, Osteoarthritis, Bowel Disease, multiple Sklerose, Psoriasis, Lupus, Autoimmunerkrankungen im allgemeinen, Sepsis, Arteriosklerose und Restenose. Insbesondere wird in der internationalen Patentanmeldung vorgeschlagen, AGER-Fragmente mit einer Länge von 118 - 344 Aminosäuren (jeweils beginnend am ersten N-terminalen Rest des Rezeptors) zu verwenden. Kürzere Fragmente werden nicht beschrieben. Weiterhin findet man in der WO-Schrift einen allgemeinen Hinweis auf die mögliche therapeutische Brauchbarkeit isolierter Antikörper, welche mit einem Epitop der AGER-Aminosäuresequenz spezi- fisch immunoreaktiv sind. Es werden aber weder spezielle Epitope vorgeschlagen, noch werden spezifische Antikörper hergestellt.
Es ist daher Aufgabe der vorliegenden Erfindung, neue Therapieansätze zur Behandlung AGER-assoziierter Erkrankungen bereitzustellen.
Kurze Beschreibung der Erfindung
Obige Aufgabe wurde überraschenderweise durch Isolierung und Charakterisierung spezieller Rezeptor Multimerisierungs Epitope (RME) und von Peptiden der Ig ähnli- chen C-Domäne von AGER gelöst.
Fiqurenbeschreibung
Figur 1 zeigt einen Sequenzvergleich (ClustAII W alignment) von RAGE aus Mensch, Maus, Ratte und Rind. Der NtermR31 entsprechende Sequenzabschnitt ist mit „|+...+|" oberhalb der Sequenz gekennzeichnet. Die Angaben zur Sequenzübereinstimmung finden sich jeweils in der letzten Zeile eines Sequenzblocks. Identische Aminosäurepositionen sind mit „* " gekennzeichnet, „." und „:" stehen für ähnliche Aminosäuren; bei fehlender Übereinstimmung wurde ein Leerzeichen („ ") eingetragen. Die Ig-ähnliche Domäne vom V-Typ (V-Domäne) ist für die humane Sequenz durch fette Unterstreichung hervorgehoben; die Ig-ähnliche Domäne C2-Typ 1 ist für die humane Sequenz durch gepunktete Unterstreichung hervorgehoben; die Ig-ähnliche Domäne C2-Typ 2 ist für die humane Sequenz durch fette unterbrochene Unterstreichung hervorgehoben.
Figur 2 zeigt die Plasmidkarte des erfindungsgemäß verwendeten Plasmids pAP- tag5/PPC/hNOGO66Nr.5
Figur 3 zeigt die Plasmidkarten verschiedener erfindungsgemäß verwendeter Plasmide: pIRES hNgR hp75 NgR (SEQ ID NO:18) (Fig. 3a) pcDNA3 hRhoA wt (SEQ ID NO:23) (Fig. 3b) pcDNA4 His Myc(mycHis)A hRhoA wt (SEQ ID NO:21 ) (Fig. 3c) pcDNA3.1 (V5-His)hp75 Nr.16 (SEQ ID NO: 16) (Fig. 3d) Figur 4a zeigt den immunologischen Nachweis von exprimiertem Rho durch erfindungsgemäß isolierte positive Klone (#1 bis #8) der Tripletransfektante HEK293 RhoA/NgR/p75 (Klone 1 bis 9) , positive Kontrolle (C) erhalten durch transiente Trans- fektion mit 100 ng pcDNA4(mycHis)A hRhoA wt; als Marker (M) wurde verwendet: Benchmark Prestain Protein Ladder, Invitrogen, Bestellnummer #10748-010; Figur 4b zeigt das Ergebnis einer FACS-Analyse auf exprimierte Zelloberflächenrezeptoren hNgR und hp75 einer erfindungemäß hergestellten HEK293-Tripletransfektante (Klon #4 und #8) sowie von nichttransformierten HEK293-Zellen (oben), jeweils für Analysen mit Anti-p75- bzw. Anti-NgR- Antikörpern.
Figur 5 zeigt das Ergebnis eines ELISA, mit welchem Serum immunisierter Kaninchen Antikörper gegen das N-terminale Peptid NtermR31 nachgewiesen wurden.
Figur 6 zeigt das Ergebnis eines ELISA, mit welchem die relative Antikörpermenge gegen NtermR31 in verschiedenen Patientenplasmen nachgewiesen wurde. 1 : gesunde Kontrolle; 2: AP23, MCIF06.7.F; 3: LAP30, Alzheimer Dementia, F00.0, early onset, F; 4: LAP39, MCIF06.7,F; 5: LAP45, MCIF06.7.M; 6: LAP53, MCIF06.7, F; 7: LAP60, Alzheimer Dementia, late onset, M.
Figur 7a zeigt das Ergebnis eine Dot Blot-Verfahrens zur Charakterisierung des po- lyklonalen Anti-NtermR31 -Serums (untere Hälfte) mit verschiedenen erfindungsgemäß hergestellten Peptiden bzw. sRAGE-Formen. In der oberen Hälfte sind entsprechende Kontrollansätze mit Präimmunserum gezeigt. Beschreibung der Ansätze: 1 : NtermR31 ; 2: ScraNtermR31 ; 3: ScraNtermR13; 4: NtermR13; 5: sRAGE-6xHIS (AA23-352, NP- 001127); 6: human sRAGE/Fc (R&D Systems; #1145-RG; AA 1-344); 7: human sRA- GE/Fc (1-130AA); 8: mouse sRAGE (R&D Systems; # Custom03); 9: rat sRAGE/Fc (R&D Systems; #1616:RG; AA 1-342); Figur 7b zeigt das Ergebnis entsprechender Experimente mit monoklonalem anti-NtermR31 Antikörper „clone 37". Beschreibung der Ansätze: 1 : NtermR13; 2: NtermR31; 3: ScraNtermR13; 4: ScraNtermR31; 5: N/C truncated(sRAGE-6xHIS) (AA 102-352, NP_001127); 6: human sRAGE/Fc (AA 1-130); 7: human sRAGE/Fc (R&D Systems;#1145-RG; AA 1-344); 8: human sRAGE-6xHIS (AA 23-352, NP_001127); 9: mouse sRAGE (R&D Systems; # Custom03); 10: rat sRAGE/Fc (R&D Systems; #1616-RG; AA 1-342)).
Figur 8 zeigt die Bindung von NtermR31 und NtermR13 an sRAGE im Alphascreen- Assay in Abhängigkeit von der eingesetzten Peptidkonzentration.
Figur 9 zeigt die Bindung verschiedener Kontrollpeptide an sRAGE im Alphascreen- Assay in Abhängigkeit von der Peptidkonzentration. Figur 1OA veranschaulicht die Kompetition von AP-Nogo-66-Bindung (0,1 nM) an den Nogo-Rezeptor (NogoR) durch sRAGE (Kreise) und löslichen His-NogoR (Dreiecke) in Abhängigkeit von der jeweiligen Kompetitorkonzentration; Figur 10B zeigt die Kompeti- tion der AP-Nogo66-Bindung (0,1 nM) an den Nogo-Rezeptor durch NtermR31 in Abhängigkeit von der jeweiligen Kompetitorkonzentration.
Figur 11A zeigt mikroskopische Aufnahmen unstimulierter bzw. mit AP-Nogo66- stimulierter HEK293 RhoA/NgR/p75-Zellen. Nach Stimulierung mit AP-Nogo66 ist eine deutliche Veränderung in der Zellgeometrie durch Kontraktion zu beobachten. Figur 11 B zeigt die konzentrationsabhängige Verringerung des prozentualen Anteils kontrahierter HEK-Zellen bei verschiedenen Konzentrationen von NtermR31 bzw. sRAGE. Der jeweils hellere, linke Balken eines Balkenpaars zeigt das Versuchsergebnis für den jeweils zugeordneten, unstimulierten Kontrollansatz (ohne AP-Nogo66). Beschreibung für die Bahnen 1 bis 7:1 : keine Behandlung; 2: NtermR31 (0,2 μM); 3: NtermR31 (1 μM); 4:NtermR31 (5μM); 5: sRAGE (0,2 μM); 6: sRAGE (1 μM); 7: sRAGE (5 μM)
Figur 12a zeigt immunhistologische Untersuchungen an Dünnschnitten von transge- nem APP-Mäusehirn unter Verwendung von kommerziellem anti-RAGE-Antikörpem. Im Gyrus dentatus 10 Wochen alter Mäuse (linkes Bild) ist eine starke Stimulation von membrangebundenem RAGE zu einem Zeitpunkt zu beobachten, wo noch keine Amyloidplaques gebildet werden. Wenn Amyloid verstärkt gebildet wird und Plaques entstehen (ab dem 9. bis 12. Lebensmonat) so verschwindet membrangebundenes RAGE zugunsten von löslichem RAGE. Dies erklärt die deutlich geringere Anfärbung in 11 Monate alten Mäusen (rechtes Bild). Figur 12b zeigt dagegen, dass erfindungsgemäßes NtermR31 Antiserum („Biotrend") nicht im jungen Tier (10 Wochen) färbt (linkes Bild) wohl aber mit ähnlichem Muster wie kommerzielles Antiserum im alten Tier (10 Monate) (rechtes Bild).
Figur 13 zeigt das Ergebnis eines ELISA, mit welchem in Mausplasma sRAGE nachgewiesen wurde. Es ist deutlich zu erkennen, dass in 12 Monate alten Tieren (Balken 1 ) eine deutlich höhere Plasmakonzentration von sRAGE zu finden ist als in 10 Wochen jungen Tieren (Balken 2).
Figur 14 zeigt das Ergebnis eines Kompetitionsexperiments der sRAGE/Aß-Oϊigomer- Interaktion durch Anti-NtermR31-Antikörper (Kreise) und Anti-sRAGE-Antikörper (Quadrate)(AF1145) in Abhängigkeit von der eingesetzten Immunglobulinkonzentration (nM) in einem HTRF-Assay. Als Kontrolle wurde außerdem ein Kaninchen-lgG-Nicht- Immunserum (Dreiecke) eingesetzt. Die Kontrollansätze ohne sRAGE (gestrichelte Linien) zeigen keine Veränderung der gemessenen Fluoreszenzwerte bei steigender Antikörperkonzentration. In Gegenwart von sRAGE bewirkt die Zugabe von Kaninchen- Kontrollserum keine Abnahme der Fluoreszenz und somit keine Inhibition der sRAGE- Aß- Wechselwirkung. Dagegen beobachtet man bei steigender Konzentration an po- lyklonalen anti-sRAGE Antikörpern und polyklonalen anti-NtermR31 Antikörpern eine signifikante Inhibition der sRAGE-Aß- Wechselwirkung.
Figur 15 zeigt den Effekt von 500 nM NtermR31 auf die Langzeitpotenzierung (LTP) in Hippokampusschnitten männlicher Wistar-Ratten. Kontrollschnitte n=11 , 6 Tiere; Nterm-behandelte Schnitte n=7, 4 Tiere. p=0.016, repeated measures ANOVA.
Figur 16 zeigt den Effekt von 500 nM ScraNterm31 auf LTP in Hippokampusschnitten männlicher Wistar-Ratten . Kontrollschnitte n=7, 4 Tiere; ScraNterm-behandelte Schnitte n=10, 5 Tiere. p=0.794, repeated measures ANOVA.
Figur 17 zeigt den Effekt von 500 nM Nterm31 auf die I/O-Relation bei LTP Untersuchungen an männlichen Wistar-Ratten.
Figur 18 zeigt die kompetitive Inhibition der sRAGE-Aß-Oligomer Wechselwirkung durch die erfindungsgemäßen AGER-CDP Peptide 6 unf 7.
Figur 19 zeigt die Aß-Oligomer Bindung durch sRAGE (1-331) und das N-terminal verkürzte sRAGE (102-331 ), welches keine funktionale V-Domäne mehr aufweist.
Figur 20 zeigt das Ergebnis der Charakterisierung zweier erfindungsgemäßer monoklonaler anti-RAGE Antikörper (ML37-11 H8 und ML37-6A6) in Dot Blots mit dem vollständigen sRAGE-Protein (1-331 sRAGE-HIS) (jeweils Vertikale Reihe 1 ) sowie einer N-terminal verkürzten Version (102-331 -sRAGE-HIS) (jeweils vertikale Reihe 2).
Figur 21 zeigt die Kompetition der sRAGE - Aß Globulomer Bindung mit den monoklonalen anti-RAGE Antikörpern ML37-6A6 und ML37-11H8 im vergleich mit unspezifischem Maus IgGI und 2a.
Detaillierte Beschreibung der Erfindung
I. Spezielle Gegenstände der Erfindung Ein erster Gegenstand der Erfindung betrifft die Verwendung des Rezeptor Multimeri- sierungs Epitops (RME) des Advanced-Glycation-End Products Rezeptors (AGER), umfassend ein zur Auto-Multimerisierung befähigtes Peptidfragment der N-terminalen AGER-Ektodomäne, oder eines von der non-V-Domäne AGER Domäne, wie insbe- sondere einer Ig-ähnlichen C-Domäne (wie insbesondere von der Ig-ähnlichen C2- Domäne, Typ 1 und/oder der Ig-ähnlichen C2-Domäne Typ2) abgeleiteten Peptids (AGER-CDP), oder eines funktionalen, immunogenen Äquivalents von AGER-RME oder von AGER-CDP, als Immunogen zur Herstellung eines polyklonaler Antiserums oder monoklonaler Antikörper gegen AGER-RME bzw. AGER-CDP.
Insbesondere wird dabei AGER-RME mit einer Länge von etwa 8 bis 50 Aminosäureresten eingesetzt, welches abgeleitet ist von der humanen AGER-Ektodomäne mit einer Aminosäuresequenz gemäß. Genbank Ref. Seq. Sequenz NM_001136 oder von einer funktional äquivalenten Ektodomäne, insbesondere von der Ig-ähnlichen Domäne vom V-Typ (V-Domäne).
Beispielsweise umfasst das AGER-RME folgende Sequenz:
C(K/R)GAPKKP(P/T)Q(Q/R/K)LE (SEQ ID NO :1)
Vorzugsweise umfasst das AGER-RME eine Sequenz, die ausgewählt ist unter
CRGAPKKPPQQLE (SEQ ID NO :2 ) CKGAPKKPPQRLE (SEQ ID NO :3) CKGAPKKPTQKLE (SEQ ID NO :4)
Ein erfindungsgemäß brauchbares AGER-RME kann aber auch eine Sequenz der folgenden allgemeinen Formel umfassen:
X1 - X2 - X3 - X4
worin
X1 für ein Wasserstoffatom, oder die Aminosäure Q oder das Dipeptid DQ steht; X2 für NITARIG(K/E)PL(V/M)L(N/S/K) (SEQ ID NO:5) steht; X3 für eine Sequenz nach SEQ ID NO: 1 , 2, 3 oder 4 steht; und
X4 für die Peptidsequenz WKLN steht. Beispielsweise werden erfindungsgemäß AGER-CDPs mit einer Länge von etwa 5 bis 50 Aminosäureresten eingesetzt, die abgeleitet sind von der humanen AGER- Ektodomäne mit einer Aminosäuresequenz gemäß Genbank Ref. Seq. Sequenz NM__001136 oder einer funktional äquivalenten Ektodomäne, insbesondere einer Ig- ähnlichen C-Domäne, insbesondere der C2-Domäne Typ 1 und/oder Typ 2 davon (vgl. auch Figur 1).
Geeignete AGER-CDP-Peptid umfassen eine eine der folgenden Sequenzen:
DGKPLVPNEKGVSVKEQTRRHPETGLFTLQ (SEQ ID NO: 31 )
TLQSELMVTPARGGDPRPTFSCSFSPGLPR (SEQ ID NO: 32) und LPRHRALRTAPIQPRVWEPVPLEEVQLWE (SEQ ID NO: 33).
Alternativ kann das AGER-RME oder AGER-CDP, insbesondere mit einer der oben angegebenen Sequenzen, als cyclisches Peptid vorliegen.
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung einer AGER-RME oder eines AGER-CDP gemäß obiger Definition als diagnostischen Marker, wie z.B. als Capture-Antigen, zur Diagnose von Krankheiten oder Krankheitsstadien, bei denen Auto-Antikörper gegen das AGER-RME auftreten.
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung einer AGER-RME oder eines AGER-CDP gemäß obiger Definition, der AGER-Ektodomäne mit einer Aminosäuresequenz gemäß Genbank Ref. Seq. Sequenz NM_001136 und N-terminaler Sub- fragmente davon, sowie von Muteinen und Derivaten dieser AGER-Moleküle, oder von AGER-RME- oder AGER-CDP-bindenden Liganden zur Herstellung eines pharmazeutischen Mittels zur Diagnose oder Therapie von AGER-mediierten Krankheiten oder Krankheitsstadien.
Erfindungsgemäß therapierbare Krankheiten oder Krankheitsstadien sind solche, die mit einer AGER/AGER-, AGER/Ligand-, AGER/Rezeptor-, AGER/Rezeptor/Ligand-, AGER/Rezeptor/Co-Rezeptor- und/oder AGER/Rezeptor/Counter-Rezeptor- Wechselwirkung assoziiert sind.
Als Beispiele für Erkrankungen die mit einer AGER/AGER-Wechselwirkung assoziiert sind, können genannt werden: Alzheimer und Amyloidosen; als Beispiele für Erkrankungen die mit einer AGER/Ligand- Wechselwirkung assoziiert sind, können genannt werden: Alzheimer und HlV-assoziierte Demenz; als Beispiele für Erkrankungen die mit einer AGER/Rezeptor- Wechselwirkung assoziiert sind, können genannt werden: Rü- ckenmarksverletzung und Schädeltrauma; als Beispiele für Erkrankungen die mit einer AGER/Rezeptor/Co-Rezeptor- und/oder AGER/Rezeptor/Counter-Rezeptor- Wechselwirkung assoziiert sind, können genannt werden: Multiple Sklerose, Sepsis, Arteriosklerose.
Die erfindungsgemäß therapierbaren und/oder diagnostizierbaren Krankheiten oder Krankheitsstadien können weiterhin aus folgenden Gruppen ausgewählt sein: a) mechanischen Verletzungen von Schädel und Rückenmark; b) ischaemischen Schäden, wie Schlaganfall; c) chronischen Erkrankungen, ausgewählt unter neurodegenerative, inflammatorische und Autoimmun-Erkrankungen, wie insbesondere Multiple Sklerose, Parkinson, Alzheimers, HIV-1 assoziierte Demenz; d) diabetischen Folgeerkrankungen, wie diabetische Nephropathie, diabetische Neuropathie, und diabetische Vaskulopathie; e) Tumorprogression und Metastasierung; f) veränderten Neurogeneseprozesse bei psychotischen Erkrankungen, wie Depression und Schizophrenie, und chronischen Schmerzzuständen die durch exzessive Neuπtensprossung und/oder pathologische Synaptogenese hervorgerufen werden, wie Phantomschmerz nach Amputation; g) Störungen der neuronalen Regeneration, des axonalen Sproutings, der Neuriten- extension und der neuronalen Plastizität h) zentralen/peripheren Amyloiderkrankungen; und i) Arteriosklerose.
Nach einer besonderen Ausführungsform ist der AGER-RME- oder AGER-CDP- bindende Ligand ein anti-AGER-RME- oder anti-AGER-CDP-Antikörper.
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung von AGER-RME oder eines AGER-CDP nach obiger Definition als Target zum Nachweis oder zur Identifizie- rung von AGER-bindenden Liganden.
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung von AGER-RME oder eines AGER-CDP nach obiger Definition als Immunogen zur aktiven oder passiven Immunisierung.
Gegenstand der Erfindung ist weiterhin ein polyklonales anti-AGER-RME oder anti- AGER-CDP Antiserums, erhältlich durch Immunisierung eines Säugers mit einer anti- genen Menge eines AGER-RME bzw. eines AGER-CDP Peptids gemäß obiger Definition. Gegenstand der Erfindung sind weiterhin monoklonale anti-AGER-RME oder anti- GER-CDP-Antikörper oder Antigen-bindende Fragmente davon, gegebenenfalls in humanisierter Form.
Bevorzugte Antikörper oder Antiseren weisen wenigstens eine der folgenden Eigenschafen auf: a) verbesserte Spezifität für ein AGER-RME oder ein AGER-CDP gemäß obiger Definition, verbesserte Spezifität für ein unter Beteiligung des AGER-RME oder eines AGER-CDP nach obiger Definition ausgebildetes Neoepitop, b) Inhibition der AGER-RME- vermittelten Multimerisierung mit sRAGE oder anti- AGER-RME Antikörper (insbesondere zu beobachten in einem AlphaScreen- oder Assay); c) spezifische Erkennung eines AGER-Ligand-induzierten, z.B. durch Aß1-42 induzierten, Rezeptorstatus von sRAGE; d) Induzierung einer Rezeptorkonfiguration von sRAGE, welche die Bindung eines AGER-Liganden, wie z.B. ausgewählt unter Aß1-42, Aß 20-42, Aß 12-42 und deren Globulomere, Amyloid, AGE, an sRAGE moduliert, wie z.B. fördert.
Gegenstand der Erfindung sind weiterhin monoklonale, bispezifische Antikörper, umfassend a) eine erste Antigen-bindende Domäne, abgeleitet von einem monoklonalen Antikörper nach obiger Definition, und b) eine zweite Antigen-bindende Domäne mit Spezifität für wenigstens einen Zelloberflächen-Rezeptor, der zu einer Wechselwirkung mit AGER-RME oder AGER-CDP befähigt sind, wie z.B. AGER, NgR, oder mit Spezifität für einen Liganden, Co- oder Counter-Rezeptor für einen dieser Rezeptoren, oder ein Antigen-bindendes Fragment davon, gegebenenfalls in humanisierter Form.
Weiterer Gegenstand der Erfindung ist ein Hybrid protein, umfassend ein AGER-RME oder ein AGER-CDP nach obiger Definition. Derartige Hybridproteine umfassend außerdem einen funktionalen Teil eines Proteins, ausgewählt unter Immunglobulinen und Fragmenten davon, wie z.B. ein Ig-Fc Fragment funktional verknüpft mit, beispielswei- se dem C-Terminus von AGER-RME oder AGER-CDP.
Gegenstand der Erfindung sind auch AGER-RME- oder AGER-CDP-Derivate, umfassend AGER-RME oder AGER-CDP nach obiger Definition in PEGylierter Form oder gekoppelt mit einem, beispielsweise optischen, enzymatischen oder radioaktiven, Marker.
Ein weiterer Gegenstand der Erfindung betrifft pharmazeutische Mittel, umfassend in einem pharmazeutisch verträglichen Träger wenigsten einen aktiven Bestandteil ausgewählt unter: a) AGER-RME oder AGER-CDP nach obiger Definition; b) für AGER-RME nach obiger Definition kodierenden Nukleinsäuresequenzen; c) monoklonale oder polyklonale anti-AGER-RME oder anti-AGER-CDP- Antikörpern nach obiger Definition; d) bispezifischen Antikörpern nach obiger Definition, und e) Hybridproteinen und Derivaten nach obiger Definition.
Erfindungsgemäße pharmazeutisches Mittel können zusätzlich als weiteren aktiven Bestandteil einen Wirkstoff enthalten, der ausgewählt ist unter: a) Neurotrophen Faktoren, wie Nervenwachstumsfaktoren, wie z.B. NGF, NT-3, BNDF; Inosin; Neuroimmunophilinen, wie FK506, GPI1046; Chondroitinsulfat- Proteoglycan-abbauenden Enzymen, wie Chondroitinase ABC; b) Antikörper gegen Neuritenwachstumsinhibitoren; Nogo-A, wie die Antikörper IN-1 , 7B12; MAG; Omgp; und/oder deren Rezeptoren; wie anti-NgR- und anti-p75-
Antikörper; c) löslichem NgR-Fragment; Nogo-A-Peptidfragmenten, wie NEP1-40 und Nogo66, d) Inhibitoren der p75-vermittelten Signalkaskade, wie RHO A-Inhibitoren, ROCK- Inhibitoren, wie Y-27632, e) cAMP und funktionalen Analoga, Proteinkinase A, Arginase I, Polyamine, ciliary neurotrophis factor.
Solche pharmazeutischen Mittel eignen sich beispielsweise zur intrathecalen, intravenösen, subkutanen, oralen oder parenteralen, nasalen und Inhalations-Verabreichung.
Gegenstand der Erfindung ist weiterhin ein Immunogen, umfassend AGER-RME oder AGER-CDP nach obiger Definition in einen pharmazeutisch verträglichen Träger und gegebenenfalls mit eine Adjuvans zur aktiven Immunisierung.
Gegenstand der Erfindung ist auch ein Verfahren zum Nachweis von Effektoren des AGER-Rezeptors, wobei man eine Probe, in der man einen Effektor vermutet, mit einem AGER-RME- oder einem AGER-CDP-Polypeptid nach obiger Definition inkubiert und den Ansatz auf die Bildung eines Effektor-AGER-RME-Komplexes oderEffektor- AGER-CDP-Komplexes untersucht. Gegenstand der Erfindung sind weiterhin Expressionsvektoren, umfassend wenigstens eine kodierende Nukleinsäuresequenz für ein lineares AGER-RME oder AGER-CDP gemäß obiger Definition, operativ verknüpft mit wenigstens einer regulativen Nuklein- säuresequenz.
Die Erfindung betrifft zudem rekombinante Mikroorganismen, welche wenigstes einen solchen Vektor trägt.
Gegenstand der Erfindung sind auch Hybridomzelllinien, welche einen monoklonalen Antikörper nach obiger Definition produzieren.
Die Erfindung betrifft weiterhin Verfahren zur Herstellung von AGER-RME oder AGER- CDP nach obiger Definition oder eines dieses enthaltenden Hybridproteins, wobei man einen rekombinanten Miroorganismus nach obiger Definition kultiviert und das produzierte Proteinprodukt aus der Kultur isoliert.
Die Erfindung betrifft weiterhin Verfahren zur Herstellung eines monoklonalen Antikörpers nach obiger Definition, wobei man eine Hybridomzelllinie nach obiger Definition kultiviert und das produzierte Proteinprodukt aus der Kultur isoliert.
Die Erfindung umfasst weiterhin funktionale, insbesondere immunogene Äquivalente von AGER-RME gemäß obiger Definition, welche einen Homologiegrad von weniger als 100% zu SEQ ID NO: 6 aufweisen.
Erfindungsgemäße funktionalen Äquivalente von AGER-RME weisen wenigstens eine der folgenden Eigenschaften auf: a. Inhibition der Signaltransduktion im Aktin-Cytoskelett-Rearrangement (ACR)-Assay; b. Kompetition mit sRAGE um die Bindung mit einem AGER-Liganden , wie z.B. Aß Globulomere, Aß1 -42, Aß 20-42, Aß 12-42, Amyloid, AGE; c. Auto-Multimerisierung oder Multimerisierung mit AGER-RME oder s-RAGE.
Erfindungsgemäße funktionale Äquivalente von AGER-RME können weiterhin eine Kemsequenz mit hoher positiver Ladungsdichte der folgende allgemeinen Formel aufweisen:
ZX1ZZX2Z worin die Reste Z unabhängig voneinander für einen Aminosäurerest mit positiv geladener Seitenkette stehen, wie insbesondere Lysin und Arginin; und die Reste X1 und X2 unabhängig voneinander für beliebige 1 bis 5 gleiche oder ver- schiedene Aminosäure stehen, welche keine positiv geladenen Seitenketten tragen.
Ein weiterer Gegenstand der Erfindung betrifft Kombinationen von wenigstens einem erstenb und wenigsten einem zweiten monoklonalen Antikörpern mit unterschiedlicher Antigenspezifität, wobei wenigstens ein erster monoklonaler Antikörper (oder eine Gruppe aus 2 ödere mehreren, wie z.B. 2, 3 oder 4, erster monoklonaler Antikörper) an ein Antigen bindet, das ganz oder teilweise von einem Sequenzbereich der Ig- ähnlichen V-Domäne von AGER (oder sRAGE) gebildet wird, und wenigstens ein zweiter monoklonalen Antikörper (oder eine Gruppe aus 2 ödere mehreren, wie z.B. 2, 3 oder 4, zweiter monoklonaler Antikörper) an ein Antigen bindet, das ganz oder teilwei- se von einem Sequenzbereich einer von der Ig-ähnlichen V-Domäne verschiedenen AGER Domäne (non-V-Domäne) gebildet wird.
Insbesondere sind solche Antikörperkombinationen beschrieben, wobei die von der Ig- ähnlichen V-Domäne verschiedene AGER Domäne eine Ig-ähnliche C-Domäne (bei- spielsweise unfassend C2-Typ1 und/oder C2-Typ2) von AGER ist.
Weiterhin werden solche Antikörperkombinationen beschrieben, wobei wenigstens ein erster monoklonaler Antikörper und gegebenenfalls wenigstens ein zweiter monoklonaler Antikörper mit der Bindung von von AGER oder einem löslichen Äquivalent davon mit einem AGER-Bindungspartner, wie z.B. einem Aß-Globulomer, kompetitiert.
Gegenstand der Erfindung ist auch die Verwendung derartiger Antikörperkombinationen als Arzneimittel.
Die Erfindung betrifft weiterhin pharmazeutische Mittel, umfassend eine Antikörperkombination nach obiger Definition.
Außerdem betrifft die Erfindung die Verwendung erfindungsgemäßer Antikörperkombinationen zur Herstellung eines pharmazeutischen Mittels zur Therapie von Krankheiten oder Krankheitszuständen gemäß obigerer Definition.
II. Erläuterungen allgemeiner Begriffe
Als „Rezeptoren" bezeichnet man im Rahmen der vorliegenden Erfindung insbesonde- re an einer Zellmembran gebundene Oberflächenmoleküle, welche mit einem, bei- spielsweise löslichen, Liganden in Wechselwirkung treten können und als Folge dieser Wechselwirkung ein beispielsweise in das Zellinnere gerichtetes Signal oder eine Signalkaskade (auch als Signalling bezeichnet) auslösen können.
Als „Co-Rezeptoren" bezeichnet man Membranstrukturelemente, die sich in derselben Zelle befindet wie der Rezeptor. Der Co-Rezeptor ist nötig, um die Funktionalität des Rezeptors zu definieren und /oder zu modulieren.
Als „Counter-Rezeptoren" bezeichnet man membrangebundene Oberflächenmoleküle, die sich auf zwei verschiedenen (benachbarten) Zellen befinden und die miteinander in Kontakt treten und dadurch ein Signalling auslösen können.
Als „Ligand" bezeichnet man einen natürlichen, d.h. in vivo gebildeten oder künstlich erzeugten, nieder- oder hochmolekularen Bindungspartner für eine „Rezeptor". Der Ligand ist vorzugsweise in der extrazellulären Umgebung frei beweglich.
Als „Rezeptor Multimerisierungs Epitop" (RME) versteht man ein Peptidfragment das insbesondere zur Auto-Multimerisierung befähigt ist und somit dimere, trimerer, tetra- mere etc. Komplexe mit Oligo- oder Polypeptiden von im wesentlichen gleicher Amino- säuresequenz ausbilden kann. Zusätzlich kann das RME auch zur Heteromultimerisie- rung befähigt sein und Komplexe mit wenigstens einem davon verschiedenen Oligo- oder Polypeptid bilden. Die Komplexbildung kann beispielsweise durch Gelchromatographie, native Gelelektrophorese ggf. nach Stabilisierung der Komplexe durch Vernetzung, z.B. mit üblichen Methoden der Proteinbiochemie, nachweisbar sein.
Als „Immunogen" bezeichnet man ein erfindungsgemäßes Peptidfragment in glycosy- lierter oder nicht-glycosylierter Form, welches zur Induktion der Bildung von Antikörpern gegen das Immunogen geeignet ist. Gegebenenfalls kann eine Bindung des Immunogens (als Hapten) an einen makromolekularen Träger von Vorteil sein.
Als „Epitop" oder antigene Determinante bezeichnet man den die Spezifität eines Antikörpers bestimmenden Bereich eines Antigens, wie z.B. eine Proteins. Wird dieses Epitop, beispielsweise durch äußere Einflüsse, wie z.B. eine Wechselwirkung eines Proteins mit einem Liganden, in einem Abschnitt des Proteins neu gebildet oder auf der zugänglichen Moleküloberfläche exprimiert, so spricht man von einem „Neoepitop".
Als „Domäne" eine Proteins oder Antikörpers bezeichnet man eine durch alpha-Helix- und/oder beta-Faltblattelemente gebildete komlpexe, innerhalb des Proteins abge- grenzte Struktur. sRAGE umfasst beispielsweise Ig-ähnliche Domenen vom V-Typ und C2-Typ 1 und C2-Typ2 Domänen, wie in Figur 1 veranschaulicht.
„sRAGE" umfasst eine lösliche Form der AGER-Ektodomäne, wie z.B. sRAGE 1 - 331 gemäß SEQ ID NO:37). Wenn nicht s anderes angegeben ist, so bezeichnet sRAGE insbesondere sRAGE 1 - 331.
Die AGER „V-Domäne" bezeichnet eine im Bereich des N-Terminus des AGER Moleküls zu findende Ig-ähnlichen Sequenzabschnitt, wie in Figur 1 für verschiedene AGER Moleküle veranschaulicht, wie insbesondere Teilsequenzen entsprechend den Resten 23-115 (Ala23 - VaH 15) der Humansequenz in Figur 1. Eine AGER „non-V-Domäne" ist C-terminal zu oben bezeichneter V-Domäne im AGER Molekül zu finden. Beispiele für solche non-V-Domänen sind die Ig-ähnlichen C-Domänen, insbesondere C2- Domäne vom Typ 1 und Typ 2 wie in Figur 1 für verschiedene AGER Moleküle veran- schaulicht.
III. Weitere Angaben zur Ausführung der Erfindung
1. Polypeptide
Gegenstand der Erfindung sind insbesondere Rezeptor Multimerisierungs Epitops (RME) des Advanced-Glycation-End Products Rezeptors (AGER), umfassend ein zur Auto-Multimerisierung befähigtes Peptidfragment der N-terminalen AGER- Ektodomäne, oder eines funktionalen, immunogenen Äquivalents von AGER-RME. Erfindungsgemäß bevorzugte AGER-RME sind lineare oder cyclische Peptide mit einer Länge von etwa 8 bis 50 Aminosäureresten, abgeleitet von der humanen AGER- Ektodomäne mit einer Aminosäuresequenz gemäß Genbank Ref. Seq. Sequenz NM_001136 oder einer funktional äquivalenten Ektodomäne.
Bevorzugte AGER-RME können folgende Sequenz
C(K/R)GAPKKP(P/T)Q(Q/R/K)LE (SEQ ID NO :1 )
und insbesondere eine der Sequenzen
CRGAPKKPPQQLE (SEQ ID NO :2 ) CKGAPKKPPQRLE (SEQ ID NO :3) CKGAPKKPTQKLE (SEQ ID NO A) umfassen.
Gegenstand der Erfindung sind auch AGER-CDP Peptide mit einer Länge von etwa 5 bis 50 Aminosäureresten, die abgeleitet sind von der humanen AGER-Ektodomäne mit einer Aminosäuresequenz gemäß Genbank Ref. Seq. Sequenz NM_001136 oder einer funktional äquivalenten Ektodomäne, insbesondere einer Ig-ähnlichen ODomäne davon.
Beispile geeigneter AGER-CDP Peptid umfassen eine der folgenden Sequenzen:
DGKPLVPNEKGVSVKEQTRRHPETGLFTLQ (SEQ ID NO: 31) TLQSELMVTPARGGDPRPTFSCSFSPGLPR (SEQ ID NO: 32) und LPRHRALRTAPIQPRVWEPVPLEEVQLWE (SEQ ID NO: 33).
Erfindungsgemäß mit umfasst sind ebenfalls „funktionale Äquivalente" der konkret offenbarten neuen Polypeptide.
„Funktionale Äquivalente" oder Analoga der konkret offenbarten AGER-RME Polypeptide sind im Rahmen der vorliegenden Erfindung davon verschiedene Polypeptide, wie z. B. solche mit einem Homologiegrad von weniger als 100% zu SEQ ID NO: 6 (Nterm 31) oder SEQ ID NO:3 (Nterm 13), welche aber weiterhin die gewünschte biologische Aktivität besitzen, wie z.B. Inhibition der Signaltransduktion im Aktin-Cytoskelett- Rearrangement (ACR)-Assay; Kompetition mit sRAGE um die Bindung mit einem AGER-Liganden; Auto-Multimerisierung oder Multimerisierung mit AGER-RME oder s- RAGE.
„Funktionale Äquivalente" oder Analoga der konkret offenbarten AGER-CDP Polypeptide sind im Rahmen der vorliegenden Erfindung davon verschiedene Polypeptide, wie z. B. solche mit einem Homologiegrad von weniger als 100% zu SEQ ID NO: 31 , 32 oder 33 welche aber weiterhin die gewünschte biologische Aktivität besitzen, wie z.B. die in den Beispielen beschriebene Inhibition der sRAGE-Aß-1-42-Oligomer-Bindung.
Funktionale Äquivalente von AGER-RME können aber auch eine charakteristische Kernsequenz oder Leitstruktur mit hoher positiver Ladungsdichte der folgende allge- meinen Formel aufweisen
ZX1ZZX2Z
worin die Reste Z unabhängig voneinander für einen Aminosäurerest mit positiv gela- dener Seitenkette stehen; und die Reste X1 und X2 unabhängig voneinander für beliebige 1 bis 5 gleiche oder verschiedene Aminosäure stehen, welche keine positiv geladenen Seitenketten tragen.
Unter "funktionalen Äquivalenten" versteht man erfindungsgemäß insbesondere Mutan- ten, welche in wenigstens einer der Sequenzpositionen der oben genannten konkreten Sequenzen eine andere als die konkret genannte Aminosäure aufweisen aber trotzdem eine der hierin genannten biologischen Aktivitäten besitzen. "Funktionale Äquivalente" umfassen somit die durch eine oder mehrere Aminosäure-Additionen, -Substitutionen, - Deletionen und/oder -Inversionen erhältlichen Mutanten, wobei die genannten Verän- derungen in jeglicher Sequenzposition auftreten können, solange sie zu einer Mutante mit dem erfindungsgemäßen Eigenschaftsprofil führen. Funktionale Äquivalenz ist insbesondere auch dann gegeben, wenn die Reaktivitätsmuster zwischen Mutante und unverändertem Polypeptid qualitativ übereinstimmen, d.h. beispielsweise gleiche biologische Effekte nur unterschiedlich stark ausgeprägt zu beobachten sind. Beispiele für geeignete Substitutionen von Aminosäureresten sind folgende:
Ursprunglicher Rest Beispiele der Substitution
AIa Ser
Arg Lys
Asn GIn; His
Asp GIu
Cys Ser
GIn Asn
GIu Asp
GIy Pro
His Asn ; GIn
He Leu; VaI
Leu He; VaI
Lys Arg ; GIn ; GIu
Met Leu ; He
Phe Met ; Leu ; Tyr
Ser Thr
Thr Ser
Trp Tyr
Tyr Trp ; Phe
VaI He; Leu
„Funktionale Äquivalente" im obigen Sinne sind auch Präkursoren der beschriebenen Polypeptide sowie funktionale Derivate und Salze der Polypeptide. Unter dem Aus- druck „Salze" versteht man sowohl Salze von Carboxylgruppen als auch Säureadditi- onssalze von Aminogruppen der erfindungsgemäßen Proteinmoleküle. Salze von Carboxylgruppen können in an sich bekannter Weise hergestellt werden und umfassen anorganische Salze, wie zum Beispiel Natrium-, Calcium-, Ammonium-, Eisen- und Zinksalze, sowie Salze mit organischen Basen, wie zum Beispiel Aminen, wie Trietha- nolamin, Arginin, Lysin, Piperidin und dergleichen. Säureadditionssalze, wie zum Beispiel Salze mit Mineralsäuren, wie Salzsäure oder Schwefelsäure und Salze mit organischen Säuren, wie Essigsäure und Oxalsäure sind ebenfalls Gegenstand der Erfindung.
„Funktionale Derivate" erfindungsgemäßer Polypeptide können an funktionellen Aminosäure-Seitengruppen oder an deren N- oder C-terminalen Ende mit Hilfe bekannter Techniken ebenfalls hergestellt werden. Derartige Derivate umfassen beispielsweise aliphatische Ester von Carbonsäuregruppen, Amide von Carbonsäuregruppen, erhält- lieh durch Umsetzung mit Ammoniak oder mit einem primären oder sekundären Amin; N-Acylderivate freier Aminogruppen, hergestellt durch Umsetzung mit Acylgruppen; oder O-Acylderivate freier Hydroxygruppen, hergestellt durch Umsetzung mit Acylgruppen.
"Funktionale Äquivalente" umfassen natürlich auch Polypeptide welche aus anderen Organismen, zugänglich sind, sowie natürlich vorkommende Varianten. Beispielsweise lassen sich durch Sequenzvergleich Bereiche homologer Sequenzregionen festlegen und in Anlehnung an die konkreten Vorgaben der Erfindung äquivalente Enzyme ermitteln.
„Funktionale Äquivalente" sind außerdem Fusionsproteine, welche ein der oben genannten Polypeptidsequenzen oder davon abgeleitete funktionale Äquivalente und wenigstens eine weitere, davon funktionell verschiedene, heterologe Sequenz in funktioneller N- oder C-terminaler Verknüpfung (d.h. ohne gegenseitigen wesentliche funk- tionelle Beeinträchtigung der Fusionsproteinteile) aufweisen. Nichtlimitierende Beispiele für derartige heterologe Sequenzen sind z.B. Enzyme und Immunoglobuline.
Erfindungsgemäß mit umfasste „funktionale Äquivalente" sind Homologe zu den konkret offenbarten Proteinen. Diese besitzen wenigstens 60 %, vorzugsweise wenigstens 75% ins besondere wenigsten 85 %, wie z.B. 90%, 95% oder 99%, Homologie zu einer der konkret offenbarten Sequenzen, berechnet nach dem Algorithmus von Pearson und Lipman, Proc. Natl. Acad, Sei. (USA) 85(8), 1988, 2444-2448. Eine prozentuale Homologie eines erfindungsgemäßen homologen Polypeptids bedeutet insbesondere prozentuale Identität der Aminosäurereste bezogen auf die Gesamtlänge einer der hierin konkret beschriebenen Aminosäuresequenzen.
Unter einer „abgeleiteten" Aminosäuresequenz wird erfindungsgemäß, wenn keine anderen Angaben gemacht werden, eine Sequenz verstanden, die mit der Ausgangssequenz eine Identität von mindestens 80% oder mindestens 90%, insbesondere 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% und 99% aufweist.
Unter „Identität" zwischen zwei Sequenzen wird Identität der Aminosäurereste über die jeweils gesamte Sequenzlänge verstanden, wie z.B. die Identität, die durch Vergleich mit Hilfe der Vector NTI Suite 7.1 Software der Firma Informax (USA) unter Anwendung der Clustal Methode (Higgins DG, Sharp PM. Fast and sensitive multiple sequen- ce alignments on a microcomputer. Comput Appl. Biosci. 1989 Apr;5(2):151-1) unter Einstellung folgender Parameter berechnet wird:
Multiple alignment parameter: Pairwise alignment parameter:
Gap opening penalty 10 FAST algorithm on
Gap extension penalty 10 K-tuple size 1
Gap Separation penalty ränge 8 Gap penalty 3
Gap Separation penalty off Window size 5
% identity for alignment delay 40 Number of best diagonals 5
Residue specific gaps off
Hydrophilic residue gap off
Transition weighing 0
Im Falle einer möglichen Proteinglykosylierung umfassen erfindungsgemäße Äquivalente Proteine des oben bezeichneten Typs in deglykosylierter bzw. glykosylierter Form sowie durch Veränderung des Glykosylierungsmusters erhältliche abgewandelte For- men.
Homologe der erfindungsgemäßen Peptide können durch Screening kombinatorischer Banken von Mutanten, wie z.B. Verkürzungsmutanten, identifiziert werden. Beispielsweise kann eine variegierte Bank von Peptid-Varianten durch kombinatorische Muta- genese auf Nukleinsäureebene erzeugt werden, wie z.B. durch enzymatisches Ligieren eines Gemisches synthetischer Oligonukleotide. Es gibt eine Vielzahl von Verfahren, die zur Herstellung von Banken potentieller Homologer aus einer degenerierten Oligo- nukleotidsequenz verwendet werden können. Die chemische Synthese einer degenerierten Gensequenz kann in einem DNA-Syntheseautomaten durchgeführt werden, und das synthetische Gen kann dann in einen geeigneten Expressionsvektor ligiert werden. Die Verwendung eines degenerierten Gensatzes ermöglicht die Bereitstellung sämtlicher Sequenzen in einem Gemisch, die den gewünschten Satz an potentiellen Proteinsequenzen codieren. Verfahren zur Synthese degenerierter Oligonukleotide sind dem Fachmann bekannt (Z.B. Narang, S.A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al., (1984) Science 198:1056; Ike et al. (1983) Nucleic Acids Res. 11:477).
2. Nukleinsäuren
Gegenstand der Erfindung sind weiterhin die kodierenden Nukleinsäuresequenzen für die oben beschriebenen AGER-RME oder AGER-CDP Peptide, sowie davon abgeleitete Nukleinsäuresequenzen.
Alle erfindungsgemäßen Nukleinsäuresequenzen (einzel- und doppelsträngige DNA- und RNA-Sequenzen, wie z.B. cDNA und mRNA) sind in an sich bekannter Weise durch chemische Synthese aus den Nukleotidbausteinen, wie beispielsweise durch Fragmentkondensation einzelner überlappender, komplementärer Nukleinsäurebau- steine der Doppelhelix herstellbar. Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seiten 896-897) erfolgen. Die Anlagerung synthetischer Oligonukleotide und Auffüllen von Lücken mit Hilfe des Klenow-Fragmentes der DNA-Polymerase und Ligationsreaktionen sowie allgemeine Klonierungsverfahren werden in Sambrook et al. (1989), Molecular Cloning: A laboratory manual, CoId Spring Harbor Laboratory Press, beschrieben.
Unter einer „abgeleiteten" Nukleinsäuresequenz wird erfindungsgemäß, wenn keine anderen Angaben gemacht werden, eine Sequenz verstanden, die mit der Ausgangssequenz eine Identität von mindestens 80% oder mindestens 90%, insbesondere 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% und 99% aufweist.
Unter „Identität" zwischen zwei Nukleinsäuren wird die Identität der Nukleotide über die jeweils gesamte Nukleinsäurelänge verstanden, insbesondere die Identität, die durch Vergleich mit Hilfe der Vector NTl Suite 7.1 Software der Firma Informax (USA) unter Anwendung der Clustal Methode (siehe oben).
Gegenstand der Erfindung sind auch Nukleinsäuresequenzen, kodierend für eines der obigen Peptide und deren funktionalen Äquivalenten, welche z.B. unter Verwendung künstlicher Nukleotidanaloga zugänglich sind. Die Erfindung betrifft sowohl isolierte Nukleinsäuremoleküle, welche für erfindungsgemäße Peptide oder biologisch aktive Abschnitte davon kodieren, sowie Nukleinsäure- fragmente, die z.B. als Hybridisierungssonden oder Primer zur Identifizierung oder Amplifizierung von erfindungsgemäßer kodierenden Nukleinsäuren verwendet werden können.
Die erfindungsgemäßen Nukleinsäuremoleküle können zudem untranslatierte Sequenzen vom 3'- und/oder 5'-Ende des kodierenden Genbereichs enthalten
Ein "isoliertes" Nukleinsäuremolekül wird von anderen Nukleinsäuremolekülen abgetrennt, die in der natürlichen Quelle der Nukleinsäure zugegen sind und kann überdies im wesentlichen frei von anderem zellulären Material oder Kulturmedium sein, wenn es durch rekombinante Techniken hergestellt wird, oder frei von chemischen Vorstufen oder anderen Chemikalien sein, wenn es chemisch synthetisiert wird.
Ein erfindungsgemäßes Nukleinsäuremolekül kann mittels molekularbiologischer Standard-Techniken und der erfindungsgemäß bereitgestellten Sequenzinformation isoliert werden. Beispielsweise kann cDNA aus einer geeigneten cDNA-Bank isoliert werden, indem eine der konkret offenbarten vollständigen Sequenzen oder ein Abschnitt davon als Hybridisierungssonde und Standard-Hybήdisierungstechniken (wie z.B. beschrieben in Sambrook, J., Fritsch, E.F. und Maniatis, T. Molecular Cloning: A Laboratory Manual. 2. Aufl., CoId Spring Harbor Laboratory, CoId Spring Harbor Laboratory Press, CoId Spring Harbor, NY, 1989) verwendet werden. Überdies lässt sich ein Nukleinsäu- remolekül, umfassend eine der erfindungsgemäßen Sequenzen oder ein Abschnitt davon, durch Polymerasekettenreaktion isolieren, wobei die Oligonukleotidprimer, die auf der Basis dieser Sequenz erstellt wurden, verwendet werden. Die so amplifizierte Nukleinsäure kann in einen geeigneten Vektor Moniert werden und durch DNA- Sequenzanalyse charakterisiert werden. Die erfindungsgemäßen Oligonukleotide kön- nen ferner durch Standard-Syntheseverfahren, z.B. mit einem automatischen DNA- Synthesegerät, hergestellt werden.
Die Erfindung umfasst weiterhin die zu den konkret beschriebenen Nukleotidsequen- zen komplementären Nukleinsäuremoleküle oder einen Abschnitt davon.
Die erfindungsgemäß Nukleotidsequenzen ermöglichen die Erzeugung von Sonden und Primem, die zur Identifizierung und/oder Klonierung von homologer Sequenzen in anderen Zelltypen und Organismen verwendbar sind. Solche Sonden bzw. Primer umfassen gewöhnlich einen Nukleotidsequenzbereich, der unter stringenten Bedingungen an mindestens etwa 12, vorzugsweise mindestens etwa 25, wie z.B. etwa 40, 50 oder 75 aufeinanderfolgende Nukleotide eines Sense-Stranges einer erfindungsgemäßen Nukleinsäuresequenz oder eines entsprechenden Antisense-Stranges hybridisiert.
Weitere erfindungsgemäße Nukleinsäuresequenzen sind abgeleitet von kodierenden Sequenzen zu den erfindungsgemäßen AGER-RMEs oder AGER-CDPs und unterscheiden sich davon durch Addition, Substitution, Insertion oder Deletion einzelner oder mehrerer Nukleotide, kodieren aber weiterhin für Peptide mit dem gewünschten Eigenschaftsprofil.
Erfindungsgemäß umfasst sind auch solche Nukleinsäuresequenzen, die sogenannte stumme Mutationen umfassen oder entsprechend der Codon-Nutzung eins speziellen Ursprungs- oder Wirtsorganismus, im Vergleich zu einer konkret genannten Sequenz verändert sind, ebenso wie natürlich vorkommende Varianten, wie z.B. Spleißvarianten oder Allelvarianten, davon. Gegenstand sind ebenso durch konservative Nukleotid- substitutionen (d.h. die betreffende Aminosäure wird durch eine Aminosäure gleicher Ladung, Größe, Polarität und/oder Löslichkeit ersetzt) erhältliche Sequenzen.
Gegenstand der Erfindung sind auch die durch Sequenzpolymorphismen von den kon- kret offenbarten Nukleinsäuren abgeleiteten Moleküle. Diese genetischen Polymorphismen können zwischen Individuen innerhalb einer Population aufgrund der natürlichen Variation existieren. Diese natürlichen Variationen bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleotidsequenz eines Gens.
Weiterhin umfasst die Erfindung auch Nukleinsäuresequenzen, welchen mit oben genannten kodierenden Sequenzen hybridisieren oder dazu komplementär sind. Diese Polynukleotide lassen sich bei Durchmusterung von genomischen oder cDNA-Banken auffinden und gegebenenfalls daraus mit geeigneten Primern mittels PCR vermehren und anschließend beispielsweise mit geeigneten Sonden isolieren. Eine weitere Mög- lichkeit bietet die Transformation geeigneter Mikroorganismen mit erfindungsgemäßen Polynukleotiden oder Vektoren, die Vermehrung der Mikroorganismen und damit der Polynukleotide und deren anschließende Isolierung. Darüber hinaus können erfindungsgemäße Polynukleotide auch auf chemischem Wege synthetisiert werden.
Unter der Eigenschaft, an Polynukleotide „hybridisieren" zu können, versteht man die Fähigkeit eines PoIy- oder Oligonukleotids unter stringenten Bedingungen an eine nahezu komplementäre Sequenz zu binden, während unter diesen Bedingungen unspezifische Bindungen zwischen nicht-komplementären Partnern unterbleiben. Dazu sollten die Sequenzen zu 70-100%, vorzugsweise zu 90-100%, komplementär sein. Die Ei- genschaft komplementärer Sequenzen, spezifisch aneinander binden zu können, macht man sich beispielsweise in der Northern- oder Southern-Blot-Technik oder bei der Primerbindung in PCR oder RT-PCR zunutze. Üblicherweise werden dazu Oligo- nukleotide ab einer Länge von 30 Basenpaaren eingesetzt. Unter stringenten Bedin- gungen versteht man beispielsweise in der Northern-Blot-Technik die Verwendung einer 50 - 70 0C1 vorzugsweise 60 - 65 0C warmen Waschlösung, beispielsweise 0,1x SSC-Puffer mit 0,1% SDS (2Ox SSO. 3M NaCI, 0,3M Na-Citrat, pH 7,0) zur Elution unspezifisch hybridisierter cDNA-Sonden oder Oligonukleotide. Dabei bleiben, wie o- ben erwähnt, nur in hohem Maße komplementäre Nukleinsäuren aneinander gebun- den. Die Einstellung stringenter Bedingungen ist dem Fachmann bekannt und ist z.B. in Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. beschrieben.
Ein weiterer Aspekt der Erfindung betrifft "Antisense-'Nukleinsäuren. Diese umfasst eine Nukleotidsequenz, die zu einer kodierenden "Sense-"Nukleinsäure, komplementär ist. Die Antisense-Nukleinsäure kann zum gesamten kodierenden Strang oder nur zu einem Abschnitt davon komplementär sein. Bei einer weiteren Ausführungsform ist das
Antisense-Nukleinsäuremolekül antisense zu einem nicht-kodierenden Bereich des kodierenden Stranges einer Nukleotidsequenz. Der Begriff "nicht-kodierender Bereich" betrifft die als 5'- und 3'-untranslatierte Bereiche bezeichneten Sequenzabschnitte.
Ein Antisense-Oligonukleotid kann bspw. etwa 5, 10, 15, 20, 25, 30, 35, 40, 45 oder 50 Nukleotide lang sein. Eine erfindungsgemäße Antisense-Nukleinsäure kann durch chemische Synthese und enzymatische Ligationsreaktionen mittels im Fachgebiet be- kannter Verfahren konstruiert werden. Eine Antisense-Nukleinsäure kann chemisch synthetisiert werden, wobei natürlich vorkommende Nukleotide oder verschieden modifizierte Nukleotide verwendet werden, die so gestaltet sind, dass sie die biologische Stabilität der Moleküle erhöhen, oder die physikalische Stabilität des Duplexes erhöhen, der zwischen der Antisense- und Sense-Nukleinsäure entstanden ist. Beispiels- weise können Phosphorthioat-Derivate und acridinsubstituierte Nukleotide verwendet werden. Beispiele modifizierter Nukleotide, die zur Erzeugung der Antisense- Nukleinsäure verwendet werden können, sind u.a. 5-Fluoruracil, 5-Bromuracil, 5- Chloruracil, 5-loduracil, Hypoxanthin, Xanthin, 4-Acetylcytosin, 5- (Carboxyhydroxylmethyl)uracil, 5-Carboxymethylaminomethyl-2-thiouridin, 5- Carboxymethylaminomethyluracil, Dihydrouracil, Beta-D-Galactosylqueosin, Inosin, Nδ-Isopentenyladenin, 1-Methylguanin, 1-Methylinosin, 2,2-Dimethylguanin, 2- Methyladenin, 2-Methylguanin, 3-Methylcytosin, 5-Methylcytosin, N6-Adenin, 7- Methylguanin, 5-Methylaminomethyluracil, 5-Methoxyaminomethyl-2-thiouracil, Beta-D- Mannosylqueosin, 5'-Methoxycarboxymethyluracil, 5-Methoxyuracil, 2-Methylthio-N6- isopentenyladenin, Uracil-5-oxyessigsäure (v), Wybutoxosin, Pseudouracil, Queosin, 2- Thiocytosin, 5-Methyl-2-thiouracil, 2-Thiouracil, 4-Thiouracil, 5-Methyluracil, Uracil-5- oxyessigsäuremethylester, Uracil-5-oxyessigsäure (v), 5-Methyl-2-thiouracil, 3-(3- Amino-3-N-2-carboxypropyl)uracil, (acp3)w und 2,6-Diaminopurin. Die Antisense- Nukleinsäure kann auch biologisch hergestellt werden, indem ein Expressionsvektor verwendet wird, in den eine Nukleinsäure in Antisense-Richtung subkloniert worden ist.
3. Expressionskonstrukte und Vektoren
Gegenstand der Erfindung sind außerdem Expressionskonstrukte, enthaltend unter der genetischen Kontrolle regulativer Nukleinsäuresequenzen eine für ein erfindungsgemäßes AGER-RME oder AGER-CDP oder funktionales Äquivalent oder Immunglobulin kodierende Nukleinsäuresequenz; sowie Vektoren, umfassend wenigstens eines dieser Expressionskonstrukte.
Vorzugsweise umfassen solche erfindungsgemäßen Konstrukte 5'-stromaufwärts von der jeweiligen kodierenden Sequenz einen Promotor und 3'-stromabwärts eine Terminatorsequenz sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils operativ verknüpft mit der kodierenden Sequenz. Unter einer „operativen Ver- knüpfung" versteht man die sequentielle Anordnung von Promotor, kodierender Sequenz, Terminator und gegebenenfalls weiterer regulativer Elemente derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz bestimmungsgemäß erfüllen kann. Beispiele für operativ verknüpfbare Sequenzen sind Targeting-Sequenzen sowie Enhancer, Polyadenylierungssignale und dergleichen. Weitere regulative Elemente umfassen selektierbare Marker, Amplifikationssignale, Replikationsursprünge und dergleichen. Geeignete regulatorische Sequenzen sind z.B. beschrieben in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990).
Zusätzlich zu den artifiziellen Regulationssequenzen kann die natürliche Regulationssequenz vor dem eigentlichen Strukturgen noch vorhanden sein. Durch genetische Veränderung kann diese natürliche Regulation gegebenenfalls ausgeschaltet und die Expression der Gene erhöht oder erniedrigt werden. Das Genkonstrukt kann aber auch einfacher aufgebaut sein, das heißt es werden keine zusätzlichen Regulationssignale vor das Strukturgen insertiert und der natürliche Promotor mit seiner Regulation wird nicht entfernt. Statt dessen wird die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und die Genexpression gesteigert oder verringert wird. Die Nukleinsäuresequenzen können in einer oder mehreren Kopien im Genkonstrukt enthalten sein. Beispiele für brauchbare Promotoren sind: cos-, tac-, trp-, tet-, trp-tet-, Ipp-, lac-, Ipp- lac-, laclq-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, lambda-PR- oder lambda-PL-Promotor, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden; sowie die gram- positiven Promotoren amy und SPO2, die Hefepromotoren ADC1 , MFalpha , AC, P-60, CYC1 , GAPDH oder die Pflanzenpromotoren CaMV/35S, SSU, OCS, Iib4, usp, STLS1 , B33, not oder der Ubiquitin- oder Phaseolin-Promotor. Besonders bevorzugt ist die Verwendung induzierbarer Promotoren, wie z.B. licht- und insbesondere temperaturin- duzierbarer Promotoren, wie der PrPrPromotor. Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen verwendet werden. Darüber hinaus können auch synthetische Promotoren vorteilhaft verwendet werden.
Die genannten regulatorischen Sequenzen sollen die gezielte Expression der Nuklein- säuresequenzen und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird.
Die regulatorischen Sequenzen bzw. Faktoren können dabei vorzugsweise die Expression positiv beeinflussen und dadurch erhöhen oder erniedrigen. So kann eine Verstär- kung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.
Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Promotors mit einer geeigneten kodierenden Nukleotidsequenz sowie einem Terminatoroder Polyadenylierungssignal. Dazu verwendet man gängige Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E. F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, CoId Spring Harbor Laboratory, CoId Spring Harbor, NY (1989) sowie in TJ. Silhavy, M. L. Berman und L.W. Enquist, Experiments with Gene Fusions, CoId Spring Harbor Laboratory, CoId Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987) beschrieben sind.
Das rekombinante Nukleinsäurekonstrukt bzw. Genkonstrukt wird zur Expression in einem geeigneten Wirtsorganismus vorteilhafterweise in einen wirtsspezifischen Vektor insertiert, der eine optimale Expression der Gene im Wirt ermöglicht. Vektoren sind dem Fachmann wohl bekannt und können beispielsweise aus "Cloning Vectors" (Pou- wels P. H. et al., Hrsg, Elsevier, Amsterdam-New York-Oxford, 1985) entnommen wer- den. Unter Vektoren sind außer Plasmiden auch alle anderen dem Fachmann bekannten Vektoren, wie beispielsweise Phagen, Viren, wie SV40, CMV, Baculovirus und A- denovirus, Transposons, IS-Elemente, Phasmide, Cosmide, und lineare oder zirkuläre DNA zu verstehen. Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal repliziert werden.
Als Beispiele für geeignete Expressionsvektoren können genannt werden:
Übliche Fusionsexpressionsvektoren, wie pGEX (Pharmacia Biotech Ine; Smith, D.B. und Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) und pRIT 5 (Pharmacia, Piscataway, NJ), bei denen Glutathion-S-Transferase (GST), Maltose E-bindendes Protein bzw. Protein A an das rekombinante Zielprotein fusioniert wird.
Nicht-Fusionsprotein-Expressionsvektoren wie pTrc (Amann et al., (1988) Gene 69:301-315) und pET 11d (Studier et al. Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Kalifornien (1990) 60-89).
Hefe-Expressionsvektor zur Expression in der Hefe S. cerevisiae , wie pYepSed (BaI- dari et al., (1987) Embo J. 6:229-234), pMFa (Kurjan und Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) sowie pYES2 (Invitrogen Corporation, San Diego, CA). Vektoren und Verfahren zur Konstruktion von Vektoren, die sich zur Verwendung in anderen Pilzen, wie filamentösen Pilzen, eignen, umfassen diejenigen, die eingehend beschrieben sind in: van den Hondel, C.A.M.J.J. & Punt, PJ. (1991 ) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J. F. Peberdy et al., Hrsg., S. 1-28, Cambridge Uni- versity Press: Cambridge.
Baculovirus-Vektoren, die zur Expression von Proteinen in gezüchteten Insektenzellen (bspw. Sf9-Zellen) verfügbar sind, umfassen die pAc-Reihe (Smith et al., (1983) Mol. Cell BioL 3:2156-2165) und die pVL-Reihe (Lucklow und Summers (1989) Virology 170:31-39),
Pflanzen-Expressionsvektoren, wie solche, die eingehend beschrieben sind in: Becker, D., Kemper, E., Schell, J. und Masterson, R. (1992) "New plant binary vectors with se- lectable markers located proximal to the left border", Plant Mol. Biol. 20:1195-1197; und Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12:8711-8721. Säugetier-Expressionsvektoren, wie pCDMδ (Seed, B. (1987) Nature 329:840) und pMT2PC (Kaufman et al. (1987) EMBO J. 6:187-195).
Weitere geeignete Expressionssysteme für prokaryontische und eukaryotische Zellen sind in Kapitel 16 und 17 von Sambrook, J., Fritsch, E.F. und Maniatis, T., Molecular cloning: A Laboratory Manual, 2. Auflage, CoId Spring Harbor Laboratory, CoId Spring Harbor Laboratory Press, CoId Spring Harbor, NY, 1989 beschrieben.
4. Rekombinante Wirtsorganismen
Mit Hilfe der erfindungsgemäßen Vektoren sind rekombinante Organismen herstellbar, welche beispielsweise mit wenigstens einem erfindungsgemäßen Vektor transformiert sind und zur Produktion der erfindungsgemäßen Polypeptide eingesetzt werden können. Vorteilhafterweise werden die oben beschriebenen erfindungsgemäßen rekombi- nanten Konstrukte in ein geeignetes Wirtssystem eingebracht und exprimiert. Dabei werden vorzugsweise dem Fachmann bekannte geläufige Klonierungs- und Transfekti- onsmethoden, wie beispielsweise Co-Präzipitation, Protoplastenfusion, Elektroporation, retrovirale Transfektion und dergleichen, verwendet, um die genannten Nukleinsäuren im jeweiligen Expressionssystem zur Expression zu bringen. Geeignete Systeme wer- den beispielsweise in Current Protocols in Molecular Biology, F. Ausubel et al., Hrsg., Wiley Interscience, New York 1997, oder Sambrook et al. Molecular Cloning: A Laboratory Manual. 2. Aufl., CoId Spring Harbor Laboratory, CoId Spring Harbor Laboratory Press, CoId Spring Harbor, NY, 1989 beschrieben.
Als Wirtsorganismen sind prinzipiell alle Organismen geeignet, die eine Expression der erfindungsgemäßen Nukleinsäuren, ihrer Allelvarianten, ihrer funktionellen Äquivalente oder Derivate ermöglichen. Unter Wirtsorganismen sind beispielsweise Bakterien, Pilze, Hefen, pflanzliche oder tierische Zellen zu verstehen. Bevorzugte Organismen sind Bakterien, wie solche der Gattungen Escherichia, wie z. B. Escherichia coli, Streptσ- myces, Bacillus oder Pseudomonas, eukaryotische Mikroorganismen, wie Saccharσ- myces cerevisiae, Aspergillus, höhere eukaryotische Zellen aus Tieren oder Pflanzen, beispielsweise Sf9 oder CHO-Zellen.
Die Selektion erfolgreich transformierter Organismen kann durch Markergene erfolgen, die ebenfalls im Vektor oder in der Expressionskassette enthalten sind. Beispiele für solche Markergene sind Gene für Antibiotikaresistenz und für Enzyme, die eine farb- gebende Reaktion katalysieren, die ein Anfärben der transformierten Zelle bewirkt. Diese können dann mittels automatischer Zellsortierung selektiert werden. Erfolgreich mit einem Vektor transformierte Mikroorganismen, die ein entsprechendes Antibiotika- resistenzgen (z.B. G418 oder Hygromycin) tragen, lassen sich durch entsprechende Antibiotika-enthaltende Medien oder Nährböden selektieren. Markerproteine, die an der Zelloberfläche präsentiert werden, können zur Selektion mittels Affinitätschromatographie genutzt werden.
Gewünschtenfalls kann das Genprodukt auch in transgenen Organismen, wie transge- nen Tieren, insbesondere Mäusen, Schafen oder transgenen Pflanzen zur Expression, gebracht werden.
Gegenstand der Erfindung sind weiterhin Verfahren zur rekombinanten Herstellung erfindungsgemäßer AGER-RME- oder AGER-CDP-Peptide oder funktioneller, biologisch aktiver Fragmente davon, wobei man einen Peptide-produzierenden rekombinanten Wirtsorganismus kultiviert, gegebenenfalls die Expression der Polypeptide induziert und diese aus der Kultur isoliert. Die Peptide können so auch in großtechnischem Maßstab produziert werden, falls dies erwünscht ist.
Der rekombinante Wirt kann nach bekannten Verfahren kultiviert und fermentiert werden. Bakterien können beispielsweise in TB- oder LB-Medium und bei einer Temperatur von 20 bis 4O0C und einem pH-Wert von 6 bis 9 vermehrt werden. Im Einzelnen werden geeignete Kultivierungsbedingungen beispielsweise in T. Maniatis, E. F. Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, CoId Spring Harbor Labo- ratory, CoId Spring Harbor, NY (1989) beschrieben.
Die Zellen werden dann, falls die Polypeptide nicht in das Kulturmedium sezerniert werden, aufgeschlossen und das Produkt nach bekannten Proteinisolierungsverfahren aus dem Lysat gewonnen. Die Zellen können wahlweise durch hochfrequenten Ultraschall, durch hohen Druck, wie z.B. in einer French-Druckzelle, durch Osmolyse, durch Einwirkung von Detergenzien, lytischen Enzymen oder organischen Lösungsmitteln, durch Homogenisatoren oder durch Kombination mehrerer der aufgeführten Verfahren aufgeschlossen werden.
Eine Aufreinigung der Peptide kann mit bekannten, chromatographischen Verfahren erzielt werden, wie Molekularsieb-Chromatographie (Gelfiltration), wie Q-Sepharose- Chromatographie, lonenaustausch-Chromatographie und hydrophobe Chroma- tographie, sowie mit anderen üblichen Verfahren wie Ultrafiltration, Kristallisation, Aussalzen, Dialyse und nativer Gelelektrophorese. Geeignete Verfahren werden beispielsweise in Cooper, F. G., Biochemische Arbeitsmethoden, Verlag Walter de Gruy- ter, Berlin, New York oder in Scopes, R., Protein Purification, Springer Verlag, New York, Heidelberg, Berlin beschrieben. Besonders geeignet ist es, zur Isolierung des rekombinanten Peptids Vektorsysteme oder Oligonukleotide zu verwenden, die die cDNA um bestimmte Nukleotidsequenzen verlängern und damit für veränderte Polypeptide oder Fusionsproteine kodieren, die z.B. einer einfacheren Reinigung dienen. Derartige geeignete Modifikationen sind beispielsweise als Anker fungierende sogenannte "Tags", wie z.B. die als Hexa-Histidin- Anker bekannte Modifikation oder Epitope, die als Antigene von Antikörpern erkannt werden können (beschrieben zum Beispiel in Harlow, E. and Lane, D., 1988, Antibodies: A Laboratory Manual. CoId Spring Harbor (N.Y.) Press). Diese Anker können zur Anheftung der Peptide an einen festen Träger, wie z.B. einer Polymermatrix, dienen, die beispielsweise in einer Chromatographiesäule eingefüllt sein kann, oder an einer Mikrotiterplatte oder an einem sonstigen Träger verwendet werden kann.
Gleichzeitig können diese Anker auch zur Erkennung der Peptide verwendet werden. Zur Erkennung der Peptidekönnen außerdem übliche Marker, wie Fluoreszenzfarbstoffe, Enzymmarker, die nach Reaktion mit einem Substrat ein detektierbares Reaktionsprodukt bilden, oder radioaktive Marker, allein oder in Kombination mit den Ankern zur Derivatisierung der Peptide verwendet werden.
5. Immunglobuline
5.1 Definition
Gegenstand der vorliegenden Erfindung sind monoklonale oder polyklonale Antikörper, die an ein erfindungsgemäßes AGER-RME oder AGER-CDP oder Derivat/Äquivalent davon spezifisch binden, d.h. Antikörper mit Spezifität für ein erfindungsgemäßes
AGER-RME oder Derivat/Äquivalent davon. Gegenstand der vorliegenden Erfindung sind auch Teile dieser Antikörper, insbesondere antigenbindende Teile davon, d.h.
Antikörperfragmente, die ein erfindungsgemäßes AGER-RME oder AGER-CDP oder ein Derivat/Äquivalent davon binden.
Unter einem „Derivat/Äquivalent" von AGER-RME oder AGER-CDP versteht man in diesem Zusammenhang auch Vorstufen wie AGER oder sRAGE oder andere AGER Splice-Varianten in unterschiedlichen konformativen Zuständen, die beispielsweise durch Wechselwirkung dieser Moleküle mit einen korrespondierenden Bindungspartner transient oder permanent induziert werden.
Vorzugsweise wählt man den erfindungsgemäßen Antikörper so, dass er eine bestimmte Bindungskinetik aufweist (z. B. hohe Affinität, geringe Dissoziation, niedrige off-Geschwindigkeit, starke neutralisierende Aktivität) für die spezifische Bindung an erfindungsgemäßes AGER-RME oder AGER-CDP oder Derivat/Äquivalent davon.
So können Antikörper mit einer Affinität für das erfindungsgemäße AGER-RME oder AGER-CDP oder Derivat/Äquivalent davon im Bereich von K0=IO^-IO"12 M bereitgestellt werden.
Einem weiteren Aspekt zufolge kann man die erfindungsgemäßen Antikörper so wählen, dass sie das AGER-RME oder AGER-CDP oder Derivat/Äquivalent davon mit ei- ner kor Geschwindigkeitskonstanten von 0,1 s"1 oder weniger binden.
Bei den Antikörpern handelt es sich vorzugsweise um isolierte Antikörper. Einem weiteren Aspekt zufolge sind die Antikörper neutralisierende Antikörper. Zu den erfindungsgemäßen Antikörpern gehören insbesondere monoklonale und rekombinante Antikör- per. Der erfindungsgemäße Antikörper kann eine Aminosäuresequenz umfassen, die vollständig von einer einzigen Spezies abstammt, kann also z.B. ein humaner Antikörper oder ein Mausantikörper sein. Weiteren Ausführungsformen zufolge kann der Antikörper ein chimärer Antikörper oder ein CDR-Graft-Antikörper oder eine andere Form eines humanisierten Antikörpers sein.
Der Begriff „Antikörper" soll sich auf Immunglobulinmoleküle beziehen, die aus 4 Polypeptidketten, zwei schweren (H) Ketten und zwei leichten (L) Ketten, gebildet sind. Die Ketten sind in der Regel durch Disulfid-Bindungen miteinander verknüpft. Jede schwere Kette setzt sich aus einer variablen Region der schweren Kette (hier als HCVR oder VH abgekürzt) und einer konstanten Region der schweren Kette zusammen. Die konstante Region der schweren Kette wird aus drei Domänen CH1 , CH2 und CH3 gebildet. Jede leichte Kette setzt sich aus einer variablen Region der leichten Kette (hier als LCVR oder VL abgekürzt) und einer konstanten Region der leichten Kette zusammen. Die konstante Region der leichten Kette wird aus einer Domäne CL gebildet. Die VH- und VL-Regionen können weiter unterteilt werden in hypervariabie Regionen, die als komplementaritätsbestimmende Regionen (CDR für Complementarity Determining Region) bezeichnet werden und mit konservierteren Regionen, die als Gerüstregionen (FR für Frame Work Region) bezeichnet werden, durchsetzt sind. Jede VH- und VL- Region wird aus drei CDRs und vier FRs gebildet, die vom N-Terminus zum C- Terminus in folgender Reihenfolge angeordnet sind: FR1 , CDR1 , FR2, CDR2, FR3, CDR3, FR4.
Der Begriff „antigenbindender Teil" eines Antikörpers (oder einfach „Antikörperteil") bezieht sich auf ein oder mehrere Fragmente eines Antikörpers mit Spezifität für ein erfindungsgemäßes AGER-RME oder AGER-CDP oder Derivat/Äquivalent davon, wobei das oder die Fragmente nach wie vor die Fähigkeit besitzen, das AGER-RME oder AGER-CDP oder Derivat/Äquivalent davon spezifisch zu binden. Es ist gezeigt worden, dass die antigenbindende Funktion eines Antikörpers von Fragmenten eines vollstän- digen Antikörpers wahrgenommen werden können. Zu Beispielen bindender Fragmente gehören im Sinne des Begriffs „antigenbindender Teil" eines Antikörpers (i) ein Fab- Fragment, d.h. ein aus den VL-, VH-, CL- und CH1-Domänen zusammengesetztes monovalentes Fragment; (ii) ein F(ab')2-Fragment, d.h. ein bivalentes Fragment, welches zwei in der Hinge-Region über eine Disulfid-Brücke miteinander verknüpfte Fab- Fragmente beinhaltet; (iii) ein Fd-Fragment, das sich aus den VH- und CH 1 -Domänen zusammengesetzt; (iv) ein Fv-Fragment, das sich aus den VL- und VH-Domänen eines einzelnen Arms eines Antikörpers zusammengesetzt; (v) ein dAb-Fragment (Ward et a/., (1989) Nature 341:544-546 ), das aus einer VH-Domäne oder VH, CH1 , CH2, DH3, oder VH, CH2, CH3 besteht; und (vi) eine isolierte komplementaritätsbestimmente Re- gion (CDR). Wenngleich die beiden Domänen des Fv-Fragments, nämlich VL und VH, von getrennten Genen kodiert sind, können sie des weiteren mit einem synthetischen Linker unter Verwendung rekombinanter Verfahren miteinander verbunden werden, wodurch sie als eine einzige Proteinkette hergestellt werden können, worin die VL- und VH-Regionen sich zusammenfinden, um monovalente Moleküle zu bilden (als Einzel- kette-Fv (ScFv) gekannt; siehe z.B. Bird et al. (1988) Science 242:423-426; und Hus- ton et al. (1988) Proc. Natl. Acad. Sei. USA 85:5879-5883). Derartige Einzelketten- Antikörper sollen auch von dem Begriff „antigenbindender Teil" eines Antikörpers er- fasst werden. Andere Formen von Einzelketten-Antikörpern wie „Diabodies" gehören ebenfalls dazu. Diabodies sind bivalente, bispezifische Antikörper, in denen VH- und VL-Domänen auf einer einzelnen Polypeptidkette exprimiert sind, wobei allerdings ein Linker verwendet wird, der zu kurz ist, als dass sich die beiden Domänen auf derselben Kette zusammenfinden können, wodurch man die Domänen zwingt, mit komplementären Domänen einer anderen Kette zu paaren und zwei antigenbindende Steilen zu bilden (siehe z.B. Holliger, P., et al. (1993) Proc. Natl. Acad. Sei. USA 90:6444-6448; Poljak, R.J., et al. (1994) Structure 2:1121-1123).
Des weiteren kann ein Antikörper oder antigenbindender Teil davon Teil eines größeren Immunadhäsionsmoleküls sein, das durch kovalente oder nicht kovalente Assoziierung des Antikörpers oder Antikörperteils mit einem oder mehreren weiteren Proteinen oder Peptiden gebildet wird. Zu solchen Immunadhäsionsmolekülen gehört die Verwendung der Streptavidin-Kernregion, um ein tetrameres scFv-Molekül herzustellen (Kipriyanov, S. M., et al. (1995) Human Antibodies und Hybridomas 6:93-101) und die Verwendung eines Cysteinrestes, eines Markerpeptids und eines C-terminalen PoIy- histidin-Tags, um bivalente und biotinylierte scFv-Moleküle zu machen (Kipriyanov, S.M., et al. (1994) Mol. Immunol. 31:1047-1058).
Antikörperteile, wie Fab und F(ab')2-Fragmente, können aus ganzen Antikörpern her- gestellt werden, indem man konventionelle Techniken verwendet, wie die Verdauung mit Papain bzw. Pepsin. Darüber hinaus können Antikörper, Antikörperteile und Im- munadhäsionsmoleküle erhalten werden, indem man standardisierte rekombinante DNA-Techniken verwendet. Ein „isolierter Antikörper mit Spezifität für ein erfindungsgemäßes AGER-RME oder AGER-CDP oder Derivat/Äquivalent davon" umschreibt einen Antikörper mit Spezifität für ein erfindungsgemäßes AGER-RME oder AGER- CDP oder Derivat/Äquivalent davon, der im wesentlichen frei von anderen Antikörpern mit unterschiedlichen Antigenspezifitäten ist.
Der Begriff „neutralisierender Antikörper" beschreibt einen Antikörper, dessen Bindung an ein bestimmtes Antigen zur Inhibierung der biologischen Aktivität des Antigens führt. Diese Inhibierung der biologischen Aktivität des Antigens kann beurteilt werden, indem man einen oder mehrere Indikatoren für die biologische Aktivität des Antigens misst, wobei man einen geeigneten in vitro- oder in vivo-Assay verwendet.
Der Begriff „monoklonaler Antikörper" beschreibt einen Antikörper, der von einem Hybridom abstammt (z. B. ein Antikörper, der von einem mittels Hybridomtechnologie, wie der standardisierten Hybridommethodik nach Köhler und Milstein, hergestellten Hybridom sekretiert wird). Ein von einem Hybridom abstammender Antikörper mit Spezifität für ein erfindungsgemäßes AGER-RME oder AGER-CDP oder Deri- vat/Äquivalent davon wird daher als monoklonaler Antikörper bezeichnet.
Der Begriff „rekombinanter Antikörper" beschreibt Antikörper, die mit rekombinanten Mitteln hergestellt, exprimiert, erzeugt oder isoliert werden, wie Antikörper, die unter Verwendung eines in eine Wirtszeile transfizierten, rekombinanten Expressionsvektors exprimiert werden; Antikörper, die aus einer rekombinanten kombinatorischen Antikörperbank isoliert sind; Antikörper, die aus einem Tier (z. B. einer Maus), das durch humane Immunglobulingene transgen ist, isoliert sind (siehe z. B. Taylor, L.D., et a/. (1992) Nucl. Acids Res. 20:6287-6295); oder Antikörper, die auf irgend eine andere Weise, bei der bestimmte Immunoglobulin-Gensequenzen (wie humane Immunglobu- lin-Gensequenzen) mit anderen DNA-Sequenzen zusammengesetzt werden, hergestellt, exprimiert, erzeugt oder isoliert werden. Zu rekombinanten Antikörpern gehören beispielsweise chimäre, CDR-Graft- und humanisierte Antikörper. Der Begriff „humaner Antikörper" beschreibt Antikörper, deren variable und konstante Regionen Immunglobulinsequenzen der Humankeimbahn, wie beispielsweise von Ka- bat et al. (siehe Kabat, et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health und Human Services, NIH Publication Nr. 91- 3242) beschrieben, entsprechen oder davon abstammen. Die erfindungsgemäßen humanen Antikörper können allerdings Aminosäurereste beinhalten, die nicht von humanen Keimbahn-Imrnunglobulinsequenzen kodiert sind (z. B. Mutationen, die durch zufällige oder ortsspezifische Mutagenese in vitro oder durch somatische Mutation in vivo eingeführt sind), beispielsweise in den CDRs, und insbesondere in CDR3. Erfindungs- gemäße rekombinante humane Antikörper haben variable Regionen und können auch konstante Regionen beinhalten, die von Immunglobulinsequenzen der Humankeimbahn abstammen (siehe Kabat, E.A., et al. (1991 ) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health und Human Services, NIH Publication Nr. 91-3242). Bestimmten Ausführungsformen zufolge werden derartige rekombinante humane Antikörper allerdings einer in vitro-Mutagenese (oder falls ein durch humane Ig-Sequenzen transgenes Tier verwendet wird, einer somatischen in vivo-Mutagenese) unterzogen, so dass die Aminosäuresequenzen der VH- und VL- Regionen der rekombinanten Antikörper Sequenzen sind, die, wenngleich sie mit VH- und VL-Sequenzen der Humankeimbahn verwandt sind oder davon abstammen, in- nerhalb des humanen Antikörper-Keimbahnrepertoirs in vivo natürlicherweise nicht existieren. Bestimmten Ausführungsformen zufolge sind derartige rekombinante Antikörper das Resultat einer selektiven Mutagenese oder Rückmutation, oder beides.
Der Begriff "Rückmutation" bezieht sich auf ein Verfahren, bei dem einige oder sämtli- che der somatisch mutierten Aminosäuren eines humanen Antikörpers mit den entsprechenden Keimbahnresten einer homologen Keimbahnantikörpersequenz ersetzt werden. Die Sequenzen für die schwere und leichte Kette eines erfϊndungsgemäßen humanen Antikörpers werden getrennt mit den Keimbahnsequenzen in der VBASE- Datenbank verglichen, um die Sequenzen mit der größten Homologie zu identifizieren. Abweichungen im erfindungsgemäßen humanen Antikörper werden auf die Keimbahnsequenz zurückgeführt, indem man an definierten Nukleotidpositionen, die solche abweichenden Aminosäuren kodieren, mutiert. Die direkte oder indirekte Bedeutung jeder auf diese Weise als Kandidat für eine Rückmutation identifizierten Aminosäure für die Antigenbindung sollte untersucht werden, und eine Aminosäure, die nach Mutation eine wünschenswerte Eigenschaft des humanen Antikörpers beeinträchtigt, sollte in den endgültigen humanen Antikörper nicht miteinbezogen werden. Um die Anzahl der Aminosäuren für eine Rückmutation so gering wie möglich zu halten, können diejenigen Aminosäurepositionen unverändert bleiben, die zwar von der am nächsten kommenden Keimbahnsequenz abweichen aber mit der entsprechenden Aminosäurese- quenz einer zweiten Keimbahnsequenz identisch sind, vorausgesetzt, daß die zweite Keimbahnsequenz mit der Sequenz des erfindungsgemäßen humanen Antikörpers zumindest in 10 und vorzugsweise in 12 Aminosäuren auf beiden Seiten der fraglichen Aminosäure identisch und co-linear ist. Rückmutationen können auf beliebiger Stufe der Antikörperoptimierung vorgenommen werden.
Der Begriff „chimärer Antikörper" umfasst Antikörper, in denen einzelne Teile des Moleküls aus verschiedenen Spezies abgeleitet sind. So sind chimäre Antikörper, ohne darauf beschränkt zu sein, z.B. Antikörper, die Sequenzen für die variable Region der schweren und leichten Kette aus einer Spezies beinhalten, in denen aber die Sequenzen einer oder mehrerer der CDR-Regionen aus VH und/oder VL mit CDR-Sequenzen einer anderen Spezies ersetzt sind. In solchen Antikörpern können die variablen Regionen der schweren und leichten Kette aus Maus aufweisen, in denen eine oder mehrere der Maus-CDRs (z. B. CDR3) durch humane CDR-Sequenzen ersetzt sind.
Der Begriff „humanisierter Antikörper" beschreibt Antikörper, die Sequenzen der variablen Region schwerer und leichter Kette aus einer nichthumanen Spezies (z. B. Maus, Ratte, Kaninchen, Huhn, Kamelid, Ziege) beinhalten, in denen jedoch wenigstens ein Teil der VH- und/oder VL-Sequenz verändert worden ist, um „humanähnlicher" zu sein, d. h. variablen Sequenzen der humanen Keimbahn ähnlicher zu sein. Eine Art eines humanisierten Antikörpers ist ein CDR-Graft-Antikörper, bei dem humane CDR- Sequenzen in nichthumane VH- und VL-Sequenzen eingesetzt sind, um die entsprechenden nichthumanen CDR-Sequenzen zu ersetzen.
Eine Methode, die Bindungskinetik eines Antikörpers zu messen, basiert auf der sogenannten Oberflächenplasmonräsonanz. Der Begriff „Oberflächenplasmonresonanz" bezieht sich auf ein optisches Phänomen, mit dem sich biospezifische Wechselwirkungen analysieren lassen, indem man Veränderungen von Proteinkonzentrationen mit einer Biosensormatrix nachweist, wobei man beispielsweise das BIAcore-System ver- wendet (Pharmacia Biosensor AB, Uppsala, Sweden und Piscataway, NJ). Für weitere Beschreibungen siehe Jönsson, U., et al. (*\993) Ann. Biol. Clin. 51:19-26; Jönsson, U., et al. (1991 ) Biotechniques 11 :620-627; Johnsson, B., et al. (1995) J. Mol. Recognit. 8:125-131; und Johnnson, B., et al. (1991) Anal. Biochem. 198:268-277.
Der Begriff "Koff" beschreibt die off-Geschwindigkeitskonstante für die Dissoziation eines Antikörpers aus dem Antikörper/Antigen-Komplex.
Der Begriff „Kd" beschreibt die Dissoziationskonstante einer bestimmten Antikörper- Antigen-Wechselwirkung. Die Bindungsaffinität der erfindungsgemäßen Antikörper kann beurteilt werden, indem man standardisierte in vitro-lmmunoassays, wie ELISA- oder BIAcore-Analysen, verwendet.
5.2 Herstellung von Immunglobulinen
5.2.1 Herstellung von polyklonalen Antikörpern
Die vorliegende Erfindung betrifft polylkonale anti-AG ER-RM E oder anti-AGER-CDP Antikörper und deren Herstellung
Dazu wird ein Wirt mit wenigstens einem erfindungsgemäßen AGER-RME oder AGER- CDP oder Derivat/Äquivalent davon immunisiert; und ein als Antwort auf die Immuni- sierung gebildetes Antikörper-haltiges Serum des Wirts gewinnt.
Sind die zu verwendenden AGER-RMEs oder AGER-CDPs nicht oder nur schwach immunogen, so kann man ihre Immunogenität dadurch erhöhen, daß man sie an Träger, vorzugsweise ein Trägerprotein, wie Keyhole Limpet Hemocyanin (KLH), Limulus Polyphenus Hemocyanin ((LPH), Rinderserumalbumin (BSA) oder Ovalbumin (OVA), koppelt. Dazu stehen dem Fachmann eine Reihe von Kopplungsmöglichkeiten zur Verfügung, die allgemein bekannt sind. Zweckmäßig kann beispielsweise die Umsetzung mit Glutardialdehyd sein, beispielsweise durch Inkubation von AGER-RMEs oder AGER-CDPs mit einem geeigneten Peptid oder Peptid-Gemisch in Wasser oder einem wässrigen Lösungsmittel. Diese Umsetzung kann bequemerweise bei Umgebungstemperatur, also in der Regel Raumtemperatur, durchgeführt werden. Es kann allerdings auch zweckmäßig sein, zu kühlen oder leicht zu erwärmen. In der Regel führt die Umsetzung innerhalb weniger Stunden zum erwünschten Ergebnis, eine Reaktionsdauer von beispielsweise 2 h liegt im üblichen Bereich. Die Glutardialdehyd- Konzentration liegt in der Regel im ppm- bis %-Bereich, zweckmäßigerweise von 10 ppm bis zu 1 %, vorzugsweise von 100 ppm bis 0,5 %. Die Optimierung der Reaktionsparameter liegt im Bereich des fachmännischen Könnens.
Zusätzlich zum Antigen enthalten die Zusammensetzungen in der Regel weitere Hilfs- stoffe, insbesondere üblicherweise zur Immunisierung eingesetzte Adjuvantien, z.B. Freund-Adjuvanz. Insbesondere verwendet man komplettes Freund-Adjuvanz für die erste Immunisierung wohingegen alle weiteren Immunisierungen mit inkomplettem Freund-Adjuvanz durchgeführt werden. Zur Herstellung der Immunisierungscocktails wird das Antigen (Immunogen), vorzugsweise als oben beschriebenes Komponenten- Gemisch, zu dem oder den Hilfsstoffen gegeben. In der Regel wird dabei das Antigen emulgiert.
Als Wirt eignen sich insbesondere Nager oder auch Kaninchen. Diesen oder anderen geeigneten Wirten werden die Immunisierungscocktails, vorzugsweise subkutan, injiziert. Die Antikörpertiter können mit einem Immunoassay, beispielsweise kompetitiv mit einem gegen Wirt-IgG gerichteten Schaf-Antiserum und markiertem AGER-RME oder AGER-CDP, bestimmt werden. So kann gegen Ende der Immunisierung entschieden werden, ob ein bestimmter Wirt zur Antikörpergewinnung geeignet ist. Werden bei- spielsweise vier Immunisierungen durchgeführt, so kann man nach der dritten Immunisierung den Antikörpertiter bestimmen und dann aus Tieren, die einen ausreichenden Antikörpertiter aufweisen, Antikörper gewinnen.
Zur Gewinnung gebildeter Antikörper ist es bevorzugt, den Wirten über mehrere Wo- chen oder Monate Blut abzunehmen. Abschließend kann man den Wirt ausbluten lassen. Aus dem so gewonnenen Blut kann in an sich bekannter Weise Serum gewonnen werden, das die erwünschten Antikörper enthält. Das so erhaltene Vollserum kann erforderlichenfalls in fachmännischer Weise weiter aufgereinigt werden, um die darin enthaltene Antikörperfraktion und insbesondere die AGER-RME- oder AGER-CDP- erkennenden Antikörper anzureichern.
Gemäß einer besonderen Ausführungsform dieses Verfahrens selektiert man wenigstens einen Antikörper des Serums, der das als Immunogen verwendete AGER-RME AGER-CDP oder ein Derivat/Äquivalent davon spezifisch erkennt. Spezifität meint in diesem Zusammenhang eine höhere Bindungsaffinität des Antikörpers für das Immunogen als für andere, insbesondere immunogen verwandte Proteine, wie APP (Amyloid Precursor Protein).
5.2.2 Herstellung von monoklonalen Antikörpern
Erfindungsgemäß brauchbare Immunglobuline sind inter Anwendung an sich bekannter Methoden zugänglich. So gestattet die Hybridomtechnologie die Herstellung von monospezifischen Antikörpern für ein interessierendes Antigen. Weiterhin sind rekombi- nante Antikörpertechniken, wie das in-vitro-Screenen von Antikörperbanken entwickelt worden, mit deren Hilfe sich ebenfalls derartige spezifische Antikörper herstellen lassen.
So kann man beispielsweise ein Tier mit dem interessierenden Antigen immunisieren. Dieser in-vivo-Ansatz kann des weiteren beinhalten, dass man aus den Lymphozyten oder Milzzellen eines Tieres eine Reihe von Hybridomen etabliert und ein Hybridom selektiert, das einen das Antigen spezifisch bindenden Antikörper sekretiert. Bei dem zu immunisierenden Tier kann es sich beispielsweise um eine Maus, Ratte, Kaninchen, Huhn, Kamelid oder Schaf handeln, oder um eine transgene Version eines der zuvor genannten Tiere, beispielsweise eine transgene Maus mit humanen Immunglobulinge- nen, die nach einem antigenen Stimulus humane Antikörper macht. Zu weiteren Typen von Tieren, die immunisiert werden können, zählen Mäuse mit schwerer kombinierter Immundefizienz (SCID), die mit humanen peripheren mononukleären Blutzellen (chi- märe hu-PBMC-SCID-Mäuse) oder mit lymphoiden Zellen oder Vorläufern davon re- konstituiert worden sind, genauso wie Mäuse, die mit einer letalen Gesamtkörperbestrahlung behandelt, anschließend mit Knochenmarkszellen aus einer Maus mit schwerer kombinierter Immundefizienz (SCID) gegen Strahlung geschützt und anschließend mit funktionalen humanen Lymphozyten transplantiert worden sind (das sogenannte Trimera-System). Eine weiterer Typus eines zu immunisierenden Tieres ist ein Tier (z.B. eine Maus), in dessen Genom ein endogenes Gen, welches das interessierende Antigen kodiert, ausgeschaltet wurde („knocked out"), z.B. durch homologe Rekombination, so dass dieses Tier nach Immunisierung mit dem Antigen das Antigen als fremd erkennt. Für den Fachmann ist klar, dass die mit diesen Verfahren hergestellten po- lyklonalen oder monoklonalen Antikörper charakterisiert und selektiert werden, indem man bekannte Screening-Verfahren verwendet, zu denen ELISA-Techniken gehören, ohne jedoch darauf beschränkt zu sein.
Einer weiteren Ausführungsform zufolge, screent man eine rekombinante Antikörperbank mit dem Antigen. Die rekombinante Antikörperbank kann beispielsweise auf der Oberfläche von Bakteriophagen oder auf der Oberfläche von Hefezellen oder auf der Oberfläche von bakteriellen Zellen exprimiert sein. Die rekombinante Antikörperbank kann beispielsweise eine scFv-Bank oder eine Fab-Bank sein. Gemäß einer weiteren Ausführungsform sind Antikörperbänke als RNA-Protein-Fusionen exprimierbar.
Ein weiterer Ansatz zur Herstellung erfindungsgemäßer Antikörper beinhaltet eine Kombination aus in vivo- und in vitro- Ansätzen. Beispielsweise kann man das Antigen auf das Antikörper-Repertoire einwirken lassen, indem man ein Tier mit dem Antigen in vivo immunisiert und anschließend eine aus lymphoiden Zellen des Tieres hergestellte rekombinante Antikörperbank oder Einzeldomänen-Antikörperbank (z.B. mit schwerer und/oder leichter Kette) mit dem Antigen in vitro screent. Einem weiteren Ansatz zufolge lässt man das Antigen auf das Antikörper-Repertoire einwirken, indem man ein Tier mit dem Antigen in vivo immunisiert und anschließend eine aus lymphoiden Zellen des Tieres hergestellte rekombinante Antikörperbank oder Einzeldomänen-Bank einer Affinitätsreifung unterzieht. Einem weiteren Ansatz zufolge lässt man das Antigen auf das Antikörper-Repertoire einwirken, indem man ein Tier mit dem Antigen in vivo immunisiert, anschließend einzelne Antikörper-produzierende Zellen, die einen interessierenden Antikörper sekretieren, selektiert und aus diesen selektierten Zellen cDNAs für die variable Region der schweren und leichten Kette gewinnt (z.B. mittels PCR) und die variablen Regionen der schweren und leichten Kette in vitro in Säugerwirtszellen exprimiert (was als das Lymphozyten-Antikörper-Selektionsverfahren, oder SLAM für „Selected Lymphocyte Antibody Method", bezeichnet wird), wodurch sich die selektierten Antikörper-Gensequenzen weiter selektieren und manipulieren lassen. Außerdem können monoklonale Antikörper durch Expressionsklonierung selektiert werden, indem man die Antikörpergene für die schwere und leichte Kette in Säugerzellen exprimiert und diejenigen Säugerzellen selektiert, die einen Antikörper mit der gewünschten Bindungsaffinität sekretieren.
Mit vorliegender Erfindung werden definierte Antigene in Form von AGER-RMEs oder AGER-CDPs zum Screenen und Gegenscreenen zur Verfügung gestellt. So können erfindungsgemäß diejenigen polyklonalen und monoklonalen Antikörper selektiert werden, die ein erfindungsgemäß gewünschtes Eigenschaftsprofil gemäß obiger Definition aufweisen, wie z.B. einen AGER-induzierten Rezeptorstatus spezifisch erkennen.
Mit den erfindungsgemäßen Verfahren zur Herstellung von Antikörpern lassen sich verschiedene Antikörpertypen herstellen. Hierzu gehören im Wesentlichen humane Antikörper, chimäre Antikörper, humanisierte Antikörper und CDR-Graft-Antikörper sowie Antigen-bindende Teile davon.
Im Folgenden werden Verfahren zur Herstellung erfindungsgemäßer Antikörper beschrieben. Dabei wird zwischen ln-vivo-Ansätzen, In-vitro-Ansätzen, oder einer Kombination aus beiden, unterschieden.
In-vivo-Ansätze:
Ausgehend von den in-vivo erzeugten Antikörper produzierenden Zellen können monoklonale Antikörper mittels standardisierter Techniken, wie der ursprünglich von Köhler und Milstein (1975, Nature 256:495-497) (siehe auch Brown et al. (1981) J. Immu- nol 127:539-46; Brown et al. (1980) J Biol Chem 255:4980-83; Yen et al. (1976) PNAS 76:2927-31 ; und Yeh et ai. (1982) Int J. Cancer 29:269-75) beschriebenen Hybridom- technik, hergestellt werden. Die Technologie zur Produktion monoklonaler Antikör- perhybridome ist hinlänglich bekannt (siehe allgemein R. H. Kenneth, in Monoclonal Antibodies: A New Dimension In Biological Analyses, Plenum Publishing Corp., New York, New York (1980); E. A. Lerner (1981) YaIe J. Biol. Med., 54:387-402; M. L. Gef- ter et al. (1977) Somatic Cell Genet., 3:231-36). Eine immortalisierte Zelllinie (typischerweise ein Myelom) wird dazu mit Lymphozyten (typischerweise Splenozyten oder Lymphknotenzellen oder periphere Blutlymphozyten) eines mit dem erfindungsgemäßen AGER-RME oder AGER-CDP oder Derivat/Äquivalent davon immunisierten Säu- gers fusioniert, und die Kulturüberstände der resultierenden Hybridomzellen werden gescreent, um ein Hybridom zu identifizieren, das einen monoklonalen Antikörper mit Spezifität für erfindungsgemäßes AGER-RME oder AGER-CDP oder für ein Derivat/Äquivalent davon produziert. Dazu kann man ein beliebiges, von vielen hinlänglich bekannten Protokollen für die Fusion von Lymphozyten und immortalisierten Zelllinien anwenden (siehe auch G. Galfre et al. (1977) Nature 266:550-52; Gefter et al. Somatic Cell Genet, cited supra; Lerner, YaIe J. Biol. Med., cited supra; Kenneth, Monoclonal Antibodies, cited supra). Darüber hinaus sind dem Fachmann mannigfaltige Variationen solcher Verfahren, die ebenfalls brauchbar sind, bekannt. Typischerweise stammten die immortalisierten Zelllinien (z.B. eine Myelomzelllinie) von der gleichen Säuger- spezies ab wie die Lymphozyten. Beispielsweise kann man murine Hybridome etablieren, indem man Lymphozyten aus einer mit einer erfindungsgemäßen immunogenen Zubereitung immunisierten Maus mit einer immortalisierten Mauszelllinie fusioniert. Bevorzugte immortalisierte Zelllinien sind Maus-Myelomzelllinien, welche für Hypo- xanthin, Aminopterin und Thymidin enthaltendes Kulturmedium (HAT-Medium) sensitiv sind. Man kann eine beliebige von vielen Myelomzelllinien als Fusionspartner standardmäßig verwenden, z.B. die P3-NS1/1-Ag4-1-, P3-x63-Ag8.653- or Sp2/O-Ag14- Myelomlinie. Diese Myelomzelllinien sind von der American Type Culture Collection (ATCC), Rockville, MD, erhältlich. Typischerweise werden HAT-sensitive Maus- Myelomzellen mit Maus-Splenozyten unter Verwendung von Polyethylenglykol (PEG) fusioniert. Die aus der Fusion resultierenden Hybridomzellen werden dann unter Verwendung von HAT-Medium selektiert, wodurch nicht fusionierte und nicht produktiv fusionierte Myelomzellen abgetötet werden (nicht fusionierte Splenozyten sterben nach mehreren Tagen ab, da sie nicht transformiert sind). Monoklonale Antikörperproduzierende Hybridomzellen, die ein erfindungsgemäßes AGER-RME oder AGER- CDP oder ein Derivat/Äquivalent davon spezifisch erkennen, werden identifiziert, indem man die Hybridomkulturüberstände auf solche Antikörper screent, z.B. indem man einen Standard-ELISA-Assay verwendet, um diejenigen Antikörper zu selektieren, die erfindungsgemäßes AGER-RME oder AGER-CDP oder ein Derivat/Äquivalent davon spezifisch binden können.
Je nach Art des gewünschten Antikörpers, können verschiedene Wirtstiere für die in- vivo-lmmunisierung verwendet werden. Ein Wirt, der eine endogene Version des interessierenden Antigens selbst exprimiert, kann verwendet werden. Alternativ kann ein Wirt verwendet werden, der für eine endogene Version des interessierenden Antigens defizient gemacht wurde. Es wurde beispielsweise gezeigt, dass Mäuse, die über homologe Rekombination am entsprechenden endogenen Gen für ein bestimmtes endogenes Protein defizient gemacht wurden (d.h. Knockout-Mäuse) eine humorale Antwort gegen das Protein, mit dem sie immunisiert wurden, erzeugen und daher zur Herstel- lung hochaffiner monoklonaler Antikörper gegen das Protein verwendet werden können (siehe z.B. Roes, J. et al. (1995) J. Immunol. Methods 183:231-237; Lunn, M. P. et al. (2000) J. Neurochem. 75:404-412).
Für die Herstellung nicht humaner Antikörper gegen erfindungsgemäßes AGER-RME oder AGER-GDP oder ein Derivat/Äquivalent davon sind viele nicht-menschliche Säuger als Wirte für die Antikörperherstellung geeignet. Hierzu gehören Mäuse, Ratten, Hühner, Kamelide, Kaninchen und Ziegen (und Knockout-Versionen davon), wenngleich Mäuse zur Hybridomherstellung bevorzugt sind. Desweiteren kann man zur Herstellung im Wesentlichen humaner Antikörper gegen ein humanes Antigen mit dualer Spezifität ein nicht-humanes Wirtstier verwenden, das ein humanes Antikörper- Repertoire exprimiert. Zu solchen nicht-humanen Tieren gehören transgene Tiere (z.B. Mäuse), die humane Immunglobulin-Transgene tragen (chimäre hu-PBMC-SCID- Mäuse) und Mensch/Maus-Bestrahlungschimären, die nachstehend eingehender beschrieben sind.
Einer Ausführungsform zufolge ist das Tier, das mit einem erfindungsgemäßen AGER- RME oder AGER-CDP oder Derivat/Äquivalent davon immunisiert wird, ein nichthumaner Säuger, vorzugsweise eine Maus, der durch humane Immunglobulingene transgen ist, so dass der nicht-humane Säuger nach einem antigenen Stimulus huma- ne Antigkörper macht. Typischerweise werden in solche Tiere Immunglobulin- Transgene für schwere und leichte Kette mit humaner Keimbahnkonfiguration eingeführt, wobei die Tiere so verändert wurden, dass ihre endogenen Loci für schwere und leichte Kette inaktiv sind. Stimuliert man solche Tiere mit Antigen (z.B. mit einem humanen Antigen), werden Antikörper, die von den humanen Immunglobulinsequenzen abstammen (d.h. humane Antikörper), produziert. Aus den Lymphozyten solcher Tiere können mittels standardisierter Hypridomtechnologie humane monoklonale Antikörper gemacht werden. Zur weiteren Beschreibung transgener Mäuse mit humanen Immunglobulinen und ihre Verwendung bei der Herstellung humaner Antikörper siehe beispielsweise US-Patent Nr. 5,939,598, WO 96/33735, WO 96/34096, WO 98/24893 und WO 99/53049 (Abgenix Inc.), und US-Patent Nr. 5,545,806, Nr. 5,569,825, Nr. 5,625, 126, Nr. 5,633, 425, Nr. 5,661,016, Nr. 5,770,429, Nr. 5,814,318, Nr. 5,877,397 und WO 99/45962 (Genpharm Inc.); siehe ebenfalls MacQuitty, JJ. und Kay, R.M. (1992) Science 257:1188; Taylor, LD. et al. (1992) Nucleic Acids Res. 20:6287-6295; Lonberg, N. et al. (1994) Nature 368:856-859; Lonberg, N. und Huszar, D. (1995) Int. Rev. Immunol. 13:65-93; Harding, F.A. und Lonberg, N. (1995) Ann. N.Y. Acad. Sei. 764:536-546; Fishwild, D. M. et al. (1996) Nature Biotechnology 14:845-851; Mendez, M. J. et al. (1997) Nature Genetics 15:146-156; Green, L.L. und Jakobovits, A. (1998) J. Exp. Med. 188:483-495; Green, L.L. (1999) J. Immunol. Methods 23V.11-23; Yang, X.D. et al. (1999) J. Leukoc. Biol. 66:401-410; Gallo, M. L. et a/.(2000) Eur. J. Immunol. 30:534-540.
Gemäß einer weiteren Ausführungsform kann das Tier, das mit erfindungsgemäßem AGER-RME oder AGER-CDP oder einem Derivat/Äquivalent davon immunisiert wird, eine Maus mit schwerer kombinierter Immundefizienz (SCID) sein, die mit humanen peripheren mononukleären Blutzellen oder lymphoiden Zellen oder Vorläufern davon rekonstituiert wurde. Solche Mäuse, die als Chimäre hu-PBMC-SCID-Mäuse bezeichnet werden, produzieren nachgewiesenermaßen humane Immunglobulinantworten nach einem antigenen Stimulus. Zur weiteren Beschreibung dieser Mäuse und ihrer Verwendung für die Erzeugung von Antikörpern siehe beispielsweise Leader, K.A. et al. (1992) Immunology 76:229-234; Bombil, F. et al. (1996) Immunobiol. 195:360-375: Murphy, WJ. et al. (1996) Semin. Immunol. 8:233-241; Herz, U. et al. (1997) Int. Arch. Allergy Immunol. 113:150-152; Albert, S.E. et al. (1997) J. Immunol. 159:1393-1403; Nguyen, H. et al. (1997) Microbiol. Immunol. 41:901-907; Arai, K. et al. (1998) J. Im- munol. Methods 217:79-85; Yoshinari, K. und Arai, K. (1998) Hybridoma 17:41-45; Hutchins, W.A. et al. (1999) Hybridoma 18:121-129; Murphy, WJ. et al. (1999) Clin. Immunol. 90:22-27; Smithson, S.L. et al. (1999) Mol. Immunol. 36:113-124; Chamat, S. et al. (1999) J. Infect. Diseases 180:268-277; und Heard, C. et al. (1999) Molec. Med. 5:35-45.
Gemäß einer weiteren Ausführungsform ist das Tier, das mit erfindungsgemäßem AGER-RME oder AGER-CDP oder einem Derivat/Äquivalent davon immunisiert wird, eine Maus, die mit einer letalen Ganzkörperbestrahlung behandelt, anschließend mit Knochenmarkszellen aus Mäusen mit schwerer kombinierter Immundefizienz (SCID) gegen Strahlung geschützt, und anschließend mit funktionalen humanen Lymphozyten transplantiert worden ist. Dieser als das Trimera-System bezeichnete Chimärentyp wird verwendet, um humane monoklonale Antikörper herzustellen, indem man die Mäuse mit dem interessierenden Antigen immunisiert und anschließend monoklonale Antikörper unter Verwendung von standardisierter Hybridomtechnologie herstellt. Zur weiteren Beschreibung dieser Mäuse und ihrer Verwendung für die Erzeugung von Antikörpern siehe beispielsweise Eren, R. et al. (1998) Immunology 93:154-161; Reisner, Y und Dagan, S. (1998) Trends Biotechnol. 16:242-246; llan, E. et al. (1999) Hepatology 29:553-562; und Bocher, W.O. et al. (1999) Immunology 96:634-641. In-vitro-Ansätze:
Alternativ zur Herstellung erfindungsgemäßer Antikörper durch Immunisierung und Selektion können erfindungsgemäße Antikörper identifiziert und isoliert werden, indem man rekombinante kombinatorische Immunglobulin-Bankmit einem erfindungsgemäßen AGER-RME oder AGER-CDP oder Derivat/Äquivalent davon screent, um so Mitglieder der Immunoglobulin-Bank, die spezifisch an das AGER-RME oder AGER-CDP oder Derivat/Äquivalent davon binden, zu isolieren. Kits zur Erzeugung und zum Screenen von Display-Banken sind kommerziell erhältlich (z.B. das Recombinant Pha- ge Antibody System von Pharmacia, Katalog-Nr. 27-9400-01 ; und der SurfZAP® Pha- ge Display Kit von Stratagene, Katalog-Nr. 240612). In vielen Ausführungsformen ist die Display-Bank eine scFv-Bank oder eine Fab-Bank. Die Phagendisplay-Technik zum Screenen rekombinanter Antikörperbänke ist hinlänglich beschrieben worden. Beispiele für Verfahren und Verbindungen, die bei der Erzeugung und dem Screenen von An- tikörper-Display-Banken besonders vorteilhaft verwendet werden können, sind beispielsweise in McCafferty et al. WO 92/01047, US-Patent Nr. 5,969,108 und EP 589 877 (beschreibt insbesondere den Display von scFv), Ladner et al. US-Patent Nr. 5,223,409, Nr. 5,403,484, Nr. 5,571 ,698, Nr. 5,837,500 und EP 436 597 (beschreibt beispielsweise die plll-Fusion); Dower et al. WO 91/17271, US-Patent Nr. 5,427,908, US-Patent Nr. 5,580,717 und EP 527 839 (beschreibt insbesondere den Display von Fab); Winter et al. International Publication WO 92/20791 und EP 368,684 (beschreibt insbesondere die Klonierung von Sequenzen für variable Immunoglobulindomänen); Griffiths et al. US-Patent Nr. 5,885,793 und EP 589 877 (beschreibt insbesondere die Isolierung von humanen Antikörpern gegen humane Antigene unter Verwendung re- kombinanter Bänke); Garrard et al. WO 92/09690 (beschreibt insbesondere Phage- nexpressionstechniken); Knappik et al. WO 97/08320 (beschreibt die humane rekombinante Antikörperbank HuCaI); Salfeld et al. WO 97/29131, (beschreibt die Herstellung eines rekombinanten humanen Antikörpers gegen ein humanes Antigen (humanen Tumor-Nekrose-Faktor alpha), sowie in-vitro-Affinitätsreifung des rekombinanten Anti- körpers) und Salfeld et al. U.S. Provisional Application Nr. 60/126,603 und die hierauf basierenden Patentanmeldungen (beschreibt ebenfalls die Herstellung rekombinanter humaner Antikörper gegen humanes Antigen (humanes lnterleukin-12), sowie die In- v/ϊro-Affinitätsreifung des rekombinanten Antikörpers) zu finden.
Weitere Beschreibungen von Screenings rekombinanter Antikörperbänke sind in wissenschaftlichen Publikationen zu finden, wie Fuchs et al. (1991) Bio/Technology 9:1370-1372; Hay et al. (1992) Hum Antibod Hybridomas 3:81-85; Huse et al. (1989) Science 246:1275-1281; Griffiths et al. (1993) EMBO J 12:725-734; Hawkins et al. (1992) J Mol BIoI 226:889-896; Clarkson et al. (1991 ) Nature 352:624-628; Gram et al. (1992) PNAS 89:3576-3580; Garrad et al. (1991) Bio/Technology 9:1373-1377; Hoogenboom et al. (1991 ) Nuc Acid Res 19:4133-4137; Barbas et al. (1991) PNAS 88:7978-7982; McCafferty et al. Nature (1990) 348:552-554; und Knappik et al. (2000) J. Mol. Biol. 296:57-86.
Alternativ zur Verwendung von Bakteriophagen-Display-Systemen können rekombinante Antikörper-Banken auf der Oberfläche von Hefezellen oder bakteriellen Zellen exprimiert werden. Verfahren zur Herstellung und zum Screenen von Banken, die auf der Oberfläche von Hefezellen exprimiert sind, sind in WO 99/36569 beschrieben. Verfahren zur Herstellung und zum Screenen von Banken, die auf der Oberfläche von bakteriellen Zellen exprimiert sind, sind in WO 98/49286 genauer beschrieben.
Sobald ein interessierender Antikörper aus einer kombinatorischen Bank identifiziert ist, werden die DNAs, welche die leichten und schweren Ketten des Antikörpers kodie- ren, mittels standardisierter molekularbiologischer Techniken isoliert, beispielsweise mittels PCR-Amplifikation von DNA aus der Display-Packung (z.B. dem Phagen), die man während des Screenens der Bank isoliert hat. Nukleotidsequenzen von Genen für leichte und schwere Antikörperketten, mit denen PCR-Primer hergestellt werden können, sind dem Fachmann bekannt. Viele solcher Sequenzen sind beispielsweise in Kabat, E.A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health und Human Services, NIH Publication Nr. 91-3242 und der Datenbank für Sequenzen der Humankeimbahn VBASE beschrieben.
Ein erfindungsgemäßer Antikörper oder Antikörperteil kann hergestellt werden, indem man die Gene für leichte und schwere Immunglobulinketten in einer Wirtszelle rekom- binant exprimiert. Um einen Antikörper rekombinant zu exprimieren, wird eine Wirtszelle mit einem oder mehreren rekombinanten Expressionsvektoren, die DNA-Fragmente tragen, welche die leichten und schweren Immunglobulinketten des Antikörpers kodieren, transfiziert, so dass die leichten und schweren Ketten in der Wirtszelle exprimiert und vorzugsweise in das Medium, in dem die Wirtszellen kultiviert werden, sekretiert werden. Aus diesem Medium können die Antikörper gewonnen werden. Man verwendet standardisierte rekombinante DNA-Methodik, um Gene für schwere und leichte Antikörperketten zu erhalten, diese Gene in rekombinante Expressionsvektoren einzusetzen und die Vektoren in Wirtszellen einzuführen. Eine derartige Methodik ist bei- spielsweise in Sambrook, Fritsch und Maniatis (Hrsg.), Molecular Cloning; A Laborato- ry Manual, Second Edition, CoId Spring Harbor, N.Y., (1989), Ausubel, F.M. et al (Hrsg.) Current Protocols in Molecular Biology, Greene Publishing Associates, (1989) und im US-Patent Nr. 4,816,397 von Boss et al. beschrieben. Sobald DNA-Fragmente, die VH- und VL-Segmente des interessierenden Antikörpers kodieren, erhalten werden, können diese DNA-Fragmente mit standardisierten rekom- binanten DNA-Techniken weiter manipuliert werden, beispielsweise um die Gene für variable Regionen in Gene für Antikörperketten voller Länge, in Gene für Fab- Fragmente oder in ein scFv-Gen zu überführen. Bei diesen Manipulationen wird ein VL- oder VH-kodierendes DNA-Fragment operativ mit einem weiteren ein weiteres Protein, z.B. eine konstante Antikörperregion oder einen flexiblen Linker, kodierenden DNA-Fragment verknüpft. Der Begriff „operativ verknüpft" soll hier meinen, dass die beiden DNA-Fragmente so miteinander verbunden sind, dass die von den beiden DNA- Fragmenten kodierten Aminosäuresequenzen im Leseraster (in-frame) bleiben.
Die isolierte, die VH-Region kodierende DNA kann in ein Gen für eine schwere Kette voller Länge überführt werden, indem man die VH-Region kodierende DNA mit einem weiteren, konstante Regionen der schweren Kette (CH 1, CH2 und CH3) kodierenden DNA-Molekül operativ verknüpft. Die Sequenzen von Genen für konstante Regionen humaner schwerer Ketten sind hinlänglich bekannt (siehe z.B. Kabat, E.A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health und Human Services, NIH Publication Nr. 91-3242), und DNA-Fragmente, die diese Regionen überspannen, können mittels standardisierter PCR-Amplifikation erhal- ten werden. Die konstante Region der schweren Kette kann eine konstante Region aus IgGI , lgG2, lgG3, igG4, IgA, IgE, IgM or IgD sein, wobei eine konstante Region aus IgGI oder lgG4 bevorzugt ist. Um ein Gen für ein Fab-Fragment der schweren Kette zu erhalten, kann die VH-kodierende DNA mit einem weiteren, lediglich die konstante Region CH1 der schweren Kette kodierenden DNA-Molekül operativ verknüpft werden.
Die isolierte, die VL-Region kodierende DNA kann in ein Gen für eine leichte Kette voller Länge (sowie ein Gen für eine Fab-Ieichte Kette) überführt werden, indem man die VL-kodierende DNA mit einem weiteren, die konstante Region CL der leichten Kette kodierenden DNA-Molekül operativ verknüpft. Die Sequenzen von Genen der konstan- ten Region humaner leichter Kette sind hinlänglich bekannt (siehe Kabat, E. A., et al. (1991 ) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health und Human Services, NIH Pubücation Nr. 91-3242), und DNA-Fragmente, die diese Regionen überspannen, können mittels standardisierter PCR-Amplifikation erhalten werden. Die konstante Region der leichten Kette kann eine konstante kappa- oder lambda-Region sein, wobei eine konstante kappa-Region bevorzugt ist.
Um ein scFv-Gen zu erzeugen, können die VH- und VL-kodierenden DNA-Fragmente mit einem weiteren, einen flexiblen Linker, z.B. die Aminosäuresequenz (Gly4-Ser)3 kodierenden Fragment operativ verknüpft werden, so dass die VH- und VL-Sequenzen als fortlaufendes einzelkettiges Protein exprimiert werden, wobei die VL- und VH- Regionen über den flexiblen Linker miteinander verbunden sind (siehe Bird et al. (1988) Science 242:423-426; Huston et al. (1988) Proc. Natl. Acad. Sei. USA 85:5879- 5883; McCafferty et al., Nature (1990) 348:552-554).
VH- und VL-Einzeldomänen mit Spezifität für erfindungsgemäßes AGER-RME oder AGER-CDP oder ein Derivat/Äquivalent davon können mit den oben beschriebenen Verfahren aus Einzeldomänen-Banken isoliert werden. Zwei VH-Einzeldomänen- Ketten (mit oder ohne CH 1 ) oder zwei VL-Ketten oder ein Paar aus einer VH- und einer VL-Kette mit der gewünschten Spezifität können verwendet werden, um erfindungsgemäße AGER-RMEs oder AGER-CDPs oder Derivate/Äquivalente davon zu binden.
Um die erfindungsgemäßen rekombinanten Antikörper oder Antikörperteile zu expri- mieren, können die DNAs, welche die leichten und schweren Ketten von partieller oder voller Länge kodieren, in Expressionsvektoren insertiert werden, so das die Gene mit transkriptionalen und translationalen Kontrollsequenzen operativ verknüpft sind. In diesem Zusammenhang soll der Begriff „operativ verknüpft" meinen, dass ein Antikörpergen in einem Vektor so ligiert ist, dass transkriptionale und translationale Kontrollsequenzen innerhalb des Vektors ihre beabsichtigte Funktion zur Regulation der Transkription und Translation des Antikörpergens erfüllen.
Der Expressionsvektor und die Expressionskontrollsequenzen werden so gewählt, dass sie mit der zur Expression verwendeten Wirtszelle kompatibel sind. Das Gen für die leichte Antikörperkette und das Gen für die schwere Antikörperkette können in ge- trennte Vektoren insertiert werden, oder beide Gene werden in denselben Expressionsvektor insertiert, was der Regelfall ist. Die Antikörpergene werden in den Expressionsvektor mittels standardisierter Verfahren insertiert (z.B. Ligation komplementärer Restriktionsschnittstellen am Antikörpergenfragment und Vektor, oder Ligation stumpfer Enden, falls keine Restriktionsschnittstellen vorhanden sind). Vor der Insertion der Sequenzen für die leichte und schwere Kette kann der Expressionsvektor bereits Sequenzen für konstante Antikörperregionen tragen. Beispielsweise ist es ein Ansatz, die VH- und VL-Sequenzen in Antikörpergene voller Länge zu überführen, indem man sie in Expressionsvektoren insertiert, die bereits die konstanten Regionen für schwere bzw. leichte Kette kodieren, so dass das VH-Segment mit dem oder den CH- Segment(en) innerhalb des Vektors operativ verknüpft ist, und auch das VL-Segment mit dem CL-Segment innerhalb des Vektors operativ verknüpft ist. Zusätzlich oder alternativ kann der rekombinante Expressionsvektor ein Signalpeptid kodieren, welches die Sekretion der Antikörperkette aus der Wirtszelle erleichtert. Das Gen für die Antikörperkette kann in den Vektor kloniert werden, so dass das Signalpeptid in Leseraster mit dem N-Terminus des Gens für die Antikörperkette verknüpft ist. Das Signalpeptid kann ein Immunglobulin-Signalpeptid oder ein heterologes Signalpeptid sein (d.h. ein Signalpeptid aus einem Nicht-Immunoglobulin-Protein). Zusätzlich zu den Genen für die Antikörperkette können die erfindungsgemäßen Expressionsvektoren regulatori- sehe Sequenzen aufweisen, welche die Expression der Gene für die Antikörperkette in einer Wirtszelle kontrollieren. Der Begriff „regulatorische Sequenz" soll Promotoren, Enhancer und weitere Expressionskontrollelemente (z.B. Polyadenylierungssignale) einschließen, welche die Transkription oder Translation der Gene für die Antikörperkette kontrollieren. Solche regulatorischen Sequenzen sind beispielsweise in Goeddel; Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990) beschrieben. Dem Fachmann ist bekannt, dass das Design des Expressionsvektors, wozu die Selektion regulatorischer Sequenzen gehört, von Faktoren abhängen kann, wie der Wahl der zu transformierenden Wirtszelle, der gewünschten Expressionsstärke des Proteins, etc. Zu bevorzugten regulatorischen Sequenzen für eine Expression in Säugerwirtszellen gehören virale Elemente, die zu einer starken Proteinexpression in Säugerzellen führen, wie Promotoren und/oder Enhancer, die vom Cytomegalovirus (CMV) (wie der CMV-Promoter/Enhancer), Simian-Virus 40 (SV40) (wie der SV40-Promotor/Enhancer), Adenovirus (z.B. der Späte Adenovirus- Hauptpromotor (AdMLP für Adenovirus Major Late Promoter) und Polyoma abstam- men. Zur weiteren Beschreibung viraler regulatorischer Elemente und Sequenzen davon, siehe z.B. US-Patent Nr. 5,168,062 von Stinski, US-Patent Nr. 4,510,245 von Bell et al. und US-Patent Nr. 4,968,615 von Schaffner et al.
Zusätzlich zu den Genen für die Antikörperkette und die regulatorischen Sequenzen können die erfindungsgemäßen rekombinanten Expressionsvektoren zusätzliche Sequenzen aufweisen, wie Sequenzen, welche die Replikation des Vektors in Wirtszellen regulieren (z.B. Replikationsstartpunkte) und selektierbare Markergene. Die selektierbaren Markergene erleichtern die Selektion von Wirtszellen, in die der Vektor eingeführt wurde (siehe z.B. US-Patents Nr. 4,399,216, 4,634,665 und 5,179,017, alle von Axel et al.). Zum Beispiel ist es üblich, dass das selektierbare Markergen eine Wirtszelle, in die der Vektor eingesetzt wurde, gegen Wirkstoffe wie G418, Hygromycin oder Methotrexat resistent macht. Zu bevorzugten selektierbaren Markergenen gehören das Gen für die Dihydrofolatreduktase (DHFR) (zur Verwendung in dhff-Wirtzellen mit Me- thotrexat-Selektion/Amplifikation) und das neo-Gen (zur G418-Selektion).
Für die Expression der leichten und schweren Ketten wird der oder werden die schwere und leichte Ketten kodierende(n) Expressionsvektor(en) mittels standardisierter Techniken in eine Wirtszelle transfiziert. Die verschiedenen Formen des Begriffs „Transfektion" sollen eine Vielzahl von Techniken erfassen, die gewöhnlicherweise zur Einführung exogener DNA in eine prokaryotische oder eukaryotische Wirtszelle verwendet werden, z.B. Elektroporation, Calcium-Phosphat-Fällung, DEAE-Dextran- Transfektion und ähnliches. Wenngleich es theoretisch möglich ist, die erfindungsgemäßen Antikörper entweder in prokaryotischen oder eukaryotischen Wirtszellen zu exprimieren, ist die Expression der Antikörper in eukaryotischen Zellen und insbesondere in Säugerwirtszellen bevorzugt, da die Wahrscheinlichkeit, dass ein korrekt gefalteter und immunologisch aktiver Antikörper zusammengesetzt und sekretiert wird, in solchen eukaryotischen Zellen und insbesondere Säugerzellen höher ist als in prokaryotischen Zellen. Über die prokaryotische Expression von Antikörpergenen ist berich- tet worden, dass sie für die Produktion großer Ausbeuten aktiven Antikörpers ineffektiv sei (Boss, M.A. und Wood, C. R. (1985) Immunology Today 6:12-13).
Zu Säugerwirtszellen, die für die Expression erfindungsgemäßer rekombinanter Antikörper bevorzugt sind, gehören CHO-Zellen (einschließlich dhfr'-CHO-Zellen, die in Urlaub und Chasin, (1980) Proc. Natl. Acad. Sei. USA 77:4216-4220 beschrieben sind und mit einem DHFR-selektierbaren Marker verwendet werden, wie z.B. in RJ. Kauf- man und P.A. Sharp (1982) Mol. Biol. 159:601-621 beschrieben ist), NSO- Myelomzellen, COS-Zellen und SP2-Zellen. Werden rekombinante Expressionsvektoren, welche die Antikörpegene kodieren, in Säugerwirtszellen eingeführt, so werden die Antikörper hergestellt, indem man die Wirtszellen so lange kultiviert, bis der Antikörper in den Wirtszellen exprimiert oder vorzugsweise der Antikörper in das Kulturmedium, in dem die Wirtszellen wachsen, sekretiert wird. Die Antikörper können aus dem Kulturmedium gewonnen werden, indem man standardisierte Verfahren zur Aufreinigung von Proteinen verwendet.
Es können ebenfalls Wirtszellen verwendet werden, um Teile intakter Antikörper, wie Fab-Fragmente oder scFv-Moleküle, herzustellen. Variationen der zuvor beschriebenen Vorgehensweise gehören selbstverständlich zur Erfindung. Beispielsweise kann es wünschenswert sein, eine Wirtszelle mit DNA zu transfizieren, die entweder die leichte Kette oder die schwere Kette (aber nicht beide) eines erfindungsgemäßen Antikörpers kodiert. Sind leichte oder schwere Ketten vorhanden, die für die Bindung des interessierenden Antigens nicht erforderlich sind, so kann die DNA, die entweder eine solche leichte oder eine solche schwere Kette oder beide kodiert, mittels rekombinanter DNA- Technologie zum Teil oder vollständig entfernt werden. Moleküle, die von solchen ver- kürzten DNA-Molekülen exprimiert werden, gehören ebenfalls zu den erfindungsgemäßen Antikörpern. Darüber hinaus können bifunktionale Antikörper hergestellt werden, in denen eine schwere und eine leichte Kette ein erfindungsgemäßer Antikörper sind und die andere schwere und leichte Kette Spezifität für ein anderes als das interessierende Antigen besitzen, indem man einen erfindungsgemäßen Antikörper mit einem zweiten Antikörper mittels standardisierter chemischer Verfahren quervernetzt.
In einem bevorzugten System zur rekombinanten Expression eines erfindungsgemä- ßen Antikörpers oder Antigen-bindenden Teils davon wird ein rekombinanter Expressionsvektor, der sowohl die schwere Antikörperkette als auch die leichte Antikörperkette kodiert, mittels Calcium-Phosphat-vermittelter Transfektion in dhff-CHO-Zellen eingeführt. Innerhalb des rekombinanten Expressionsvektors sind die Gene für die schwere und leichte Antikörperkette jeweils mit regulatorischen CMV-Enhancer/AdMLP- Promotor-Elementen operativ verknüpft, um eine starke Transkription der Gene zu bewirken. Der rekombinante Expressionsvektor trägt auch ein DHFR-Gen, mit dem sich CHO-Zellen, die mit dem Vektor transfiziert sind, selektieren lassen, indem man die Methotrexat-Selektion/Amplification verwendet. Die selektierten transformierten Wirtszellen werden kultiviert, so dass die schweren und leichten Antikörperketten exprimiert werden, und intakter Antikörper wird aus dem Kulturmedium gewonnen. Man verwendet standardisierte molekularbiologische Techniken, um den rekombinanten Expressionsvektor herzustellen, die Wirtszellen zu transfizieren, die Transformanten zu selektieren, die Wirtszellen zu kultivieren und den Antikörper aus dem Kulturmedium zu gewinnen. So betrifft die Erfindung ein Verfahren zur Synthese eines erfindungsgemäßen rekombinanten Antikörpers, indem man eine erfindungsgemäße Wirtszelle in einem geeigneten Kulturmedium kultiviert, bis ein erfindungsgemäßer rekombinanter Antikörper synthetisiert ist. Das Verfahren kann des weiteren beinhalten, dass man den rekombinanten Antikörper aus dem Kulturmedium isoliert.
Alternativ zum Screenen rekombinanter Antikörperbänke durch Phage-Display können weitere, dem Fachmann bekannte Methoden zum Screenen großer kombinatorischer Bänke eingesetzt werden, um die erfindungsgemäßen Antikörper zu identifizieren. Bei einer Art eines alternativen Expressionssytems ist die rekombinante Antikörperbank in Form von RNA-Protein-Fusionen exprimiert, wie in WO 98/31700 von Szostak und Roberts, und in Roberts, R.W. und Szostak, J.W. (1997) Proc. Natl. Acad. Sei. USA 94:12297-12302 beschrieben. In diesem System erzeugt man durch in-vitro- Translation synthetischer mRNAs, die an ihrem 3'-Ende Puromycin, ein Peptidylakzep- tor-Antibiotikum, tragen, zwischen einer mRNA und dem Peptid oder Protein, das sie kodiert, eine kovalente Fusion. So kann eine spezifische mRNA aus einem komplexen Gemisch von mRNAs (z.B. einer kombinatorischen Bank) anhand der Eigenschaften des kodierten Peptids oder Proteins (z.B. des Antikörpers oder eines Teils davon) wie dem Binden des Antikörpers oder Teils davon an erfindungsgemäßes AGER-RME o- der AGER-CDP oder ein Derivat/Äquivalent davon angereichert werden. Antikörper oder Teile davon kodierende Nukleinsäuresequenzen, die aus dem Screenen solcher Bänke gewonnen werden, können mit rekombinanten Mitteln in der oben beschriebenen Weise exprimiert werden (z.B. in Säugerwirtszellen) und darüber hinaus einer weiteren Affinitätsreifung unterzogen werden, indem man entweder in weiteren Durchgängen mRNA-Peptid-Fusionen screent, wobei man in die ursprünglich selektierte(n) Se- quenz(en) Mutationen einführt, oder indem man andere Verfahren zur in-vitro- Affinitätsreifung rekombinanter Antikörper in der oben beschriebenen Weise verwendet.
Kombinationen aus in vivo- und in vitro-Ansätzen:
Die erfindungsgemäßen Antikörper können ebenfalls hergestellt werden, indem man eine Kombination aus in-vivo- und in-vitro-Ansätzen anwendet, wie Verfahren, in denen man zunächst erfindungsgemäßes AGER-RME oder AGER-CDP oder ein Derivat/Äquivalent davon auf ein Antikörper-Repertoire in vivo in einem Wirtstier einwirken lässt, um die Produktion von AGER-RME- oder AGER-CDP- oder Derivat/Äquivalentbindenden Antikörpern zu stimulieren, und anschließend die weitere Antikörperselektion und/oder Antikörperreifung (d.h. Optimierung) mit Hilfe einer oder mehrerer in-vitro- Techniken bewerkstelligt wird. Einer Ausführungsform zufolge kann ein solches kombiniertes Verfahren beinhalten, dass man zunächst ein nicht-humanes Tier (z.B. eine Maus, Ratte, Kaninchen, Huhn, Kamelide, Ziege oder eine transgene Version davon oder eine Chimäre Maus) mit dem erfindungsgemäßen AGER-RME oder AGER-CDP oder Derivat/Äquivalent davon immunisiert, um eine Antikörper-Antwort gegen das Antigen zu stimulieren, und anschließend unter Verwendung von Immunglobulinsequen- zen aus Lymphozyten, die durch die Einwirkung des AGER-RMEs oder AGER-CDPs oder Derivats/Äquivalents in vivo stimuliert worden sind, eine Phage-Display- Antikörperbank herstellt und screent. Der erste Schritt dieser kombinierten Vorgehensweise kann in der oben im Zusammenhang mit den in-vivo-Ansätzen beschriebenen Weise durchgeführt werden, während der zweite Schritt dieser Vorgehensweise in der oben in Zusammenhang mit den in-Vitro-Ansätzen beschriebenen Weise durchgeführt werden kann. Zu bevorzugten Methoden für die Hyperimmunisierung von nichthumanen Tieren mit anschließendem in-vitro-Screening von Phage-Display-Bänken, die aus den stimulierten Lymphozyten hergestellt wurden, gehören diejenigen, die von BioSite Inc., siehe z.B. WO 98/47343, WO 91/17271 , US-Patent Nr. 5,427,908 und US- Patent Nr. 5,580,717 beschrieben sind.
Einer weiteren Ausführungsform zufolge beinhaltet ein kombiniertes Verfahren, dass man zunächst ein nicht-humanes Tier (z.B. eine Maus, Ratte, Kaninchen, Huhn, Kamelide, Ziege oder eine Knockout- und/oder transgene Version davon, oder eine Chimäre Maus) mit einem erfindungsgemäßen AGER-RME oder AGER-CDP oder Deri- vat/Äquivalent davon immunisiert, um eine Antikörperantwort gegen das AGER-RME oder AGER-CDP oder Derivat/Äquivalent davon zu stimulieren, und die Lymphozyten, welche die Antikörper mit der gewünschten Spezifität produzieren, selektiert, indem man (z.B. aus den immunisierten Tieren hergestellte) Hybridome screent. Die Gene für die Antikörper oder Einzeldomän-Antikörper werden aus den selektierten Klonen isoliert (mittels standardisierter Klonierungsverfahren, wie der Reversen Transkriptase- Polymerasekettenreaktion) und einer in-vitro-Affinitätsreifung unterzogen, um dadurch die Bindungseigenschaften des selektierten Antikörpers oder der selektierten Antikörper zu verbessern. Der erste Schritt dieser Vorgehensweise kann in der oben in Zu- sammenhang mit den in-vivo-Ansätzen beschriebenen Weise vollzogen werden, während der zweite Schritt dieser Vorgehensweise in der oben in Zusammenhang mit den in-vitro-Ansätzen beschriebenen Weise vollzogen werden kann, insbesondere indem man Verfahren zur in-vitro-Affinitätsreifung verwendet, wie diejenigen, die in WO 97/29131 und WO 00/56772 beschrieben sind.
In einem weiteren kombinierten Verfahren werden die rekombinanten Antikörper aus einzelnen isolierten Lymphozyten erzeugt, indem man eine Vorgehensweise verwendet, die dem Fachmann als Lymphozyten-Antikörper-Selektionsverfahren (SLAM) bekannt und in US-Patent Nr. 5,627,052, WO 92/02551 und Babcock, J. S. et al. (1996) Proc. Natl. Acad. Sei. USA 93:7843-7848 beschrieben ist. In diesem Verfahren wird ein nicht-humanes Tier (z.B. eine Maus, Ratte, Kaninchen, Huhn, Kamelide, Ziege, oder eine transgene Version davon, oder eine Chimäre Maus) zunächst in vivo mit erfindungsgemäßem AGER-RME oder AGER-CDP oder einem Derivat/Äquivalent davon immunisiert, um eine Immunantwort gegen das AGER-RME oder AGER-CDP oder Derivat/Äquivalent zu stimulieren, und dann werden einzelne, interessierende Antikörper sekretierende Zellen selektiert, indem man einen antigenspezifischen hämolytischen Plaque-Assay verwendet. Hierzu können das AGER-RME oder AGER-CDP o- der Derivat/Äquivalent davon, oder interessierende strukturell verwandte Moleküle an Schaf-Erythrozyten gekoppelt werden, wobei man einen Linker wie Biotin verwendet, wodurch sich einzelne Zellen, die Antikörper mit geeigneter Spezifität sekretieren, unter Verwendung des hämolytischen Plaque-Assays identifizieren lassen. In Anschluss an die Identifizierung von Zellen, die interessierende Antikörper sekretieren, werden cDNAs für die variablen Regionen der leichten und schweren Ketten aus den Zellen durch Reverse Transkriptase-PCR gewonnen und diese variablen Regionen können dann in Zusammenhang mit geeigneten konstanten Immunglobulinregionen (z.B. humanen konstanten Regionen) in Säugerwirtszellen wie COS- oder CHO-Zellen expri- miert werden. Die mit den aus in vivo selektierten Lymphozyten abstammenden, ampli- fizierten Immungrobulinsequenzen transfizierten Wirtszellen können dann einer weiteren in-vitrn-Analyse und -Selektion unterzogen werden, indem man beispielsweise die transfizierten Zellen ausbreitet, um Zellen zu isolieren, die Antikörper mit der gewünschten Spezifität exprimieren. Die amplifizierten Immunglobulinsequenzen können des weiteren in vitro manipuliert werden.
6. Pharmazeutische Mittel
6.1 Allgemein
Gegenstand der vorliegenden Erfindung sind auch pharmazeutische Mittel (Zusam- mensetzungen), die als Wirkstoff ein erfindungsgemäßes Protein (AGER-RME oder AGER-CDP; AGER-RME- oder AGER-CDP-bindende Liganden, wie anti-AGER-RME oder anti-AGER-CDP-Antikörper, bispezifische Antikörper, Hybridproteine gemäß obiger Definition; AGER-Ektodomäne und N-terminale Subfragmente) oder eine kodierende AGER-RME-Nukleinsäuresequenz und gegebenenfalls einen pharmazeutisch ver- träglichen Träger beinhalten. Erfindungsgemäße pharmazeutische Zusammensetzungen können des weiteren wenigstens ein zusätzliches therapeutisches Agens, z. B. ein oder mehrere zusätzliche therapeutische Agenzien zur Behandlung einer der hierin beschriebenen Erkrankungen beinhalten.
Zu pharmazeutisch verträglichen Trägern gehören sämtliche Lösungsmittel, Dispersionsmedien, Überzüge, antimikrobielle Agenzien, isotonisierende und die Absorption verzögernde Agenzien, und dergleichen, sofern sie physiologisch kompatibel sind.
Zu pharmazeutisch akzeptablen Trägern gehören beispielsweise Wasser, Kochsalzlö- sung, Phosphat-gepufferte Kochsalzlösung, Lactose, Dextrose, Succrose, Sorbitol, Manitol, Stärken, Akaziengummi, Calciumphosphat, Alginate, Traganth, Gelantine, Calciumsilikat, mikrokristalline Cellulose, Polyvinylpyrrolidon, Cellulose, Wasser, Sirup und Methylcellulose. Ferner können die Formulierungen pharmazeutisch akzeptable Träger oder übliche Hilfsstoffe, wie Gleitmittel, beispielsweise Talg, Magnesiumstearat und Mineralöl; Netzmittel; emulgierende und suspendierende Mittel; konservierende Mittel, wie Methyl- und Propylhydroxybenzoate; Antioxidantien; Antireizstoffe; Chelat- bildner; Dragierhilfsmittel; Emulsionsstabilisatoren Filmbildner; Gelbildner; Geruchsmaskierungsmittel; Geschmackskorrigentien; Harze; Hydrokolloide; Lösemittel; Lösungsvermittler; Neutralisierungsmittel; Permeationsbeschleuniger; Pigmente; quater- näre Ammoniumverbindungen; Rückfettungs- und Überfettungsmittel; Salben-, Cremeoder Öl-Grundstoffe; Silikon-Derivate; Spreithilfsmittel; Stabilisatoren; Sterilanzien; Suppositoriengrundlagen; Tabletten-Hilfsstoffe, wie Bindemittel, Füllstoffe, Gleitmittel, Sprengmittel oder Überzüge; Treibmittel; Trocknungsmittel; Trübungsmittel; Verdickungsmittel; Wachse; Weichmacher; Weißöle umfassen. Eine diesbezügliche Ausges- taltung beruht auf fachmännischem Wissen, wie beispielsweise in Fiedler, HP., Lexikon der Hilfsstoffe für Pharmazie, Kosmetik und angrenzende Gebiete, 4. Auflage, Aulendorf: ECV-Editio-Kantor-Verlag, 1996, dargestellt ist. Vgl. auch Hager's Handbuch der Pharmazeutischen Praxis, Springer Verlag, Heidelberg.
Die pharmazeutischen Zusammensetzungen können beispielsweise zur parenteralen Verabreichung geeignet sein. Hierzu wird der Wirkstoff, wie z.B. der Antikörper, vorzugsweise als injizierbare Lösungen mit einem Wirkstoffgehalt von 0,1 - 250 mg/ml zubereitet. Die injizierbaren Lösungen können in flüssiger oder lyophilisierter Form in einem Flintglas oder Vial, einer Ampulle oder einer gefüllten Spritze als Dosierungsform zubereitet sein.
Der Puffer kann L-Histidin (1 - 50 mM, vorzugsweise 5 - 10 mM) enthalten und einen pH-Wert von 5,0 - 7,0, vorzugsweise von 6,0, aufweisen. Zu weiteren geeigneten Puf- fern gehören, ohne darauf beschränkt zu sein, Natriumsuccinat-, Natriumeitrat-, Natriumphosphat- oder Kaliumphosphat-Puffer.
Man kann Natriumchlorid verwenden, um die Tonizität der Lösung auf eine Konzentration von 0 - 300 mM (vorzugsweise 150 mM für eine flüssige Dosierungsform) einzu- stellen. Cryoschutzmittel können für eine lyophilisierte Dosierungsform mit einbezogen werden, wie z.B. Sucrose (z.B. 0 - 10 %, vorzugsweise 0,5 - 1 ,0 % (w/w)). Zu weiteren geeigneten Cryoschutzmitteln gehören Trehalose und Laktose. Füllstoffe können für eine lyophilisierte Dosierungsform mit einbezogen werden, z.B. Mannitol (z.B. 1 - 10 %, vorzugsweise 2 - 4 %(w/w)). Stabilisatoren können sowohl in flüssigen als auch lyophilisierten Dosierungsformen verwendet werden, z.B. L-Methionin (z.B. 51 - 50 mM, vorzugsweise 5 - 10 mM). Zu weiteren geeigneten Füllstoffen gehören Glycin und Arginin. Ebenso können Tenside verwendet werden, beispielsweise Polysorbat-80 (z.B. 0 - 0,05 %, vorzugsweise 0,005 - 0,01 %(w/w)). Zu weiteren Tensiden gehören Polysorbat-20 und BRIJ-Tenside.
Die erfindungsgemäßen Zusammensetzungen können eine Vielzahl von Formen annehmen. Zu diesen gehören flüssige, halbfeste und feste Dosierungsformen, wie flüssige Lösungen (z. B. injizierbare und infundierbare Lösungen, Lotionen, Augen- und Ohrentropfen), Liposome, Dispersionen oder Suspensionen und feste Formen, wie Pulver, Puder, Granulate, Tabletten, Pastillen, Sachets, Cachets, Dragees, Kapseln wie Hart- und Weichgelatinekapseln, Suppositorien oder vaginale Arzneiformen, halbfeste Arzneiformen, wie Salben, Cremes, Hydrogele, Pasten oder Pflaster. Auch implantierte Abgabevorrichtungen können zur Verabreichung erfindungsgemäßer Wirkstoffe verwendet werden. Die bevorzugte Form hängt von der beabsichtigten Verabrei- chungsart und der therapeutischen Anwendung ab. Typischerweise werden Zusammensetzungen in Form von injizierbaren oder infundierbaren Lösungen bevorzugt. Ein geeigneter Verabreichungsweg ist z.B. parenteral (z. B. intravenös, subkutan, intraperitoneal, intramuskulär). Gemäß einer bevorzugten Ausführungsform wird der Wirkstoff durch intravenöse Infusion oder Injektion verabreicht. Einer weiteren bevorzugten Ausführungsform zufolge wird der Wirkstoff durch intramuskuläre oder subkutane Injektion verabreicht.
Therapeutische Zusammensetzungen müssen typischerweise steril und unter den Herstellungs- und Lagerungsbedingungen stabil sein. Die Zusammensetzungen können als Lösung, Mikroemulsion, Dispersion, liposomal oder einer weiteren für hohe Wirkstoffkonzentrationen geeigneten, geordneten Struktur formuliert werden. Sterile injizierbare Lösungen können hergestellt werden, indem man die aktive Verbindung (wie z.B. den Antikörper) in der benötigten Menge in ein geeignetes Lösungsmittel ge- gebenenfalls mit einem oder einer Kombination der vorstehend genannten Inhaltsstoffe, je nach Bedarf, einbringt und anschließend steril filtriert. Dispersionen werden in der Regel zubereitet, indem man die aktive Verbindung in ein steriles Vehikel einbringt, welches ein Grunddispersionsmedium und gegebenenfalls weitere benötigte Inhaltsstoffe enthält. Im Falle eines sterilen lyophilisierten Pulvers zur Herstellung steriler inji- zierbarer Lösungen stellen die Vakuumtrocknung und Sprühtrocknung bevorzugte Herstellungsverfahren dar, mit denen ein Pulver des aktiven Inhaltsstoffes und gegebenenfalls weiterer erwünschter Inhaltsstoffe aus einer zuvor steril filtrierten Lösung erhalten wird. Die richtige Fliessfähigkeit einer Lösung kann beibehalten werden, indem man beispielsweise einen Überzug wie Lecithin verwendet, im Fall von Dispersionen die benötigte Partikelgröße beibehält oder Tenside verwendet. Eine verlängerte Absorption injizierbarer Zusammensetzungen kann erreicht werden, indem man ein Agens, das die Absorption verzögert, beispielsweise Monostearatsalze und Gelatine, in die Zusammensetzung mit einbringt.
Die erfindungsgemäßen Wirkstoffe können mit einer Vielzahl von Verfahren, die dem Fachmann bekannt sind, verabreicht werden, wenngleich für viele therapeutische Anwendungen die subkutane Injektion, intravenöse Injektion oder Infusion die bevorzugte Verabreichungsart darstellt. Der Fachmann weiß, dass Weg und/oder Art der Verabreichung vom gewünschten Resultat abhängen. Bestimmten Ausführungsformen zufolge kann die aktive Verbindung mit einem Träger zubereitet werden, der die Verbindung gegen rasche Freisetzung schützt, so zum Beispiel eine Formulierung mit kontrollierter Freisetzung, wozu Implantate, transdermale Pflaster und mikroverkapselte Abgabesysteme gehören. Es können biologisch abbaubare biokompatible Polymere verwendet werden, wie Ethylenvinylacetat, Polyanhydride, Polyglykolsäure, Collagen, Polyor- thoester und Polymilchsäure. Die Verfahren zur Zubereitung solcher Formulierungen sind dem Fachmann allgemein bekannt, siehe zum Beispiel Sυstained und Controlled Release Drug Delivery Systems, J. R. Robinson, ed., Marcel Dekker, Inc., New York, 1978.
Bestimmten Ausführungsformen zufolge kann ein erfindungsgemäßer Wirkstoff oral verabreicht werden, beispielsweise in einem inerten Verdünnungsmittel oder einem assimilierbaren essbaren Träger. Der Wirkstoff (und gewünschtenfalls weitere Inhaltsstoffe) können auch in einer Hart- oder Weichgelatinekapsel eingeschlossen, zu Tab- letten verpresst oder direkt der Nahrung zugesetzt werden. Für die orale therapeutische Verabreichung können die Wirkstoffe mit Exzipienten vermischt und in Form von schluckbaren Tabletten, Buccaltabletten, Kapseln, Elixieren, Suspensionen, Sirups und dergleichen verwendet werden. Soll ein erfindungsgemäßer Wirkstoffe über einen anderen als den parenteralen Weg verabreicht werden, kann es erforderlich sein, eine Beschichtung aus einem Material zu wählen, das seine Inaktivierung verhindert.
Die erfindungsgemäßen Wirkstoffe können zusammen mit einem oder mehreren zusätzlichen therapeutischen Agenzien verabreicht werden, die bei der Behandlung der zuvor beschriebenen Erkrankungen brauchbar sind.
Die pharmazeutischen Zusammensetzungen der vorliegenden Erfindung enthalten in der Regel eine therapeutisch wirksame Menge oder eine prophylaktisch wirksame Menge wenigstens eines erfindungsgemäßen Wirkstoffs. In Abhängigkeit von der gewünschten Behandlung, ob beispielsweise eine therapeutische oder prophylaktische Behandlung gewünscht ist, können Dosierungspläne gewählt und angepasst werden. Beispielsweise kann man eine Einzeldosis, mehrere getrennte Dosen über die Zeit verteilt oder eine ansteigende bzw. sinkende Dosierung je nach den Anforderungen der therapeutischen Situation verabreichen. Es ist insbesondere von Vorteil, parentale Zusammensetzungen in Einheitsdosierungsform zu formulieren, um die Verabreichung zu erleichtern und eine Gleichförmigkeit der Dosierung zu gewährleisten.
Der behandelnde Arzt kann die für die jeweilige Therapie und den jeweiligen Wirkstoff am meisten geeignete Darreichungsform, Art der Verabreichung und Dosierung ohne weiteres bestimmen.
Eine therapeutisch oder prophylaktisch wirksame Menge eines erfindungsgemäßen Wirkstoffs kann beispielsweise im Bereich von 0,1 - 20 mg/kg und vorzugsweise 1 - 10 mg/kg liegen, ohne darauf beschränkt zu sein. Natürlich können diese Mengen je nach Art und Schwere des zu lindernden Zustandes variieren. 6.2 Vakzine
Die erfindungsgemäßen AGER-RME oder AGER-CDP und Derivate/Äquivalente davon sind als Immunogen zur Vakzinierung eines zu behandelnden Patienten brauchbar.
Zu diesem Zweck brauchbare Vakzine stellen in der Regel eine pharmazeutische Zusammensetzung dar, die wenigstens ein erfindungsgemäßes AGER-RME und/oder AGER-CDP und/oder wenigstens ein erfindungsgemäßes Derivat/Äquivalent davon enthält. Ferner kann die Zusammensetzung einen physiologisch verträglichen Träger und gegebenenfalls weitere Hilfsstoffe, beispielsweise Immunstimulantien, enthalten.
Während geeignete Träger im Prinzip beliebig gewählt werden können, richtet sich die Art des Trägers in der Regel nach dem Verabreichungsweg. So können die erfin- dungsgemäßen Vakzine insbesondere in einer zur parenteralen, beispielsweise intravenösen, intramuskulären und subkutanen Verabreichung geeigneten Form formuliert werden. In diesen Fällen beinhaltet der Träger vorzugsweise Wasser, Kochsalzlösung, Alkohol, ein Fett, ein Wachs und/oder einen Puffer.
Es können beliebige einer Vielzahl von Immunstimulantien in den erfindungsgemäßen Vakzinen verwendet werden. Beispielsweise kann ein Adjuvans mit einbezogen werden. Die meisten Adjuvantien enthalten eine Substanz, die das Antigen vor einem raschen Abbau schützen sollen, wie Aluminiumhydroxid oder ein Mineralöl, sowie ein von Lipid A, aus Bortadella pertussis oder Mycobacterium tuberculosis abgeleitetes Protein. Geeignete Adjuvantien sind in der Regel kommerziell erhältlich, beispielsweise komplettes oder inkomplettes Freund-Adjuvans; AS-2; Aluminiumsalze, wie Aluminiumhydroxid (gegebenenfalls alas Gel) oder Aluminiumphosphat; Calcium-, Eisen- oder Zinksalze; eine unlösliche Suspension acylierten Tyrosins; acylierte Zucker; kationisch oder anionisch derivatisierte Polysaccharide; Polyphosphazene; biologisch abbaubare Mikrosphären; Monophosphoryl-Lipid A. Cytokine, wie GM-CSF oder lnterleukin-2, -7 oder -12 können ebenfalls als Adjuvantien verwendet werden.
7. Therapieverfahren
7.1 AGER assoziierte Erkrankungen
Erfindungsgemäß werden die Voraussetzungen für Diagnose und oder Therapie „AGER-assoziierter" Erkrankungen verbessert bzw. erstmals geschaffen. „Ager assio- ziierte" Erkrankungen sind insbesondere solche, die mit einer AGER/AGER-, AGER/Ligaπd-, AGER/Rezeptor- , AGER/Rezeptor/Ligand-, AGER/Rezeptor/Co- Rezeptor- und/oder AGER/Rezeptor/Counter-Rezeptor-Wechselwirkung assoziiert sind. „Ager-assoziierte" Erkrankungen können zudem durch eine vermehrte Expression oder sonstige Bildung von AGER oder AGER-Liganden charakterisiert sein.
Als AGER-assoziierte Erkrankungen sind insbesondere die folgenden in der WO 2004/016229 genannten und/oder in de,r Literatur beschriebenen Krankheiten zu nennen:
Amyloidosen, Krebs, Arthritis, Crohn'sche Erkrankung, chronische inflammatorische Erkrankungen, akute inflammatorische Erkrankungen (Schmidt AM et al: J Clin Invest. 2001 Oct;108(7):949-55.), kardiovaskuläre Erkrankungen, Diabetes, Diabeteskomplikationen (Yan SD et al: Eur J Clin Invest. 1997 Mar;27(3):179-81), Prion-assoziierte Erkrankungen (Sasaki N et al:Neurosci Lett. 2002 Jun 28;326(2):117-20), Vaskularitis, Nephropathien, Retinopathien und Neuropathien (Thornallev PJ.: Int Rev Neurobiol. 2002;50:37-57.). Alzheimer (Weldon DT et al: Geriatrics. 1997 Sep;52 Suppl 2:S13-6; Yan SD et al: Biochim Biophys Acta. 2000 JuI 26; 1502(1 ): 145-57), rheumatoide Arthritis, Osteoarthritis (Drinda S et aLRheumatol Int. 2004 Mar 26), Bowel Disease (Foell D et al:Gut. 2003 Jun;52(6):847-53), multiple Sklerose (Yan SS et al:Nat Med. 2003 Mar;9(3):287-93.), Psoriasis (Foell D et al: Rheumatology (Oxford). 2003 Nov;42(11): 1383-9.), Lupus (Tanji N et al:J Am Soc Nephral. 2000 Sep;11(9): 1656- 66.), Autoimmunerkrankungen im allgemeinen, Sepsis (Liliensiek B et al:J Clin Invest. 2004 Jun;113(11):1641-50), Arteriosklerose und Restenose (Schmidt AM et al: Circ Res. 1999 Mar 19;84(5):489-97.).
7.2 Therapieansätze
Erfindungsgemäße Therapieansätze basieren auf der modulierenden Wirkung wenigstens eines der oben genannten therapeutischen Agenzien auf eine mit der zu behan- delnden Erkrankung assoziierten Wechselwirkung des Typs: AGER/AGER, AGER/Ligand, AGER/Rezeptor, AGER/Rezeptor/Ligand, AGER/Rezeptor/Co-Rezeptor oder AGER/Rezeptor/Counter-Rezeptor.
Der bei der erfindungsgemäß durchgeführten Therapie zu beobachtende therapeuti- sehe Effekt kann dabei auf einer agonistischen, partiell agonistischen, antagonistischen oder invers agonistischen Wirkung auf wenigstens eine dieser Wechselwirkungen beruhen.
Insbesondere kann dabei die therapeutische Wirkung beruhen auf: a) der Induktion, teilweisen Hemmung oder vollständigen Unterbrechung eines Signalweges; und/oder b) der Bildung von durch den Körper besser eliminierbaren oder physiolo- gisch/pathophysiologisch unwirksamen Kompexstrukturen.
8. Diaqnostizierverfahren
Als diagnostische Agenzien sind erfindungsgemäß insbesondere AGER-RME und AGER-CDP und Derivate/Äquivalente gemäß obiger Definition sowie anti-AGER-RME und anti.AGER-CDP -Antikörper zu nennen.
Die vorliegende Erfindung ermöglicht daher insbesondere die verbesserte qualitative oder quantitative Bestimmung oben definierter Krankheitszustände durch Nachweis krankheitstypischer Antigene oder Antikörper.
Die Bestimmung erfolgt vorzugsweise mit immunologischen Methoden. Prinzipiell kann dies mit jedem analytischen bzw. diagnostischen Testverfahren erfolgen, bei dem Anti- körper eingesetzt werden. Hierzu gehören Agglutinations- und Präzipitations- Techniken, Immunoassays, immunhistochemische Verfahren und Immunoblot- Techniken, z.B. Western-Blotting oder Dot Blot-Verfahren. Auch in vivo-Verfahren gehören dazu, beispielsweise bildgebende Verfahren.
Von Vorteil ist der Einsatz in Immunoassays. Geeignet sind sowohl kompetitive Immunoassays, d.h. Antigen und markiertes Antigen (Tracer) konkurrieren um die Antikörperbindung, als auch Sandwich-Immunoassays, d.h. die Bindung spezifischer Antikörper an das Antigen wird mit einem zweiten, meist markierten Antikörper nachgewiesen. Diese Assays können sowohl homogen, d.h. ohne eine Trennung in feste und flüssige Phase, als auch heterogen sein, d.h. gebundene Markierungen werden von ungebundenen getrennt, beispielsweise über Festphasen-gebundene Antikörper. Die verschiedenen heterogenen und homogenen Immunoassay-Formate können je nach Markierung und Meßmethode bestimmten Klassen zugeordnet werden, beispielsweise RIAs (Radioimmunoassays), ELISA (Enzyme linked immunosorbent assay), FIA (Fluores- zenz-lmmunoassay), LIA (Lumineszenz-Immunoassay), TRFIA (zeitlich aufgelöster FIA), IMAC (Immunaktivierung), EMIT (Enzyme multiplied immune test), TIA (Turbodi- metrischer Immunoassay), I-PCR (Immuno-PCR). Zur erfindungsgemäßen Antigen-Bestimmung sind kompetitive Immunoassays bevorzugt. Dabei konkurriert markiertes Antigen (Tracer) mit dem zu quantifizierenden Antigen der Probe um die Bindung an den verwendeten Antikörper. Aus der Menge des verdrängten Tracers lässt sich mit Hilfe einer Standardkurve die Antigenmenge, sprich die Antigenmenge, in der Probe bestimmen.
Von den für diese Zwecke zur Verfügung stehenden Markierungen haben sich Enzyme als vorteilhaft erwiesen. Beispielsweise können Systeme auf Basis von Peroxidasen, insbesondere der Meerrettich-Peroxidase, der alkalischen Phosphatase und der ß-D- Galactosidase, verwendet werden. Für diese Enzyme stehen spezifische Substrate zur Verfügung, deren Umsetzung sich z.B. photometrisch verfolgen lässt. Geeignete Substratsysteme basieren auf p-Nitrophenylphosphat (p-NPP), 5-Brom-4-chlor-3- indolylphosphat/Nitroblau-Tetrazolium (BCIP/NPT), Fast-Red/Naphthol-AS-TS- Phosphat für die alkalische Phosphatase; 2,2-Azino-bis-(3-ethylbenzthiazolin-6- sulfonsäure) (ABTS), o-Phenylendiamin (OPT), 3,3',5,5'-Tetramethylbenzidin (TMB), o- Dianisidin, 5-Aminosalicylsäure, 3-Dimethylaminobenzoesäure (DMAB) und 3-Methyl- 2-benzothiazolinhydrazon (MBTH) für Peroxidasen; o-Nitrophenyl-ß-D-galactosid (o- NPG), p-Nitrophenyl-ß-D-Galactosid und 4-Methylumbelliphenyl-ß-D-galactosid (MUG) für die ß-D-Galactosidase. Diese Substratsysteme sind in vielen Fällen in gebrauchs- fertiger Form kommerziell erhältlich, beispielsweise in Form von Tabletten, die auch weitere Reagenzien, wie zweckmäßige Puffer und ähnliches enthalten können.
Die Kopplung von Markierungen an Peptide oder Antikörper zur Herstellung von Tracern kann in an sich bekannter Weise erfolgen. Darüber hinaus stehen eine Reihe zur Konjugation an Proteine zweckmäßig modifizierte Markierungen zur Verfügung, beispielsweise Biotin-, Avidin-, Extravidin- oder Streptavidin-konjugierte Enzyme, Malei- mid-aktivierte Enzyme und ähnliches. Diese Markierungen können direkt mit dem erfindungsgemäß zu verwendenden Molekül umgesetzt werden.
Wird ein heterogenes Immunoassay-Format gewählt, so kann der Antigen-Antikörper- Komplex zwecks Trennung beispielsweise über einen an den Träger gekoppelten anti- idiotypischen Antikörper, z.B. einen gegen Kaninchen-IgG gerichteten Antikörper, an den Träger gebunden werden. Träger, insbesondere Mikrotiterplatten, die mit entsprechenden Antikörpern beschichtet sind, sind bekannt und kommerziell erhältlich.
Ein weiterer Gegenstand der vorliegenden Erfindung sind Immunoassay-Sets mit wenigstens einem vorstehend beschriebenen Antikörper und weiteren Komponenten. Es handelt sich hierbei um eine Zusammenstellung, in der Regel als Verpackungseinheit, von Mitteln zur Durchführung einer erfindungsgemäßen AGER-Bestimmung. Zwecks möglichst einfacher Handhabung werden diese Mittel vorzugsweise im wesentlichen gebrauchsfertig bereitgestellt. Eine vorteilhafte Anordnung bietet den Immunoassay in Kit-Form an. Ein Kit umfasst in der Regel mehrere Behältnisse zur getrennten Anordnung von Komponenten. Alle Komponenten können in gebrauchsfertiger Verdünnung, als Konzentrat zum Verdünnen oder als Trockensubstanz oder Lyophilisat zum Lösen oder Suspendieren bereitgestellt werden; einzelne oder sämtliche Komponenten können eingefroren sein oder bei Umgebungstemperatur bis zum Gebrauch aufbewahrt werden. Seren sind vorzugsweise schockgefroren, beispielsweise bei -2O0C, so dass in diesen Fällen ein Immunoassay vor Gebrauch vorzugsweise bei Gefriertemperaturen zu halten ist.
Weitere, dem Immunoassay beigefügte Komponenten können sein: Standardprotein, Tracer; Kontrollserum, Mikrotiterplatten, vorzugsweise mit Antikörper beschichtet, Puffer, beispielsweise zum Testen, zum Waschen oder zur Umsetzung des Substrats, und das Enzymsubstrat selbst.
Allgemeine Prinzipien von Immunoassays und die Erzeugung und Verwendung von Antikörpern als Hilfsmittel in Labor und Klinik finden sich beispielsweise in Antibodies, A Laboratory Manual (Harlow, E., and Lane, D., Ed., CoId Spring Harbor Laboratory, CoId Spring Harbor, NY1 1988).
9. Screeninq-Verfahren
Gegenstand der Erfindung sind auch Verfahren zum Nachweis von Effektoren des AGER-Rezeptors, wobei man eine Probe, in der man einen Effektor vermutet, mit einem AGER-RME- oder AGER-CDP-Polypeptid inkubiert und den Ansatz auf die Bildung eines Effektor-AGER-RME oder -AGER-CDP-Komplexes untersucht.
Derartige Effektoren können eine agonistische, partiell agonistische, antagonistische oder invers agonistische Wirkung besitzen. Es können dies z.B. synthetische niedermolekulare Supstanzen, synthetische Peptide, natürliche oder synthetische Antikörpermoleküle oder Naturstoffe sein.
Solche erfindungsgemäßen Verfahren werden in der Regel als in wϊro-Screening- Verfahren durchgeführt, mit denen man aus einer Vielzahl verschiedener Substanzen diejenigen auslesen kann, die im Hinblick auf eine künftige Anwendung am aussichtsreichsten zu sein scheinen. Beispielsweise können mittels kombinatorischer Chemie umfangreiche Stoffbanken angelegt werden, die eine Vielzahl potentieller Wirkstoffe umfassen. Das Durchmustern kombinatorischer Substanzbibliotheken nach Stoffen mit gewünschter Aktivität ist automatisierbar. Screening-Roboter dienen der effizienten Auswertung der vorzugsweise auf Mikrotiterplatten angeordneten Einzelassays. So betrifft die vorliegende Erfindung auch Screening-Verfahren, d.h. sowohl Primär- als auch Sekundärscreening- Verfahren, bei denen vorzugsweise wenigstens eines der nachfolgend beschriebenen Verfahren zur Anwendung kommt. Kommen mehrere Verfahren zur Anwendung, so kann das zeitlich versetzt oder gleichzeitig an ein und derselben Probe oder an ver- schiedenen Proben einer zu untersuchenden Substanz geschehen.
Eine effektive Technologie zur Durchführung derartiger Verfahren ist der im Bereich des Wirkstoffscreenings bekannte Scintillation Proximity Assay, kurz SPA genannt. Kits und Komponenten zur Durchführung dieses Assays können kommerziell bezogen wer- den, beispielweise bei Amersham Pharmacia Biotech. Im Prinzip werden solubilisierte oder membrangebundene Rezeptoren auf Szintillationssubstanz enthaltenden, kleinen Fluoromikrosphären immobilisert. Bindet beispielsweise ein Radioligand an die immobilisierten Rezeptoren, so wird die Szintillationssubstanz zur Lichtemission angeregt, da die räumliche Nähe zwischen Szintillationssubstanz und Radioligand gegeben ist.
Eine weitere effektive Technologie zur Durchführung derartiger Verfahren ist die im Bereich des Wirkstoffscreenings bekannte FlashPlateR-Technologie. Kits und Komponenten zur Durchführung dieses Assays können kommerziell bezogen werden, beispielweise bei NEN Life Science Products. Dieses Prinzip basiert ebenfalls auf Mikroti- terplatten (96er oder 384er), die mit Scintillationssubstanz beschichtet sind.
Screeningverfahren unter Verwendung des hierin beschriebenen Actin Cytoskeletal Rearrangement (ACR) Assays sind ebenfalls anwendbar.
Die nach diesen Verfahren identifizierbaren Substanzen oder Teile aus Substanzgemischen sind ebenfalls Gegenstand der vorliegenden Erfindung.
Die Erfindung wird nun unter Bezugnahme auf folgende nichtlimitierende Herstellungsund Anwendungsbeispiele näher erläutert
Experimenteller Teil
I. Allgemeine Angaben a) Bestandteile von Kulturmedien
RPMI-Glutamax (lnvitrogen, Carlsbad, USA) Geneticin (G418); (Antibiotikum; Selektionsmarker) (Invitrogen) Fetal Bovine Serum (FBS) Dialyzed, (Invitrogen) Antibiotic-Antimycotic (Invitrogen) Zeocin (Antibiotikum; Selektionsmarker) (Invitrogen) LIPOFECTAMINE (Invitrogen)
b) Zellen
Menschliche embryonale Nierenzellen (HEK293) (ATCC = American Tissue Culture Collection, Bestellnr.: CRL-1573) wurden mit Rho (HEK293-RhoA) oder mit Rho in Kombination mit dem Rezeptorkomplex NgR/p75 (HEK293-RhoA/NgR/p75) stabil transfiziert. Die Zellen wurden in RPMI-Glutamax Medium, ergänzt mit 5 % hitzeinaktiviertem fötalem Rinderserum (FBS), HEPES (10 mM), Penicillin (100 U/ml), Strepto- mycin (100 mM) und entweder Neomycin (HEK293-RhoA) oder Neomycin in Kombination mit Zeocin (HEK293-RhoA/NgR/p75), gehalten.
c) Reagenzien
d) Allgemeine Testmethoden
1 ) ACR-Assay mit Immunofluoreszenz-Messung: 1 x 104 Zellen wurden in Mikrotiterplatten mit 96 Vertiefungen zwei Tage vor der Stimulierung überimpft. Die Stimulation der Zellen erfolgte mit einem geeigneten Reagens (z.B. LPA oder AP-Nogo-66) in Kulturmedium (RPMI-Glutamax) enthaltend 5% FCS. Nach einer 5- bis 10-minütigen Stimulationsperiode wurde die Aktivierung mit kalter PBS unterbrochen. Die Zellen wurden mit 3 - 4 %-iger Paraformaldehydlösung fixiert, mit PBS, enthaltend 0,2 % Triton X-100 permeabilisiert und 30 - 45 Minuten mit Phal- loidin Alexa 568 oder 488 inkubiert. Zusätzlich erfolgte eine 5 minütige Inkubation mit DAPI zur Kernfärbung. Die Zellen wurden mit hilfe eines Epifluoreszenzmikroskops (Axiovert 25) visualisiert. Fluoreszenzmikrogramme wurden mit einer gekühlten CCD Kamera von Zeiss aufgenommen.
2) FACS Analyse
Reagenzien:
Durchführung:
Zunächst wurden die HEK293-Zellen mit PBS gewaschen. Adhärente Zellen wurden mit PBS, enthaltend 5 mM EDTA abgelöst. Anschließend wurden 2 x 106 Zellen in ein Eppendorff-Gefäß überführt und 2 Minuten bei 1300 Upm zentrifugiert. Die Zellen wurden in PBS, enthaltend 1 % BSA (1 ml/Gefäß) resuspendiert und 2 Minuten bei 1300 Upm zentrifugiert.
Die Pellets wurden erneut mit 0,1 ml PBS/1 % BSA einschließlich Primärantikörper (Maus-anti-Human p75 1 :100, oder Ziege-anti-Human NogoR 1 :50) resuspendiert und 90 Minuten bei 4°C inkubiert. Anschließend gab man 0,1 ml PBS/1 % BSA hinzu, mischte und zentrifugierte 2 Minuten bei 1300 Upm. Die Pellets wurden in PBS, enthaltend 1 % BSA (0,1 ml/Gefäß) und Sekundärantikörper (anti-Maus-FITC 1 :100; oder anti-Ziege-FITC 1:100); resuspendiert und 60 Minuten bei 4°C inkubiert.
Man gab PBS, enthaltend 1 % BSA (1 ml/Gefäß) hinzu, mischte und zentrifugierte 2 Minuten bei 1300 Upm. Nach Abzentrifugation wurden die Pellets erneut in PBS/ 0,1 % Propidiumjodid zur Detektion toter Zellen resuspendiert. Nach Resuspendieren erfolgte eine FACS-Analyse (FACScan, Firma Becton Dickinson, Heidelberg, Deutschland).
II. Herstellunqsbeispiele
Herstellungsbeispiel 1: Herstellung von AP-Nogo66
a) Klonierung des Nogo66 Fragments von hNogoA
Es wurde ausgegangen von der publizierten hNogoA Sequenz (NCBI): AF148537. Die beiden folgenden synthetischen Oligonukleotide wurden von der publizierten Sequenz abgeleitet:
Mez 402: GCCACCATO4GGATATACAAGGGTGTGATCC (SEQ ID NO:9); Oligo ab Aminosäure R1055 (kursiv) mit Start ATG (unterstrichen) und Kozak Sequenz (fett)
Mez 404: CTTCAGAGAATCAACTAAATCATC (SEQ ID NO: 10); Oligo bis Aminosäure K1120 (fett)
Mit diesen beiden Oligos wurde in frontal cortex cDNA als Template (hergestellt mit Superscript first Strand synthesis system for RT-PCR; lnvitrogen, Carlsbad, CA) (Novak et al., Brain Res. Mol. Brain, 2002, 107(2): 183-189) eine PCR durchgeführt. Die Reaktion wurde nach Standardmethode, wie Innis et al. (PCR Protocols. A Guide to Meth- ods and Applications, Academic Press (1990)) mit Herculase (Stratagene, La JoIIa, USA), durchgeführt. Das erhaltene DNA Fragment mit einer Grosse von 207 bp wurde mit dem QIAEX Il Gel Extraction Kit (QIAGEN GmbH, Hilden, Germany) nach Angaben des Herstellers gereinigt. Das amplifizierte, gereinigte Fragment wurde in pcDNA3.1V5-His TOPO (pcDNA3.1/V5-His TOPO TA Expression Kit, #K4800-01) ge- setzt. Mit dem so erhaltenen Konstrukt pcDNA3.1V5-His hNOGO66 wurden E.coli TOP10 Zellen (lnvitrogen, Carlsbad, CA) nach Standardmethoden wie in Sambrook et al. (Molecular Cloning. A Laboratory Manual, CoId Spring Harbor, (1989)) beschrieben, transformiert. Eine Selektion auf Plasmid tragende Zellen wurde durch das Antibiotikum Ampicillin erreicht.
Die Identifikation von neun Klonen mittels PCR zeigte bei drei Klonen eine Bande in der richtigen Größe von 207 bp. Die Richtigkeit der Sequenz wurde durch Sequenzanalyse überprüft.
Die kodierende Nogo66-Sequenz wurde mit Xbal aus obigem Plasmid pcDNA3.1V5- His hNOGO66 herausgeschnitten und in das Plasmid pAP-tag5 (GenHunter Coopera- tion, Nashville, TN1 USA) über Xbal einkloniert. Man erhält das Plasmid pAP- tag5/PPC/hNOGO66 Nr.5. (SEQ ID NO:11 ) dargestellt in Figur 2.
b) Herstellung der stabilen Zelllinie:
HEK293 Zellen wurden in Wachstumsmedium (DMEM mit 10% fötalem Rinderserum unter Zusatz von Penicillin/Streptomycin) bei 37°C und 5% CO2 kultiviert. Für die Transfektion wurden die Zellen in Platten mit 6 Kavitäten (1x 106 pro Well) ausgesät und über Nacht inkubiert. Die Zellen wurden mit einem Cocktail, der 1μg Plasmid DNA (pAP-tag5/PPC/hNOGO66 Nr.5) und 3μl Fugeneθ (ROCHE Diagnostics, Mannheim) enthielt, nach Angaben der Herstellers transfiziert. Zwei Tage später wurden die Zellen durch Behandlung mit Trypsin abgelöst, in eine Zellkulturflasche mit 175cm2 Grundfläche überführt und die Selektion durch Zugabe von 150μg/ml Zeocin in Wachstumsmedium gestartet. Heranwachsende Zeocin-resistente Zellkolonien wurden nach etwa 4 Wochen mit Trypsin abgelöst und mit einem Zellsorter in 96-well Platten vereinzelt. Nach etwa drei Wochen wurde ein Aliqout des Mediumüberstands der herangewachsenen Einzellzellkolonien, deren Konfluenz zu diesem Zeitpunkt zwischen 5 und 85% abgeschätzt wurde, auf Nitrozellulose pipettiert. Durch Zugabe einer Lösung von NBT (Nitroblau-Tetrazoliumsalz) und BCIP (5-Brom-4-chlor-3-indolylphosphat) wurde die Proteinexpression über die Aktivität der Alkalischen Phosphatase anhand der entste- henden Färbung nachgeweisen.
c) Expression von AP-Nogo66:
Ein HEK293 Klon (Klon Nr. 5), welcher AP-Nogo66 produziert, wurde in Kulturmedium (RPMI Glutamax +10% FCS, 150 μg/ml Zeocin, Antibiotic / Antimycotic) durch mehrmalige Passage (ca. 20) in Kulturflaschen vermehrt. Die AP-Nogo66 Expression wurde nach jeder zweiten oder dritten Passage im Dot Blot Test (mit NBT/BCIP Reagens) überprüft. Um AP-Nogo66 in Serum-freiem Medium zu produzieren wurden die Zelle zunächst bis fast zur Konfluenz in Triple-Flasks kultiviert, dann erfolgte ein Mediumwechsel zu Expressionsmedium (Pro293a - CDM Medium (Biowhittaker; # 12-764Q),2mM Glutamin, Antibiotic / Antimycotic). Daraufhin wurden die Zellen 3 - 4 Tage bei 37 °C kultiviert, die Überstände wurden abgenommen und abzentrifugiert (1500 Upm, 5 min). Die Überstände wurden bei -800C gesammelt. Zur weiteren Verarbeitung wurden sie aufgetaut, mit Proteinaseinhibitoren (PMSF 0,1mM, Pefabloc SC 1mM) versetzt und in Amicon Tubes (Millipore) aufkonzentriert und die AP-Nogo66 Konzentration wurde bestimmt (ca. 3 μg/ml) (Mw von monomerer AP: 67 kDa und monomerem AP-Nogo66 etwa. 75 kDa in SDS Gelen).
Der AP-Nogo66-Pool wurde mit anti-AP-Agarose immunopräzipitiert. Das Präzipitat wurde durch 10-minütiges Erhitzen bei 950C in Gegenwart von 5% Mercaptoethanol denaturiert und so von den Agarose Beads entfernt, schließlich durch Westen-Analyse mittels Antikörpern mit Spezifität für AP und Nogo66 verifiziert. Durch Gelchromatographie (Superose 12, Amersham Biosciences. Laufmittel: 20 mM Natriumphosphat, 140 mM Natriumchlorid, pH 7.4) wurde bestimmt, dass AP-Nogo66 als Dimer läuft und ein Mw von etwa 140 kDa aufweist. In Vorversuchen wurde festgestellt, dass AP- Nogo66, nicht aber GST-Nogo66 funktionell aktiv war. Es wird daher vermutet, dass NgR-Liganden womöglich als Dimer vorliegen müssen, um funtionell zu sein. Wie die Kristallstruktur der Alkalischen Phosphatase zeigt, wird die Dimerisierung vom AP-Tag induziert (Versuche nicht gezeigt).
Herstellungsbeispiel 2: Herstellung von rekombinanten HEK-Zelllinien zur Durch- führung des funktionellen Aktin Cytoskeletal Rearrangement (ACR) Assay
1. Herstellung der erforderlichen Konstrukte
a) Klonierung von hp75; Herstellung von pcDNA3.1(V5-His)hp75 Nr.16 (Fig. 3d)
Es wurde von den publizierten Sequenzen für humanes p75 ausgegangen: NM_002507; M 14764 (die beide 100% identisch sind). Die folgenden Oligonukleotide wurden von der publizierten Sequenz abgeleitet:
Mey 36: GCC/ACCATGGGGGCAGGTGCCACC (SEQ ID NO: 13) ; Oligo mit Start- Codon (fett) mit Kozak Sequenz (kursiv) Mey 35: TCACACTGGGGATGTGGCAG (SEQ ID. N0:12); Oligo mit Stop Codon (fett) ein Basenaustausch T statt C (unterstrichen) da das Oligo von der publizierten Ratten Sequenz abgeleitet ist
Mey 71 : GCAGCCCCATCAGTCCGC (SEQ ID NO:14); Oligo beginnend 64 Basenpaare vor Start ATG
Anschließend wurde eine PCR (analog zu Nogo 66 Klonierung, Beispiel 1 ) mit dem Primerpaar Mey 35/71 in cDNA aus der Zelllinie SH-SY5Y (humane Neuroblastomazel- linie ATCC # CRL-2266) durchgeführt. Die PCR mit Mey35/71 lieferte ein 1348 bp Fragment. Dieses wurde gereinigt.
Eine anschließende PCR mit dem Primerpaar Mey 35/36 im Mey 35/71 -Fragment ergab eine deutliche Bande (Fragmentgröße: 1284 bp). Diese wurde gereinigt. Dann wurde diese Bande in pcDNA3.1/V5-His TOPO Vector (SEQ ID NO:15) (pcDNA3.1(V5- HiS)TOPO TA Expression Kit lnvitrogen #K4800-01 ) ungeschnitten eingesetzt (Prinzip Topoisomerase) Mit dem so erhaltenen Konstrukt (pcDNA3.1 hp75) wurden TOP10 Zellen nach Standardmethoden (analog zu Nogo 66 Klonierung, Beispiel 1 ) transformiert.
13 Klone dieser Transformation wurden überprüft und vier Klone mit der richtigen Orientierung ( Nr.13, 15, 16 und 18) konnten identifiziert werden. Klon Nr16 wurde weiter verwendet. Die Sequenz des enthaltenen Konstruktes (pcDNA3.1(V5-His)hp75 Nr.16 ; vgl. auch Figur 3d)ist in SEQ ID NO: 16 dargestellt. Weitere Informationen zu dieser Sequenz sind im folgenden Abschnitt zusammengefasst.
Human p75 start: 40 stop: 1320
Neomycin start:2596 stop:3390
Ampicillin start:4897 stop:5757 compl. Bgh pA start: 1487 stop: 1701
SV40 pA start:3416 stop:3654
His tag start:1441 stop:1458
Vδ Epitope start: 1397 stop: 1438
F1 ori start: 1764 stop:2177 SV40 promoter + ori start:2242 stop:2567 pUC ori start:4086 stop:4759
b) Herstellung von pIRES hp75 Plasmid pIRES (Clontech, PaIo Alto, USA) wurde mit Xba I und Not I (Roche Di- agnostics) unter Verwendung eines Restriktionsansatzes (40 μl;1 ,5 h bei 37 0C) enthaltend 5 μg DNA, 2 μl Xba I1 2 μl Not I, 4 μl 10x Puffer H (Roche) und 32 μl Wasser bi- dest. geschnitten: Das ausgeschnittene Fragment wurde mit Hilfe des Qiagen Ge- lextraktionskit aus einem DNA-Gel in herkömmlicher Weise gewonnen.
Plasmid pcDNA3.1 hp75, hergestellt wie oben beschrieben, wurde mit Spe I und und Not I (Roche Diagnostics) unter Verwendung eines Restriktionsansatzes (40 μl;1 ,5 h bei 37 0C) enthaltend 5 μg DNA, 2 μl Spe I, 2 μl Not I, 4 μl 10x Puffer H (Roche), 32 μl Wasser bidest geschnitten. Das ausgeschnittene Fragment wurde mit Hilfe des Qiagen Gelextraktionskit aus einem DNA-Gel in herkömmlicher Weise gewonnen.
Die auf diese Weise hergestellten Restriktionsfragmente wurden unter Verwendung des folgenden Ansatzes über Nacht bei 16 0C ligiert: 5 μl hp75-Konstrukt, 2 μl ge- schnittener pIRES, 1 ,5 μl T4-DNA Ligase (Roche) 3 μl 10x Puffer T4 (Roche), 20,5 μl Wasser bidest. Diese Ligation mit der Bezeichnung pIRES hp75 wurde dann in den Bakterienstamm SuperComp XL2 Blue (Stratagene) transformiert.
c) Herstellung von pIRES hNgR hp75 (Fig. 3a)
pcDNA hNgR CDS1 , kommerziell erworben von RZPD (Deutsches Resourcenzentrum für Genomforschung GmbH, Klon. Nr.: IRAL-p962L1427Q2), enthaltend die kodierende Sequenz für humanen Nogo-Rezeptor (hNgR), wurde unter Verwendung eines Restriktionsansatzes 13 μl;1 h bei 37 0C) enthaltend 5 μg DNA, 1 ,5 μl Hind IM (Roche), 1 ,5 μl 10x Puffer B (Roche) und 10 μl Wasser bidest. verdaut (blunt end). Das ausgeschnittene Fragment wurde mit Hilfe des Qiagen Gelextraktionskit aus einem DNA-Gel in herkömmlicher Weise gewonnen.
Zum Auffüllen der Enden wurden 20 μl des geschnittenes pcDNA hNgR CDS1- Konstrukt in einem Ansatz (100μl; 30 min 11 0C), enthaltend 2 μl T4-DNA Polymerase (Roche), 10 μl 10x Puffer T4 (Roche), 1 μl 100 mM DTT (Gibco), 10 μl 20 mM NTP Mix (Stratagene) und 77 μl Wasser bidest. inkubiert. Das T4-fill-in wurde mit Hilfe des Qiagen Gelextraktionskit aus einem DNA-Gel gewonnen.
Zur Dephosphorylierung, um eine Re-Ligierung der blunt ends zu vermeiden, wurden 50 μl des T4 fill-ins des hNgR CDS1-Konstrukt.es mit 2 μl Alkalische Phosphatase (Roche), 10 μl 10x Puffer (Roche) und 38 μl Wasser bidest. zunächst 30 min bei 37 0C und anschließend 15 min bei 65 0C inkubiert. Das so erhaltenen Dephosphorylie- rungskonstrukt wurde schließlich mit Qiagen Hit clean-up aufgereinigt. Das gereinigte pcDNA h NgR Hind Il blunt Fragment wurde dann mit EcoRI unter Verwendung eines Restriktionsansatzes (15 μl,1 h bei 37 0C), enthaltend 10 μl Eluat (aus Qiagen Hit clean-up), 1 ,5 μl EcoR I (Roche), 1 ,5 μl 10x Puffer H (Roche) und 2,0 μl Wasser bidest, verdaut und mit Hilfe des Qiagen Gelextraktionskit aus einem DNA-Gel nach Restriktion gewonnen.
pIRES hp75 (wie oben hergestellt) wurde mit EcoR I und Hind Hl unter Verwendung eines Restriktionsansatzes (27 μl, 1 ,5 h bei 37 0C), enthaltend 5 μg DNA, 1 ,5 μl EcoR I, 1 ,5 μl Hind III, 4 μl 10x Puffer H (Roche) und 20 μl Wasser bidest. geöffnet. Das gewünschte hP75 Fragment wurde mit Hilfe des Qiagen Gelextraktionskit aus einem DNA-Gel nach Restriktion gewonnen und mit dem oben hergestellten hNgR-Konstrukt unter Verwendung eines Ligationsansatzes, enthaltend 5 μNgR-Konstrukt, 2 μl geschnittener pIRES hp75, 1 ,5 μl T4-DNA Ligase (Roche), 3 μl 10x Puffer T4 (Roche) und 20,5 μl Wasser bidest. über Nacht 16 0C ligiert. Das erhaltene Konstrukt pIRES hNgR hp75 (Fig 3a; SEQ ID NO: 18) wurde dann in den Bakterienstamm SuperComp XL2 Blue (Stratagene) transformiert.
Weitere Sequenzinformationen zu pIRES hNgR hp75 sind in folgendem Abschnitt zu- sammengefasst:
CMV prom. 108 - 857
NOGO R 1202-2620
IRES 2658-3238 hp75 3294-4574
SV40pA 4648-4869 flori 4964-5419
Neo 5483-6856 amp 7261-8121 pUC ori 8266-93 compl
d) Herstellung von pcDNA4(mycHis)A hRhoA wt (Fig. 3c)
Das Plasmid pOTB7 RhoA (kommerziell erworben von RZPD, Deutsches Resourcen- Zentrum für Genomforschung GmbH, Klon. Nr.: IRAL-p962A174), das die kodierende Sequenz für humane RhoA GTPase enthält, wurde unter Verwendung des folgenden Restriktionsansatzes (25 μl, 1 ,5 h bei 37 0C), enthaltend 5 μg DNA, 1,5 μl EcoR I, 1 ,5 μl Xho I (Roche), 3 μl 10x Puffer H (Roche) und 19 μl Wasser bidest. verdaut. In einem zweiten Ansatz wurde pcDNA4(mycHis) (Invitrogen, Carlsbad, USA) unter Verwendung des folgenden Restriktionsansatzes (25 μl, 1,5 h bei 37 0C), enthaltend 5 μg DNA, 1,5 μl EcoR I, 1 ,5 μl Xho I (Roche), 3 μl 10x Puffer H (Roche) und 19 μl Wasser bidest. ebenfalls verdaut.
Anschließend wurden die geschnittenen Fragmente, wie oben beschrieben gereinigt und ligiert, wobei man das Plasmid pcDNA4(mycHis)A h RhoA wt (vgl. Fig. 3c; SEQ ID NO:21 ) erhält. Das erhaltene Konstrukt wurde dann in den Bakterienstamm Super- Comp XL2 Blue (Stratagene) transformiert.
Weitere Sequenzinformationen zu pcDNA4(mycHis)A hRhoA wt sind in folgendem Abschnitt zusammengefasst:
CMV prom. 197-851
RhoA 1058-1636
His 2437-2454 myc 2392-2421
Bgh pA 2480-2707
SV40 pA 4143-4273 flori 2753-3181 amp 5477-6334 compl. pUC ori 4656-5329
Zeo 3639-4010
EM7 prom. 3565-3620
SV40 prom. 3209-3517
d) Herstellung von pcDNA3 hRhoA wt (Fig. 3b)
Die Herstellung erfolgt in Analogie zu pcDNA4(mycHis)A hRhoA wt, wobei man aber anstelle von pcDNA4(mycHis) das oben bereits beschriebenen Plasmid pcDNA3.1V5- His TOPO verwendet.
Weitere Sequenzinformationen zu pcDNA3 hRhoA wt (vgl. Fig. 3b; SEQ ID NO:23) sind in folgendem Abschnitt zusammengefasst:
CMV prom. 6124-6778 h RhoA 127-705
Bgh pA 1478-1718
SV40 pA 3402-3597 SV40 ori 2259-2584
CoIEI ori 4141-4515 flori 1788-2201
Neo 2620-3411 amp 4919-5779 compl.
2. Generierung stabiler rekombinanter HEK Zelllinien
a) Herstellung der Doppel-Transfektante HEK293 NgR/p75
HEK293 Wildtyp- Zellen (kultiviert in RPMI -Glutamax + 10% dial. FCS + 1 % Antibiotic- Antimycotic) wurden in einem ersten Transfektionsschritt mit dem Plasmid pIRES hNgR hp75 transfiziert. Dazu wurden in Kulturschalen mit 10 Vertiefungen je Ansatz 2 μg Plasmid-DNA in 100 μl serumfreien RPMI-Gutamax Medium und 2 x 106 Zellen in 12 μl LIPOFECTAMINE in 100 μl serumfreien RPMI-Gutamax Medium vermischt, und 15 bis 20 Minuten bei Raumtemperatur inkubiert. Man füllte dann mit serumfreien Medium auf ein Gesamtvolumen von 1 ml je Transfektionsansatz auf. Anschließend gab man zu jeder Schale 2 ml serumfreies RPMI-Gutamax Medium und man inkubierte 6 h bei 37 0C. Dann erfolgte ein Mediumwechsel auf RPMI-Glutamax + 5% dialysiertes FCS und inkubierte 1 Tag bei 37 0C. Anschließend wurden die Schaleninhalte gesplit- tet (in unterschiedlichen Verdünnungen: 1 :10; 1 :50, 1 :100, 1 :250, 1 :500, 1 :1000; 1 Ansatz/ Schale pro Verdünnung ) (in RPMI-Glutamax + 10% dialysiertes FCS + 1 % Antibiotic-Antimycotic + G418; 800 μg/ml)
Klone wurden aus derjenigen Verdünnung isoliert, die die ersten separierten Klone ergab. Sterile Mini-Glaszylinder (BASF) wurden mit einer sterilen Pinzette mit einem Ende in sterile Vaseline (BASF) vorsichtig eingetaucht. Das mit der Vaseline benetzte Ende der Mini-Glaszylinder wurde auf die zuvor ausgewählten Einzelklone vorsichtig aufgesetzt. Der Einzelklon sollte vollständig vom Mini-Glaszylinder umschlossen sein. In die Mini-Glaszylinder wurden nun mit einer Eppendorf-Pipette mit steriler Spitze 40 μl Trypsin (Gibco, Trypsin-EDTA) zugegeben. Das Trypsin ließ man 1-2 Minuten auf die Zellen einwirken. Durch mehrmaliges (3-4 Mal) Anziehen und Abgeben des Trypsins mit einer Eppendorf-Pipette (sterile Spitze) wurden die Zellen resuspendiert. Die resuspendierten Zellen wurden mit der Eppendorf-Pipette vollständig vom Mini- Glaszylinder in eine 24-well Platte (Tissue culture plate, Falcon, Becton Dickinson, jedes well enthielt 1 ml Medium RPMI-Glutamax + 5% dialysiertes FCS) überführt. Der Nachweis von positiven Klonen erfolgte mittels FACS wie oben beschrieben. Dabei wurde die Überexpression der Rezeptoren NgR und p75 an der Zelloberfläche bestimmt (Ergebnisse nicht gezeigt).
b) Herstellung der Triple-Transfektante HEK293 RhoA/NgR/p75
Ein gemäß a) hergestellter positiver Klon (Klon 5) der Zelllinie HEK293 NgR/p75 wird in analoger Weise mit dem Plasmid pcDNA4(mycHis)A hRhoA transfiziert. Im letzten Schritt erfolgte eine Splittung der Ansätze in RPMI-Glutamax (+ 10% dialysiertes. FCS + 1% Antibiotic-Antimycotic + G418; 800 μg/ml, + Zeocin 125 μg/ml)
Zum Nachweis positiver Klone wurde diese durch Immunoblotting auf RhoA Expression und durch FACS Analyse auf Expression der Rezeptoren NgR und p75 getestet.
Zum RhoA-Nachweis wurde ein von dem jeweiligen Klon abgeleitetes Zellhomogenat durch SDS-PAGE-Gelelektrophorese (NuPAGE Polyacrylamid Gel 4-12%, 1 ,5 mm stark (Invitrogen Carlsbad, USA); die Proteinproben wurden mit 5% Mercaptoethanol denaturiert) aufgetrennt und nach Immunoblotting mit monoklonalem Maus-anti-RhoA Antikörper nach Standardmethode getestet. Ein typisches Ergebnis ist in Figur 4a dar- gestellt. Bei positiven Klonen beobachtet man eine RhoA-Bande mit einem Molekulargewicht von etwa 21 kD.
Zum Nachweis der Expression von NgR und p75 wurde eine FACS-Analyse wie oben beschrieben durchgeführt. Ein typisches Ergebnis ist in Figur 4b dargestellt.
Herstellungsbeispiel 3: Herstellung von rekombinantem humanem sRAGE Protein und N-terminal verkürztem sRAGE
a) Herstellung von sRAGE Protein (sRAGE 1-331 ) (SEQ ID NO:37)
Grundlage für die Expression und Aufreinigung von rekombinanten sRAGE Protein war die stabil mit dem Vektor pcDNA3 (-) 6.1 C HIS A transfizierte HEK 293 Zelllinie „293/6.1 sRAGE His 6".
Im Folgenden wird zunächst die Herstellung dieser Zelllinie beschrieben: Molekularbiologische Standardtechniken wurden gemäß Sambrook, J. and Russell D. (2001 ) MoIe- cular Cloning: A Laboratory Manual: 2nd. Edition, CoId Spring Harbor Press, NY durchgeführt. Gesamt-RNA aus Lymphozyten (PBL) wurde mit dem Superscript RT-PCR System (Invitrogen, Carlsbad, USA) revers transkribiert, um anschließend mit den Oligonukleo- tidprimem
RAGE-SE : CCG AAT TCC GGA AGCAGG ATG GCA GCC G (SEQ ID NO:25) und RAGE-AS: CCC TCG AGC CCC TCA AGG CCC TCA GTA CTA CT(SEQ ID NO:26)
die RAGE cDNA, wie sie in der Genbank Ref. Seq. Sequenz NM_001136 beschrieben ist, zu amplifizieren. Nach Gelaufreinigung mit dem QIAquick Gelextraction Kit (Qiagen GmbH, Hilden, Deutschland) wurde die cDNA mit den Restriktionsendonucleasen E- coR1 und Xhol geschnitten, um nach erneuter Gelaufreinigung in den ebenfalls Xhol/EcoR1 geschnittenen Vektor pcDNA 3 (Invitrogen, Carlsbad, USA) ligiert zu werden. Nach Transformation in E. coli XL-1 blue Zellen (Invitrogen, Carlsbad, USA) wurde ein positiver rekombinanter Klon amplifiziert, die Sequenz verifiziert und die Plasmid- DNA mit dem Plasmid Mini-Kit (Qiagen, Hilden, Deutschland) isoliert. Ausgehend von diesem Plasmid mit der Bezeichnung pcDNA3/RAGE 2.6 wurde mit den Primern
N-SE A: AGTAAC GGC CGC CAG TGT GCT GGA ATT CGG A (SEQ ID NO:27) und C-SE B: CCG GTA CCA CCT GCA GTT GGC CCC TCC TCG CC (SEQ ID NO:28)
die cDNA (Genbank Ref. Seq. Sequenz NM_001136 ) des löslichen RAGE (sRAGE) amplifiziert. Das PCR Produkt wurde mit EcoR1 und Kpn1 Restriktionsendunukleasen geschnitten und nach oben beschriebener Aufreinigung in den mit EcoR1/Kpn1 lineari- sierten Vektor ,,pcDNA3.1(-) Myc HIS" (Invitrogen, Carlsbad, USA) ligiert. Der so neu entstandene Plasmid-Vektor „pcDNA 3 (-) 6.1 C HIS A" wurde mit dem Transfektions- reagenz „Superfect" (Qiagen, Hilden, Deutschland) nach Angaben des Herstellers in HEK 293 transfiziert. Nach Selektion der „positiven" Zellen mit 800 μg/ml G418 in MEM Medium (#M4528, Sigma, München, Deutschland) + 10% FCS, 2 mM L-Glutamin, 100 U/ml Pennicillin/Streptavidin (Invitrogen, Carlsbad, USA) wurden serielle Verdünnungen der Zellsuspension hergestellt, so dass ausgehend von einem Einzelklon die Zelllinie „293/6.1 sRAGE His 6" identifiziert werden konnte.
Die Identität der sRAGE Expression und Sekretion des Proteins ins Kulturmedium wur- de im Western Blot mit RAGE-spezifischen Antikörpern (Santa Cruz; # sc5563) überprüft.
Zur Protein-Produktion wurde diese Zelllinie in 4 X 20 I Wannenstapel in serumhaltigen MEM (s.o.) angezogen. Die Zellen wurden dann in serumfreien Medium Pro293a-CDM (#12-764Q, BioWhittaker, Vervier, Belgien) bei 37 0C für 3 Tage kultiviert, bevor der Mediumüberstand abgenommen und über „Hemolflow F-Series High-Flux" Säulen (Fresenisus Medical Care AG1 Bad Homburg, Deutschland) auf 1400 ml aufkonzentriert wurde.
Die Proteinaufreinigung erfolgte über „Immobilized Metal Ion Affinity Chromatography (IMAC) und wurde von der Firma Diarect AG (Freiburg, Deutschland) durchgeführt. Als NiNTA Säulenmaterial wurde „chelating sepharose FF" (Amersham-Bioscience, Upsa- Ia, Schweden) eingesetzt. Äquilibrierung, Bindung an die Säulenmatrix und Aufreini- gung erfolgten gemäß den Herstellerangaben. Die Elution des Proteins erfolgte stufenweise mit steigenden Imidazol-Konzentrationen. Die verschiedenen Fraktionen wurden im Western Blot mit anti-HIS Antikörpern auf den Gehalt an sRAGE Protein überprüft. Das gereinigte sRAGE Protein (Genbank Ref. Seq. Sequenz NM_001136) elu- ierte spezifisch bei 250-500 rtiM Imidazol. Die so gewonnenen Fraktionen wurden ver- einigt, aufkonzentriert und dreimal gegen PBS dialysiert (2 x 4h, 1 x 16 h).
b) Herstellung von N-terminal verkürztem sRAGE (sRAGE 102-331 ) (SEQ ID NO:34) Ausgehend von dem Plasmid „pcDNA3/RAGE 2.6" (vgl. Herstellungsbeispiel 3a) wurde mit den Primern
„N-trunc Hindlll": CGA AGC TTG ATG AAC AGG AAT GGA AAG GAG ACCAAG
(SEQ ID NO:35) und
„N-trunc Xhol": TCC TCG AGC ACC TGC AGT TGG CCC CTC CTC GCC T (SEQ ID NO:36)
die cDNA der N-terminal verkürzten RAGE-Ektodomäne amplifiziert. Nach Gelaufreinigung mit dem QIAquick Gelextraction Kit (Qiagen GmbH, Hilden, Deutschland) wurde die cDNA mit den Restriktionsendonucleasen Hindlll und Xhol geschnitten, um nach erneuter Gelaufreinigung in den ebenfalls Hindlll/Xhol geschnittenen Vektor psecTAG 2A (Invitrogen, Carlsbad, USA) ligiert zu werden. Nach Transformation in E.coli „TOP10 One Shot" Zellen (Invitrogen, Carlsbad, USA) wurde ein positiver rekombinan- ter Klon amplifiziert, die Sequenz verifiziert und die Plasmid-DNA mit dem Plasmid Mi- ni-KFt (Qiagen, Hilden, Deutschland) isoliert.
Der so neu entstandene Plasmid-Vektor „psecTAG/N-C trunc sRAGEI" wurde mit dem „FreeStyle" Transfectionssystem (Invitrogen, Carlsbad, USA) nach Herstellerangaben exprimiert. Nach 96 Stunden wurden die Zellen abzentrifugiert und der serum-freie Überstand (60 ml) zur Proteinaufreinigung eingesetzt.
Die Proteinaufreinigung erfolgte über „Immobilized Metal Ion Affinity Chromatography (IMAC) durchgeführt. Als NiNTA Säulenmaterial wurde „NI-NTA-Superflow" (Qiagen,
Hilden, Deutschland) eingesetzt. Gemäß den Herstellerangaben erfolgte Äquilibrierung und Bindung an die Säulenmatrix. Die Elution des Proteins erfolgte im Elutionspuffer
[PBS, 160 mM NaCI, 150 mM Imidazol, pH 8.0]. Die verschiedenen Fraktionen wurden im PAGE auf den Gehalt an N-C truncated sRAGE Protein überprüft. Die ersten drei Fraktionen ä 250 μl wurden vereinigt, aufkonzentriert und gegen TBS dialysiert. Die endgültige Proteinkonzentration wurde photometrisch bestimmt.
Herstellungsbeispiel 4: sRAGE Peptidfragmente
Die folgenden Peptide wurden nach Standardmethoden der Peptidsynthese hergestellt:
NtermR31 : QNITARIGEPLVLKCKGAPKKPPQRLEWKLN (SEQ ID NO:6) NtermR13: CKGAPKKPPRQRLE (SEQ ID NO:3)
ScraNtermR31 : APLACPRELIKGKWEVKPKRNPKNQLTIGQL (SEQ ID NO:7) ScraNtermRI 3: GKPRAPKCLKPEQ (SEQ ID NO:8)
Herstellungsbeispiel 5: Herstellung von His-NogoR Fusionsprotein
Grundlage für die Expression und Aufreinigung von rekombinanten His-NogoR Fusi- onsprotein (Genbank:NM_023004) war die stabil mit dem Vektor „pcDNA4/hNogoR- TM6" transfizierte HEK 293 Zelllinie „CHO"
Im Folgenden wird zunächst die Herstellung dieser Zelllinie beschrieben: Molekularbiologische Standardtechniken wurden gemäß Sambrook and Rüssel (2001 ) durchge- führt.
Ausgangspunkt für die Herstellung des NgR-HIS Expressionsplasmids war der bei der RZPD GmbH (Berlin, Deutschland) käuflich erworbene cDNA Klon pOTB7 I- RALp962L1427Q2. Aus der Plasmid-DNA wurde mittels PCR unter Verwendung der Oligonukleotidprimern:
hNogoR Hind III: CCAAGCTTATGAAGAGGGCGTCCGCTGGAGGGAG (SEQ ID NO:29) hNogoR Eco Rl -TM: CCGAATTCTAGGGCACCTGAGCCTTCTGAGTCACC (SEQ ID NO:30)
die gewünschte kodierende Nukleotidsquenz amplifiziert.
Nach Gelaufreinigung mit dem QIAquick Gelextraction Kit (Qiagen GmbH, Hilden, Deutschland) wurde die cDNA mit den Restriktionsendonucleasen Hindill und EcoR1 geschnitten, um nach erneuter Gelaufreinigung in den ebenfalls Hindlll/EcoR1 geschnittenen Vektor pcDNA4/MycHIS A (Invitrogen, Carlsbad, USA) ligiert zu werden. Nach Transformation in E. coli Top10 One Shot Zellen (Invitrogen, Carlsbad, USA) wurde ein positiver rekombinanter Klon amplifiziert, die Sequenz verifiziert und die Plasmid-DNA mit dem Plasmid Mini-Kit (Qiagen, Hilden, Deutschland) isoliert.
Der so neu entstandene Plasmid-Vektor „pcDNA4/hNogoR-TM6" wurde mit dem Transfektionsreagenz „Fugene 6" (Roche, Mannheim, Deutschland) nach Angaben des
Herstellers in CHO-K1 transfiziert. Nach Selektion der „positiven" Zellen mit 800 μg/ml
G418 in MEM Medium (#M4528, Sigma, München, Deutschland) enthaltend 10% FCS,
2 mM L-Glutamin, 100 U/ml Pennicillin/Streptavidin (Invitrogen, Carlsbad, USA) wurden serielle Verdünnungen der Zellsuspension hergestellt, so dass ausgehend von einem Einzelklon die Zelllinie „CHO-K1/" identifiziert werden konnte.
Die Identität der Nogo-Rezeptor Expression und Sekretion des Proteins ins Kulturmedium wurde im Dot Blot mit anti-HIS spezifischen Antikörpern (#1922416, Roche, Mannheim, Deutschland) überprüft.
Der Zellklon wurde unter normalen Zellkulturbedingungen vermehrt und in einen Wannenstapel eingesät. Nach 21 Tagen des Wachstums unter FCS wurde das Medium durch frisches serumfreies Medium ersetzt. Nach 3 Tagen wurden 40 Liter serumfreier Zellkulturüberstand gewonnen. Dieser Überstand wurde mit Hilfe einer Fresenius He- moflow F60 auf 1 Liter konzentriert (Faktor 40). Anschließend wurden 50ml Ni-NTA- Superflow Beads (Qiagen, Hilden), welche mit PBS voräquilibriert waren, zu dem Konzentrat gegeben und bei 40C für 3 Stunden gerührt. Die Beads wurden durch Abstellen des Rührers sedimentiert (über Nacht bei 4°C), der Überstand wurde verworfen und die Ni-NTA Beads in eine Säule gefüllt. Die Beads wurden bei Raumtemperatur mit drei Säulenvolumen 2OmM Na-Phosphatpuffer, 30OmM NaCI pH8.0 gewaschen. Anschließende erfolgten Waschschritte mit 5 Säulenvolumen 2OmM Na-Phosphatpuffer, 30OmM NaCI, 1OmM Imidazole pHδ.O. Eluiert wurde der gebundene Hexa-His- getaggte NgR mit 2OmM Na-Phosphatpuffer, 30OmM NaCI, 10OmM Imidazole pH8.0. Das Eluat wurde über Nacht gegen 25mM Tris/HCI pH7.0 dialysiert.Das Dialysat wurde bei Raumtemperatur auf eine Q-Sepharose Säule (Amersham Biosciences, 1.6 x 3cm ; Volumen 6ml) gegeben. Anschließend wurde mit folgenden Puffern gearbeitet:
Puffer A : 5OmM Tris/HCI ; pH7.0; Puffer B : 5OmM Tris/HCI ; 1 M NaCI ; pH7.0
Mit einem Fluß von 2ml / min wurde mit folgendem Gradienten eluiert: 0% Puffer B für 5 Säulenvolumen; 0-50% Puffer B in 12 Säulenvolumen; 50-100% Puffer B in 2 Säulenvolumen, sowie 100% Puffer B in 5 Säulenvolumen.
Pro Säulenvolumen wurden zwei Fraktionen gewonnen. Diese wurden durch Standard SDS-Gelelektrophorese analysiert. Fraktionen mit der höchsten NgR-Reinheit wurden für den Anteil des hochglykosylierten Rezeptors (Molekulargewicht ca. 110.000- 120.000), sowie für den Anteil des niedrigglykosylierten Rezeptors (Molekulargewicht ca. 75.000-90.000) vereinigt. Die vereinigten Fraktionen wurden gegen 2OmM Na- Phosphatpuffer, 14OmM NaCI pH 7.4 bei 4°C über Nacht dialysiert. Die Dialysate wurden anschließend durch einen 0.2μm Sterilfilter filtriert und bei 40C aufbewahrt.
Herstellungsbeispiel 6: Herstellung eines monoklonalen Anti-NtermR31 Antikör- pers
Für die Erzeugung monoklonaler Antikörper gegen NtermR31 wurde die folgende Strategie gewählt. Als Immunogen wurde das Peptid an bovines Thyroglobulin (BTG1 Sig- ma, T-1001 ) konjugiert, welches Maleimidgruppen (abgeleitet von Sulfosuccinimidyl 4-(N-maleimidomethyl)-cyclohexan-1-carboxylat) trägt. Für die Detektion von erzeugten Anti-Peptid-Antikörpern wurde dasselbe Peptid, konjugiert an Rinderserumalbumin (BSA, Sigma, A-7906) welches ebenfalls Maleimidgruppen (abgeleitet von Succinimi- dyl-6-[(ß-maleimidopropionamido)hexanoat]) unterschiedlicher chemischer Struktur trägt. Die Konjugation des gleichen Peptids an zwei verschiedene hochmolekulare Träger über zwei verschiedene Vernetzer erlaubt die Selektion monoklonaler Antikörper mit Spezifität gegen das Peptid.
a) Herstellung des Immunisierungsantigens
NtermR31 wurde an BTG unter Verwendung des Sulfhydrylgruppen-reaktiven heterobi- funktioneilen Vernetzers Sulfosuccinimidyl 4-(N-maleimidomethyl)-cyclohexan-1- carboxylat (Sulfo-SMCC) konjugiert. Die Konjugation erfolgte unter Anwendung der folgenden zweistufigen Methode.
1. Maleylierung des Trägerproteins
4 mg Sulfo-SMCC in Wasser (10 mg/ml) wurden zu 2 ml der Trägerproteinlösung (10 mg/ml) in HEPES-gepufferter Kochsalzlösung (20 mM HEPES-Na, 150 mM NaCI, pH 7.5) bei 4°C gegeben. Das Reaktionsgemisch wurde 30 Minuten bei 40C und anschließend weitere 30 Minuten bei 25°C inkubiert. Nach Inkubation wurde das Reaktionsge- misch auf einer Säule mit Sephadex G-50 (1 ,5x14 cm), äquilibiert mit dem gleichen Puffer, entsalzt. Nach dem Entsalzen erhielt man 8 ml der maleylierten BTG-Lösung in einer Konzentration von 2,5 mg/ml.
2. Kupplung von maleyliertem BTG an das Peptid NtermR31
1 ,2 ml einer Lösung des Peptids NtermR31 (10 mg/ml) in HEPES-gepufferter Kochsalzlösung wurden zu 5 ml der maleylierten BTG-Lösung (2,5 mg/ml) im gleicher Puffer gegeben und 2 Stunden bei 40C und anschließend 4 Stunden bei Raumtemperatur inkubiert. Nicht umgesetzte Maleimidgruppen wurden mit 2-Mercaptoethanol in einer Endkonzentration von 10 mM und Inkubation über Nacht blockiert. Anschließend wurde gegen Phosphat-gepufferte Kochsalzlösung (PBS, 10 mM Natriumphosphat, 150 mM Natriumchlorid, pH 7.2) bei 4°C und viermaligem Pufferwechsel dialysiert (MW Aus- schluss 10.000).
b) Herstellung des ELISA-Antigens
Das Peptid NtermR31 wurde unter Verwendung des Sulfhydrylgruppen-reaktiven hete- robifunktionellen Vernetzers Succinimidyl-6-[(ß-maleimido-propionamido)hexanoat] (SMPH) an BSA konjugiert. Die Konjugation erfolgte nach folgender zweistufiger Me- thode.
1. Maleylierung des Trägerproteins 4 mg SMPH in Wasser (10 mg/ml) wurden zu 2 ml der Trägerproteinlösung (10 mg/ml) in HEPES-gepufferter Kochsalzlösung (20 mM HEPES-Na, 150 mM NaCI, pH 7,5) bei 4°C gegeben. Das Reaktionsgemisch wurde 30 Minuten bei 40C und anschließend weitere 30 Minuten bei 250C inkubiert. Nach Inkubation wurde das Reaktionsgemisch auf einer Säule mit Sephadex G-50 (1 ,5x14 cm), äquilibiert mit dem gleichen Puffer, entsalzt. Nach dem Entsalzen erhielt man 8 ml der maleylierten BSA-Lösung in einer Konzentration von 2,5 mg/ml.
2. Kupplung von maleyliertem BSA an NtermR31
1 ,2 ml einer Lösung des Peptids NtermR31 (10 mg/ml) in HEPES-gepufferter Kochsalzlösung wurden zu 5 ml der maleiylierten BSA-Lösung (2,5 mg/ml) im gleicher Puffer gegeben und 2 Stunden bei 4°C, und anschließend 4 Stunden bei Raumtemperatur inkubiert. Nicht umgesetzte Maleimidgruppen wurden mit 2- Mercaptoethanol in einer Endkonzentration von 10 mM und Inkubation über Nacht blockiert. Anschließend wurde gegen Phosphat-gepufferte Kochsalzlösung (PBS, 10 mM Natriumphosphat, 150 mM Natriumchlorid, pH 7.2) bei 4°C und viermaligem Pufferwechsel dialysiert (MW Ausschluss 10.000).
c) Immunisierung
5 Mäuse (8 Wochen alt) wurden durch Injektion mit 100 μg BTG-Peptidkonjugat, emul- giert in komplettem Freud'schen Adjuvans (Sigma, F-5881 ), behandelt. Die Injektion erfolgte in den Peritonealraum 90 Tage vor Fusion. Sämtliche anderen Injektionen wurden nach folgendem Schema in den Peritonealraum verabreicht. Inkomplettes Freud'sches Adjuvans von Sigma (Katalognummer F-5506) wurde verwendet.
d) Myelomzelllinie
Als Myelomzelllinie wurde SP2/0-Ag14 von der Deutschen Sammlung für Mikroorganismen und Zellkulturen verwendet. Die Zellen synthetisieren oder sezernieren keine Immunglobulinketten, sie sind resistent gegen Azaguanin (8-AZG, 20 μg/ml), wachsen nicht in HAT (Hypoxantin 10"4 M, Aminopterin 10"5 M und Thymidin 4x10'5 M)-Medium. Die SP2/0 Zellen wurden in Gewebekulturkolben in Standardkulturmedium (DMEM + 10% fötales Kälberserum (FCS) supplementiert mit 20 μg/ml 8-AZG, um HGPRT+ Re- vertanten abzutöten) kultiviert. Eine Woche vor der Fusion wurden die SP2/0 Zellen in Standardkulturmedium ohne 8-AZG gehalten.
e) Zellfusionierung und Plattierung
Drei Milzorgane von immunisierten Mäusen wurden aseptisch entfernt und zerkleinert. Einzelzellsuspensionen wurden daraus hergestellt. Die Milzlymphozyten wurden mit der SP2/0 Myelomzelllinie (Verhältnis: 5 Lymphozyten/1 SP2/0) in Gegenwart von Po- lyethylenglycol 3350 fusioniert. Die auf diese Weise produzierten Zellen wurden in DMEM, enthaltend HAT und 20% FCS resuspendiert. Die Zellen wurden in acht 96er Gewebekulturplatten (Corning Costar) ausplattiert, welche Zellen von Peritoneal- Exsudat als Feeder-Schicht enthielten. Die Platten wurden 10 Tage bei 37°C in feuchter Atmosphäre, enthaltend 5% Kohlendioxid, inkubiert. Während dieser Phase wurden die Zellen zweimal mit HAT Medium gefüttert.
Ein Teil der Milzzellsuspension wurde 10 Tage in einem T-Kolben kultiviert.
f) Screening Assay
Ein indirekter ELISA, ausgelegt für die Detektion von IgG, wurde für das Screening der Zellkulturüberstände eingesetzt. Die Tests wurden in flachbödigen Polystyrol- Mikrotiterplatten mit 96 Vertiefungen (Greiner, Cat.# 756071 ) wie folgt durchgeführt: 100 μl Aliquots einer Lösung aus 0,5 M Carbonat/Bicarbonatpuffer, pH 9,6, enthaltend 4 μg/ml BSA - NtermR31 Konjugat (bezogen auf BSA) wurde jeder Vertiefung der Platte zugegeben. Nach Inkubation über Nacht in einer Feuchtkammer bei 40C wurden die Platten viermal mit Tris-gepufferter Kochsalzlösung (TBS, 50 mM Tris, 500 mM NaCI, pH 7,8), enthaltend 0,01 % Triton X-100 (Waschpuffer) gewaschen und mit 200 μl/Vertiefung 2%iger Gelatine (aus Kaltwasserfisch-Haut, Sigma G-7765) in TBS (Blockierungspuffer) 1 Stunde bei Raumtemperatur (RT) blockiert. Die Platten wurden mit Waschpuffer gewaschen und 100 μl Zellkulturüberstand wurde den jeweiligen Vertie- fungen zugesetzt. Der Zellkulturüberstand von SP2/0 Myelomzellen wurde als negative Kontrolle verwendet. Der Splenozyten-Zellkulturüberstand wurde als positive Kontrolle verwendet.
Die Platten wurden 1 Stunde bei Raumtemperatur inkubiert. Nach mehreren Wasch- schritten wurden die ELISA-Platten mit Ziege-Anti-Maus IgG (Maus Fc-spezifisch), konjugiert mit alkalischer Phosphatase (Sigma, A-2429) (50 μl/Vertiefung, verdünnt in Blockierungspuffer, 1 :5000) 1 Stunde bei Raumtemperatur inkubiert. Nach einem weiteren Waschschritt wurde den Platten 150 μl/Vertiefung Subtratpuffer (2 mM 4- Nitrophenylphosphat (SIGMA, N3254) in 5% Diethanolamin + 0,5 mM MgCI2, pH 9,8) zugesetzt. Die Substratumsetzung wurde in einem 12-Kanal Dynex Opsys MR Mikro- plattenlesegerät bei einer Wellenlänge von 405 nm detektiert.
g) Selektion stabiler Antikörperproduzenten
Das Erstscreening wurde 10 Tage nach der Fusion durchgeführt. Zellen aus positiven IgG-produzierenden Vertiefungen wurden in Vertiefungen von Platten mit 24 Vertiefungen überführt und 4 Tage kultiviert. Ein ELISA für BSA-NtermR31 zur Bestimmung von Kulturen, welche den interessierenden Antikörper produzieren, wurde durchgeführt. Dieses Vermehrungsverfahren wurde zweimal nach 3 und nach 5 Tagen wiederholt. So wurde unter anderem ein anti-NtermR31 Ab mit der internen Bezeichnung „Clone 37" isoliert.
h) Cryokonservierung der Hybridomzellen
Ein Aliqot der jeweiligen Hybridome wurde in 1 ,0 ml Gefriermedium (90% (v/v) FCS, 10% (v/v) Dimethylsulfoxid) resuspendiert und in Gefriertuben überführt. Dann wurden die Gefäße sofort in eine Kühlkammer (Kühlrate 10C pro Minute) überführt. Nach Erreichen einer Temperatur von unter -600C wurden die Zellen in Flüssigstickstoff zur La- qerunq überführt. Hl. Ausführunqsbeispiele
Ausführungsbeispiel 1 : ELISA-Messung von Autoantikörpern gegen das N- terminale Peptid NtermR 31 von sRAGE in humanem Plasma
a) Materialien:
- Mikrotiterplatten: SigmaScreen; Streptavidin Coated Rate (Sigma, M-4058; 96- well (black));
- Nterm 31 (SEQ ID NO:6) (umfassend 31 N-terminale Aminosäuren des reifen RAGE ohne Leader-Peptid), biotinyliert von Fa. Thermo Electron GmbH; Ulm; OR183539/2), gelöst, 3,9 mg/ml; weiterverdünnt zur Anwendung auf 1 μg/ml in TBS, 0,1% Tween20; 0,1 % BSA - Waschpuffer: TBS 0,1 % Tween20
- TBS,Tris buffered Saline,: 20 mM Tris pH 7,4; 0,9% NaCI
- Substrat: 4-Nitrophenylphosphat: Fa. Roche; Nr. 726923; eine Tablette in 100 ml 100 mM Tris/HCI pH 9,8 gelöst
- Antikörper: o Ziege-Anti-Kaninchen IgG (whole molecule), konjugiert mit alkalischer
Phosphatase (AP-Conjugate); Fa. Sigma A-3812; Verdünnung im ELISA 1 :
5000 in TBS 0,1% Tween20; 0,1 % BSA o Ziege-Anti-Human IgG (Fc specific); konjugiert mit alkalischer Phosphatase
(AP-Conjugate); Fa. Sigma A-9544, Verdünnung im ELISA 1 : 5000 in TBS 0,1 % Tween20; 0,1 % BSA o Polyklonales Antiserum von Kaninchen, welches mehrfach mit dem Peptid immunisiert worden war = Anti-31 mer-8508; (Tier 6304), 20 ml vom
8.6.2004; versetzt mit 0,02% Thimerosal (Rabbit polyclonal AB 1 :500); Die
Immunisierung und Gewinnung des Serums wurden von der Firma Bio- Trend (Köln, Deutschland) durchgeführt. o Plasmen von Alzheimer Demenz (AD) Patienten wurden von Prof. Henn
(Zentralinstitut für die seelische Gesundheit, Mannheim) erhalten:
Non AD control; weiblich: Kontrollplasma;
Plasmen von Patienten: AP23 MCIF06.7 weiblich; LAP30 Alzheimer De- mentia weiblich 00.0 early onset; LAP39 MCI F06.7 weiblich; LAP45 MCI
F06.7 männlich; LAP53 MCI F06.7 weiblich; LAP60 Alzheimer Dementia Ia- te onset männlich.
Die Proben wurden weiterverdünnt im ELISA in TBS 0, 1 % Tween20; 0, 1 % BSA b) Versuchsdurchführung:
Je 100 μl des verdünnten NtermR31 Peptids wurde in jeden Napf der Mikrotiterplatte pipettiert. Anschließend wurde für 2 Stunden bei Raumtemperatur inkubiert. Der Überstand wurde verworfen, die Platten wurden je dreimal mit Waschpuffer gewaschen. Je 100 μl des Kaninchenserums (Positivkontrolle) oder der verschiedenen Plasmen wurden pro Napf in verschiedenen Verdünnungen für je 3 Stunden bei Raumtemperatur in den Platten inkubiert. Der Überstand wurde verworfen, die Platten wurden je dreimal mit Waschpuffer gewaschen. Anschließend wurden pro Napf je 100 μl der entsprechenden Enzym-markierten Antikörper (Anti-human für die humanen Plasmaproben; Anti-Kaninchen für das Kaninchen Antiserum) pipettiert und für 1 Stunde bei Raumtemperatur inkubiert. Dann wurde erneut je dreimal mit Waschpuffer gewaschen. Jeder Napf erhielt dann 100 μl der Substratlösung. Nach einer Entwicklungszeit von ca. 10 Minuten wurde die Enzymreaktion durch Zugabe von 50μl 1 M NaOH pro Napf gestoppt. Die Flüssigkeit aus den Näpfen wurde in eine durchsichtige Mikrotiterplatte (flexible plate; Fa. Falcon Nr. 353912) überführt. Die Absorption in den Näpfen der Mikrotiterplatte wurde in einem entsprechenden Photometer bei 405 nm gemessen.
c) Ergebnisse:
Im Serum des immuniserten Kaninchens waren Antikörper gegen das N-terminale Peptid mit Hilfe dieses ELISA nachweisbar (vgl. Figur 5). Der ELISA ist daher zum Nachweis von Antikörpern gegen das N-terminale Peptid NtermR31 von humanem RAGE geeignet.
Die mit verschiedenen Patientenseren erhaltene Ergebnisse sind in Figur 6 dargestellt. Gezeigt ist das Verhältnis der Absorptionswerte bei einer Verdünnung der Plasmen von 1 :3. In Plasma von Alzheimerpatienten mit einem frühen Ausbruch (early onset) zeigt sich eine Verdopplung der Reaktion. Dementsprechend sind in diesem Plasma deutlich mehr Antikörper gegen das N-terminale RAGE-Peptid NtermR31 nachzuweisen.
Ausführungsbeispiel 2: Charakterisierung des polyklonalen anti-NtermR31 Se- rums und eines monoklonalen anti-NtermR31 Antikörpers
a) Materialien
- Nitrocellulose-Membranen (0,45 μm Porengröße, # LC2001 , Firma: Invitrogen) Blockierungsreagenz (Roche Applied Science; # 1921673)
- NBT/BCIP Lösung (1 Tablette auf 10ml H2O; Roche Applied Science, # 1697 471 )
Protein/Peptidproben NtermR31 (s.o.)
ScraNtermR31 (s.o.)
ScraNtermR13 (s.o.)NtermR13 (s.o.)sRAGE-6xHIS (AA 23-352, NP_001127) human sRAGE/Fc (R&D Systems;#1145-RG; AA 1-344) human sRAGE/Fc (AA 1-130) mouse sRAGE (R&D Systems; # Custom03) rat sRAGE/Fc (R&D Systems; #1616-RG; AA 1-342)
- Antikörper polyklonales anti-NtermR31 Serum und Präimmunserum bezogen über die Firma Biotrend (Köln, Deutschland) (vgl. Ausführungsbeispiel 1 ), sekundären Antikörper Shp X Rb IgG AlkPhos (Chemikon, # AP304A)
b) Versuchsdurchführung für polyklonales Serum:
Die Charakterisierung des polyklonalen anti-NtermR31 Serums wurde mit Hilfe eines Dot Blot Verfahrens durchgeführt. Auf Nitrozellulose-Membranen wurden 5 bzw. 50 ng der oben aufgelisteten Protein- bzw. Peptidproben in einem Volumen von 0,5 μl aufgetragen. Die Membran wurde über Nacht bei 40C in 1 X Blockierungsreagenz blockiert. Die Membranen wurden dann mit Präimmunserum und Antiserum NtermR31 vom Kaninchen 6304 in einer Verdünnung von 1 :1000 in 0,5% Blockierungsreagenz für eine Stunde inkubiert. Nach drei Waschschritten in 1 X PBS bei Raumtemperatur erfolgte die Inkubation mit dem sekundären Antikörper Shp X Rb IgG AlkPhos für eine Stunde bei Raumtemperatur in 0,5% Blockierungsreagenz. Die Membran wurde erneut 3 X 5 Minuten in PBS gewaschen, bevor mit NBT/BCIP Lösung gefärbt wurde. Die Färbelösung wurde nach Erreichen des gewünschten Signal/Hintergrundverhältnisses abge- zogen und die Membranen mit Wasser gespült.
c) Ergebnisse für polyklonales Serum:
Das Versuchsergebnis ist in Figur 7a) dargestellt. Das polyklonale anti-NtermR31 Anti- serum erkennt, wie zu erwarten, in dem durchgeführten Dot Blot das Peptid NtermR31. Auch die Proteine sRAGE-6xHIS (AA 23-352, NP_001127), human sRAGE/Fc (R&D Systems;#1145-RG) und human sRAGE/Fc (1-130 AA) werden mit hoher Empfindlichkeit erkannt, was durch die Färbung von jeweils 5 ng Protein belegt wird. Diese Proteine enthalten jeweils am N-terminalen Teil die komplette Teilsequenz von NtermR31 , so dass auch hier das Ergebnis der Erwartung entspricht. Die hoch konservierten RAGE- Proteine aus Maus und Ratte werden ebenfalls deutlich erkannt, so dass diesem Anti- serum eine Kreuzreaktivität mit RAGE aus Maus und Ratte zugeschrieben werden kann.
Ein überraschender Befund ist die schlechte bzw. fehlende Detektion des Peptids NtermR13, dass eine Teilsequenz (Kemsequenz) von NtermR31 ist und im homogenen Bindungsassay (AlphaScreen; vgl. unten) die wesentliche Bindungsaktivität aufweist. Eine wahrscheinliche Erklärung für dieses Ergebnis könnte in der bevorzugten Erkennung eines Konformations-Eptiops in NtermR31 durch den polyklonalen Antikörper sein. Nur wenn das Peptid durch intramolekulare Wechselwirkung diese Konformation einnimmt, wird es von dem Antiserum deutlich erkannt. Das kürzere NtermR13 Teilpeptid kann diese räumliche Struktur nicht einnehmen und wird daher nicht erkannt. Die vollständige 31 Aminosäuren umfassende Sequenz oder Peptide welche diese Sequenz enthalten sind daher als Immunogen besonders geeignet.
Eine weitere mögliche Erklärung könnte eine klar unterschiedliche lmmunogenität des Peptids NtermR13 im Vergleich mit den nicht überlappenden Bereichen von NtermR31 (Bereich 1-14; Bereich 28-31) sein. Eine Analyse der Peptidsequenz mit dem Software Paket Abie Pro 3.0 (ChangBioscience.com), das für die Selektion von antigenen Pep- tidsequenzen zur Antikörperproduktion eingesetzt wird, widerspricht jedoch dieser Erklärung. Die Analyse von NtermR31 mit Abie Pro 3.0 zeigt, dass vier 13-mer Peptide mit guten antigenen Eigenschaften vorhergesagt werden, wobei ein Peptid exakt der Sequenz NtermR13 entspricht. Die drei anderen Peptide sind jeweils um eine Amino- säure N-termial versetzt, so dass auch hier jeweils eine große Überlappung mit NtermR13 gegeben ist. Eine deutlich schlechtere lmmunogenität von NtermR13 ist daher eher unwahrscheinlich und die Hypothese der 3D Konformation ist als die wahrscheinliche anzusehen. Diese Konformation kann ebenfalls nicht von den „srambled" Peptiden eingenommen werden, was deren Nichterkennung im Westem-dot-blot er- klärt.
d) Versuchsdurchführung für monoklonalen anti-NtermR31 Antikörper
Die Charakterisierung des monoklonalen anti NtermR31 Antikörper aus dem Zellkultur- überstand „Clone 37" wurde mit Hilfe eines Dot Blot Verfahrens durchgeführt. Auf Nitrozellulose-Membranen (0,45 μm Porengröße, # LC2001 , Firma: Invitrogen) wurden 5 bzw. 50 ng der oben aufgelisteten Protein- bzw. Peptidproben im Triplikat in einem Volumen von 0,5 μl aufgetragen. Die Membran wurde über Nacht bei 40C in 1 X Blockierungsreagenz (Roche Applied Science; # 1921673) blockiert. Die Membranen wur- den dann mit Zellkulturüberstand, bezogen über die Firma Biotrend (Köln, Deutschland), in einer Verdünnung von 1 :10 in 0,5% Blockierungsreagenz (Roche Applied Science; # 1921673) eine Stunde inkubiert. Nach drei Waschschritten in 1 X PBS bei Raumtemperatur erfolgte die Inkubation mit dem sekundären Antikörper Shp X Ms IgG F(ab')2 AP (Chemikon, # AQ330A) für eine Stunde bei Raumtemperatur in einer 1 :5000 Verdünnung in 0,5% Blockierungsreagenz. Die Membran wurde erneut 3 X 5 Minuten in PBS gewaschen, bevor mit NBT/BCIP Lösung (1 Tablette auf 10ml H2O; Roche Applied Science, # 1697 471) gefärbt wurde. Die Färbelösung wurde nach Erreichen des gewünschten Signal/Hintergrundverhältnisses abgezogen und die Memb- ranen mit Wasser gespült.
e) Ergebnisse für monoklonalem Antikörper:
Die Ergebnisse sind in Figur 7 b dargestellt. Diese zeigt, das die Spezifität von anti- NtermR31 mAb vergleichbar ist zum polyklonalen Kaninchenantiserum (Erkennung von NtermR31 , keine Reaktion auf scrambled-Kontrollen und NtermR13, sowie Spezieskreuzreaktion zwischen Mensch, Ratte, Maus).
Ausführungsbeispiel 3: AlphaScreen-Messung der sRAGE Interaktion mit den Peptiden NtermR31 bzw. NtermR13
a) Materialien
Für die Messung der NtermR31 bzw. NtermR13 Bindung an den RAGE Rezeptor wurde das AlphaScreen™ System (Bestell Nummer:6760610M) von der Firma Perkin El- mer (Shelton, CT, USA) eingesetzt.
NtermR13 biotinyliert (Thermo Electron, Ulm) ) NtermR31 biotinyliert (Thermo Electron, Ulm)
b) Versuchsdurchführung
Der gesamte homogene Assay wurde in 25 mM HEPES, 100 mM NaCI pH 7,4 und 0,1% BSA im 20 μl Volumen durchgeführt. Der Ansatz enthielt 2,5 ng/μl des Fusionsproteins sRAGE-6xHIS (Aminosäuren 23-352, NP_001127), 20 ng/μl Anti-HIS Accep- tor-Beads, 20 ng/μl Streptavidin Donor-Beads und NtermR13 bzw. NtermR31 Peptide in den Konzentrationen 0,1 ,5,10,25,50,100,150 und 300 nM.
Die Einzelkomponenten wurden in einer definierten zeitlichen Reihenfolge zusammengebracht: Zunächst wurde sRAGE 6xHIS für 30 Minuten mit den Acceptor-Beads inku- biert. Die verschiedenen Peptidmengen wurden dann zugesetzt, um nach weiteren 30 Minuten die Donor-Beads hinzuzugegeben. Nach weiteren 60 Minuten erfolgte die Fluoreszenzmessung im AlphaQuest Gerät der Firma Perkin-Elmer mit einer Zeitverzögerung von einer Sekunde. Jeder Messpunkt wurde als Triplikat bestimmt. Die Auswer- tung und grafische Aufarbeitung der Ergebnisse erfolgten mit dem Softwarepaket GraphPrism 4.0.
c) Ergebnisse
Die Ergebnisse sind in Figur 8 dargestellt. Die Peptide NtermR31 und NtermR13 binden in dem hier beschriebenen Versuch mit hoher Affinität an sRAGE Protein. Die ermittelten EC50 Werte im AlphaScreen Bindungsassay liegen bei 62 bzw.66 nM.
Ausführungsbeispiel 4: AlphaScreen-Messung der sRAGE Interaktion mit Kon- trollpeptiden
a) Materialien
Für die Messung der Bindung an den RAGE Rezeptor wurde das AlphaScreen™ Sys- tem (Bestell Nummer:6760610M) von der Firma Perkin Eimer (Shelion, CT, USA) eingesetzt.
Folgende Peptide wurden in biotinylierter Form eingesetzt:
Amyloid Aß-1-42 Oligomer (hergestellt gemäß WO 2004067561)
Scrambled NtermRI 3: GKPRAPKCLKPEQ
NtermR13: C KG A P K K P P Q R LE
AlterChargel: F S R I R AT IH WR VD G
Non-polar: FPVIPALFWIVLM Plus7: RLKRGHA
Minus7: ETEDSDT
Unterstrichen: positiv geladene Aminosäuren Kursiv: negativ geladene Aminosäure
b) Versuchsdurchführung
Der Assay wurde nach Vorschrift des Herstellers und in 25 mM HEPES, 100 mM NaCI pH 7,4 und 0,1% BSA im 20 μl Volumen durchgeführt. Der Ansatz enthielt 2,5 ng/μl des Fusionsproteins sRAGE-6xHIS (Aminosäuren 23-352, NP_001127), 20 ng/μl Anti- HIS Acceptor-Beads, 20 ng/μl Streptavidin Donor-Beads und die biotinylierten Peptide in den Konzentrationen 0,10, 30, 100, und 300 nM. Die Peptide, mit Außnahme von Aß 1-42 Oligomeren, wurden bei 500C für 10 Minuten unmittelbar vor dem Versuch erhitzt, um mögliche Aggregationen zu lösen.
Die Einzelkomponenten wurden in einer definierten zeitlichen Reihenfolge zusammengebracht: Zunächst wurde sRAGE 6xHIS für 30 Minuten mit den Acceptor-Beads inkubiert. Die verschiedenen Peptidmengen wurden dann zugesetzt, um nach weiteren 30 Minuten die Donor-Beads hinzuzugeben. Nach weiteren 60 Minuten erfolgte die Fluoreszenzmessung im AlphaQuest Gerät der Firma Perkin-Elmer mit einer Zeitverzögerung von einer Sekunde. Jeder Messpunkt wurde als Triplikat bestimmt. Die Auswertung und grafische Aufarbeitung der Ergebnisse erfolgten mit dem Softwarepaket GraphPrims 4.0.
c) Ergebnisse:
Die Versuchsergebnisse sind in Figur 9 dargestellt. Die in diesem Versuch eingesetzten Kontrollpeptide sollen die Natur der Bindung von NtermR31 bzw. NtermR13 an RAGE aufklären. Als positive Kontrolle diente die Bindung von Aß Oligomer an RAGE.
Sowohl das völlig unpolare und neutrale Peptid „Unpol13" als auch das negativ geladene Peptid „Minus7" binden in dem Experiment nicht an den Rezeptor, wie die niedrigen kaum sichtbaren Kurven für diese Peptide (Verlauf auf der X -Achse) belegen. Die Hypothese, dass positive Ladungen für die Bindung notwendig sind wird durch die Peptide „ScraNtermR13", „AlterChargel" und „Plus7" eindrucksvoll bestätigt. Die größte Ladungsdichte besitzt das Heptamer Plus7, was zusammen mit ScraNtermR13 die höchste maximale Signalstärke in dem Versuch erreicht. ScraNtermR13 ist aus den gleichen Aminosäuren aufgebaut wie NtermR13, jedoch in willkürlicher Abfolge. Da diese Kontrolle mit gleicher bzw. leicht höherer Affinität an sRAGE bindet, ist die Aminosäuresequenz nach der derzeitigen Datenlage nur insofern von Relevanz, als dass positive Ladungen in einer bestimmten Dichte vorhanden sein müssen. Dass noch nicht einmal die spezifische Kombination der positiven Ladungsträger für die Bindung notwendig ist, wird durch das Peptid AlterChargel belegt, was als 13mer vier positive Ladungen trägt, die jedoch nicht wie beim NtermR13 von 3 Lysinen und einem Arginin stammen, sondern von drei Argininen und einem Histidin.
Zusammenfassend lässt sich festhalten, dass offenbar für die Bindung an RAGE ionische Peptid/Rezeptorinteraktionen über positive Ladungen in dem Peptid NtermR13 ausreichend sind. Solche positiven Ladungsaggregationen gehen aber nur dann besonders in den Bindungsvorgang ein, wenn sie in einem grosseren Polypeptid mittels einer besonderen 3D-Faltung auf der Oberfläche eines Polypetids/Proteins z.B. sRA- GE, präsentiert werden
Ausführungsbeispiel 5: AP-Nogo66 Kompetitions-Assay:
a) Materialien:
Mikrotiterplatten (Maxisorb, Nunc)
AttoPhos Substrat (Roche Nr.1681982, Germany)
His-NogoR: exprimiert in CHO-K1 Zellen und nach Aufreinignung mit einer Reinheit >
90% des niedrig glycosylierten Nogo-Rezeptors mit einem Molekulargewicht von 80 kDa in SDS-PAGE AP-Nogo66 (s.o.) sRAGE (s.o.)
Nterm 31 (s.o.)
NtermR13 (s.o.) scraNtermR13 (s.o.) scraNtermR31 (s.o.)
b) Versuchsdurchführung:
Mikrotiterplatten (Nunc Maxisorb) wurden mit 0,1 ml einer Lösung von His-NogoR (5 μg/ml in Natriumcarbonatpuffer, pH 9) über Nacht bei 4 0C beschichtet. Anschließend wurde ein 1 -stündiger Blockierungsschritt mit 2-%-igem Rinderserumalbumin (BSA) in Tris-HCI, pH 7,2, bei Zimmertemperatur durchgeführt. Für Lösungen von His-NogoR, sRAGE und NtermR31 wurden Ausgangskonzentrationen von 200 nM eingestellt. Diese Stammlösungen wurden dann dreifach verdünnt. AP-Nogo66 (3 μg/ml) wurde mit Puffer (Tris-HCI, pH 7,2 und 0,1 % BSA) auf 0,2 nM verdünnt. 0,05 ml AP-Nogo66 (0,2 nM) wurde zu den jeweiligen Verdünnungen der Proteine (0,05 ml) zugesetzt und 90 Minuten bei Umgebungstemperatur inkubiert. Die jeweiligen Endkonzentrationen betrugen: 0,1 nM für AP-Nogo66 und 100, 33,3, 11 ,1 , 3,7, und 1 ,2 nM für His-NogoR, sRAGE und NtermR31.
Nach jedem Inkubationsschritt wurden die Platten mit Waschpuffer (10 mM Tris-HCI, pH 7,2 und 0,05 % Tween20) gewaschen. Die Bindung von AP-Nogo66 wurde mit dem Substrat AttoPhos (Roche) für die alkalische Phosphatase detektiert und die Fluoreszenzeinheiten mit dem Instrument Polarstar (BMG Labtech, Germany) gemessen. Die Ergebnisse sind für die Proteine in Figur 1OA und für das Peptid Nterm 31 in Figur 1OB dargestellt.
c) Ergebnisse:
Die Bindung von AP-Nogo66 an den NgR, der auf der Mikrotiterplatte gebunden war, wurde durch den gleichen löslichen Liganden mit einem IC50 von 2 nM blockiert. Überraschenderweise verhindert das sRAGE Protein im ähnlichen Konzentrationsbereich mit einem IC50 von 3,5 nM die AP-Nogo66 Bindung (Figur 10A). Auch mit dem Peptid NtermR31 (IC50 von 50 nM) wurde eine signifikante Blockierung der Bindung von AP- Nogo66 gefunden (Figur 10B).
Ausführungsbeispiel 6: Funktioneller Zytoskelettrearrangement (ACR)-Assay
a) Materialien:
Hek293 RhoA/NgR/p75 (s.o.) NtermR13 (s.o.) NtermR31 (s.o.) sRAGE (s.o.)
AP-Nogo66 (s.o.)
Amphoterin scr; (Thermo Electron, Ulm, DE)
(NH2CyS(DYSSS)KSKKVEAVKKAKAGGKPKDRAAYAKEYIDKLEKK-COOH)
MTP Biocoat Mikrotiterplatten mit 96 Vertiefungen RPMI-Glutamax (Invitrogen)
Phalloidin Alexa 568 oder 488 (Molecular Probes, Eugene, USA) DAPI (Molecular Probes, Eugene, USA)
b) Versuchsdurchführung:
1 x 104 Hek293 RhoA/NgR/p75 Zellen wurden in MTP Biocoat Mikrotiterplatten mit 96 Vertiefungen zwei Tage vor dem eigentlichen Versuchsbeginn überimpft. Die so erhaltenen Zelllinien wurden mit dem jeweiligen RAGE-Peptid (NtermR13, NtermR31 , sRA- GE) bei verschiedenen Konzentrationen (0,2 μM, 1 μM, 5μM) oder einem Kontrollpeptid (Amphoterin scr; Konz. = 0.2,1 , 5 μM) vorinkubiert. Die Stimulation der Zellen erfolgte mit dem NgR-Liganden AP-Nogo-66 (9,6 μg/ml) in Kulturmedium enthaltend 5% FCS. Für jede Versuchsreihe wurde ein unstimulierter Kontrollansatz (ohne AP-Nogo66) hergestellt. Nach einer 5- bis 10-minütigen Stimulationsperiode wurde die Aktivierung mit kalter PBS unterbrochen. Die Zellen wurden mit 3 - 4 %-iger Paraformaldehydlö- sung fixiert, mit PBS, enthaltend 0,2 % Triton X-100 permeabilisiert und 30 - 45 Minuten mit Phalloidin Alexa 568 oder 488 inkubiert. Zusätzlich erfolgte eine 5 minütige Inkubation mit DAPI zur Kernfärbung. Die Zellen wurden mit hilfe eines Epifluoreszenz- mikroskops (Axiovert 25) visualisiert. Fluoreszenzmikrogramme wurden mit einer gekühlten CCD Kamera von Zeiss aufgenommen und der prozentuale Anteil kontrahierter Zellen, bezogen auf die Gesamtzellzahl ermittelt.
c) Ergebnisse:
Die Versuchsergebnisse für NtermR 31 und sRAGE sind in Figur 11B dargestellt. Man beobachtet für beide Peptide eine konzentrationsabhängige Verringerung des prozentualen Anteils an kontrahierten HEK-Zellen. Dies zeigt, dass NtermR 31 und sRAGE die NgR-abhängige Stimulation der Zellkontraktion von HEK-Zellen mit zunehmender Konzentration mehr und mehr unterbinden, d.h. die Bindung von Nogo- 66 an seinen Rezeptor NgR blockieren. Figur 11A zeigt mikroskopische Aufnahmen unstimulierter bzw. mit AP-Nogo66 stimulierter HEK293 RhoA/NgR/p75 Zellen. Der erhöhte Anteil kontrahierter HEK-Zellen nach Stimulation mit AP-Nogo-66 ist deutlich erkennbar. Ausführungsbeispiel 7: FIHC-Analyse mit anti-RAGE in transgenem APP- Mäusehirn
a) Materialien
TBST Waschlösung (Tris-gepufferte Kochsalzlösung mit Tween 20, 10-fach Konzentrat; DakoCytomation; Glostrup, Dänemark S3306) 1 :10 verdünnt mit destilliertem Wasser.
Esel-Serum (Serotec GmbH, Düsseldorf, DE) 5 % in TBST Primärantikörper: - Kaninchen-anti-RAGE (Abcam, Distributeur: Acris GmbH, Hiddenhaus, DE,; ab3611) 1 :200 verdünnt in TBST
- Kaninchen-anti-RAGE (Biotrend; Köln, DE; anti-31-mer-8508), 1 :200 verdünnt in TBST; erfindungsgemäßes anti-NtermR31 Serum;
Sekundärantikörper: - Esei-anti-Kaninchen-Cy3 (Jackson Immuno, Distributeur Dianova GmbH, Hamburg, DE), 1 :500 verdünnt mit TBST Vectashield hardset mounting medium (Vector Laboratories; Burligame, UK H-1400)
- Tg2576 Mäuse (Taconic M&B A/S, Ry, Dänemark), welche das Gen für huimanes Amyloid Präkursor Protein (APP) tragen b) Versuchsdurchführung:
Gefrierschnitte mit einer Dicke von 40 μm, angefertigt vom Gyrus dentatus von Tg2576 Mäusen mit einem Alter von 10 Wochen bzw. 11 Monaten wurden 20 Minuten mit Esel- Serum und über Nacht mit einem der Primärantikörper inkubiert. Nach 3 Waschschritten in TBST-Puffer wurden die Schnitte mit Esel-anti-Kaninchen-Cy3- Sekundärantikärper 60 Minuten inkubiert und abschließend dreimal mit TBST-Puffer gewaschen. Die Schnitte wurden dann auf Superfrost Plus Glasträgern aufgebracht, luftgetrocknet und mit einem Deckglas abgedeckt. Fluorezenzaufnahmen der Dünnschnitte wurden in einem Axioplan Imaging System analysiert. (Mikroskop Axioplan Imaging 2; Fa. Carl Zeiss, Jena, Deutschland).
c) Ergebnisse:
Die Versuchsergebnisse sind in der beiliegenden Figur 12 dargestellt.
APP transgene Mäuse zeigen eine enorme Stimulation von membrangebundenem RAGE zu einen Zeitpunkt, wo noch keine Amyloidplaques gebildet werden. Wenn Amyloid verstärkt gebildet wird und Paques entstehen (ab dem 9-12 Lebensmonat), verschwindet membrangebundenes RAGE zugunsten von löslichem RAGE, welches im Plasma gemessen werden kann. Alte Tiere haben daher besonders hohe sRAGE Plasmaspiegel.
Die Immunhistochemie liefert einen weiteren Beleg dafür, dass das anti-NtermR31- Antiserum (Figur 12b) distinkt ist von kommerziellen anti-RAGE Antiseren, wie dem Abcam Serum (Figur 12a). Die Tatsache, dass das anti-NtermR31 Antiserum auf jungen Tg2576 Tieren im Gegensatz zum Abcam Antiserum nicht färbt, bei den alten Tieren aber vergleichbare Anfärbung zeigt, kann so interpretiert werden, das das Epitop der AGER-RME nur im Fall von gebundenem Liganden (bei Tg2576 also Amyloid beta) effektiv präsentiert und für Antikörper zugänglich ist. Bei jungen Tg2576 ist allerdings noch nicht viel Amyloid beta gebildet. Die Tiere beginnen laut Literatur (Ujiie M et al.: Microcirculation. 2003 Dec;10(6):463-70) erst ab 10 Monaten Alzheimer-Plaques zu bilden, was auf eine gesteigerte Amyloidbildung erst zu späteren Zeitpunkten hinweist und damit die erfindungsgemäße Hypothese zur Immunogenität des AGER-RME untermauert. Ausführungsbeispiel 8: Nachweis von sRAGE in Mausplasma mittels ELISA
a) Material
Mikrotiterplatten (Flexible plate, 96 well, flat bottom, Falcon) Ziege-Anti-mouse RAGE Antibody; R&D Systems; AF1179 Transgene Mäuse (Tg2576)
Streptavidin-AP Conjugate (Roche, Mannheim, Nr. 1089161 AttoPhos Substrate Set (Fa. Roche, Mannheim, Nr. 1681982) rekombinantes lösliches Maus-RAGE (Firma R&D Systems, Wiesbaden; Custom03)
b) Versuchsdurchführung:
Mikrotiterplatten wurden mit je 100μl Antikörperlösung (Ziege-Anti-Maus RAGE; Stammlösung: 100 μg/ml; verdünnt eingesetzt in einer Konzentration von 1 μg/ml in 50 mM NaHCO3) gecoatet über Nacht bei 40C. Anschließend wurden die Näpfe je dreimal mit TBS / 0,1% Tween 20 gewaschen. Um Adsorptionseffekte zu minimieren wurde mit je 100ml einer 1 % BSA-Lösung in TBS / 0,1% Tween20 eine Stunde bei Raumtemperatur inkubiert. Anschließend wurde wie oben beschrieben je dreimal mit TBS / 0,1 % Tween 20 gewaschen.
Als Proben für lösliches Maus RAGE wurde Plasma von 10 Wochen und 12 Monate alten transgenen Mäusen (Tg2576), sowie von Mäusen des nicht transgenen Stammes C57BI6 eingesetzt. Das Plasma wurde in einer Verdünnung 1 :20 in TBS/01% Tween 20 in einem Volumen on je 100 μl eingesetzt. Anschließend wurde je dreimal gewaschen wie oben beschrieben. Als Detektionsantikörper wurde je 100 μl eines biotinylierten Ziegen-Anti-Maus RAGE-Antikörpers (Stammlösung: 50 μg/ml in TBS/0,1%BSA; verdünnt eingesetzt in einer Verdünnung von 1 :200 in TBS/ 0,1% Tween20 / 0,1% BSA) pro Napf gegeben. Nach Inkubation für 60 Minuten bei Raumtemperatur wurde erneut gewaschen (wie oben). Anschließend wurde mit je 100μl Streptavidin-AP Conjugate in einer Verdünnung von 1 :2500 in TBS / 0,1 % BSA /0,1% Tween20 für 2 Stunden inkubiert. Wiederum wurde dreimal gewaschen. Die Enzymmenge wurde mit Hilfe von je 100 μl des AttoPhos Substrate Set nachgewiesen. Nach Inkubation für 90 Minuten wurde die Fluoreszenz in einem Polarstargerät mit Anregung von 440 nm und Emission von 540 nm gemessen.
Als Kontrolle für den ELISA wurde ein rekombinantes lösliches Maus-RAGE (Firma R&D Systems, Wiesbaden; Custom03) eingesetzt. c) Ergebnis:
Figur 13 zeigt das Ergebnis der Messung von sRAGE im Plasma von 12 Monate alten (1 ) und 10 Wochen jungen (2) transgenen Tg2576 Mäusen. Man sieht, dass sRAGE im Plasma von alten Mäusen erhöht ist. Dies ist dadurch erklärbar, dass mit steigendem Alter der Tiere die Expression von RAGE von der membrangebundenen (bei jungen Tieren) auf die lösliche Form (bei alten Tieren) umschaltet und zwar in Abhängigkeit von der Amyloidproduktion. Dieses Ergebnis stützt den erfindungsgemäßen Befund, dass NtermR31 Antiserum einen "aktiven Rezeptorstatus" erkennt, der mit kommerziel- len Antiseren nicht definiert wird (vgl. Ausführungsbeispiel 7, Figur 12). Das Plasma des nicht-transgenen Stamms C57B16 zeigte vergleichbare sRAGE Plasmakonzentrationen wie die jungen transgenen Tiere (Daten nicht gezeigt).
Ausführungsbeispiel 9: Kompetition der sRAGE/Aß-Oligomer-Interaktion durch Anti-NtermR31 und Anti-sRAGE Antikörper
a) Materialien und Versuchsdurchführung
Die Versuche zur Verdrängung der sRAGE - Amyloid Beta Oligomer (Globulomer) Bindung durch Antikörper wurden mit der „homogeneous time-resolved fluorescence" (HTRF) Technologie der Firma CIS Bio International (Bagnols, Frankreich) durchgeführt. Die HTRF Donor- und Akzeptor-Komponenten, AntiδHIS-Europiumcryptat (CIS Bio Katalog Nummer:: 61 HISKLA; 500 wells/13 μg) und Streptavidin XL - 665 (CIS Bio Katalog Nummer: 611 SAXLA, 500 wells/250μg), wurden in jeweils 250 μl H2O bidest. gelöst. Ausgehend von diesen Stammlösungen wurden 1 :50 Arbeitsverdünnungen mit einer Endkonzentration von 7.4 nM AntiöHis-Cryptate bzw. 121.2 nM Streptavidin XL- 665 in PBS, pH 7.4 hergestellt.
Als Negativkontrolle in diesem Versuch diente Kaninchen IgG (Best.Nr.: I5006; Sigma, Taufkirchen, Deutschland). Als positive Kontrolle wurde der polyklonale anti RAGE Antikörper AF1145 (R&D Systems; Wiesbaden, Deutschland) eingesetzt. Die verwendeten anti NtermR31 Immunglobuline wurden, wie an anderer Stelle bereits beschrieben, über die Firma Biotrend (Köln, Deutschland) erworben.
Zur Versuchsdurchführung wurden zunächst in separaten Ansätzen 4 μl des rekombi- nanten sRAGE Proteins (Herstellung und Reinigung wie beschrieben, Konzentration 1 μM) mit jeweils 4 μl der zu testenden Antikörperlösungen bzw. der IgG Kontrolle in den Konzentrationen 7,14 μM, 3,57 μM, 1,78 μM, 0,892μM, 0,446μM, 0,223μM, 0,112μM, 0,056μM und 0 μM für eine Stunde bei Raumtemperatur inkubiert. Danach wurden dem Ansatz 4 μ! einer 4 μM Stammlösung des Aß 1/5 biotin Globulo- mers zugesetzt (finale Konzentration 80OnM) und eine weitere Stunde bei Raumtemperatur inkubiert. Die hier angegebene A beta 1/5 biotin Globulomer Konzentration be- zieht sich auf die Aß 1-42 Monomere, die zur Herstellung der Globulomere (gemäß WO 2004 067561 ) verwendet wurden. Jeweils 2 μl der oben beschriebenen 7,4 nM AntiöHis-Cryptate Lösung und der 121 ,2 nM Streptavidin wurden zugesetzt, um dann diesen Ansatz weitere zwei Stunden bei nun 40C zu inkubieren. Nach dem Zusatz von 4 μl einer 2M KF Stammlösung wurde der Gesamtansatz im BMG Pherastar Fluores- zenzmeßgerät (BMG Labtech GmbH, Offenburg, Deutschland) im HTRF Modus gemessen. Die berechneten %DeltaF Werte wurden in GraphPad Prism 4 (GraphPad Software, San Diego, USA) übertragen und ausgewertet. Die im Graphen angegebenen Konzentrationen beziehen sich auf die Endkonzentration des 20 μl Gesamtansatz- tes.
b) Ergebnis
Das Versuchsergebnis ist in Figur 14 gezeigt. Wie erwartet beobachtet man in den Kontrollansätzen ohne sRAGE keine Veränderung der gemessenen Fluoreszenzwerte bei steigender Antikörperkonzentration. In Gegenwart von sRAGE bewirkt die Zugabe von Kaninchen-Kontrollserum keine Abnahme der Fluoreszenz und somit keine Inhibition der sRAGE-Aß- Wechselwirkung. Dagegen beobachtet man bei steigender Konzentration an polyklonalen anti-sRAGE Antikörpern (ab ca. 5OnM) und polyklonalen anti-NtermR31 Antikörpern (ab ca. 800 nM) eine signifikante Inhibition der sRAGE-Aß- Wechselwirkung.
Ausführungsbeispiel 10: Effekt von NtermR31 auf excitatorische synaptische Übertragung und Langzeitpotenzierung
a) Vorbemerkung
Die Langzeitpotenzierung (LTP) ist ein zelluläres Modell für Lernen und Gedächtnis. Die hier verwendete Induktionsmethode ("Theta Bursf'-Stimulation) löst ein sogenanntes "schwaches" LTP aus, welches nach mehreren Stunden auf die Ausgangswerte zurückfällt. Die LTP ist zurückzuführen auf eine Verstärkung der Synapse, die - im Gegensatz zu Kurzzeitpotenzierung - auch längerfristige postsynaptische Veränderungen beinhaltet (z.B. Modifikation der Rezeptorzusammensetzung der postsynaptischen Membran). LTP-ähnliche Zustände wurden bei Gedächtnisbildung im Tier gemessen, umgekehrt beeinflusst die LTP-Induktion im Tier die Gedächtnisleistung. Aufgrund der besseren Zugänglichkeit von Substanzen wurden synaptische Übertragung und LTP im Hirnschnitt gemessen. Abgeleitet wurde in der CA1 -Region des Hippokampus.
b) Material und Methoden
400 μm dicke transverse Hippokampusschnitte von 7-8 Wochen alten männliche Wistar-Ratten (Harlan Winkelmann, Bochum, Deutschland) wurden mit Hilfe eines Tis- sue Chopper hergestellt und mindestens 1 Stunde bei 33 0C in mit Carbogen begastem künstlichem Liquor (aCSF) der folgenden Zusammensetzung: NaCI 124mM; KCl 4,9mM; MgSO4 1,3mM; CaCI2 2,5mM; KH2PO4 1,2mM; NaHCO3 25,6mM; Glucose 1OmM; pH 7,4. äquilibriert. Abgeleitet wurde vom Tauchschnitt in mit Carbogen begastem künstlichem Liquor (aCSF) gleicher Zusammensetzung.
Stimulation des Schaffer Kollaterals erfolgte im Stratum Radiatum mit Hilfe einer mo- nopolaren Stimulationselektrode mit biphasischem Puls (Voltbereich 1-5V). Excitatori- sche postsynaptischen Potentiale (EPSPs) wurden mit aCSF-gefüllten Glaselektroden gegen chlorierte Silberreferenzelektrode (Bad) im Stratum Radiatum abgeleitet. Diese geben vor allem die Stärke der glutamatergen synaptischen Übertragung wieder.
Die Werte wurden aus der Steigung des FeId-EPSPs ermittelt, die alle 5 min für einen Zeitraum von 120 Minuten vor und 120 Minuten nach LTP-Induktion abgeleitet worden sind. LTP wurde ausgelöst durch sogenannte Theta-Burst-Stimulation (4x2 Pulse im Abstand von 200 ms, bei 10 ms Doppelpulsintervall). Einwasch der Substanz erfolgte 100 Minuten vor Tetanisierung.
c) Ergebnisse
Untersucht wurde die Auswirkung von NtermR31 auf synaptische die Transmission und die LTP. Eine Applikation von 500 nM NtermR31 supprimiert deutlich sowohl Kurzzeit- als auch Langzeitpotenzierung. Die Verminderung des potenzierten Signals ist über die gesamte posttetanische Meßzeit signifikant (p=0.016; repeated measures ANOVA) (vgl. Figur 15). Einwasch des Kontrollpeptids (scraNtermR31 , gleiche Aminosäurezusammensetzung, aber unterschiedliche Sequenz) hat keine Auswirkung auf Kurzzeit- und Langzeitpotenzierung (p=0.794; repeated measures ANOVA) (vgl. Figur 16). Der Effekt des NtermR31 -Peptides ist demnach spezifisch für die Aminosäuresequenz. Die Kurzzeitpotenzierung ist der LTP-Kurve zu entnehmen und entspricht den ersten Minuten der Potenzierung.
Die NtermR31-Administration hat keine Auswirkung auf die basissynaptische Übertra- gung. Die Applikation von NtermR31 über eine Dauer von 90 Minuten verändert nicht die Größe der EPSPs1 und lässt somit normale glutamaterge Neurotransmission unbe- einflusst (vgl. Figur 15). Auch die Input/Output-Relation wird durch NtermR31 nicht beeinflusst (vgl. Figur 17), was ebenfalls auf normale synaptische Übertragung unter Einwirkung dieses Peptides deutet. Es gab keine Hinweise auf multiple Populationser- eignisse in den Traces, weswegen keine Beeinträchtigung der regulären GABAergen Übertragung angenommen wird. Ingesamt kann daher angenommen werden, daß NtermR31 spezifisch auf LTP wirkt. Daraus folgt, daß NtermR31 gezielt in plastische synaptische Prozesse eingreift, die mit Lernen und Gedächtnis in Verbindung gebracht werden können.
Ausführungsbeispiel 11: Kompetition der sRAGE/Aß-Globulomer-Interaktion durch AGER-CDP
a) Material und Methoden:
Aß 1-42 Globulomer, hergestellt gemäß WO 2004 067561 , biotinyliert
Die folgenden synthetischen AGER-CDPs wurden verwendet:
TLQSELMVTPARGGDPRPTFSCSFSPGLPR (Peptid 6) (SEQ ID NO: 32) LPRHRALRTAPIQPRVWEPVPLEEVQLWE (Peptid 7) (SEQ ID NO: 33)
Die Versuche zur Verdrängung der sRAGE - Aß Globulomer Bindung durch RAGE- Peptide wurden mit der „homogeneous time-resolved fluorescence" (HTRF) Technolo- gie der Firma ClS Bio International (Bagnols, Frankreich) durchgeführt. Die HTRF Do- nor- und Akzeptor-Komponenten, AntiβHIS-Europiumcryptat (CIS Bio Katalog Nummer:: 61 HISKLA; 500 wells/13 μg) und Streptavidin XL - 665 (CIS Bio Katalog Nummer: 611SAXLA, 500 wells/250μg), wurden in jeweils 250 μl H2O bidest. gelöst. Ausgehend von diesen Stammlösungen wurden 1 :50 Arbeitsverdünnungen mit einer End- konzentration von 7.4 nM AntiδHis-Cryptate bzw. 121.2 nM Streptavidin XL-665 in PBS, 0,1 % BSA, pH 7,4 hergestellt.
Von den Peptiden 6 und 7 wurden Arbeitslösungen in den Konzentrationen 200 μM, 100 μM, 50μM, 25μM, 12,5μM, 6,25μM, 3,125μM, 1 ,56μM und 0,78 μM hergestellt.
Zur Versuchsdurchführung wurden zunächst jeweils 4 μl der Arbeitslösungen von Peptid 6 und 7, sowie einer Pufferkontrolle mit 4 μl einer 4 μM Stammlösung des Aß 1/5 Biotin Globulomers gemischt (finale Assay-Konzentration 80OnM) und eine Stunde bei Raumtemperatur inkubiert. Die hier angegebene A beta 1/5 biotin Globulomer Konzent- ration bezieht sich auf die Aß 1-42 Monomere, die zur Herstellung der Globulomere verwendet wurden. Dem Assay wurden dann 4 μl des rekombinanten sRAGE Proteins (Herstellung und Reinigung gemäß Herstellungsbeispiel 3a; Konzentration 1 μM) zugesetzt und der Ansatz wiederum bei RT für 1 h inkubiert.
Jeweils 2 μl der oben beschriebenen 7,4 nM AntiθHis-Cryptate und der 121 ,2 nM Streptavidin Lösung wurden zugesetzt, um dann diesen Ansatz weitere zwei Stunden bei nun 4°C zu inkubieren. Nach dem Zusatz von 4 μl einer 2M KF Stammlösung wurde der Gesamtansatz im BMG Pherastar Fluoreszenzmeßgerät (BMG Labtech GmbH, Offenburg, Deutschland) im HTRF Modus gemessen. Für die Max-Signal Kurve wur- den separate Messungen ohne Peptid durchgeführt. Für die Background Kurve wurden Messungen mit jeweils nur der AntiδHIS-Cryptate - und Streptavidin XL - Lösung verwendet. Die berechneten %DeltaF Werte wurden in GraphPad Prism 4 (GraphPad Software, San Diego, USA) übertragen und ausgewertet. Die im Graphen angegebenen Konzentrationen beziehen sich auf die Endkonzentration des 20 μl Gesamtansatz- tes.
b) Versuchsergebnisse:
Die Ergebnisse sind in beiliegender Figur 18 dargestellt. Man beobachtet eine Inhibiti- on der Aß-Oligomerbindung an sRAGE bei steigenden Konzentrationen der von der Ig- ähnlichen C2 Domäne von humanem sRAGE abgeleiteten Peptide 6 und 7. Die inhibitorische Aktivität ist bei Peptid 7 stärker ausgeprägt.
Ausführungsbeispiel 12: Bindung N-terminal verkürzte sRAGE Fragmente an Aß- Oligomer
a) Material und Methoden:
Folgende sRAGE Peptide wurden eingsetzt:
sRAGE 1-331 (umfassend die komplette RAGE-Ektodomäne) (vgl. Herstellungsbeispiel 3a) sRAGE 102-331 (umfassend die N-terminal verkürzte RAGE Ektodomäne) (vgl. Herstellungsbeispiel 3b)
Die direkte Bindung von sRAGE 1-331 und sRAGE 102-331 an Aß Globulomer wurde mit der „homogeneous time-resolved fluorescence" (HTRF) Technologie der Firma CIS Bio International (Bagnols, Frankreich) durchgeführt. Die HTRF Donor- und Akzeptor- Komponenten, AntiδHIS-Europiumcryptat (CIS Bio Katalog Nummer:: 61 HISKLA; 500 wells/13 μg) und Streptavidin XL - 665 (CIS Bio Katalog Nummer: 611SAXLA, 500 wells/250μg), wurden in jeweils 250 μl H2O bidest. gelöst. Ausgehend von diesen Stammlösungen wurden 1 :100 Arbeitsverdünnungen mit einer Endkonzentration von 3,7 nM AntiδHis-Cryptate bzw. 60,6 nM Streptavidin XL-665 in PBS, 0,1 % BSA, pH 7,4 hergestellt.
Von den A beta 1/5 biotin Globulomeren wurden Arbeitslösungen mit den Konzentrationen 10 μM, 5 μM, 2,5 μM, 1 ,25 μM, 0,625 μM, 312,5 nM, 156,25 nM hergestellt.
Jeweils 4 μl dieser Arbeitslösungen bzw. 4 μl einer Pufferkontrolle wurden jeweils mit 4 μl einer 1 μM RAGE 1-331 bzw. 102-331 RAGE Stammlösung gemischt und eine Stunde bei Raumtemperatur inkubiert. Die hier angegebene A beta 1/5 biotin Globulo- mer Konzentration bezieht sich auf die Aß 1-42 Monomere, die zur Herstellung der Globulomere verwendet wurden.
Jeweils 4 μl der oben beschriebenen 3,7 nM AntiδHis-Cryptate und der 60,6 nM Streptavidin Lösungen wurden zugesetzt, um dann diesen Ansatz weitere zwei Stunden bei nun 4°C zu inkubieren. Nach dem Zusatz von 4 μl einer 2M KF Stammlösung wurde der Gesamtansatz im BMG Pherastar Fluoreszenzmeßgerät (BMG Labtech GmbH, Offenburg, Deutschland) im HTRF Modus gemessen. Für die Background Kurve wur- den Messungen mit jeweils nur der AntiδHIS-Cryptate - und Streptavidin XL - Lösung verwendet. Die berechneten %DeltaF Werte wurden in GraphPad Prism 4 (GraphPad Software, San Diego, USA) übertragen und ausgewertet. Die im Graphen angegebenen Konzentrationen beziehen sich auf die Endkonzentration des 20 μl Gesamtansatz- tes.
b) Versuchsergebnisse:
Die Ergebnisse sind in beiliegender Figur 19 dargestellt. Man beobachtet dabei, dass nicht nur die Ig-ähnliche, N-terminale V-Domäne von sRAGE an der Bindung von Aß- Oligomeren beteiligt ist, sondern dass auch die Ig-ähnlichen C2 Domäne von sRAGE Bindungsaffinität für das Aß-Oligomer besitzt. Beide Bindungsaffinitäten sind vergleichbar stark ausgeprägt.
Ausführungsbeispiel 13: Herstellung und Charakterisierung monoklonaler anti- RAGE Antikörper
a) Antikörperherstellung
1. Immunisierung von Mäusen: Balb/c und AAJ Mäuse (6-8 Wochen alt) wurden subkutan mit 30 μg sRAGE-HIS Antigen in komplettem Freud's Adjuvans immunisiert. Die Tiere wurden danach dreimal in Abständen von je drei Wochen wiederum mit 30 μg sRAGE-Antigen, das für diese Im- munisierungen in Immuneasy™ (Firma: Qiagen) vorlag, injiziert. Vier Tage vor der Fusion wurden die Mäuse nochmals abschließend mit 10 μg sRAGE intravenös geimpft.
2. Zellfusion und Screening von Hybridomen:
Milz-Zellen von immunisierten Tieren wurden mit SP2/0-Ag14 Myelom-Zellen in einem Verhältnis von 5:1 nach Standardmethoden fusioniert. Für die Fusion wurde PEG 3000 verwendet und die Selektion wurde in einem Medium, das Azaserin und Hypoxantin enthielt durchgeführt. Sieben bis zehn Tage nach der Fusion, beim Auftreten von makroskopisch sichtbaren Kolonien, wurden die Zellkulturüberstände sowohl im ELISA auf Antikörper gegen sRAGE-HIS als auch im FACS unter Verwendung von stabil transfizierten sRAGE exprimierenden HEK-293 Zellen getestet. Positive Zellen aus der ELISA/FACS Analyse wurden weiter propagiert und durch serielle Verdünnungen klo- niert.
3. ELISA Protokoll:
ELISA Platten wurden mit sRAGE-Protein (1μg/ml) in PBS Übernacht bei 40C beschichtet. Nach dem Blockieren der Platten mit Milch wurden die Mäuse-Sera bzw. die Hybridom-Überstände in 1x PBS1 0,1 % BSA (Sigma) verdünnt. Die Verdünnungen wurden seriell durchgeführt beginnend mit einem Verhältnis von 1:500. Zum Screenen wurden Verdünnungen von 1 :5 verwendet. 50 μl Serum oder Zellkultur-Überstand wurden in jedes Well pipettiert und für eine Stunde bei Raumtemperatur inkubiert. Nach drei Waschschritten in 1x PBS, 0,1 % BSA wurden jeweils 50 μl anti-Maus IgG-Fc-HRP (Pierce) in einer 1 :5000 Verdünnung in PBS zugesetzt und für eine weitere Stunde bei Raumtemperatur inkubiert. Nach drei Waschschritten wurden 50 μl ABTS Substrat (Sigma) zugesetzt. Nach fünf Minuten bei Raumtemperatur wurde die Reaktion durch Zugabe von 50 μl 2N H2SO4 Lösung abgestoppt und die Platten wurden bei 450 nm gelesen.
4. FACS Protokoll:
RAGE exprimierende 293 HEK Zellen oder nicht transfizierte Kontrollzellen wurden aus
Zellkulturplatten geerntet und in IxPBS, 0,1% BSA Lösung einmal gewaschen. Die
Zellen wurden mit den Hybridoma-Überständen für eine Stunde auf Eis inkubiert. Nach erneutem zweimaligem Waschen der Zellen erfolgte die Inkubation mit Ziege anti-Maus Ig-PE für eine Stunde auf Eis. Die Zellen wurden erneut gewaschen, resuspendiert und die Bindung wurde im Becton Dickenson FACScan Gerät detektiert.
5. Produktion und Reinigung von monoklonalen Antikörpern:
Die Hybridom-Zelllinien wurden in Medium mit 5 % fetalem Rinderserum (niedriger IgG Gehalt, Invitrogen) expandiert. Die Überstände wurden geerntet und aufkonzentriert. Reinigung der monoklonalen anti-RAGE Antikörper erfolgte über Protein A Chromatographie und nachfolgender Dialyse in PBS.
Auf diese Weise wurden beispielsweise Antikörper mit der Bezeichnung ML37-11 H8 und ML37-6A6 gewonnen und weiter charakterisiert.
b) Charakterisierung im „Dot Blot" Verfahren
Für die Charakterisierung der so erzeugten monoklonalen anti-RAGE Antikörper wurden Dot Blots mit dem vollständigen sRAGE-Protein (1-331 sRAGE-HIS) sowie einer N-terminal verkürzten Version (102-331 -sRAGE-HIS) hergestellt. Auf Hybond-ECL Nitrozellulose Membranen (Amersham, RPN68D) wurden jeweils in einem Volumen von 1 μl IxPBS im Duplikat folgende Proteinmengen aufgetragen: 30 ng, 10 ng, 3 ng, 1 ng, 0,3 ng, 0,1 ng, 0,03 ng, und 0,01 ng. Die getrockneten Membranen wurden daraufhin für 1 Stunde im „Western Blocking" Reagenz (Roche, Nr. 1921673) mit konstanter Geschwindigkeit geschüttelt, um dann für eine weitere Stunde unter den gleichen Bedingungen mit den monoklonalen Antikörpern ML37-6A6 bzw. ML37-11 H8 in einer Konzentration von 7,14 nM inkubiert zu werden. Nach vier Waschschritten für jeweils fünf Minuten in IxPBS wurden die Filter in Western Blocking Reagenz (Roche, Nr. 192173), das den sekundäre Antikörper „goat anti mouse IgG AP" (Sigma Nr. A-7434) in einer 1 :2000 fachen Verdünnung enthielt, für eine Stunde geschüttelt. Nach weiteren vier Waschschritten für jeweils fünf Minuten in 1X PBS wurden die Filter in einer nach Herstellerangaben angesetzten NBT/BCIP Substrat Lösung (Roche, Nr. 1697471) inkubiert. Die Färbungsreaktion wurde nach 10 Minuten mit destilliertem Wasser abgestoppt.
Die Ergebnisse zeigen (vgl. Figur 20), dass beide Antikörper das vollständige 1-331 sRAGE-HIS Protein (Reihe (1)) erkennen. Unterschiede der Antikörper werden hinsichtlich der Detektion des N-terminal verkürzten 102-331 sRAGE-HIS Proteins (Reihe (2)) deutlich. Der Antikörper ML37-6A6 bindet auch die N-terminal verkürzte Version, was für den Antikörper ML37-11H8 nicht der Fall ist. c) Charakterisierung durch Kompetition der sRAGE-Aß Globulomer Bindung
Versuche zur Verdrängung der sRAGE - Aß Globulomer Bindung durch monoklonale anti RAGE Antikörper wurden mit der „homogeneous time-resolved fluorescence" (HTRF) Technologie der Firma CIS Bio International (Bagnols, Frankreich) durchgeführt. Die HTRF Donor- und Akzeptor-Komponenten, AntiθHIS-Europiumcryptat (CIS Bio Katalog Nummer:: 61 HISKLA; 500 wells/13 μg) und Streptavidin XL - 665 (CIS Bio Katalog Nummer: 611SAXLA, 500 wells/250μg), wurden in jeweils 250 μl Aqua bidest gelöst. Ausgehend von diesen Stammlösungen wurden 1 :40 Arbeitsverdünnungen mit einer Endkonzentration von 10.25 nM Anti6His-Cryptate bzw. 151.5 nM Streptavidin XL-665 in PBS, pH 7.4 hergestellt. Als Negativkontrollen in diesem Versuch dienten Maus IgGI und Maus lgG2a (Best. Nr.: M-5284 bzw. M-5409; Sigma, Taufkirchen, Deutschland).
Zur Versuchsdurchführung wurden zunächst in separaten Ansätzen 4 μl des rekombi- nanten sRAGE Proteins (Herstellung und Reinigung wie beschrieben, Konzentration 1 μM) mit jeweils 4 μl der zu testenden Antikörperlösungen bzw. der IgG Kontrollen in den Konzentrationen 2 μM, 1 μM, 0,5 μM, 0,25 μM, 0,125 μM, 62,5 nM, 31 ,25 nM, 15,62 nM, 7,81 nM, 3,9 nM für eine Stunde bei Raumtemperatur inkubiert. Die Back- groundkontrolle enthält kein sRAGE Protein und keine Antikörper, die Max- Signalkontrolle enthält sRAGE und keine Antikörper. Volumenverluste wurden durch entsprechende Mengen an Bindungspuffer (IxPBS pH 7.4; 0,1% BSA) ausgeglichen.
Danach wurden dem Ansatz 4 μl einer 4 μM Stammlösung des Aß 1/5 biotin Globulo- mers zugesetzt (finale Konzentration 80OnM) und eine weitere Stunde bei Raumtemperatur inkubiert. Die hier angegebene A beta 1/5 biotin Globulomer Konzentration bezieht sich auf die Aß 1-42 Monomere, die zur Herstellung der Globulomere verwendet wurden. Jeweils 2 μl der oben beschriebenen 10,25 nM AntiδHis-Cryptate Lösung und der 151 ,5 nM Streptavidin-XL wurden zugesetzt, um dann diesen Ansatz eine weitere Stunde zu inkubieren. Nach dem Zusatz von 4 μl einer 2M KF Stammlösung wurde der Gesamtansatz im BMG Pherastar Fluoreszenzmeßgerät (BMG Labtech GmbH, Offenburg, Deutschland) im HTRF Modus gemessen. Die berechneten %DeltaF Werte wurden in GraphPad Prism 4 (GraphPad Software, San Diego, USA) übertragen und ausgewertet. Die im Graphen angegebenen Konzentrationen beziehen sich auf die End- konzentration des 20 μl Gesamtansatztes.
Man beobachtet (vgl Figur 21), dass sowohl der Antikörper ML37-11H8 als auch der
Antikörper ML37-6A6 in der Lage sind, die Aß-G!obulomer - sRAGE Bindung effizient zu komp'etieren. Wie in der Dot Blot Analyse gezeigt, erkennen die Antikörper unter- schiedliche Teile des sRAGE-Proteins, was unzweifelhaft belegt, dass sowohl C- terminale als auch N-terminale Bereiche von sRAGE als Angriffspunkt für antagonistische therapeutische Reagenzien dienen können.

Claims

Patentansprüche
1. Verwendung des Rezeptor Multimerisierungs Epitops (RME) des Advanced- Glycation-End Products Rezeptors (AGER), umfassend ein zur Auto- Multimerisierung befähigtes Peptidfragment der N-terminalen AGER-Ektodomäne, oder eines von der AGER Ig-ähnlichen C-Domäne abgeleiteten Peptids (AGER- CDP), oder eines funktionalen, immunogenen Äquivalents von AGER-RME oder von AGER-CDP, als Immunogen zur Herstellung eines polyklonaler Antiserums oder monoklonaler Antikörper gegen AGER-RME bzw. AGER-CDP.
2. Verwendung nach Anspruch 1 , wobei AGER-RME mit einer Länge von etwa 8 bis 50 Aminosäureresten eingesetzt wird, das abgeleitet ist von der humanen AGER- Ektodomäne mit einer Aminosäuresequenz gemäß Genbank Ref. Seq. Sequenz NM_001136 oder einer funktional äquivalenten Ektodomäne; insbesondere der V- Domäne davon.
3. Verwendung nach einem der Ansprüche 1 und 2, wobei AGER-RME folgende Sequenz umfasst:
C(K/R)GAPKKP(P/T)Q(Q/R/K)LE (SEQ ID NO :1 )
4. Verwendung nach Anspruch 3, wobei AGER-RME eine Sequenz umfasst, die ausgewählt ist unter
CRGAPKKPPQQLE (SEQ ID NO :2 ) CKGAPKKPPQRLE (SEQ ID NO :3) CKGAPKKPTQKLE (SEQ ID NO :4)
5. Verwendung nach einem der Ansprüche 3 und 4, wobei AGER-RME eine Se- quenz umfasst, die ausgewählt ist unter:
worin X1 für ein Wasserstoffatom, oder die Aminosäure Q oder das Dipeptid DQ steht;
X2 für NITARIG(K/E)PL(V/M)L(N/S/K) (SEQ ID NO:5) steht; X3 für eine Sequenz nach Anspruch 3 oder 4 steht; und X4 für die Peptidsequenz WKLN steht.
6. Verwendung nach einem der Ansprüche 3 bis 5, wobei AGER-RME ausgewählt ist unter SEQ ID NO: 1, 2, 3 und 5, sowie Sequenzen der allgemeinen Formel X1 - X2 - X3 - X4 worin X1 bis X4 wie oben definiert sind.
7. Verwendung nach Anspruch 1 , wobei das AGER-CDP mit einer Länge von etwa 5 bis 50 Aminosäureresten eingesetzt wird, das abgeleitet ist von der humanen AGER-Ektodomäne mit einer Aminosäuresequenz gemäß Genbank Ref. Seq. Sequenz NM_001136 oder einer funktional äquivalenten Ektodomäne, insbesondere der C-like Domäne davon.
8. Verwendung nach Anspruch 7, wobei das Peptid eine der folgenden Sequenzen umfasst:
a) DGKPLVPNEKGVSVKEQTRRHPETGLFTLQ (SEQ ID NO: 31) b) TLQSELMVTPARGGDPRPTFSCSFSPGLPR (SEQ ID NO: 32) und c) LPRHRALRTAPIQPRVWEPVPLEEVQLWE (SEQ ID NO: 33).
9. Verwendung nach Anspruch 8, wobei das AGER-CDP ausgewählt ist unter SEQ ID NO: 31 , 32 und 33.
10. Verwendung nach einem der vorhergehenden Ansprüche, wobei das AGER-RME oder AGER-CDP als cyclisches Peptid vorliegt.
11. Verwendung einer AGER-RME oder eines AGER-CDP gemäß der Definition in einem der vorhergehenden Ansprüche zur Diagnose von Krankheiten oder
Krankheitsstadien, bei denen Auto-Antikörper gegen das AGER-RME oder das AGER-CDP auftreten.
12. Verwendung einer AGER-RME oder eines AGER-CDP gemäß der Definition in einem der Ansprüche 1 bis 10, der AGER-Ektodomäne mit einer Aminosäuresequenz gemäß Genbank Ref. Seq. Sequenz NM_001136 und N-terminaler Sub- fragmente davon, sowie von Muteinen und Derivaten dieser AGER-Moleküle, o- der von AGER-RME- oder AGER-CDP-bindenden Liganden zur Herstellung eines pharmazeutischen Mittels zur Diagnose oder Therapie von AGER-mediierten Krankheiten oder Krankheitsstadien.
13. Verwendung nach Anspruch 12, wobei ein AGER-RME- oder AGER-CDP- bindender Ligand verwendet wird.
14. Verwendung nach Anspruch 12 oder 13, wobei die Krankheiten oder Krankheitsstadien mit einer AGER/AGER-, AGER/Ligand-, AGER/Rezeptor- , AGER/Rezeptor/Ligand-, AGER/Rezeptor/Co-Rezeptor- und/oder AGER/Rezeptor/Counter-Rezeptor-Wechselwirkung assoziiert sind.
15. Verwendung nach einem der Ansprüche 12 bis 14, wobei die Krankheiten oder Krankheitsstadien ausgewählt sind unter a) mechanischen Verletzungen von Schädel und Rückenmark, b) ischaemischen Schäden, c) chronische Erkrankungen, ausgewählt unter neurodegenerative, inflammatorische und Autoimmun-Erkrankungen, d) diabetische Folgeerkrankungen, e) Tumorprogression und Metastasierung f) veränderte Neurogeneseprozesse bei psychotischen Erkrankungen und chronischen Schmerzzuständen die durch exzessive Neuritensprossung und/oder pathologische Synaptogenese hervorgerufen werden g) Störungen der neuronalen Regeneration, des axonalen Sproutings, der Neuri- tenextension und der neuronalen Plastizität h) zentrale/periphere Amyloiderkrankungen; und i) Arteriosklerose.
16. Verwendung nach einem der Ansprüche 12 bis 15, wobei der AGER-RME- oder AGER-CDP-bindende Ligand ein anti-AGER-RME- oder anti-AGER-CDP- Antikörper ist.
17. Verwendung von AGER-RME oder eines AGER-CDP nach einem der Ansprüche 1 bis 10 als Target zum Nachweis oder zur Identifizierung von AGER-bindenden Liganden.
18. Verwendung von AGER-RME oder eines AGER-CDP nach einem der Ansprüche 1 bis 9 als Immunogen zur aktiven oder passiven Immunisierung.
19. Polyklonales anti-AGER-RME- oder anti-AGER-CDP-Antiserum, erhältlich durch Immunisierung eines Säugers mit einer antigenen Menge eines AGER-RME Pep- tids oder eines AGER-CDP gemäß der Definition in einem der Ansprüche 1 bis
10.
20. Monoklonaler anti-AGER-RME- oder anti-AGER-CDP-Antikörper oder ein Anti- gen-bindendes Fragment davon, gegebenenfalls in humanisierter Form.
21. Antiserum nach Anspruch 19 oder Antikörper nach Anspruch 20, mit wenigstens einer der folgenden Eigenschaften: a) verbesserter Spezifität für ein AGER-RME oder ein AGER-CDP gemäß, einem der Ansprüche 1 bis 10, b) verbesserter Spezifität für ein unter Beteiligung des AGER-RME oder eines
AGER-CDP nach Anspruch 1 bis 9 ausgebildetes Neoepitop, c) Inhibition der AG ER-RM E-vermittelten Multimerisierung mit sRAGE oder anti- AGER-RME Antikörper; d) spezifische Erkennung eines AGER-Ligand-induzierten Rezeptorstatus von sRAGE; e) Induzierung einer Rezeptorkonfiguration von sRAGE, welche die Bindung des AGER-Liganden an sRAGE moduliert.
22. Monoklonaler bispezifischer Antikörper, umfassend eine a) erste Antigen-bindende Domäne, abgeleitet von einem monoklonalen Antikörper nach Anspruch 20 oder 21 , und b) eine zweite Antigen-bindende Domäne mit Spezifität für Zelloberflächen- Rezeptoren, die zu einer Wechselwirkung mit AGER-RME oder AGER-CDP befähigt sind oder mit Spezifität für einen Liganden, Co- oder Counter- Rezeptor für einen dieser Rezeptoren, oder ein Antigen-bindendes Fragment davon, gegebenenfalls in humanisierter Form.
23. Hybridprotein, umfassend ein AGER-RME oder ein AGER-CDP nach einem der Ansprüche 1 bis 9.
24. Hybridprotein nach Anspruch 23, außerdem umfassend einen funktionalen Teil eines Proteins, ausgewählt unter Immunglobulinen und Fragmenten davon.
25. Hybridprotein nach Anspruch 23, umfassend ein Ig-Fc Fragment funktional verknüpft mit AGER-RME oder AGER-CDP.
26. AGER-RME-Derivat oder AGER-CDP-Derivat, umfassend AGER-RME oder AGER-CDP nach einem der Ansprüche 1 bis 9 in PEGylierter Form oder gekop- pelt mit einem Marker.
27. Pharmazeutisches Mittel, umfassend in einem pharmazeutisch verträglichen Träger wenigsten einen aktiven Bestandteil ausgewählt unter: a) AGER-RME oder AGER-CDP nach einem der Ansprüche 1 bis 10 b) für AGER-RME oder AGER-CDP nach einem der Ansprüche 1 bis 10 kodierenden Nukleinsäuresequenzen; c) monoklonale oder polyklonale anti-AGER-RME- oder anti-AGER-CDP- Antikörpern nach einem der Ansprüche 19 bis 21; d) bispezifischen Antikörpern nach Anspruch 22, und e) Hybridproteinen und Derivaten nach Anspruch 23 bis 25.
28. Pharmazeutisches Mittel nach Anspruch 27, enthaltend wenigstens einen monoklonalen oder polyklonalen anti-AGER-RME- oder anti-AGER-CDP- Antikör- pem nach einem der Ansprüche 19 bis 21
29. Pharmazeutisches Mittel nach nach Anspruch 27 oder 28, zusätzlich enthaltend als aktiven Bestandteil einen Wirkstoff, ausgewählt unter a) Neurotrophen Faktoren, Inosin, Neuroimmunophilinen, Chondroitinsulfat- Proteoglycan-abbauenden Enzymen; b) Antikörper gegen Neuritenwachstumsinhibitoren, Nogo-A, MAG, Omgp, und/oder deren Rezeptoren, c) löslichem NgR-Fragment, Nogo-A-Peptidfragmenten, d) Inhibitoren der p75-vermittelten Signalkaskade, e) cAMP und funktionale Analoga, Proteinkinase A, Arginase I1 Polyamine, ciliary neurotrophis factor.
30. Pharmazeutisches Mittel nach einem der Ansprüche 27 bis 29, zur intrathecalen, intravenösen, subkutanen, oralen oder parenteralen, nasalen und Inhalations- Verabreichung.
31. Immunogen, umfassend AGER-RME oder AGER-CDP nach einem der Ansprüche 1 bis 10 in einen pharmazeutisch verträglichen Träger und gegebenenfalls mit eine Adjuvans zur aktiven Immunisierung.
32. Verfahren zum Nachweis von Effektoren des AGER-Rezeptors, wobei man eine Probe, in der man einen Effektor vermutet, mit einem AGER-RM E-Polypeptid o- der einem AGER-CDP nach einem der Ansprüche 1 bis 10 inkubiert und den Ansatz auf die Bildung eines Effektor-AGER-RME-Komplexes oder eines Effektor- AGER-CDP-Komplexes untersucht.
33. Expressionsvektor, umfassend wenigstens eine kodierende Nukleinsäuresequenz für AGER-RME oder AGER-CDP gemäß der Definition nach einem der Ansprüche 1 bis 9, operativ verknüpft mit wenigstens einer regulativen Nukleinsäurese- quenz.
34. Rekombinanter Mikroorganismus, welcher wenigstes einen Vektor nach Anspruch 33 trägt.
35. Hybridomzelllinie, welche einen monoklonalen Antikörper nach einem der Ansprüche 19 bis 21 produziert.
36. Verfahren zur Herstellung von AGER-RME oder AGER-CDP nach einem der Ansprüche 1 bis 9 oder eines Hybridproteins nach einem der Ansprüche 23 bis 25, wobei man einen rekombinanten Miroorganismus nach Anspruch 34 kultiviert und das produzierte Proteinprodukt aus der Kultur isoliert.
37. Verfahren zur Herstellung eines monoklonalen Antikörpers nach einem der Ansprüche 19 bis 21, wobei man eine Hybridomzelllinie nach Anspruch 35 kultiviert und das produzierte Proteinprodukt aus der Kultur isoliert.
38. Funktionales Äquivalent von AGER-RME gemäß der Definition in einem der Ansprüche 1 bis 6, welches einen Homologiegrad von weniger als 100% zu SEQ ID NO: 6 aufweist.
39. Funktionales Äquivalent von AGER-RME nach Anspruch 38, wobei dieses wenigstens eine der folgenden Eigenschaften aufweist: a) Inhibition der Signaltransduktion im Aktin-Cytoskelett-Rearrangement (ACR)-
Assay; b) Kompetition mit sRAGE um die Bindung mit einem AGER-Liganden; c) Auto-Multimerisierung oder Multimerisierung mit AGER-RME oder s-RAGE.
40. Funktionales Äquivalent von AGER-RME nach Anspruch 38 oder 39, wobei es eine Kernsequenz mit hoher positiver Ladungsdichte der folgende allgemeinen
Formel aufweist:
ZX1ZZX2Z
worin die Reste Z unabhängig voneinander für einen Aminosäurerest mit positiv geladener Seitenkette stehen; und die Reste X1 und X2 unabhängig voneinander für beliebige 1 bis 5 gleiche oder verschiedene Aminosäure stehen, welche keine positiv geladenen Seitenketten tragen.
41. Kombination von wenigstens zwei monoklonalen Antikörpern mit unterschiedlicher Antigenspezifität, wobei wenigstens ein erster monoklonaler Antikörper an ein Antigen bindet, das ganz oder teilweise von einem Sequenzbereich der Ig-ähnlichen V-Domäne von AGER gebildet wird, und wenigstens ein zweiter monoklonalen Antikörper an ein Antigen bindet, das ganz oder teilweise von einem Sequenzbereich einer von der Ig-ähnlichen V-Domäne verschiedenen AGER Domäne gebildet wird.
42. Antikörperkombination nach Anspruch 41 , wobei die von der Ig-ähnlichen V- Domäne verschiedene AGER Domäne die Ig-ähnliche C-Domäne von AGER ist.
43. Antikörperkombination nach Anspruch 41 oder 42, wobei wenigstens ein erster monoklonaler Antikörper und gegebenenfalls wenigstens ein zweiter monoklonaler Antikörper mit der Bindung von von AGER oder einem löslichen Äquivalent davon mit einem Bindüngspartner kompetitiert.
44. Antikörperkombination nach Anspruch 43, wobei der Bindungspartner ein Aß>- Globulomer ist.
45. Antikörperkombination nach einem der Ansprüche 41 bis 44 zur Verwendung als Arzneimittel.
46. Pharmazeutisches Mittel umfassend eine Antikörperkombination nach einem der Ansprüche 41 bis 44.
47. Verwendung einer Antikörperkombination nach einem der Ansprüche 41 bis 44 zur Herstellung eines pharmazeutischen Mittels zur Therapie von Krankheiten o- der Krankheitszuständen gemäß der Definition in einem der Ansprüche 14 und 15.
EP06706286A 2005-01-18 2006-01-18 Ager-peptide und deren verwendung Withdrawn EP1838339A2 (de)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US64521105P 2005-01-18 2005-01-18
DE200510002353 DE102005002353A1 (de) 2005-01-18 2005-01-18 AGER-Rezeptor Multimerisierungs Epitope
US66870405P 2005-04-05 2005-04-05
DE200510015832 DE102005015832A1 (de) 2005-04-06 2005-04-06 AGER-Rezeptor Multimerisierungs Epitope
US68121105P 2005-05-13 2005-05-13
DE102005022285 2005-05-13
PCT/EP2006/000420 WO2006077101A2 (de) 2005-01-18 2006-01-18 Ager-peptide und deren verwendung

Publications (1)

Publication Number Publication Date
EP1838339A2 true EP1838339A2 (de) 2007-10-03

Family

ID=36592929

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06706286A Withdrawn EP1838339A2 (de) 2005-01-18 2006-01-18 Ager-peptide und deren verwendung

Country Status (3)

Country Link
EP (1) EP1838339A2 (de)
JP (1) JP2008526243A (de)
WO (1) WO2006077101A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR071698A1 (es) * 2008-05-09 2010-07-07 Abbott Gmbh & Co Kg Anticuerpos contra el receptor de productos finales de glicosilacion avanzada (rage) y usos de los mismos
CN101463361B (zh) * 2009-01-14 2011-07-20 中国农业大学 双表达盒的表达载体及其制备方法与应用
CN101463362B (zh) * 2009-01-15 2011-07-20 中国农业大学 融合表达绿色荧光蛋白的表达载体及其构建方法与应用
JP2021038159A (ja) * 2019-09-02 2021-03-11 学校法人慶應義塾 Rage由来ペプチドおよびその使用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864018A (en) * 1996-04-16 1999-01-26 Schering Aktiengesellschaft Antibodies to advanced glycosylation end-product receptor polypeptides and uses therefor
WO1997039121A1 (en) * 1996-04-16 1997-10-23 Schering Aktiengesellschaft Advanced glycosylation end-product receptor peptides and uses therefor
US6555651B2 (en) * 1997-10-09 2003-04-29 The Trustees Of Columbia University In The City Of New York Ligand binding site of rage and uses thereof
US6465422B1 (en) * 1998-04-17 2002-10-15 The Trustees Of Columbia University In The City Of New York Method for inhibiting tumor invasion or spreading in a subject
US6753150B2 (en) * 1998-10-05 2004-06-22 The Trustees Of Columbia University In The City Of New York Method for determining whether a compound is capable of inhibiting the interaction of a peptide with rage
US6908741B1 (en) * 2000-05-30 2005-06-21 Transtech Pharma, Inc. Methods to identify compounds that modulate RAGE
JP4143716B2 (ja) * 2002-02-08 2008-09-03 国立大学法人金沢大学 Age−rage拮抗剤
CN1774445A (zh) * 2002-08-16 2006-05-17 惠氏公司 用于治疗rage相关病症的组合物和方法
JP2004236791A (ja) * 2003-02-05 2004-08-26 Toray Ind Inc 糖尿病合併症因子吸着体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006077101A2 *

Also Published As

Publication number Publication date
JP2008526243A (ja) 2008-07-24
WO2006077101A2 (de) 2006-07-27
WO2006077101A3 (de) 2006-09-28

Similar Documents

Publication Publication Date Title
EP1928905B1 (de) Bindungsdomänen von proteinen der repulsive guidance molecule (rgm) proteinfamilie und funktionale fragmente davon sowie deren verwendung
EP2336161B1 (de) Amyloid-beta(1-42)-Oligomere, Derivate davon und Antikörper dafür, Verfahren zu deren Herstellung und deren Verwendung
TWI747922B (zh) 特異性針對過度磷酸化τ蛋白之抗體及其使用方法
EP2598882B1 (de) Sichere und funktionelle humanisierte antikörper für die verwendung in der behandlung von einer amyloidose
EP2033971A1 (de) Bone Morphogenetic Protein (BMP)-bindende Domänen von Proteinen der Repulsive Guidance Molecule (RGM) Proteinfamilie und funktionale Fragmente davon sowie deren Verwendung
US10344080B2 (en) Antibody-based therapy of transthyretin (TTR) amyloidosis and human-derived antibodies therefor
DE60226036T3 (de) ANTIKÖRPER, DER DAS GM1-GANGLIOSID-GEBUNDENE AMYLOID-b-PROTEIN ERKENNT, UND DNA, DIE FÜR DIESEN ANTIKÖRPER CODIERT
DE69833014T2 (de) Menschliche toll homologen
UA124733C2 (uk) Антитіло до альфа-синуклеїну
KR20170061702A (ko) 인간-유래의 항-디펩티드 반복체(dpr) 항체
KR20170036785A (ko) 인간-유래의 항-헌팅틴(htt) 항체 및 그의 용도
DE60019948T2 (de) Humanin, ein Polypeptid, welches neuronales Absterben unterdrückt
WO2002040668A2 (de) Proteine und den proteinen zugrundeliegende dna-sequenzen mit funktion bei entzündungsereignissen
RU2350623C2 (ru) АНТИ-Nogo АНТИТЕЛА ("11С7") И ИХ ФАРМАЦЕВТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ
WO2006077101A2 (de) Ager-peptide und deren verwendung
US20170008959A1 (en) Ager-peptides and use thereof
DE102005002353A1 (de) AGER-Rezeptor Multimerisierungs Epitope
DE102005015832A1 (de) AGER-Rezeptor Multimerisierungs Epitope
JP2004507210A (ja) 血管形成の調整における、内皮細胞表面レセプター活性の調節

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070718

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: HR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHMIDT, MARTIN DR.

Inventor name: EBERT, ULRICH PROF. DR.

Inventor name: MOELLER, ACHIM

Inventor name: TEUSCH, NICOLE

Inventor name: LOEBBERT, RALPH

Inventor name: HAHN, ALFRED

RAX Requested extension states of the european patent have changed

Extension state: HR

Payment date: 20070727

17Q First examination report despatched

Effective date: 20090417

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120404