EP1832357B1 - Form oder Formling, Giesserei-Formstoffmischung und Verfahren zu seiner Herstellung - Google Patents

Form oder Formling, Giesserei-Formstoffmischung und Verfahren zu seiner Herstellung Download PDF

Info

Publication number
EP1832357B1
EP1832357B1 EP07004766A EP07004766A EP1832357B1 EP 1832357 B1 EP1832357 B1 EP 1832357B1 EP 07004766 A EP07004766 A EP 07004766A EP 07004766 A EP07004766 A EP 07004766A EP 1832357 B1 EP1832357 B1 EP 1832357B1
Authority
EP
European Patent Office
Prior art keywords
sand
binder
aluminium oxide
moulding
binding agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07004766A
Other languages
English (en)
French (fr)
Other versions
EP1832357A1 (de
Inventor
Martin Weith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LKAB Minerals GmbH
Original Assignee
Minelco GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minelco GmbH filed Critical Minelco GmbH
Priority to PL07004766T priority Critical patent/PL1832357T3/pl
Priority to SI200730240T priority patent/SI1832357T1/sl
Publication of EP1832357A1 publication Critical patent/EP1832357A1/de
Application granted granted Critical
Publication of EP1832357B1 publication Critical patent/EP1832357B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • B22D29/001Removing cores
    • B22D29/002Removing cores by leaching, washing or dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/186Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents contaming ammonium or metal silicates, silica sols
    • B22C1/188Alkali metal silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • B22D29/001Removing cores
    • B22D29/005Removing cores by vibrating or hammering

Definitions

  • the invention relates to molds or foundries for foundry purposes according to the preamble of patent claim 1, a foundry molding material mixture according to the preamble of claim 4 and a method for producing a mold or a molding according to the preamble of claim. 7
  • Foundry-molding mixtures are known in many forms. Basically, a distinction must be made between clay-bound foundry sand, sand mixtures with inorganic or organic binders, and binderless molding sands with physical bonding.
  • the requirements of the foundry-molding mixtures are very diverse and include properties such as flowability of the molding material mixture, solidification behavior, achievable ultimate strength, separability or mold release.
  • WO 2006/024540 describes a molding material mixture for the production of casting molds for metal processing, in which a free-flowing, refractory molding base material and a water glass-based binder is used.
  • a particulate metal oxide selected from a group consisting of silica, alumina, titania or zinc oxide, most preferably synthetic amorphous silica.
  • Molded materials of spherical shape and / or organic additives are used to improve the surface quality of the casting.
  • the strength of the molded article in a moist environment should be improved by intensively combining the surface of the particulate metal oxide with a strongly alkaline water glass phase in the binder. Since the binder has a deteriorated flowability, it should be achieved by addition of platelet-shaped lubricants that even complex shapes can be produced.
  • the particle size of the metal oxide is less than 200 micrometers in the known molding material mixture, wherein the proportion of metal oxide, based on the amount of binder is preferably between 4 and 40%.
  • quartz sand as a molding material is preferably less than 5% binder contained in the known molding material mixture.
  • the invention has for its object to provide a molding material mixture having an improved flowability, wherein the solidification behavior and the mold release of the mold or molded article is improved.
  • the castings produced with the molding or the molding material mixture according to the invention should allow an improved quality of the surface of the cast part.
  • the molding material mixture should have good disintegration properties after the intended use and the spent molding sand can be easily processed with low emission.
  • aluminum oxide is suitable as a supplement to a foundry-molding material mixture if, after mixing and drying, it covers the sand or quartz particles of the molding material as an opaque layer.
  • the alumina in a certain amount based on the binder and in a certain particle size based on the average diameter of the sand or quartz grains to use.
  • alumina significantly improves the flowability and the solidification behavior of the molding material mixture. This will be explained in more detail by means of subsequent comparative experiments. Furthermore, it was surprising that the molding / core or the mold had particularly good disintegration properties after their intended use. For example, it has been observed that the core contacted with water immediately disintegrates and can be fully processed as a homogeneous suspension.
  • the inventors have then specifically investigated the conditions during casting in the contact area between molding sand and metal surface. It has been found that the wettability of the molding surface with the liquid metal plays a role on the one hand in the described processes, on the other hand, however opposite effect was observed during demolding or reprocessing of the molding sand. Thus, for a faithful reproduction, good wetting conditions are important; on the other hand, this sometimes leads to problems during demoulding, since with the removal of the casting, parts of the mold or of the molded article are also entrained in the form of fine sand particles. In particular, in a poor wetting behavior of the molding sand already in the state of mixing with the partially liquid binder adverse effects that led to poor reusability of the spent molding material mixture (segregation, inhomogeneities, etc.).
  • an aluminum oxide with 99.9% purity was first added directly to a molding material mixture as an oxide and homogeneously distributed. It was found that homogenous distributions in common molding sands with mean particle sizes between 75 and 250 micrometers could only be obtained by repeated and lengthy mixing processes. In order to be able to effectively use above all established systems, which are designed for the use of liquid binders in the form of resins, alcohols, oils or inorganic suspensions, the oxide was first added to the binder, homogeneously dispersed and then added to the molding material via established methods.
  • Flowability relates to the flow behavior of the molding material mixture while it is being filled into the mold. It is influenced by the cohesion of the molding material mixture components with each other and the adhesion of the molding material to the wall of the mold. Particularly in the field of dry molding mixtures, in which the ratio of foundry sand to binders and aggregates can be in the range of 3 to 1 - 2, the properties of the aggregates are clearly evident.
  • Dry sand trials showed breakage of the mold during withdrawal of the cylinder.
  • the cylinder then accelerated upward without resistance and triggered the timing t1.
  • the alumina causes at a high content of the total mixture earlier breaking of the molding and a flatter angle of the cone flanks.
  • the additionally added water glass binder enhances the cohesive forces between the particles of the molding material mixture.
  • the breaking up of the molding occurred at comparable height of exposed form. This means that the significantly lower value for t1 and t2 can be explained by a higher take-off speed and a reduced adhesion to the mold wall with an aluminum oxide content of 40%.
  • the solidification behavior describes the ability of a molding mixture to fill a mold while arranging its particles in the closest possible way. Separability or releasability relates to the interactions between the molding material mixture and the mold. If too strong adhesion forces occur, parts of the molding can adhere to the mold during demoulding and break out of the molding.
  • a foundry sand binder mixture with a binder content of 2.5% and a varied alumina content of 10% and 40% and 80% in the binder (percent by weight based on the binder) was injected via a core shooter into a mold until sufficient green strength pre-dried and removed. After examination of the green compacts for defects, these microwaves were completely dried ready-to-use moldings and finally examined.
  • the blend without additive shows the occurrence of defects in the fine profiling during drying, while this is not the case with the mixtures according to the invention.
  • In the drying behavior of the mixture according to the invention shows a better resistance of the molding material mixture against thermal effects.
  • molding mixtures according to the invention based on quartz sand were prepared according to Table 3 and dried under different conditions and tested for their profile fidelity.
  • the improved resistance to thermal effects was confirmed.
  • the inventors assume that the free spaces in the molding material mixture, due to the Al 2 O 3 particles which space the quartz sand grains apart, allow the unhindered transfer of the solvent into the gas phase during drying.
  • a dried in a drying oven at 60 ° C within 48 hours molding had too high final weight and showed in the microscopic examination bulky, coated with a glassy layer throughout binder bridges and had clearly set during drying.
  • a test series with varied oxide content in the binder showed that with oxide contents from 10%, oxide particle coverage could be observed, while at 80% to 90%, the increasing concentration in the total mixture resulted in more and more particle-coated sand grains. Preference was given to working with contents of 40% to 60%, particularly preferably 50% of oxide.
  • the castings produced showed a significantly smoother surface compared to the standard castings after demoulding.
  • the number of average adherent grains per square centimeter dropped from 47 to 49 to 0.4 to 0.5.
  • the adhesion force of the individual grains to the metal surface was extremely low, so that cleaning could be carried out by means of compressed air or ultrasound instead of the usual sandblasting. This opens up the possibility of the final cleaning of the castings with methods such.
  • the fine profiles were formed exactly in the manner specified in the molding.
  • the barking out time for binders based on water glass was additionally lowered. This can be explained by an additional weakening of the adhesion-promoting phase of the binder bridges by dissolving with water.
  • the coring time was found to be 20% lower compared to industrial products of the same particle size distribution.
  • the improved barking out time for freshly ground Al 2 O 3 particles is attributed to a reduced adhesive force of the binder on the fresh fracture surfaces of the particles and a more easily detachable framework from the irregularly comminuted particles:
  • milled oxides oxides which have been adjusted in their morphology by grinding, crushing, crushing, blasting, impact milling, vibratory milling, etc., during production are referred to as milled oxides. It was found that even with ground aluminum oxides with a purity of 90%, the advantages according to the invention could be achieved.
  • the finely ground aluminum oxides especially in the limits of 100-200 microns, preferably immediately after the grinding must be added to the binder and used, otherwise there is a risk of dissolution or aluminate formation in the case of prolonged storage.
  • the aluminate formation takes place by direct transition of the aluminum from the oxidic surface into the solution in the form of a negatively charged complex.
  • the aluminum is kept in solution in the complex, spreads by diffusion, and tends to agglomerate and flocculate with longer residence time of the solution. This is especially at elevated temperatures as they can occur anywhere in foundry.
  • the agglomeration and flocculation causes inhomogeneously altered Flow properties of the binder and makes use of the binder mixture impossible.
  • the foundry molding material mixture according to the invention consists of molding sand, binder, aggregates and aluminum oxide as an emulsion-free and thus emission-free additive. It results in improved flowability and resistance to thermal effects of the molding material mixture, a significantly reduced number of adhering grains on the finished casting, a reduced adhesive force of the adhering grains on the casting and a significantly reduced coring time.
  • the inventive method for producing a foundry molding mixture provides that the alumina with a purity of> 90% and a particle size of 1-200 microns is added directly to the binder and processed.
  • the proportion may be between 10 and 85%, based on the amount of binder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

  • Die Erfindung betrifft Form oder Formlinge für Gießereizwecke gemäß Oberbegriff von Patentanspruch 1, ein Gießereiformstoffgemisch gemäß Oberbegriff von Patentanspruch 4 sowie ein Verfahren zur Erstellung einer Form oder eines Formlings gemäß Oberbegriff von Patentanspruch 7.
  • Gießerei-Formstoffgemische sind in vielfältiger Form bekannt. Grundsätzlich ist zwischen tongebundenen Formsanden, Sandmischungen mit anorganischen oder organischen Bindern sowie bindemittellosen Formsanden mit physikalischer Bindung zu unterscheiden. Die Anforderungen an die Gießerei-Formstoffgemische sind sehr vielfältig und umfassen Eigenschaften wie Fließfähigkeit des Formstoffgemisches, Verfestigungsverhalten, erreichbare Endfestigkeit, Trennbarkeit bzw. Entformbarkeit.
  • In der WO 2006/024540 wird eine Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung beschrieben, bei der ein rieselfähiger, feuerfesteer Formgrundstoff sowie ein auf Wasserglasbasis basierendes Bindemittel verwendet wird. Dem Bindemittel kann ein teilchenförmiges Metalloxid, ausgewählt aus einer Gruppe, bestehend aus Siliciumdioxid, Aluminiumoxid, Titanoxid oder Zinkoxid, besonders bevorzugt synthetisches, amorphes Siliciumdioxid, zugesetzt werden. Formgrundstoffe von sphärischen Form und/oder organischen Additive werden zum Verbessern der Oberflächenqualität des Gussteils verwendet. Die Festigkeit des Formlings unter feuchter Umgebung soll durch eine intensive Verbindung der Oberfläche des teilchenförmigen Metalloxids mit einer stark alkalischen Wasserglasphase im Bindemittel verbessert werden. Da das Bindemittel eine verschlechterte Fließfähigkeit aufweist, soll durch Zugabe von plättchenförmigen Schmiermitteln erreicht werden, dass auch komplexe Formen hergestellt werden können.
  • Die Teilchengröße des Metalloxids beträgt bei der bekannten Formstoffmischung weniger als 200 Mikrometer, wobei der Anteil an Metalloxid, bezogen auf die Menge an Binder bevorzugt zwischen 4 und 40% liegt. Bei Verwendung von Quarzsand als Formgrundstoff ist bevorzugt weniger als 5% Bindemittel in der bekannten Formstoffmischung enthalten.
  • Aufgabe der vorliegenden Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, ein Formstoffgemisch anzubieten, das eine verbesserte Fließfähigkeit aufweist, wobei das Verfestigungsverhalten und die Entformbarkeit der Form bzw. des Formlings verbessert ist. Die mit dem erfindungsgemäßen Formling bzw. der Formstoffmischung hergestellten Gussteile sollen eine verbesserte Qualität der Oberfläche des gegossenen Teiles ermöglichen.
  • Ferner soll das Formstoffgemisch nach der bestimmungsgemäßen Verwendung gute Zerfallseigenschaften aufweisen und der verbrauchte Formsand unter geringer Emission leicht aufbereitet werden können.
  • Diese Aufgabe wird durch eine Form oder einen Formling gemäß Anspruch 1, ein Gießereiformstoffgemisch gemäß Anspruch 4 bzw. ein Verfahren zur Herstellung einer Form oder eines Formlings gemäß Anspruch 7 gelöst.
  • Überraschenderweise wurde gefunden, dass Aluminiumoxid als Zuschlag zu einem Gießerei-Formstoffgemisch dann geeignet ist, wenn es nach der Durchmischung und Trocknung als deckende Schicht die Sand- oder Quarzpartikel des Formstoffes umhüllt. Hierzu ist das Aluminiumoxid in einer bestimmten Menge bezogen auf das Bindemittel und in einer bestimmten Korngröße bezogen auf den mittleren Durchmesser der Sand- oder Quarzkörner einzusetzen.
  • Bei der Verarbeitung war es überraschend, dass Aluminiumoxid die Fliessfähigkeit und das Verfestigungsverhalten des Formstoffgemisches wesentlich verbessert. Dies wird anhand nachfolgender Vergleichsversuche näher erläutert. Weiterhin überraschend war, dass der Formling/Kern bzw. die Form nach ihrer bestimmungsgemäßen Verwendung besonders gute Zerfallseigenschaften aufwies. Es wurde beispielsweise beobachtet, dass der mit Wasser in Kontakt gebrachte Kern sofort zerfällt und vollständig als homogene Suspension weiterverarbeitet werden kann.
  • Besonderes Augenmerk gilt bei einem Formstoffgemisch den nach der Abformung im Gießereibetrieb hergestellten Formen oder Formlingen für Gießereizwecke. Es wurde beobachtet, dass mit dem erfindungsgemäßen Zuschlag die Qualität der Gussteile, insbesondere deren Oberflächen ganz wesentlich verbessert werden konnte. Aufgrund detaillierter Untersuchungen gehen die Erfinder davon aus, dass die Verbesserung der Oberflächen einerseits durch ein besseres Abformverhalten und andererseits durch eine bessere Entformbarkeit durch geringe Anhaftungen von Formsand etc. auf der Gussoberfläche verursacht wird.
  • Die Erfinder haben daraufhin gezielt die Verhältnisse während des Abgießens im Kontaktbereich zwischen Formsand und Metalloberfläche untersucht. Es ergab sich, dass bei den beschriebenen Prozessen einerseits die Benetzbarkeit der Formlingoberfläche mit dem flüssigen Metall eine Rolle spielt, andererseits jedoch eine gegenläufige Wirkung bei der Entformung bzw. der Wiederaufbereitung des Formsandes zu beobachten war. So sind für eine formgetreue Wiedergabe zwar gute Benetzungsverhältnisse wichtig, andererseits führt dies unter Umständen bei der Entformung zu Problemen, da mit der Entnahme des Gussteils auch Teile der Form oder des Formlinges in Form von feinen Sandpartikeln mitgerissen werden. Insbesondere zeigten sich bei einem schlechten Benetzungsverhalten des Formsandes bereits schon im Mischungszustand mit dem teilweise flüssigen Binder nachteilige Effekte, die zu einer schlechten Wiederverwendbarkeit des verbrauchten Formstoffgemisches führten (Entmischung, Inhomogenitäten etc.).
  • Es war daher überraschend, dass mit dem Zusatz von Aluminiumoxid unter den genannten problematischen Randbedingungen sowohl die Fliessfähigkeit, das Verfestigungsverhalten und die Entformbarkeit des Formlings zusammen mit einer wesentlichen Verbesserung der Gussteiloberfläche erreicht werden konnte. Dies geschah vor dem Hintergrund einer vielschichtigen physikalischen, chemischen und thermodynamischen Interdependenz der beteiligten Stoffe und Verfahrensschritte.
  • Im folgenden wird die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert.
  • Bei der Herstellung des Formstoffgemisches wurde als Oxid ein Aluminiumoxid mit 99,9% Reinheit zunächst direkt einer Formstoffmischung zugesetzt und homogen verteilt. Es zeigte sich, dass homogene Verteilungen in üblichen Formsanden mit mittleren Korngrößen zwischen 75 und 250 Mikrometern jedoch erst durch wiederholte und langwierige Durchmischungsprozesse erhalten werden konnten. Um vor allem etablierte Systeme effektiv nutzen zu können, die auf das Verwenden von flüssigen Bindern in Form von Harzen, Alkoholen, Ölen oder anorganischen Suspensionen ausgelegt sind, wurde das Oxid zunächst dem Binder zuzugeben, homogen dispergiert und dann über etablierte Methoden dem Formstoff zugesetzt. Es wurde gefunden, dass Aluminiumoxide mit einer Korngröße von 1 bis 200 Mikrometern bei gleich niedrigem Zeitbedarf in einem flüssigen Binder dispergiert und anschließend eingebracht werden können, wobei eine gleichbleibend gute Homogenität erzielt wird. Hierbei zeigten die Al2O3-Binder-Dispersionen trotz der relativ hohen Dichte (ca. 4g/cm3) der Al2O3-Partikel über mehrere Tage keine Neigung zur Entmischung. Bei Verwendung von Al2O3-Partikeln mit einer Partikelgröße von über 200 µm wurden instabile Dispersionen erhalten. Bei Al2O3-Partikeln mit weniger als 1 µm mittlerer Korngröße erhöhte sich die Viskosität der Dispersion deutlich, was eine nachfolgende Verteilung der Dispersion im Formsand erschwerte und längere Rührzeiten notwendig machte. Die Al2O3-Konzentration lag zwischen 10% und 85% (Gewichtsprozent; alle nachfolgenden Konzentrationsangaben ebenso).
  • Bei der Verwendung von Quarzsand als Formsand konnten in einem mittleren Korngrößenbereich von 0,05 bis 5 mm stets homogene Mischungen mit flüssigen Bindern hergestellt werden. Bei Korngrößen oberhalb 5 mm konnte der flüssige Binder leicht durch die Kornzwischenräume abfließen und ermöglichte Setzbewegungen im Quarzsand, was zu Inhomogenitäten im Gemisch führte. Bei Korngrößen unterhalb 0,05 mm musste sowohl die Bindermenge als auch die Rührkraft und Rührzeit während des Vermischens deutlich erhöht werden, um eine sprunghaft ansteigende Kohäsionskraft zwischen den Sandkörnern zu überwinden und ein homogenes Gemisch zu erhalten.
  • Mit Formstoffgemischen mit Quarzsand als Formsand mit einem mittleren Korngrößenbereich von 0,05 mm bis 5 mm und einer flüssigen Binderdispersion mit Al2O3-Partikeln mit 1 bis 200 µm mittlerer Partikelgröße konnte eine sehr gute, gleichbleibende Homogenität erzielt werden. Die sehr gute Homogenität zeichnete sich durch eine vollständige Verteilung der Binderdispersion auf den Quarzkörnern aus, wobei die Quarzkörner von Binderdispersion bedeckt und durch die Al2O3-Partikel gegeneinander beabstandet waren, während verbundene, freie Kornzwischenräume die für die Trocknung notwendige Gasdurchlässigkeit gewährleisteten.
  • Fließfähigkeit
  • Fließfähigkeit betrifft das Fließverhalten des Formstoffgemisches, während es in die Form gefüllt wird. Es wird beeinflusst durch die Kohäsion der Formstoffgemisch-Komponenten untereinander und der Adhäsion des Formstoffs an der Wand der Form. Besonders im Bereich der trockenen Formstoffgemische, in denen das Verhältnis von Formsand zu Bindemitteln und Zuschlägen im Bereich von 3 zu 1 - 2 liegen kann, kommen die Eigenschaften der Zuschläge deutlich zum Tragen.
  • Um den Einfluss des Aluminiumoxid-Zuschlags zu ermitteln wurden unterschiedliche Mischungen aus Formsand und Aluminiumoxid in einem Rührmischer homogenisiert.
    Die mittlere Korngröße des Formsands betrug 0,32mm; die Größe der Aluminiumoxidpartikel betrug 1,5-2,5 Mikrometer; ebenso in den nachfolgenden Versuchen. Anschließend wurde das Gemisch in einer zylindrischen, vertikal erstreckten Form verdichtet. Die aufrecht stehende Form wurde nun mit konstanter Kraft vertikal nach oben abgezogen, während ein ortsfester Stempel das verdichtete Gemisch am Platz fixierte, sodass die Form nach oben von dem Gemisch abgezogen wurde. Dabei wurde die Zeit t1 ermittelt, die zum vollständigen Abziehen des Zylinders benötigt wurde. Des weiteren wurde der Zeitpunkt t2 bestimmt, zu dem das Gemisch durch sein Eigengewicht die zylindrische Form aufbrach und zu einem Kegel zerfiel. Abschließend wurde der Neigungswinkel Alpha der Kegelflanken des resultierenden Kegels bestimmt. Tabelle 1: Versuche zur Fließfähigkeit
    I) jeweils 1,5 kg trockener Formsand
    Mit 0% Oxid Mit 1% Oxid Mit 5% Oxid Mit 10% Oxid Mit 40% Oxid
    t1 = 4 s t1 = 3,9 s t1 = 4,1 s t1 = 4 s t1 = 3,9 s
    t2 = 3,5 s t2 = 3,5 s t2 = 3,4 s t2 = 3,3 s t2 = 3,1 s
    Alpha= 115 Alpha= 118 Alpha= 117 Alpha= 121 Alpha= 141
  • Die Versuche mit trockenem Formsand zeigten ein Aufbrechen der Form während des Abziehens des Zylinders. Anschließend schnellte der Zylinder widerstandsfrei nach oben und löste die Zeitnahme t1 aus. Das Aluminiumoxid bewirkt bei hohem Gehalt an der Gesamtmischung ein früheres Aufbrechen des Formlings und einen flacheren Winkel der Kegelflanken. Tabelle2: Versuche zur Fließfähigkeit
    II) jeweils 1,3 kg feuchter Formsand
    Mit 0% Oxid Mit 1 % Oxid Mit 5% Oxid Mit 10% Oxid Mit 40% Oxid
    t1 = 7 s t1 = 6,9 s t1 = 7 s t1 = 6,8 s t1 = 6,7 s
    t2 = 6,1 s t2=6,2s t2=6s t2=5,8s t2=5,6s
    Alpha= 91 Alpha= 94 Alpha=96 Alpha= 95 Alpha= 101
  • Bedingt durch die Feuchtigkeit ist die Kohäsion unter den Teilchen des Formstoffgemisches größer und es kommt erst später zu einem Aufbrechen des Formlings. Der Einfluss des höheren Anteils an Aluminiumoxid fällt etwas geringer aus. Die Fließfähigkeit des Sandes ist bei allen Mischungen gut. Tabelle3: Versuche zur Fließfähigkeit
    III) jeweils 1,4 kg feuchter Formsand + Wasserglasbinder (10%)
    Mit 0% Oxid Mit 1 % Oxid Mit 5% Oxid Mit 10% Oxid Mit 40% Oxid
    t1 = 8,1 s t1 = 8 s t1 = 7,9 s t1 = 7,6 s t1 = 7,2 s
    t2 = 7 s t2 = 7 s t2 = 6,9 s t2 = 6,5 s t2 = 6,3 s
    Alpha= 93 Alpha= 97 Alpha= 96 Alpha= 98 Alpha= 107
  • Der zusätzlich hinzugefügte Wasserglasbinder verstärkt die Kohäsionskräfte zwischen den Partikeln des Formstoffgemisches. Das Aufbrechen des Formlings ereignete sich jeweils bei vergleichbarer Höhe an freigelegter Form. Das bedeutet, dass der deutlich niedrigere Wert für t1 und t2 bei einem Aluminiumoxidgehalt von 40% durch eine höhere Abzugsgeschwindigkeit und eine verringerte Haftung an der Formwand erklärt werden kann.
  • Die Zunahme der Abzugsgeschwindigkeit mit steigendem Aluminiumoxid-Gehalt und die flacheren Winkel der Kegelflanken deuten auf eine verringerte Wechselwirkung mit der Form-Wand und eine bessere Fließfähigkeit hin. Dies wurde in den Versuchen zur Verfestigung und Trennbarkeit näher untersucht.
  • Verfestigungsverhalten und Trennbarkeit
  • Das Verfestigungsverhalten beschreibt die Fähigkeit eines Formstoffgemisches, eine Form auszufüllen und dabei seine Teilchen in dichtest möglicher Weise anzuordnen. Trennbarkeit bzw. Entformbarkeit betrifft die Wechselwirkungen zwischen Formstoffgemisch und Form. Treten hierbei zu starke Adhäsionskräfte auf, so können bei der Entformung Teile des Formlings an der Form anhaften und aus dem Formling herausbrechen.
  • Zur Überprüfung wurde ein Formsand-Bindergemisch mit einem Binderanteil von 2,5 % und einem variierten Aluminiumoxidanteil von 10% bzw. 40% sowie 80% im Binder (Gewichtsprozent bezogen auf den Binder) über eine Kernschießmaschine in eine Form eingeschossen, bis zur ausreichenden Grünfestigkeit vorgetrocknet und entnommen. Nach der Untersuchung der Grünlinge auf Fehler wurden diese mit Mikrowellen vollständig zu gebrauchsfertigen Formlingen getrocknet und abschließend begutachtet.
  • Bei der Form handelt es sich um einen riegelförmigen Prüfkörper dessen eine Seite glatt und dessen andere Seite Profile und Hinterschneidungen mit zunehmender Feinheit aufweist. Es wurden jeweils 10 Formen hergestellt. Die relative Dichte wurde nach vollständiger Trocknung unter Berücksichtigung der unterschiedlichen Dichte des Aluminiumoxids und des Sandes berechnet. Tabelle 4: Versuche zum Verfestigungsverhalten und der Trennbarkeit mit je 10 Formlingen vor und nach abschließender Trocknung
    0% Oxid im Binder 10% Oxid im Binder 40% Oxid im Binder 80% Oxid im Binder
    1 mm-Profile Ja; alle 10 Ja; alle 10 Ja; alle 10 Ja; alle 10
    0,5 mm-Profile teilweise: 6 Ja; alle 10 teilweise: 9 teilweise: 9
    0,1 mm-Profile teilweise: 2 teilweise: 3 teilweise: 3 teilweise: 4
    Mikrometer-Profile nein nein nein nein
    Trockendichte standard gleich gleich gleich
    Weitere Fehler (trocken) Ja: 2 im 0,1 mm-Profil nein nein nein
  • Die Mischungen mit Aluminiumoxid-Zusatz zeigen ein gleich bleibend gutes Verfestigungsverhalten. Alle Prüfkörper weisen die gleiche Packungsdichte auf.
  • Die Profiltreue der Formlinge des Formstoffgemisches mit Aluminiumoxid-Zusatz ist im Bereich der submillimeter-großen Profilierungen deutlich der Mischung ohne Zusatz überlegen. Dies beweist die bereits in den Versuchen für Fließfähigkeit angedeuteten, besseren Fließeigenschaften einer Formstoffmischung mit Aluminiumoxidzusatz.
  • Die Mischung ohne Zusatz zeigt das Auftreten von Fehlern in der Feinprofilierung während des Trocknens, während dies bei den erfindungsgemäßen Mischungen nicht der Fall ist. Im Trocknungsverhalten zeigt die erfindungsgemäße Mischung eine bessere Beständigkeit des Formstoffgemisches gegen thermische Einwirkungen.
  • Zur Überprüfung der verbesserten Beständigkeit gegen thermische Einwirkungen wurden erfindungsgemäße Formstoffgemische auf Quarzsandbasis gemäß Tabelle 3 hergestellt und bei unterschiedlichen Bedingungen getrocknet und auf ihre Profiltreue überprüft. Die verbesserte Beständigkeit gegen thermische Einwirkungen konnte bestätigt werden. Die Erfinder gehen davon aus, dass die Freiräume im Formstoffgemisch, bedingt durch die Al2O3-Partikel, die die Quarzsandkörner gegeneinander beabstanden, während der Trocknung den ungehinderten Übergang des Lösungsmittels in die Gasphase erlauben. Ein in einem Trockenschrank bei 60°C innerhalb von 48 Stunden getrockneter Formling wies jedoch ein zu hohes Endgewicht auf und zeigte in der mikroskopischen Untersuchung unförmige, mit einer glasartigen Schicht durchgehend überzogene Binderbrücken und hatte sich während des Trocknens deutlich gesetzt. Ein bei 80°C Eigentemperatur direkt nach dem Verschießen mit 5000 Watt Mikrowellenleistung beaufschlagter, explosionsartig getrockneter Formling zeigte in der mikroskopischen Untersuchung eine schaumartig erstarrte Wasserglasphase um die Al2O3-Partikel herum und hatte sich über die Hohlform hinaus ausgedehnt. Aus den Beobachtungen bei extrem langsamem und bei explosionsartigem Trocknen erkannten die Erfinder, dass die Trocknung bei mittlerer Geschwindigkeit über rauhe Verdampfungsstellen erfolgreich abläuft. Insbesondere an frisch erzeugten Bruchflächen und/oder Bruchkanten erfolgt die Trocknung offenbar bevorzugt auf den Al2O3-Partikeln, wobei das entstehende Gas durch Zwischenräume zwischen den Partikeln in freie Kornzwischenräume geleitet wird und über die freien Kornzwischenräume aus dem Formling herausgeführt wird. Deshalb wird erfindungsgemäß dieser Vorgang so gelenkt, dass die Al2O3-Partikel als poröse, geschlossen flächendeckende, gepackte Schicht über den Binder auf dem einzelnen Quarzsandkorn gehalten werden. Im Bereich der Kornzwickel werden poröse Binderbrücken ausgebildet, die die Quarzsandkörner miteinander verbinden.
  • Untersuchungen der erfindungsgemäßen, gebrauchsfertigen, getrockneten Formlinge der Mischungen gemäß Tabelle 4 mit Hilfe eines optischen Mikroskops zeigten, dass die einzelnen Sandkörner vollständig mit einer deckenden Schicht aus Aluminiumoxid-Partikeln umhüllt und in ihrer Kornmorphologie durch Berge bzw. Täler von etwa der halben Korngröße der Aluminiumoxidpartikel gekennzeichnet waren. Bei besonders hohen Konzentrationen an Oxid im Binder konnten dickere Schichten von Oxidpartikeln beobachtet werden.
  • Eine Testreihe mit variiertem Oxidgehalt im Binder ergab, dass bei Oxidgehalten ab 10% eine Bedeckung mit Oxidpartikeln beobachtet werden konnte, während bei Gehalten von 80% bis 90% durch die ansteigende Konzentration in der Gesamtmischung immer mehr unterschiedlich dick mit Partikeln umhüllte Sandkörner auftraten. Bevorzugt wurde mit Gehalten von 40% bis 60%, besonders bevorzugt mit 50% an Oxid gearbeitet.
  • Im Ergebnis zeigten die Versuche, dass der Zusatz von Aluminiumoxid zu einem Formsand mit einer überraschenden Verbesserung seiner Fließeigenschaften und einer gesteigerten Beständigkeit des Formstoffgemisches gegen thermische Einwirkungen verbunden ist.
  • Verwendung als Gießerei-Formstoffgemisch
  • Die erhaltenen Formlinge wurden nun als feinprofilierte Kerne in einem Gießprozess mit flüssigem Aluminium getestet. Aluminium wurde verwendet, da hier bezüglich der Verwendbarkeit die größten Zweifel bestanden. Aluminium und Aluminiumoxid sind bereits seit längerem als Verbundwerkstoffe in Kombination in Verwendung. Daher ist zu erwarten, dass tragende Haftbrücken zwischen den Oxidpartikeln und dem flüssigen Metall ausgebildet werden können, die zu einer mit Oxidpartikeln verunreinigten Gussteiloberfläche führen können.
  • Die angefertigten Gussteile zeigten jedoch im Vergleich zu den Standardgussteilen nach dem Entformen eine deutlich glattere Oberfläche. Die Anzahl der durchschnittlich anhaftenden Körner pro Quadratzentimeter sank von 47 bis 49 auf 0,4 bis 0,5. Zusätzlich war die Haftkraft der einzelnen Körner an der Metalloberfläche extrem niedrig, sodass die Reinigung statt des üblichen Sandstrahlens mit Hilfe von Druckluft oder Ultraschall erfolgen konnte. Dies eröffnet die Möglichkeit, die abschließende Reinigung der Gussteile mit Methoden wie z. B. Ultraschallbädern oder auch Druckluftbeaufschlagung durchzuführen, welche deutlich kostengünstiger und schneller im Vergleich zum üblichen Sandstrahlen sind. Darüber hinaus wurden die Feinprofilierungen exakt in der im Formling vorgegebenen Art und Weise ausgeformt.
  • Der vorgenannte Effekt lässt sich insbesondere bei der maschinellen Kernherstellung in Verbindung mit komplizierten Gussteilen nutzen. So sind beispielsweise Oel-Wasserkanäle mit Hinterschneidungen im Gussteil von Automobil-Verbrennungsmotoren nunmehr mit einer besonders glatten Oberfläche herstellbar. Eine Nachbehandlung z.B. durch Strahlen der Gussteile ist nicht mehr erforderlich.
  • Bei der Entkernung der Gussteile zeigte sich ein zusätzlicher Effekt: Während die auf übliche Art und Weise hergestellten Gussteile in einem frequenzregulierten Schwingungsentleerer etwa 40 Sekunden lang erschüttert und gedreht werden mussten, um eine vollständige Entkernung zu bewirken, war bei den Gussteilen mit Oxidzusatz die Entkernung bereits nach 10 Sekunden vollständig abgeschlossen. Eine mikroskopische Untersuchung des entkernten Sandes zeigte mikroporöse Binderbrücken im Bereich der Kornzwickel, welche bei niederfrequenter Erschütterung leichter gelöst bzw. gebrochen werden können. Die 4fach beschleunigte Entkernung konnte bei jedem Prüfkörper wiederholbar festgestellt werden.
  • Eine Überprüfung der verbesserten Entkernbarkeit unter Variation von Bindemittelzusammensetzung und Al2O3-Partikelgröße ergab zunächst, dass die verbesserte Entkernbarkeit stets mit den zuvor beschriebenen Binderbrücken gemeinsam auftrat. Wurde das erfindungsgemäße Verhältnis der mittleren Korngröße des Formsandes zur mittleren Korngröße der Al2O3-Partikel über- oder unterschritten, so verschlechterte sich die Entkernbarkeit, und die Binderbrücken ließen eine deutlich kompaktere bzw. deutlich porösere aufgebrochene Struktur erkennen. Die Erfinder gehen davon aus, dass im erfindungsgemäßen Formling Binderbrücken zwischen den Quarzkörnern, gekennzeichnet durch ein Gerüst aus Al2O3-Partikeln, Bindemittel als haftvermittelnder Phase und Poren entlang der Al2O3-Partikel-Zwischenräume, optimale Sollbruchstellen darstellen, die bei Erschütterung nach dem Guss die verbesserte Entkernbarkeit bereitstellen.
  • Durch Zugabe von Wasser konnte die Entkernungszeit bei Bindemitteln auf Wasserglasbasis zusätzlich abgesenkt werden. Dies kann durch eine zusätzliche Schwächung der haftvermittelnden Phase der Binderbrücken durch Anlösen mit Wasser erklärt werden. Bei der Verringerung der Al2O3-Partikelgröße auf unter 100µm durch Vermahlen von gröberen Al2O3-Partikeln wurde festgestellt, dass die Entkernungszeit im Vergleich zu Industrieprodukten gleicher Korngrößenverteilung 20 % niedriger ausfiel. Die verbesserte Entkernungszeit bei frisch gemahlenen Al2O3-Partikeln führen die Erfinder auf eine verringerte Haftkraft des Binders auf den frischen Bruchflächen der Partikel und ein besser lösbares Gerüst aus den unregelmäßig zerkleinerten Partikeln zurück:
  • Bei einer maximalen Al2O3-Partikelgröße von 2,5 µm wurde bei wässriger Entkernung bei Bindemitteln auf Wasserglasbasis eine sprunghafte Absenkung der Entkernungszeit festgestellt. Der mit Wasser in Kontakt gebrachte Kern zerfiel sofort und vollständig und konnte als homogene Suspension weiter verarbeitet werden. Mikroskopische Untersuchung der Binderbrückenstruktur zeigte, dass die Binderbrücken zwischen den Al2O3-Partikeln Poren von 0,1 µm bis maximal 2,5 µm aufwiesen. Die Erfinder nehmen an, dass diese Mikroporen eine so starke Kapillarität aufweisen, dass zugesetztes Wasser stark beschleunigt in die Binderbrücken aufgenommen und verteilt wird, wodurch das Bindemittel umfassend angelöst und die Stabilität der Binderbrücke schlagartig abgesenkt wird.
  • Abschließend wurde das erfindungsgemäße Formstoffgemisch unter Verwendung von Aluminiumoxiden geringerer Reinheit mit gleichen, eingestellten Korngrößen wie zuvor beschrieben getestet. Dabei zeigte sich, dass bei einer Reinheit des Typs AL90,0 und geringer vermehrter Anhaftungen von Formsand auftraten. Dies wird daher als untere Grenze für den Reinheitsgehalt des Aluminiumoxids angesehen.
  • Im Folgenden werden Oxide, welche in ihrer Morphologie durch Vermahlung, Zerbrechen, Zerkleinern, Zersprengen, Prallmahlen, Vibrationsmahlen etc. während der Herstellung eingestellt wurden, als vermahlene Oxide bezeichnet. Es zeigte sich, dass auch mit vermahlenen Aluminiumoxiden mit einem Reinheitsgrad von 90% die erfindungsgemäßen Vorteile erzielt werden konnten.
  • Zur Begründung der verschiedenen Parameterbereichsgrenzen des eingangs definierten vermahlenen Aluminiumoxids wurden verschiedene, gemahlene Oxide untersucht. Bei Korngrößen <1 Mikrometer trat eine Klumpenbildung bei der Vermischung mit wiederaufbereitetem Kernsand auf. Bei Korngrößen über 200 Mikrometer stellte man fest, dass eine vollständige Abdeckung des mit Aluminiumoxid zu beschichtenden Kornes nicht zuverlässig erfolgte.
  • Ferner wurde festgestellt, dass die feingemahlenen Aluminiumoxide insbesondere in den Grenzbereichen von 100-200 Mikrometer vorzugsweise unmittelbar nach der Vermahlung dem Bindemittel zugemischt und verwendet werden müssen, sonst besteht bei einer längeren Lagerung die Gefahr des Anlösens bzw. der Aluminatbildung. Die Aluminatbildung erfolgt durch direkten Übergang des Aluminiums aus der oxidischen Oberfläche in die Lösung in Form eines negativ geladenen Komplexes. Das Aluminium wird im Komplex in Lösung gehalten, verteilt sich durch Diffusion, und neigt bei längerer Standzeit der Lösung zur lokalen Agglomeration und zum Ausflocken. Dies erfolgt insbesondere bei erhöhten Temperaturen wie sie im Gießereibetrieb überall auftreten können. Die Agglomeration und Ausflockung bewirkt inhomogen veränderte Fließeigenschaften des Binders und macht eine Verwendung des Bindergemisches unmöglich.
  • Zusammenfassend besteht das erfindungsgemäße Gießerei-Formstoffgemisch aus Formsand, Bindemittel, Zuschlägen und Aluminiumoxid als emulsionsfreiem und damit emissionsfreiem Zusatz. Es bewirkt eine verbesserte Fließfähigkeit und Beständigkeit gegen thermische Einwirkungen des Formstoffgemisches, eine erheblich reduzierte Anzahl an anhaftenden Körnern am fertigen Gussteil, eine reduzierte Haftkraft der anhaftenden Körner am Gussteil sowie eine deutlich verkürzte Entkernungszeit.
  • Das erfindungsgemäße Verfahren zur Herstellung eines Gießerei-Formstoffgemisches sieht vor, dass das Aluminiumoxid mit einer Reinheit von > 90% und einer Korngröße von 1-200 Mikrometer dem Bindemittel unmittelbar zugemischt und verarbeitet wird. Der Anteil kann dabei zwischen 10 und 85%, bezogen auf die Bindemittelmenge liegen.
  • Bei der Verwendung des erfindungsgemäßen Formstoffgemisches bilden sich zwischen den Sandkörnern mikroporöse Binderbrücken, welche eine schnelleres und einfacheres Entkernen und abschließendes Reinigen des Gussteils ermöglichen.

Claims (13)

  1. Form oder Formling für Gießereizwecke, bestehend aus Formsand, Bindemittel und Zuschlägen, wobei als Formsand Quarzsand und im Bindemittel Aluminiumoxid verwendet wird, dadurch gekennzeichnet, dass der Quarzsand in einem Korngrößenbereich von 0,05 bis 5 mm und als Zuschlag Aluminiumoxid mit einer Korngröße von 1 bis 200 Mikrometer verwendet wird, wobei das Aluminiumoxid frische Bruchflächen oder Bruchkanten aufweist und das mit Aluminiumoxid versehene Bindemittel auf der Oberfläche des Quarzsandes als deckende Schicht angeordnet ist, wobei Al2O3-Partikel als poröse, geschlossen flächendeckende, gepackte Schicht über den Binder auf dem einzelnen Quarzsandkorn gehalten sind und eine im Bindemittel enthaltene Wasserglasphase an den Berührungsflächen der Quarzkörner zwickelartig zusammengezogen ist und eine mikroporöse Struktur in den Grenzphasen in Form von porösen Binderbrücken aufweist, wobei Bindemittel und Quarzsand über die Bruchflächen oder Bruchkanten der Aluminiumoxid-Partikel in der Struktur des Formlings die mikroporösen Binderbrücken ausbildend miteinander verbunden sind.
  2. Form oder Formling nach Anspruch 1, dadurch gekennzeichnet, dass ein gebrochenes und/oder vermahlenes Aluminiumoxid verwendet wird, dessen Korngröße im Bereich von 1 bis 100 µm liegt.
  3. Form oder Formling nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Porengröße der mikroporösen Struktur im Bereich von 0,1 bis 2,5 µm liegt.
  4. Gießerei-Formstoffgemisch zur Herstellung einer Form oder eines Formlings nach einem der vorhergehenden Ansprüche, bestehend aus Formsand, Bindemittel und Zuschlägen, dadurch gekennzeichnet, dass die Zuschläge aus einem frisch gebrochenem oder vermahlenen, emulsionsfreien Aluminiumoxid in einer Menge > 10%, bezogen auf den Bindemittelanteil bestehend, dass das Aluminiumoxid mit einer Korngröße zwischen 1 und 200 Mikrometer in einer Menge von 10-65% im Bindemittel enthalten ist, dass ein Bindemittel auf Wasserglasbasis mit einem Bindemittelgehalt von 1-10% im Formstoffgemisch enthalten ist und dass als Formsand Quarzsand in einem Korngrößenbereich von 0,05 bis 5 mm verwendet wird.
  5. Gießerei-Formstoffgemisch nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei dem Zuschlagsstoff Aluminiumoxid um ein Alpha-Aluminiumoxid handelt.
  6. Gießerei-Formstoffgemisch nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Aluminiumoxid ein reines Aluminiumoxid mit einem Reinheitsgrad von größer 90% ist.
  7. Verfahren zur Herstellung einer Form oder eines Formlings unter Verwendung eines Gießerei-Formstoffes, bestehend aus Formsand, Bindemitteln und Zuschlägen, dadurch gekennzeichnet, dass als Formsand Quarzsand in einem Korngrößenbereich von 0,05 bis 5 mm verwendet wird, dass als Zuschlag frisch vermahlenes Aluminiumoxid mit einer Korngröße von 1-200 Mikrometer in einer Menge von 10-85% Gewichtsprozent des Bindemittels diesem zugesetzt und mit dem Bindemittel homogen vermischt wird, dass das Bindemittel-Oxidgemisch mit dem Formsand vermischt und unter Druck in einen Formkasten eingeschossen und verfestigt wird, wobei das Mischungsverhältnis Bindemittel/Oxid zu Formsand in einem Verhältnis von 1-10 zu 90 gehalten wird und wobei die Trocknung des flüssigen Binders derart erfolgt, dass zwischen den einzelnen Quarzkörnern mikroporöse Binderbrücken erzeugt werden.
  8. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das Aluminiumoxid mit einer Ausgangskorngröße > 200 µm auf eine Korngröße < 100 µm gemahlen oder gebrochen wird und das Mahlprodukt unter Erhalt der erzeugten Bruchflächen und Bruchkanten zunächst mit dem Binder bei pH > 10 und dann innerhalb von 1 bis 10 Sekunden mit dem Formsand vermischt wird.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zumischung des vermahlenen Aluminiumoxids zu einem flüssigen Bindemittel erfolgt, wobei der Anteil des Bindemittel/Oxid-Gemischs an der Gesamtmischung 1,5-4 Gewichtsprozent beträgt.
  10. Verfahren zur Herstellung eines Gussteils unter Verwendung einer Form oder eines Formlings nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Entkernung des Gussteils eine niederfrequente Schwingung für maximal 10 Sekunden aufgebracht wird.
  11. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die fertigen Gussteile abschließend mit einer Ultraschall-Beaufschlagung von anhaftenden Sandkörnern befreit werden.
  12. Verfahren nach einem der Ansprüche 9 bis 10, dadurch gekennzeichnet, dass die Form oder der Formling durch Zugabe von Wasser in seine Bestandteile zerlegt wird.
  13. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Verlegung in einer feuchten Umgebung bis auf die Primärkorngröße erfolgt, wobei die Behandlungszeit vom Beginn der Feuchtigkeitszugabe bis zum vollständigen Zerfall unterhalb 1 Sekunde liegt.
EP07004766A 2006-03-10 2007-03-08 Form oder Formling, Giesserei-Formstoffmischung und Verfahren zu seiner Herstellung Not-in-force EP1832357B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL07004766T PL1832357T3 (pl) 2006-03-10 2007-03-08 Forma lub półwyrób, odlewnicza mieszanina materiałów formierskich i sposób ich wytwarzania
SI200730240T SI1832357T1 (sl) 2006-03-10 2007-03-08 Kalup ali surovec, zmes materiala za ulivanje v livarni in postopek za njegovo izdelavo

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006011530A DE102006011530A1 (de) 2006-03-10 2006-03-10 Form oder Formling, Gießerei-Formstoffgemisch und Verfahren zu seiner Herstellung

Publications (2)

Publication Number Publication Date
EP1832357A1 EP1832357A1 (de) 2007-09-12
EP1832357B1 true EP1832357B1 (de) 2010-03-10

Family

ID=38198259

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07004766A Not-in-force EP1832357B1 (de) 2006-03-10 2007-03-08 Form oder Formling, Giesserei-Formstoffmischung und Verfahren zu seiner Herstellung

Country Status (7)

Country Link
EP (1) EP1832357B1 (de)
AT (1) ATE460243T1 (de)
DE (2) DE102006011530A1 (de)
ES (1) ES2342733T3 (de)
PL (1) PL1832357T3 (de)
SI (1) SI1832357T1 (de)
WO (1) WO2007104469A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007012660B4 (de) * 2007-03-16 2009-09-24 Chemex Gmbh Kern-Hülle-Partikel zur Verwendung als Füllstoff für Speisermassen
DE102014004914A1 (de) * 2013-08-26 2015-02-26 Gebrüder Dorfner GmbH & Co. Kaolin- und Kristallquarzsand-Werke KG Gießform oder einen Gießformkern aus beschichtetem Formsand für Metallguss

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT8024122A0 (it) * 1979-08-20 1980-08-12 Gen Electric Forme di fonderia, composizioni di trattamento e relativi metodi di preparazione.
SU1163958A1 (ru) * 1982-10-22 1985-06-30 Институт проблем литья АН УССР Состав дл изготовлени литейный форм и стержней
JPH0613137B2 (ja) * 1989-06-30 1994-02-23 岡崎鑛産物株式会社 鋳型材
JPH0663683A (ja) * 1992-08-18 1994-03-08 Mitsubishi Heavy Ind Ltd 鋳型の製造方法
US6371194B1 (en) * 1996-08-09 2002-04-16 Vaw Aluminium Ag Method for producing core preforms and recycling core sand for a foundry
DK172825B1 (da) * 1996-12-18 1999-08-02 Dti Ind Fremgangsmåde til fremstilling af partikler belagt med et lag af vandglas og af emner omfattende sådanne belagte partikler.
FR2791282B1 (fr) * 1999-03-23 2001-05-11 Forward Tech Industries Sa Procede de nettoyage ou de debourrage d'une piece de fonderie
DE19951622A1 (de) * 1999-10-26 2001-05-23 Vaw Ver Aluminium Werke Ag Bindemittelsystem auf Wasserglasbasis
DE10216464B4 (de) * 2002-04-12 2004-04-15 Deutsches Zentrum für Luft- und Raumfahrt e.V. Silica gebundene Kernwerkstoffe, Verfahren zu deren Herstellung und deren Verwendung
DE102004042535B4 (de) * 2004-09-02 2019-05-29 Ask Chemicals Gmbh Formstoffmischung zur Herstellung von Gießformen für die Metallverarbeitung, Verfahren und Verwendung

Also Published As

Publication number Publication date
ATE460243T1 (de) 2010-03-15
WO2007104469A1 (de) 2007-09-20
DE102006011530A1 (de) 2007-09-13
ES2342733T3 (es) 2010-07-13
DE502007003051D1 (de) 2010-04-22
SI1832357T1 (sl) 2010-07-30
PL1832357T3 (pl) 2010-08-31
EP1832357A1 (de) 2007-09-12

Similar Documents

Publication Publication Date Title
EP1884300B1 (de) Formstoff, Giesserei-Formstoff-Gemisch und Verfahren zur Herstellung einer Form oder eines Formlings
EP2014392B1 (de) Formstoffmischung, Formling für Giessereizwecke und Verfahren zur Herstellung eines Formlings
EP1934001B1 (de) Borsilikatglashaltige formstoffmischungen
EP2908968B1 (de) Formstoffmischungen auf der basis anorganischer bindemittel und verfahren zur herstellung von formen und kerne für den metallguss
DE102012020510B4 (de) Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
EP2760607B1 (de) Beschichtungsmassen für anorganische giessformen und kerne und deren verwendung und verfahren zum schlichten
DE102012103705A1 (de) Verfahren zur Herstellung von Formen und Kernen für den Metallguss sowie nach diesem Verfahren hergestellte Formen und Kerne
EP2013307B1 (de) Schleifkorn auf basis von geschmolzenem kugelkorund
EP2248614B1 (de) Dispersion, Schlicker und Verfahren zur Herstellung einer Gießform für den Präzisionsguss unter Verwendung des Schlickers
DE102012020511A1 (de) Formstoffmischungen auf der Basis anorganischer Bindemittel und Verfahren zur Herstellung von Formen und Kerne für den Metallguss
DE102017107531A1 (de) Verfahren zur Herstellung von Gießformen, Kernen und daraus regenerierten Formgrundstoffen
DE102010043451A1 (de) Kerne auf der Basis von Salz, Verfahren zu ihrer Herstellung und deren Verwendung
WO2013152851A2 (de) Kerne auf der basis von salz, verfahren zu ihrer herstellung und deren verwendung
DE102017107658A1 (de) Schlichtezusammensetzung für die Gießereiindustrie, enthaltend partikuläres, amorphes Siliziumdioxid und Säure
DE102011076905A1 (de) Infiltrat-stabilisierte Salzkerne
DE69631093T2 (de) Anorganischer, poröser träger für eine filtrationsmembran und herstellungsverfahren
DE102017107655A1 (de) Verwendung einer Säure enthaltenden Schlichtezusammensetzung in der Gießereiindustrie
EP1832357B1 (de) Form oder Formling, Giesserei-Formstoffmischung und Verfahren zu seiner Herstellung
EP2308614B1 (de) Grünfeste Aerosande
DE112012004397T5 (de) Giesskern, Verfahren zu seiner Herstellung, und Giessverfahren unter Verwendung des Kerns
EP1433553A1 (de) Verbundwerkstoffe und Verfahren zu ihrer Herstellung
EP2941327B1 (de) Verfahren zur herstellung eines kern- und oder formsandes für giessereizwecke
WO2021083446A1 (de) 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat
DD220523A1 (de) Verfahren zur herstellung eines wasserglas-ton-formstoffes
DD290773A7 (de) Porzellanartiger sinterwerkstoff hoher festigkeit und verfahren zu seiner herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080207

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080829

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MINELCO GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007003051

Country of ref document: DE

Date of ref document: 20100422

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2342733

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 7233

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100611

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100610

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100710

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100712

26N No opposition filed

Effective date: 20101213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LT

Payment date: 20110301

Year of fee payment: 5

Ref country code: IE

Payment date: 20110322

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LV

Payment date: 20110322

Year of fee payment: 5

Ref country code: FR

Payment date: 20110314

Year of fee payment: 5

Ref country code: CZ

Payment date: 20110301

Year of fee payment: 5

Ref country code: SK

Payment date: 20110303

Year of fee payment: 5

Ref country code: PL

Payment date: 20110225

Year of fee payment: 5

Ref country code: SI

Payment date: 20110225

Year of fee payment: 5

Ref country code: NL

Payment date: 20110328

Year of fee payment: 5

Ref country code: SE

Payment date: 20110325

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110324

Year of fee payment: 5

Ref country code: DE

Payment date: 20110216

Year of fee payment: 5

Ref country code: ES

Payment date: 20110324

Year of fee payment: 5

Ref country code: BE

Payment date: 20110217

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110329

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

BERE Be: lapsed

Owner name: MINELCO G.M.B.H.

Effective date: 20120331

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121001

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM4D

Effective date: 20120308

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120308

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120309

Ref country code: LT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120308

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120308

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 7233

Country of ref document: SK

Effective date: 20120308

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007003051

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120308

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120308

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120308

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120309

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120308

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20130107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 460243

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120308

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110308

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20131018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120309

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002