EP1829061A1 - Materiau ferrite a faibles pertes en hyperfrequence et procede de fabrication - Google Patents

Materiau ferrite a faibles pertes en hyperfrequence et procede de fabrication

Info

Publication number
EP1829061A1
EP1829061A1 EP05821798A EP05821798A EP1829061A1 EP 1829061 A1 EP1829061 A1 EP 1829061A1 EP 05821798 A EP05821798 A EP 05821798A EP 05821798 A EP05821798 A EP 05821798A EP 1829061 A1 EP1829061 A1 EP 1829061A1
Authority
EP
European Patent Office
Prior art keywords
sub
ferrite
grinding
temperature
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05821798A
Other languages
German (de)
English (en)
Inventor
Richard Lebourgeois
Ludovic Pinier
Michel Pate
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1829061A1 publication Critical patent/EP1829061A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2675Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • H01F1/346[(TO4) 3] with T= Si, Al, Fe, Ga
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles

Definitions

  • the invention relates to ferrite materials with low magnetic losses, particularly suitable for producing microwave components and in particular low loss passive inductive components operating at frequencies of the order of a few Gigahertz.
  • Such components are particularly sought for both for civil telecommunications applications and for radar applications typically operating in frequency ranges between a few Gigahertz and a few tens of Gigahertz.
  • They may be inductive passive components that perform, in microwave communication systems, functions such as filters, phase-shifters, circulators or insulators.
  • the passive components may typically comprise an element made of ferrite material in which an electromagnetic wave propagates.
  • the previously magnetized ferrite material has a magnetic anisotropy which acts differently on the electromagnetic wave according to whether it is polarized in one direction or the other.
  • This well known principle of non-reciprocity is based on gyromagnetic resonance or ferromagnetic resonance.
  • the performance of the component is conditioned by low losses (magnetic and dielectric).
  • the magnetic losses are directly related to the saturation magnetization which must be adjusted according to the frequency band of the application. For low frequency operations (1 to 20 GHz), it is necessary to look for magnetizations with low saturation (less than 0.2 Tesla), otherwise the magnetic losses are important. For operations with a higher frequency (20 to 100 GHz), it is necessary to look for higher magnetizations (typically between 0.2 Tesla and 0.55 Tesla) to obtain better efficiencies, the magnetic losses being reduced.
  • Families of ferrite materials particularly suitable for these applications are ferrite materials of garnet structure which correspond to a particular crystalline organization.
  • the structure crystallographic garnets is cubic.
  • the crystallographic sites are tetrahedral (corresponding to an environment of 4 oxygen ions), octahedral (corresponding to an environment of 6 oxygen ions) and dodecahedral (corresponding to an environment of 8 oxygen ions).
  • YIG yttrium-iron
  • ferrite ferrite yttrium and iron of generic formula: YsFe 5 Oi 2 allows for example ferromagnetic resonance line widths of less than 4000 A / m at 10 GHz and tangents of dielectric loss less than or equal to 10 4 to 10 GHz.
  • the ferrites are manufactured according to a conventional method comprising the following steps: a weighing step of the raw materials;
  • chamottage high temperature typically 1200 0 C aiming to synthesize the garnet phase in powder form
  • second grinding and pressing step very high temperature sintering of the re-milled chamfered powder whose purpose is to densify the ceramic while conferring on it the desired shape.
  • the sintering is carried out at a temperature between 145O 0 C and 155O 0 C.
  • this temperature can be lowered to about 135 ° C.
  • the ferrite materials according to the invention comprising copper have a sintering temperature significantly lower, of the order of 1050 to 1070 ° C. Copper has the advantage of being substituted in particular for vanadium which is a toxic substance. Thus it is possible to develop ferrites at lowered sintering temperature, while decreasing the content of toxic element. Their industrial synthesis is thus easier to implement. Their low sintering temperature reduces their manufacturing cost and makes it possible to co-sinter with other types of materials such as certain metals such as gold or silver-palladium alloys or other ceramics that go into the manufacturing process. components such as ferrites for permanent magnets or dielectric materials such as those based on alumina.
  • ferrite constituting the heart of the circulator is metallized with silver deposited most often by screen printing.
  • One or two polar pieces (which create the polarizing magnetic field) are then formed and consist of a permanent magnet of the hexaferrite type or a samarium-cobalt or neodymium-iron-boron alloy.
  • the advantage of having lowered sintering temperatures is to minimize the solid phase diffusion reactions of the species present and thus preserve the starting chemical compositions while mechanically combining the different materials. In this way, it is possible to avoid machining and assembly steps and thus to manufacture low-cost microwave components.
  • the known art from the basic formulation of YsFe 5 Oi 2 many compositions have been optimized according to the intended applications and the desired characteristics.
  • gadolinium (Gd) which lead to the following formulations: Y 3- 3yFe5Gd 3 yOi2, y ranging from 0 to 0.5. They make it possible to reduce the saturation magnetization of the ferrite without reducing the Curie temperature. The power handling ( ⁇ H k ) is also improved.
  • gadolinium and / or magnetic rare earth ions such as dysprosium or holium whose formulations are the following: Ys-sx-szFes-syGdsxMeszAlsyO ⁇ . They also allow high power operation but for low substitution rates, low losses also improve.
  • Another advantage of the invention lies in the fact that in particular for applications at frequencies used in the telecommunications field, the ferrite must have relatively high molar percentages of yttrium and / or gadolinium.
  • the ferrite By using a copper-substituted ferrite, interesting properties are obtained by decreasing the levels of yttrium and / or gadolinium, since copper substitutes for these elements in the ferrite according to the invention.
  • Another advantage of the invention is that copper makes it possible to overcome the presence of vanadium, which is a toxic element.
  • the subject of the invention is a ferrite material based on yttrium and iron, characterized in that it corresponds to the following chemical formula:
  • the rare earths can be of the gadolinium (Gd), dysprosium (Dy) or holmium (Ho) type.
  • the invention also relates to a composite material based on ferrite characterized in that it comprises a material according to the invention cofired with one or more materials of metal type or of dielectric type or ferroelectric type.
  • the invention also relates to a magnetic component comprising a magnetic core made of ferrite material according to the invention and a magnetic component characterized in that it comprises a circulator or a microwave phase shifter, made of ferrite material, according to the invention, which can operate in a frequency range of about 0.5 Gigahertz to about 20 Gigahertz.
  • the subject of the invention is a process for manufacturing a ferrite material according to the invention, characterized in that it comprises the following steps:
  • the subject of the invention is also a method for manufacturing the material, characterized in that it comprises the following steps: • the weighing of oxides or carbonates raw materials to obtain the composition of the ferrite material;
  • the hard ferrite may advantageously be hexaferrite type.
  • the first grinding can be carried out in a humid medium.
  • TR a rare earth or a combination of rare earths
  • the ferrite material is produced according to the steps described below:
  • Step 1 All the oxides and / or carbonates raw materials are weighed so as to produce the appropriate garnet ferrite.
  • All the raw materials are mixed-milled for example with a ball mill (hermetic container filled with stainless steel balls or any other hard non-polluting material) or by attrition
  • the first powder is heat-treated at a temperature between about 800 0 C and 1100 0 C, preferably under air, under nitrogen or oxygen, in one or more times.
  • This step corresponds to the conventional step of chamotte or calcination during the manufacture of ferrite material which aims to partially form the desired crystalline phase.
  • the calcined powder is again milled under conditions similar to those of step 2.
  • the regrind powder is then pressed by axial or isostatic pressing with pressures of the order of 1000 to 2000 bar to promote densification at the time of sintering.
  • the regrind and pressed powder is then heated to high temperature.
  • This so-called sintering operation is aimed at the complete formation of the garnet crystalline phase as well as the densification of the ceramic. It is carried out at temperatures between about 900 0 C and 115O 0 C and preferably under air or under oxygen.
  • the raw materials are industrial oxides CuO, Y2O 3 and Fe 2 O 3 .
  • the grindings are carried out by attrition for 30 minutes at a speed of 500 revolutions / min.
  • the grinding balls are made of zirconia, the grinding bowl is made of stainless steel.
  • the chamissage is carried out at 1050 ° C. for the formulations containing copper, at 1200 ° C. for the formulation (A) without copper.
  • the sintering is carried out at 1070 ° C. or at 1080 ° C. under oxygen for the formulations with copper and at 148 ° C. for that without copper, a difference of 41 ° C.
  • the densities measured after sintering are given below:
  • the saturation magnetic moment per gram is respectively:
  • the magnetic losses measured as the width of the gyromagnetic resonance line at 10 GHz ( ⁇ H) are respectively:
  • Magnetic losses far from resonance are lower for samples containing little copper. They are compatible microwave applications considered such as circulators or microwave insulators.
  • Dielectric losses are lower for samples containing little copper. They are compatible microwave applications considered such as circulators or microwave insulators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

L'invention concerne un matériau ferrite de structure grenat à base d'yttrium et de fer comportant du cuivre qui permet d'en abaisser sensiblement la température de frittage par rapport aux matériaux ferrites classiques de type grenat et répondant à la formule chimique suivante : YaTRbFecAldlneCafCugZrhViCojSikO12±y avec TR : une terre rare ou une combinaison de terres rares et 3 (a+b+c+d+e) + 2 (f+g+j) + 4 (h+k) + 5i = 24 ± 2y 1≤a≤3,5; 0≤b≤1,5; 4≤c≤5; 0≤d≤1,5; 0≤e<0,8; 0≤f≤1; 0≤g≤0,05; 0≤i<0,8; 0≤j≤0,5; 0≤k≤0,5. Applications: composants hyperfréquences, composants passifs inductifs à faibles pertes fonctionnant à des fréquences de l'ordre du Gigahertz.

Description

MATERIAU FERRITE A FAIBLES PERTES EN HYPERFREQUENCE ET
PROCEDE DE FABRICATION
L'invention concerne des matériaux ferrites à faibles pertes magnétiques, particulièrement adaptés à la réalisation de composants hyperfréquences et notamment de composants passifs inductifs à faibles pertes fonctionnant à des fréquences de l'ordre de quelques Gigahertz. De tels composants sont particulièrement recherchés actuellement tant pour des applications civiles de télécommunications que pour des applications radar fonctionnant typiquement dans des gammes de fréquences comprises entre quelques Gigahertz et quelques dizaines de Gigahertz. II peut s'agir de composants passifs inductifs qui réalisent dans les systèmes de communications hyperfréquences, des fonctions de type filtres, déphaseur, circulateurs ou isolateurs.
Pour cela, les composants passifs peuvent typiquement comprendre un élément en matériau ferrite dans lequel se propage une onde électromagnétique. Le matériau ferrite préalablement aimanté possède une anisotropie magnétique qui agit différemment sur l'onde électromagnétique suivant qu'elle est polarisée dans un sens ou dans l'autre. Ce principe bien connu de non-réciprocité est basé sur la résonance gyromagnétique ou encore résonance ferromagnétique. Pour ces applications, les performances du composant sont conditionnées par de faibles pertes (magnétiques et diélectriques). Les pertes magnétiques sont directement liées à l'aimantation à saturation qui doit être ajustée en fonction de la bande de fréquence de l'application. Pour des fonctionnements à basse fréquence (1 à 20 GHz), on est amené à rechercher des aimantations à saturation faible (inférieure à 0,2 Tesla), autrement les pertes magnétiques sont importantes. Pour des fonctionnements à plus haute fréquence (20 à 100 GHz), on est amené à rechercher des aimantations plus élevées (typiquement comprises entre 0,2 Tesla et 0,55 Tesla) pour obtenir de meilleures efficacités, les pertes magnétiques étant réduites.
Des familles de matériaux ferrites particulièrement adaptés pour ces applications sont des matériaux ferrites de structure grenat qui correspondent à une organisation cristalline particulière. La structure cristallographique des grenats est cubique. Les sites cristallographiques sont tétraédriques (correspondant à un environnement de 4 ions oxygènes), octaédriques (correspondant à un environnement de 6 ions oxygènes) et dodécaédriques (correspondant à un environnement de 8 ions oxygènes). Citons comme exemple le grenat d'yttrium-fer (YIG) de formule chimique : {Y3+ 3 [Fe3+]2 (Fe3+J3 O12 dans laquelle les symboles { }, [ ] et ( ) indiquent respectivement les sites dodécaédriques, octaédriques et tétraédriques et les valeurs 3+ la valence des ions. Ces ferrites présentent de faibles aimantations à saturation qui permettent de limiter les pertes magnétiques à basse fréquence (1 à 20 GHz) ainsi que des pertes diélectriques faibles. Ainsi le ferrite grenat à base d'yttrium et de fer de formule générique : YsFe5Oi2 permet d'obtenir par exemple des largeurs de raie de résonance ferromagnétique inférieures à 4000 A/m à 10 GHz et des tangentes de pertes diélectriques inférieures ou égales à 104 à 10 GHz.
Le problème de ce type de ferrite réside dans les températures très élevées de fabrication qui génèrent nécessairement des coûts élevés de développement des composants intégrant ce type de ferrite. C'est pourquoi l'invention propose une nouvelle famille de ferrites de type grenat dont la fabrication peut être réalisée à des températures moindres, grâce à la présence de cuivre dont les proportions ont été optimisées.
En effet selon l'invention, de faibles taux de cuivre sont revendiqués de manière à diminuer les pertes diélectriques ainsi que les pertes magnétiques à faible puissance
De manière générale les ferrites sont fabriqués selon un procédé classique comprenant les étapes suivantes : - une étape de pesée des matières premières ;
- une étape de mélange et de broyage des matières premières ;
- une étape de traitement thermique appelée chamottage à température élevée typiquement 12000C ayant pour but de synthétiser la phase grenat sous forme de poudre ; - une seconde étape de broyage et de pressage ; - le frittage à très haute température de la poudre chamottée rebroyée ayant pour but de densifier la céramique tout en lui conférant la forme souhaitée.
Typiquement avec un grenat de type YsFesO^, le frittage est effectué à une température comprise entre 145O0C et 155O0C.
En ajoutant des constituants de type calcium et vanadium, on peut abaisser cette température à environ 135O0C.
Les matériaux ferrites selon l'invention comportant du cuivre présentent une température de frittage nettement abaissée, de l'ordre de 1050 à 10700C. Le cuivre présente l'intérêt de se substituer notamment au vanadium qui est une substance toxique. Ainsi on parvient à élaborer des ferrites à température de frittage abaissée, tout en diminuant la teneur en élément toxique. Leur synthèse industrielle est ainsi plus facile à mettre en oeuvre. Leur basse température de frittage réduit leur coût de fabrication et rend possible le co-frittage avec d'autres types de matériaux comme par exemple certains métaux tels que l'or ou des alliages argent-palladium ou d'autres céramiques qui entrent dans la fabrication des composants comme les ferrites pour aimants permanents ou les matériaux diélectriques tels que ceux à base d'alumine. Par exemple, le ferrite selon l'art connu, constituant le cœur du circulateur est métallisé avec de l'argent déposé le plus souvent par sérigraphie. On vient ensuite coller une ou deux pièces polaires (qui créent le champ magnétique polarisant) constituées par un aimant permanent de type hexaferrite ou un alliage samarium-cobalt ou néodyme-fer-bore. En effet selon l'état de l'art il est impossible de co-fritter un ferrite grenat avec un métal car les températures minimales de frittage pour les grenats sont incompatibles avec les températures de fusion des principaux métaux utilisés en microélectroniques (9620C pour l'argent, 10640C pour l'or...).
De plus l'avantage d'avoir des températures de frittage abaissées est de minimiser les réactions de diffusion en phase solide des espèces présentes et donc préserver les compositions chimiques de départ tout en associant mécaniquement les différents matériaux. On peut par ce biais éviter des étapes d'usinage et d'assemblage et ainsi fabriquer des composants hyperfréquences à faible coût. Selon l'art connu, à partir de la formulation de base du YsFe5Oi2 de nombreuses compositions ont été optimisées selon les applications visées et les caractéristiques souhaitées.
Suivant les fréquences de fonctionnement et les puissances mises en jeu, on adapte les caractéristiques du matériau suivantes : aimantation à saturation, pertes magnétiques à bas niveau de puissance (largeur de raie
ΔH ou ΔHeff) pertes magnétiques à fort niveau de puissance (ΔHk), pertes diélectriques, stabilité en température. Chaque type d'application (bande de fréquence, niveau de puissance, température de fonctionnement et stabilité en température) conduit à un compromis entre tous ces paramètres. Citons pour les substitutions ayant donné lieu à des développements de matériaux :
- Les substitutions par l'aluminium (Al) qui aboutissent aux formulations suivantes :Y3Fe5-5χAl5χOi2, x variant de 0 à 0,3. Elles permettent de diminuer l'aimantation à saturation du ferrite sans augmenter les pertes magnétiques, donc d'adapter le matériau à la fréquence de fonctionnement.
- Les substitutions par le gadolinium (Gd) qui aboutissent aux formulations suivantes :Y3-3yFe5Gd3yOi2, y variant de 0 à 0,5. Elles permettent de diminuer l'aimantation à saturation du ferrite sans diminuer la température de Curie. La tenue en puissance (ΔHk) est également améliorée.
- Les substitutions mixtes par l'aluminium (Al) et le gadolinium (Gd) qui aboutissent aux formulations suivantes :Y3-3yGd3yFe5-
5xAI5xOi2, x variant de 0 à 0,3 et y variant de 0 à 0,5. On obtient ainsi les effets combinés décrits ci-dessus.
- Les substitutions par l'indium (In) ou par le calcium-zirconium (Ca-Zr) qui aboutissent aux formulations suivantes : Y3Fe5- zlnzθi2 ouY3-zCazFe5-zZrzOi2, z variant de 0 à 0,6. On augmente ainsi l'aimantation à saturation.
- Les substitutions par le calcium-indium-vanadium qui aboutissent aux formulations suivantes : Y3-2χCa2χFe5-x- ylnyVzOi2, z variant de 0 à 0,5. Elles permettent d'augmenter l'aimantation à saturation et de diminuer les pertes magnétiques à bas niveau de puissance.
- Les substitutions par le cobalt (Co) qui est associé au silicium ou au germanium ce qui donne les formulations suivantes : Y3Fe5-2uMeuCθuOi2, Me étant Si ou Ge et u variant de 0 à 0,2. Elles permettent des fonctionnements à puissance élevée au détriment des performances à bas niveau de puissance (augmentation de ΔH).
- les substitutions par le gadolinium et/ou des ions Terre Rare magnétiques tels que le dysprosium ou l'holium dont les formulations sont les suivantes : Ys-sx-szFes-syGdsxMeszAlsyO^. Elles permettent également des fonctionnements à puissance élevée mais pour les faibles taux de substitutions, les pertes à bas niveau s'améliore également.
Un autre avantage de l'invention réside dans le fait que notamment pour des applications aux fréquences utilisées dans le domaine des télécommunications, le ferrite doit comporter des pourcentages molaires relativement élevés en Yttrium et/ou en Gadolinium. En utilisant un ferrite substitué par le cuivre on obtient des propriétés intéressantes, en diminuant les taux d'Yttrium et/ou de Gadolinium, puisque le cuivre se substitue à ces éléments dans le ferrite selon l'invention.
Un autre avantage de l'invention est que le cuivre permet de s'affranchir de la présence de vanadium qui est un élément toxique.
Ainsi, plus précisément l'invention a pour objet un matériau ferrite à base d'yttrium et de fer caractérisé en ce qu'il répond à la formule chimique suivante :
YaTRbFecAldlnθCafCUgZrhViCθjSikOi2±γ avec : TR : une terre rare ou une combinaison de terres rares et
3 (a+b+c+d+e) + 2 (f+g+j) + 4 (h+k) + 5i = 24±2γ 1<a<3,5; 0<b<1 ,5; 4<c<5; 0<d<1 ,5; O≤e≤O.8; 0<f<1 ; 0,<g<0,05; O≤i≤O.8; O≤j≤O.5; 0 <k<0,5.
Avantageusement les terres rares peuvent être de type gadolinium (Gd), dysprosium (Dy) ou holmium (Ho).
L'invention a aussi pour objet un matériau composite à base de ferrite caractérisé en ce qu'il comporte un matériau selon l'invention cofritté avec un ou plusieurs matériaux de type métal ou de type diélectrique ou de type ferroélectrique.
L'invention a aussi pour objet un composant magnétique comportant un noyau magnétique en matériau ferrite selon l'invention et un composant magnétique caractérisé en ce qu'il comporte un circulateur ou un déphaseur hyperfréquence, en matériau ferrite, selon l'invention, pouvant fonctionner dans une gamme de fréquence d'environ 0,5 Gigahertz à environ 20 Gigahertz.
Enfin l'invention a pour objet un procédé de fabrication d'un matériau ferrite selon l'invention caractérisé en ce qu'il comprend les étapes suivantes :
• le pesage des matières premières de types oxydes ou carbonates pour obtenir la composition du matériau ferrite ;
• le mélange et un premier broyage des matières premières ;
• le chamottage à une température comprise entre environ 800 et 10500C, en une seule ou plusieurs étapes ;
• un second broyage de la poudre obtenue, suivi d'un pressage ; • le frittage de ladite poudre rebroyée à une température comprise entre environ 9000C et 1100°C.
L'invention a également pour objet un procédé de fabrication du matériau, caractérisé en ce qu'il comprend les étapes suivantes : • le pesage des matières premières de types oxydes ou carbonates pour obtenir la composition du matériau ferrite ;
> le mélange et un premier broyage des matières premières ;
• le chamottage à une température comprise entre environ 800 et 1 1000C, en une seule ou plusieurs étapes ;
• un second broyage de la poudre obtenue ;
• le mélange de ladite poudre rebroyée avec des produits organiques (liants, défloculants, surfactants...) pour la réalisation d'une pâte ; " le dépôt en couches épaisses de cette pâte par coulage ou sérigraphie ;
• la réalisation d'une structure multicouche constituée d'un empilement de couches de ferrite dur (aimant permanent), de métal (argent, argent-palladium, or) et de ferrite selon la revendication 3 ;
• le frittage de ladite structure multicouche à une température comprise entre 850 et 1 1000C.
Le ferrite dur peut avantageusement être de type hexaferrite. Avantageusement le premier broyage peut être effectué en milieu humide.
L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description qui va suivre. De manière générale le matériau ferrite selon l'invention répond à la formule chimique :
YaTRbFecAldlnθCafCUgZrhViCθjSikOi2±γ avec
TR : une terre rare ou une combinaison de terres rares et
3 (a+b+c+d+e) + 2 (f+g+j) + 4 (h+k) + 5i = 24 ± 2γ
1<a<3,5; 0<b<1 ,5; 4<c<5; 0<d<1 ,5; O≤e≤O.8;
0<f<1 ; 0<g<0,05; O≤i≤O.8; O≤j≤O.5; O≤k≤O.5. De manière générale le matériau ferrite est élaboré selon les étapes décrites ci-après :
Etape 1 L'ensemble des matières premières de type oxydes et/ou carbonates sont pesées de manière à réaliser le ferrite grenat adéquat.
Etape 2
L'ensemble des matières premières est mélangé-broyé par exemple avec un broyeur à boulets (récipient hermétique rempli de boulets en acier inoxydable ou toute autre matière dure non polluante) ou par attrition
(système rotatif rempli de billes en contact qui broient la poudre par cisaillement) de manière à constituer une première poudre.
Etape 3
La première poudre est traitée thermiquement à une température comprise entre environ 8000C et 11000C, de préférence sous air, sous azote ou sous oxygène, en une seule ou plusieurs fois.
Cette étape correspond à l'étape classique de chamottage ou de calcination lors de la fabrication de matériau ferrite qui a pour but de former en partie la phase cristalline recherchée.
Etape 4
La poudre calcinée est à nouveau broyée selon des conditions analogues à celles de l'étape 2.
Etape 5
La poudre rebroyée est alors pressée par pressage axial ou isostatique avec des pressions de l'ordre de 1000 à 2000 bars pour favoriser la densification au moment du frittage.
Etape 6
La poudre rebroyée et pressée est alors portée à haute température. Cette opération dite de frittage a pour but la formation complète de la phase cristalline grenat ainsi que la densification de la céramique. Elle est effectuée à des températures comprises entre environ 9000C et 115O0C et de préférence sous air ou sous oxygène.
Exemples de réalisation :
Exemple 1
Pour mettre en évidence l'intérêt de l'invention, cinq formulations ont été synthétisées en utilisant le même mode opératoire :
YsFesO^ (référence A)
YaCu9Fe5Oi2 ; a = 2,98 et g = 0, 02 (référence B)
YaCu9Fe5Oi2 ; a = 2,97 et g = 0, 03 (référence C)
YaCu9Fe5Oi2 ; a = 2,96 et g = 0, 04 (référence D)
YaCu9Fe5Oi2 ; a = 2,951 et g = 0, 049 (référence E)
Les matières premières sont des oxydes industriels CuO, Y2O3 etFe2O3.
Les broyages sont effectués par attrition pendant 30 minutes à la vitesse de 500 tours/min. Les billes de broyage sont en zircone cériée, le bol de broyage est en acier inoxydable.
Le chamottage est réalisé à 10500C pour les formulations contenant du cuivre, à 12000C pour la formulation (A) sans cuivre.
Une analyse aux Rayons X indique que la phase cristalline grenat est obtenue pour les 5 formulations.
Le frittage est réalisé à 10700C ou à 10800C sous oxygène pour les formulations avec cuivre et à 148O0C pour celle sans cuivre, soit un écart de 41O0C. Les masses volumiques mesurées après frittage sont données ci-après :
On obtient des masses volumiques supérieures avec les formulations contenant du cuivre malgré des températures de frittage inférieures de 350 ou 36O0C.
Le moment magnétique à saturation par gramme vaut respectivement :
(uem étant l'unité électromagnétique par gramme)
Comparaison des pertes magnétiques à bas niveau de puissance entre ferrites A, B, C, D et E :
Les pertes magnétiques mesurées comme la largeur de la raie de la résonance gyromagnétique à 10 GHz (ΔH) valent respectivement :
Les pertes magnétiques près de la résonance sont plus élevées pour les échantillons contenant du cuivre mais largement acceptables pour les applications hyperfréquences envisagées.
Les pertes magnétiques loin de la résonance sont plus faibles pour les échantillons contenant peu de cuivre. Elles sont compatibles des applications hyperfréquences envisagées comme par exemple les circulateurs ou les isolateurs hyperfréquences.
Les pertes diélectriques à haute fréquence (10 GHz), tanδε, valent :
Les pertes diélectriques sont plus faibles pour les échantillons contenant peu de cuivre. Elles sont compatibles des applications hyperfréquences envisagées comme par exemple les circulateurs ou les isolateurs hyperfréquences.

Claims

REVENDICATIONS
1. Matériau ferrite de structure grenat à base d'yttrium et de fer caractérisé en ce qu'il répond à la formule chimique suivante :
YaTRbFecAldlnθCafCUgZrhViCθjSikOi2±γ avec
TR : une terre rare ou une combinaison de terres rares et
3 (a+b+c+d+e) + 2 (f+g+j) + 4 (h+k) + 5i = 24 ± 2γ
1<a<3,5; 0<b<1 ,5; 4<c<5; 0<d<1 ,5; O≤e≤O.8; 0<f<1 ; 0,2-SgO1Oo; O≤i≤O.8; O≤j≤O.5; O≤k≤O.5.
2. Matériau ferrite selon la revendication 1 , caractérisé en ce que la ou les terres rares sont de type Gd, Dy ou Ho.
3. Matériau composite à base de ferrite, caractérisé en ce qu'il comporte un matériau ferrite selon l'une des revendications 1 ou 2, cofritté avec un ou plusieurs matériaux de type métal ou de type diélectrique ou de type ferroélectrique.
4. Composant magnétique comportant un noyau magnétique en matériau ferrite selon l'une des revendications 1 à 3.
5. Composant magnétique caractérisé en ce qu'il comporte un circulateur ou un déphaseur hyperfréquence, en matériau ferrite selon l'une des revendications 1 à 3.
6. Composant magnétique selon l'une des revendications 4 ou 5, fonctionnant dans une gamme de fréquence d'environ 0,5 Gigahertz à environ 20 Gigahertz.
7. Procédé de fabrication d'un matériau selon l'une des revendications 1 ou 2, caractérisé en ce qu'il comprend les étapes suivantes : • Le pesage des matières premières de type oxydes ou carbonates pour obtenir la composition du matériau ferrite ;
• Le mélange et un premier broyage des matières premières ; « Le chamottage à une température comprise entre environ 800 et 10500C ;
• Un second broyage de la poudre obtenue, suivi d'un pressage ;
• Le frittage de ladite poudre rebroyée à une température comprise entre environ 900 et 11000C.
8. Procédé de fabrication selon la revendication 7, caractérisé en ce que le premier broyage est effectué en milieu humide.
9. Procédé de fabrication selon l'une des revendications 7 ou 8, caractérisé en ce que le frittage de la poudre rebroyée est effectué sous air ou sous oxygène.
10. Procédé de fabrication selon l'une des revendications 7 à 9, caractérisé en ce que les opérations de broyage sont effectuées avec un broyeur à boulets et/ou par attrition.
1 1. Procédé de fabrication du matériau selon la revendication 3, caractérisé en ce qu'il comprend les étapes suivantes:
• Le pesage des matières premières de type oxydes ou carbonates pour obtenir la composition du matériau ferrite ;
• Le mélange et un premier broyage des matières premières ;
• Le chamottage à une température comprise entre environ 800 et 1 100°C ; • Un second broyage de la poudre obtenue, suivi d'un pressage ;
• Le mélange de ladite poudre rebroyée avec des produits organiques (liants, défloculants, surfactants...) pour la réalisation d'une pâte;
• Le dépôt en couche épaisse de cette pâte par coulage ou sérigraphie; • La réalisation d'une structure multicouche constituée d'un empilement de couches de ferrite dur (aimant permanent), de métal (argent, argent-palladium, or) et de ferrite selon la revendication 3;
> • Le frittage de ladite structure multicouche à une température comprise entre environ 850 et 11000C;
12. Procédé de fabrication selon la revendication 11 , caractérisé en ce que le ferrite dur est de type hexaferrite.
EP05821798A 2004-12-20 2005-12-16 Materiau ferrite a faibles pertes en hyperfrequence et procede de fabrication Withdrawn EP1829061A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0413582A FR2879593B1 (fr) 2004-12-20 2004-12-20 Materiau ferrite a faibles pertes en hyperfrequence et procede de fabrication
PCT/EP2005/056844 WO2006067088A1 (fr) 2004-12-20 2005-12-16 Materiau ferrite a faibles pertes en hyperfrequence et procede de fabrication

Publications (1)

Publication Number Publication Date
EP1829061A1 true EP1829061A1 (fr) 2007-09-05

Family

ID=34955287

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05821798A Withdrawn EP1829061A1 (fr) 2004-12-20 2005-12-16 Materiau ferrite a faibles pertes en hyperfrequence et procede de fabrication

Country Status (4)

Country Link
US (1) US20090321677A1 (fr)
EP (1) EP1829061A1 (fr)
FR (1) FR2879593B1 (fr)
WO (1) WO2006067088A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3838865A1 (fr) 2019-12-19 2021-06-23 Thales Materiau ferrite de structure grenat a basse temperature de frittage pour cofrittage avec une metallisation argent ou or et procede de fabrication du materiau ferrite
EP4177233A1 (fr) 2021-11-09 2023-05-10 Thales Matériau ferrite de structure grenat à basse température de frittage et haute aimantation à saturation pour cofrittage avec une métallisation argent ou or et procédé de fabrication du matériau ferrite

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093273A1 (fr) * 2013-12-18 2015-06-25 株式会社村田製作所 Élément circuit non réciproque
FR3044308B1 (fr) * 2015-11-27 2017-11-24 Thales Sa Materiau ferrite de type grenat a tres faible aimantation a saturation et composant comprenant ledit materiau a tres faible aimantation a saturation
FR3074170A1 (fr) * 2017-11-30 2019-05-31 Thales Materiau ferrite de structure grenat a haute permittivite et a basse temperature de frittage
CN112430080A (zh) * 2020-10-27 2021-03-02 北京无线电测量研究所 一种高功率和高剩磁比的石榴石铁氧体材料及其制备方法
CN112759380B (zh) * 2020-12-31 2022-05-31 横店集团东磁股份有限公司 一种微波铁氧体材料及其制备方法和应用
CN113651609A (zh) * 2021-09-01 2021-11-16 横店集团东磁股份有限公司 一种微波铁氧体材料及其制备方法与应用
CN114907107A (zh) * 2021-09-24 2022-08-16 浙江凯文磁钢有限公司 一种制造钇铝石榴石铁氧体材料的方法
CN114573334B (zh) * 2022-03-18 2023-04-14 电子科技大学 高功率高居里温度低线宽石榴石铁氧体及制备方法
CN114907108B (zh) * 2022-05-09 2023-04-14 横店集团东磁股份有限公司 一种适用于5g射频器的微波铁氧体材料及其制备方法
CN115259849B (zh) * 2022-08-11 2023-05-30 横店集团东磁股份有限公司 旋磁铁氧体材料及制备方法和应用
CN115331907B (zh) * 2022-09-01 2023-11-21 南京金宁微波有限公司 一种应用于大功率微波器件的旋磁铁氧体材料及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230596A (ja) * 1987-03-17 1988-09-27 Tdk Corp イツトリウム鉄系ガ−ネツト単結晶およびその製造方法
JP2958800B2 (ja) * 1990-09-04 1999-10-06 株式会社村田製作所 マイクロ波・ミリ波用磁性体組成物
FR2738949B1 (fr) * 1995-09-19 1997-10-24 Thomson Csf Materiau magnetique composite a permeabilite et pertes reduites
FR2740259B1 (fr) * 1995-10-24 1997-11-07 Thomson Csf Noyau magnetique mixte
FR2747228B1 (fr) * 1996-04-05 1998-07-17 Thomson Csf Ferrite a faibles pertes entre 1 mhz et 100 mhz et procede de realisation
FR2795855B1 (fr) * 1999-06-29 2001-10-05 Thomson Csf Ferrites a faibles pertes
FR2824553B1 (fr) * 2001-05-11 2004-07-30 Thomson Csf Materiau ferrite a faibles pertes et procede de fabrication
FR2863748B1 (fr) * 2003-12-12 2006-02-24 Thales Sa Document securise a puce sans contact avec masquage des donnees

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006067088A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3838865A1 (fr) 2019-12-19 2021-06-23 Thales Materiau ferrite de structure grenat a basse temperature de frittage pour cofrittage avec une metallisation argent ou or et procede de fabrication du materiau ferrite
FR3105217A1 (fr) 2019-12-19 2021-06-25 Thales Materiau ferrite de structure grenat a basse temperature de frittage pour coffritage avec une metallisaton argent ou or et procede de fabrication du materiau ferrite
EP4177233A1 (fr) 2021-11-09 2023-05-10 Thales Matériau ferrite de structure grenat à basse température de frittage et haute aimantation à saturation pour cofrittage avec une métallisation argent ou or et procédé de fabrication du matériau ferrite
FR3128955A1 (fr) 2021-11-09 2023-05-12 Thales Matériau ferrite de structure grenat à basse température de frittage et haute aimantation à saturation pour cofrittage avec une métallisation argent ou or et procédé de fabrication du matériau ferrite.

Also Published As

Publication number Publication date
FR2879593A1 (fr) 2006-06-23
FR2879593B1 (fr) 2007-03-02
US20090321677A1 (en) 2009-12-31
WO2006067088A1 (fr) 2006-06-29

Similar Documents

Publication Publication Date Title
EP1829061A1 (fr) Materiau ferrite a faibles pertes en hyperfrequence et procede de fabrication
EP2622613B1 (fr) Procédé de fabrication d&#39;un composant hyperfréquence de FERRITE GRENAT D&#39;YTTRIUM-FER et COMPOSANT HYPERFRÉQUENCE
EP2452928B1 (fr) Matériau magnétique à base de ferrite
TWI460320B (zh) 對組合物中稀土金屬之有效取代作用及供電子應用之材料
JP6596828B2 (ja) フェライト焼結磁石及びそれを備えるモータ
JP5418595B2 (ja) 焼結磁石
EP3380438B1 (fr) Materiau ferrite de type grenat a tres faible aimantation a saturation et composant comprenant ledit materiau a tres faible aimantation a saturation
Fang et al. Low-loss and temperature stable (1-x) Ba3P2O8-xMg2B2O5 composite ceramics with low sintering temperature
JP2015181148A (ja) フェライト焼結磁石及びそれを備えるモータ
WO2002092532A1 (fr) Materiau ferrite a faibles pertes en hyperfrequence et procede de fabrication
Dong et al. Effect of CuO and TiO2 on the sintering temperature and dielectric properties of BaWO4 for LTCC applications
FR2854981A1 (fr) Materiau ferrite pour aimant permanent et procede de fabrication
EP3838865A1 (fr) Materiau ferrite de structure grenat a basse temperature de frittage pour cofrittage avec une metallisation argent ou or et procede de fabrication du materiau ferrite
Khalifeh et al. Improving Dy, Ce, Bi: YIG phase formation and magnetic features via heat treatment and chemical composition
WO2020137542A1 (fr) Corps fritté et son procédé de production
JP2000323317A (ja) フェライト磁石及びその粉末の製造方法
Li Effect of Mn3+ doping on the loss of Li0. 37Zn0. 26Ti0. 12Fe2. 37O4 ferrite
JP2007031203A (ja) W型フェライト磁石の製造方法
JP2002141212A (ja) 回転機
Zeng et al. Microwave dielectric properties and microstructures of the 11Li2O–3Nb2O5–12TiO2 ceramics with B2O3 addition
EP4177233A1 (fr) Matériau ferrite de structure grenat à basse température de frittage et haute aimantation à saturation pour cofrittage avec une métallisation argent ou or et procédé de fabrication du matériau ferrite
JPH05275221A (ja) フェライト磁石及びその製造方法
Yang et al. Low-Temperature Sintered Nb-Modified Lizntimnbi Ferrites with a Low Ferromagnetic Resonance Linewidth
Xu et al. Influence of Li2CO3 and ZnO Nanoparticle on Microstructure and Magnetic Properties of Low-Temperature Sintering LiZnTiBi Ferrites for High-Frequency Applications
JPH0319202A (ja) 磁気特性に優れたストロンチウム・フェライト磁石

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070608

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090417

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100605