EP1821051B1 - Dispositifs de fabrication de glace rapide - Google Patents

Dispositifs de fabrication de glace rapide Download PDF

Info

Publication number
EP1821051B1
EP1821051B1 EP20060110075 EP06110075A EP1821051B1 EP 1821051 B1 EP1821051 B1 EP 1821051B1 EP 20060110075 EP20060110075 EP 20060110075 EP 06110075 A EP06110075 A EP 06110075A EP 1821051 B1 EP1821051 B1 EP 1821051B1
Authority
EP
European Patent Office
Prior art keywords
ice
separator
chamber
air
freezing compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20060110075
Other languages
German (de)
English (en)
Other versions
EP1821051A1 (fr
Inventor
Halil Turan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vestel Beyaz Esya Sanayi ve Ticaret AS
Original Assignee
Vestel Beyaz Esya Sanayi ve Ticaret AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vestel Beyaz Esya Sanayi ve Ticaret AS filed Critical Vestel Beyaz Esya Sanayi ve Ticaret AS
Priority to DE200660003181 priority Critical patent/DE602006003181D1/de
Priority to ES06110075T priority patent/ES2315996T3/es
Priority to EP20060110075 priority patent/EP1821051B1/fr
Publication of EP1821051A1 publication Critical patent/EP1821051A1/fr
Application granted granted Critical
Publication of EP1821051B1 publication Critical patent/EP1821051B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/22Construction of moulds; Filling devices for moulds
    • F25C1/24Construction of moulds; Filling devices for moulds for refrigerators, e.g. freezing trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/065Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return
    • F25D2317/0655Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return through the top
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0661Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the bottom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/30Quick freezing

Definitions

  • This invention relates to quick ice-making units used to shorten the time of making ice in a freezing compartment in current refrigerators and coolers.
  • Ice-obtaining process which is desired to be performed by filling water into an ice container located in the freezing part of the refrigerators, takes usually 30 to 60 minutes depending on the capacity of a refrigerator. It is disadvantageous for the users if this period takes a long time.
  • the system described in the published patent application US 2005076654 has a quick ice-making option
  • a fan and a compressor are used for enabling the quick ice-making option. Air cooled by an evaporator is transferred into a freezer with the aid of a fan, thereby enabling the ice container to be cooled. Air heated as a result of a heat transfer occurred in the freezer section is vented out and re-cooled, and then it is sent back to the freezer section.
  • homogenous cooling of the ice container cannot be achieved in this system.
  • the system described in the published patent application US 2005072166 has a quick ice-making control mechanism.
  • Water is filled into a semicircular ice container and cooled with the aid of an evaporator.
  • a mixer is used to accelerate the heat exchange between water and cold air within the ice container. Ice formation is achieved by the heat transfer occurring with the aid of the mixer.
  • An ice container is provided with a heater at its outer side to remove ice therefrom.
  • an icemaker for making ice in a fresh food compartment of a bottom mount refrigerators comprises a freezer compartment comprising a freezer door, and a fresh food compartment located over the freezer compartment and comprising a fresh food door.
  • the fresh food door comprises an ice dispenser.
  • An ice maker is located in the fresh food compartment, and the ice maker comprises an ice mold, and a thermoelectric device for moving heat from the ice mold.
  • the mold is positioned so that ice from the mold can be dispensed by the ice dispenser in the fresh food door.
  • Said system is especially used for accessing to the ice container, easily, by opening the fresh food door. Therefore it is not related to quick and efficient ice making.
  • an ice making tray is arranged in the ice making chamber, and cold air less than 0°C is supplied to the bottom part of the ice making tray to make ice in the ice making tray.
  • An opening is formed in a part, positioned above the ice making tray, of a partition, and a cover is provided for closing the opening.
  • the cover is formed with a flow part for allowing the flow of cold air from the vegetable chamber, and a blower fan for leading the cold air from the vegetable chamber, to the water surface of the ice making tray is arranged between the cover and the ice making tray.
  • the cold air from the vegetable chamber i.e., the cold air with a temperature exceeding 0°C
  • the cold air with a temperature exceeding 0°C is thereby led to the water surface of the ice making tray, which is made energy-saving type compared to constitution of obtaining warm air using an electric heater. Therefore it is not related to quick and efficient ice making. It is especially used for cold air circulation between vegetable chamber and ice making chamber.
  • quick ice-making units of this invention can be used.
  • An ice container made of a material having high thermal conductivity is filled with water and placed onto ice-making units of the invention provided with insulated outer surfaces, which are located in the freezing compartment.
  • High-flow cold air fluxes are achieved in the ice-making units of the invention equipped with thermoelectric cooler and/or cold air blower, thereby water in the ice container with high thermal conductivity is solidified quickly.
  • the aim of this invention is to provide ice-making units equipped with thermoelectric cooler and/or cold air blower in order to quickly cool water in the ice container having high thermal conductivity and transform it into ice using forced air circulation in a freezing compartment.
  • Another aim of the invention is to enable these units to be utilized in currently used refrigerators or coolers.
  • the invention is quick ice-making units in a freezing compartment which use a cooling technique based on directing ambient air forcibly by a fan (15) - motor (16) mechanism located in a freezing compartment into the compartment of a cooling element (17) such as an evaporator and cooling this air while passing over the cooling element (17) and re-transferring it into the freezing compartment (1) or the ice chamber (2, 12) from air blowers.
  • a cooling element (17) such as an evaporator
  • a cooling element (17) such as an evaporator
  • FIG. 1 a side view of a quick ice-making unit (A) with thermoelectric cooler is shown.
  • This unit (A) comprises at least one ice chamber (2) with insulated outer surfaces placed into the freezing compartment (1) of a refrigerator, an ice container (3) made of a material with high thermal conductivity which is placed in said chamber (2) and on which one or more water compartments are located, a separator (4) which is slightly above the ice container (3) and dividing the ice chamber (2) into two parts as lower and upper parts, a motor (6) which is located in a housing, at the back side of the ice chamber (2), formed by the side walls of said chamber (2) together with the separator (4), a fan (5) rotated by the motor (6), and a thermoelectric element (7) with multiple heat transfer fins (8, 8') thereon which is placed inside one wall of the ice chamber (2) such that it confronts the fan (5) and provides heat transfer between the compartment (1) and the chamber (2).
  • Ice chamber (2) is also provided with a back passage (10) and a front passage (11) which are located on the front and back sides of the separator (4) and connecting the lower and the upper parts of the separator (4) to each other.
  • Unit (A) can be used in all types of refrigerators, cooling or freezing systems having a mechanism in their freezing compartments (1) wherein air is directed in the compartment (1) onto a cooling element (17) preferably such as an evaporator forcibly with the aid of a fan (15) and a motor (16) which rotates the fan (15), and wherein air cooled on the cooling element (17) is re-transferred into the compartment (1) through blow outlets (19).
  • This unit (A) can also be used in all types of freezing compartments which can be cooled with a different method other than the cooling method including the use of a freezing compartment (1) with evaporator.
  • thermoelectric element (7) Heat transfer fins (8, 8') used in the unit (A) are placed on the thermoelectric element (7) in two groups in such a position that thermoelectric element (7) is located in between and they faces both into the freezing compartment (1) and the ice chamber (2). Said thermoelectric element (7) is a component operated by peltier effect.
  • the heat of cold air within the freezing compartment (1) is transferred to heat transfer fins (8') and the thermoelectric element (7).
  • heat transfer fins (8) facing into the ice chamber (2) are provided to reach a lower temperature than ambient temperature in the compartment (1).
  • Air flow which is obtained by the rotation of the fan (5) located opposite to the heat transfer fins (8) with the aid of a motor (6) is cooled at heat transfer fins (8) and forcibly passed through the back passage (10), and then transferred into the ice container (3) in the lower part of the separator (4).
  • the ice container (3) is made of a material with high thermal conductivity as mentioned previously. Between cold air sent forcibly to the surfaces of the ice container (3) and water which is warmer than this air, a fast heat transfer occurs and the temperature of water decreases due to the high thermal conductivity of the ice container (3).
  • the ice container (3) In order to cool homogenously a number of water compartments located in the ice container (3), there are holes (9) whereon these compartments are connected to each other. Cool air flows around these compartments and reaches the upper side of the ice container (3) and the lower part of the separator (4) from said holes (9), thereby advancing towards the front passage (11). While the temperature of air advancing towards the front passage (11) increases somewhat due to heat transfer between the ice container (3) and water therein, the temperature of water decreases as mentioned earlier.
  • Air advancing into the fan (5) over the separator (4) through the front passage (11) is cooled at thermoelectric element-aided (7) heat transfer fins (8) by re-directing of the fan (4) forcibly and re-transferred into the ice container (3) on the lower part of the separator (4) by passing it through the back passage (10).
  • cooling of air within the freezing compartment (1) is ensured by directing it towards the cooling element (17) forcibly through the motor (16) and the fan (15) mechanism and the cooled air is re-directed into the compartment (1) with the aid of blow outlets (19).
  • forced air circulation provided in this way, water within the ice container (3) is cooled quickly and converted into ice.
  • the walls of the ice chamber (2) are heat-insulated in order to prevent heat transfer between the freezing compartment (1) and the ice chamber (2), except heat transfer fins (8, 8') and thermoelectric element (7).
  • the material of the separator (4) is heat-insulated as the walls of the ice chamber (2) in order to prevent heat transfer between the upper and the lower surfaces of the separator (4).
  • This unit (B) comprises at least one ice chamber (12) with insulated outer surfaces placed into the freezing compartment (1) of a refrigerator, an ice container (13) made of a material with high thermal conductivity which is placed in said chamber (12) and on which one or more water compartments are located, a separator (14) which is slightly above the ice container (13) and dividing the ice chamber (12) into two as lower and upper parts, a front passage (21) which is located on the front side of the ice chamber (12) and connects the lower and the upper parts of the separator (14) to each other, a outlet hole (22) which is located on the back side of the ice chamber (12) and connects the upper part of the separator (14) and the freezing compartment (1) to each other, and at least one inlet hole (20) which is located on the back of the ice chamber (12) and used for the cold air intake, and through which cold air from a cooling element (17) preferably such as an
  • Unit (B) can be used in all types of refrigerators, cooling or freezing systems having a mechanism in its freezing compartment (1) wherein the air is directed in the compartment (1) forcibly with the aid of a fan (15) and a motor (16) which rotates the fan (15) onto a cooling element (17), and wherein air cooled on the cooling element (17) is re-transferred into the compartment (1) through blow outlets (19); and can also be attached to the systems currently in use equipped with said mechanism.
  • At least one blow outlets (19) confronts at least one inlet hole (20).
  • Cold air from the cooling element (17) is transferred into the ice chamber (12) through the blow outlets (19) and the inlet hole (20) from the lower part of the separator (14).
  • Cold air advancing herein reaches the lower and the upper parts of the ice container (13) by diffusing from the bottom and the top of a second separator (23).
  • the ice container (13) is made of a material with high thermal conductivity as mentioned previously. Between cold air sent forcibly to the surfaces of the ice container (13) and water warmer than this air, a fast heat transfer occurs and the temperature of water decreases due to the high thermal conductivity of the ice container (13).
  • Air advancing towards the outlet hole (22) over the separator (14) through the front passage (21) is directed into the freezing compartment (1).
  • motor (16) and fan (15) mechanism directs ambient air forcibly to the cooling element (17) again, thereby air is ensured to be cooled and cooled air is re-directed towards both compartment (1) and ice chamber (12) from the inlet hole (20) with the aid of blow outlets (19).
  • forced air circulation provided in this way, water within the ice container (13) is cooled quickly and converted into ice.
  • the walls of the ice chamber (12) are heat-insulated in order to prevent heat transfer between the freezing compartment (1) and the ice chamber (12), except inlet and outlet holes (20, 22).
  • the material of the separator (14) is heat-insulated as the walls of the ice chamber (12) in order to prevent heat transfer between the upper and the lower surfaces of the separator (14).
  • a cooling element (17) such as an evaporator
  • both units (A, B) can be used together in the same freezing compartment (1) in order to shorten the time of making ice.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Claims (6)

  1. Compartiment de congélation (1) doté d'une unité de fabrication rapide de glace (A) comprenant au moins une chambre à glace (2) dotée de surfaces externes isolées placées à l'intérieur dudit compartiment de congélation (1) ; un récipient à glace (3) placé dans ladite chambre (2) et présentant une pluralité de compartiments à eau dessus ; un élément thermoélectrique (7) ; comprenant en outre ledit récipient à glace (3) fabriqué à partir d'un matériau doté d'une conductivité thermique élevée afin de refroidir l'eau dans celui-ci plus rapidement grâce au flux d'air froid autour de celui-ci et pourvu de trous (9) sur les zones qui raccordent lesdits compartiments à eau les uns aux autres afin de refroidir de manière homogène un certain nombre de compartiments à eau dessus ; un séparateur (4) qui se situe légèrement au-dessus du récipient à glace (3) et divise la chambre à glace (2) en deux parties faisant office de parties inférieure et supérieure ; un moteur (6) qui est situé dans un carter, au niveau de la face arrière de la chambre à glace (2), formée par les parois latérales de ladite chambre (2) et le séparateur (4) ; un ventilateur (5) qui est amené en rotation par ledit moteur (6) ; ledit élément thermoélectrique (7) comprenant de multiples ailettes de transfert de chaleur (8, 8') dessus qui est placé à l'intérieur d'une paroi de la chambre à glace (2) de telle sorte qu'il est confronté au ventilateur (5) et fournit le transfert de chaleur entre le compartiment (1) et la chambre (2), ledit élément thermoélectrique (7) garantissant que les ailettes de transfert de chaleur (8) tournées vers l'intérieur de la chambre à glace (2) atteignent une température plus basse en comparaison de la température ambiante à l'intérieur du compartiment (1), en utilisant l'effet Peltier avec la tension appliquée dessus ; un passage arrière (10) et un passage avant (11) qui sont situés dans les faces avant et arrière du séparateur (4) à l'intérieur de la chambre à glace (2) et raccordent les parties inférieure et supérieure du séparateur (4) l'une à l'autre ; et ladite unité (A) fonctionne sur la base que, afin de refroidir l'eau dans le récipient à glace (3) rapidement et de la convertir en glace grâce à la circulation d'air forcée dans celui-ci, le flux d'air, obtenu par la rotation du ventilateur (5) situé contre les ailettes (8), est refroidi au niveau des ailettes (8) et passe à travers le passage arrière (10) de manière forcée, puis est transféré à l'intérieur du récipient à glace (3) dans la partie inférieure du séparateur (4) ; l'air froid avance en direction de la face supérieure du récipient à glace (3) et la partie inférieure du séparateur (4), à travers lesdits trous (9) et autour du récipient à glace (3) et à travers le passage avant (11) ; et l'air avançant à l'intérieur du ventilateur (5) au-dessus du séparateur (4) à travers le passage avant (11) est refroidi au niveau des ailettes de transfert de chaleur (8) aidées par l'élément thermoélectrique (7) en redirigeant le ventilateur (4) de manière forcée ; et retransféré à l'intérieur du récipient à glace (3) sur la partie inférieure du séparateur (4) en le faisant passer à travers le passage arrière (10) de manière forcée.
  2. Compartiment de congélation (1) doté d'une unité de fabrication rapide de glace (A) selon la revendication 1, dans lequel il est prévu dans tous les types de réfrigérateurs, systèmes de refroidissement ou de congélation présentant un mécanisme dans son compartiment de congélation (1) qui dirige l'air dans le compartiment (1) sur un élément de refroidissement (17), comme un évaporateur, de manière forcée à l'aide d'un ventilateur (15) et d'un moteur (16) qui fait tourner ledit ventilateur (15), et dans lequel l'air refroidi sur l'élément de refroidissement (17) est retransféré à l'intérieur du compartiment (1) à travers les sorties de soufflage (19).
  3. Compartiment de congélation (A) doté d'une unité de fabrication rapide de glace (1) selon la revendication 1, dans lequel les ailettes de transfert de chaleur (8, 8') sont placées sur l'élément thermoélectrique (7) en deux groupes dans une position telle que l'élément thermoélectrique (7) est positionné entre lesdites ailettes (8, 8') de manière à être tourné vers l'intérieur du compartiment de congélation (1) et la chambre à glace (2).
  4. Compartiment de congélation (1) doté d'une unité de fabrication rapide de glace (A) selon la revendication 1, dans lequel le séparateur (4) est fabriqué à partir d'un matériau thermiquement isolé afin d'empêcher un transfert de chaleur entre les surfaces supérieure et inférieure du séparateur (4).
  5. Compartiment de congélation (1) doté d'une unité de fabrication rapide de glace (B), comprenant au moins une chambre à glace (12) dotée de surfaces externes isolées placées à l'intérieur du compartiment de congélation (1) ; un récipient à glace (13) placé dans ladite chambre (12) et présentant une pluralité de compartiments à eau dessus ; un séparateur (14) qui se situe légèrement au-dessus du récipient à glace (13) et divise la chambre à glace (12) en deux parties faisant office de parties inférieure et supérieure ; un passage avant (21) raccordant les parties inférieure et supérieure du séparateur (14) l'une à l'autre ; au moins un trou d'entrée (20) qui est positionné sur l'arrière de la chambre à glace (12) et utilisé pour l'admission d'air froid et à travers lequel l'air froid provenant d'un élément de refroidissement (17), comme un évaporateur, est transféré par les sorties de soufflage (19) vers la partie inférieure de la chambre à glace (12) ; comprenant en outre ledit récipient à glace (13) fabriqué à partir d'un matériau doté d'une conductivité thermique élevée afin de refroidir l'eau dans celui-ci plus rapidement grâce au flux d'air froid autour de celui-ci et pourvu de trous (24) sur les zones qui raccordent lesdits compartiments à eau les uns aux autres afin de refroidir de manière homogène un certain nombre de compartiments à eau dessus ; ledit passage avant (21) qui est positionné sur la face avant de la chambre à glace (12) ; un trou de sortie (22) qui est positionné sur la face arrière de la chambre à glace (12) et raccorde la partie supérieure du séparateur (14) et le compartiment de congélation (1) l'une à l'autre ; et un second séparateur (23) qui dirige l'air froid avançant au-dessous du séparateur (14) en direction des parties inférieure et supérieure du récipient à glace (13) et fonctionne sur la base que, afin de refroidir l'eau dans le récipient à glace (13) rapidement et de la convertir en glace en y faisant circuler l'air de manière forcée, l'air froid circule autour des compartiments à l'intérieur du récipient à glace (13) et atteint la face supérieure du récipient à glace (13) et la partie inférieure du séparateur (14) depuis lesdits trous (24), avançant de ce fait en direction du passage avant (21) ; l'air avançant en direction du trou de sortie (22) au-dessus du séparateur (14) à travers le passage avant (21) est dirigé à l'intérieur du compartiment de congélation (1) et dans celui-ci, le mécanisme de moteur (16) et de ventilateur (15) dirige à nouveau l'air ambiant de manière forcée vers l'évaporateur (17), garantissant de ce fait que l'air soit refroidi une fois encore ; et l'air refroidi est redirigé vers les deux compartiments (1), et la chambre à glace (12) depuis le trou d'entrée (20) à l'aide des sorties de soufflage (19).
  6. Compartiment de congélation (1) doté d'une unité de fabrication rapide de glace (B) selon la revendication 5, dans lequel le séparateur (14) est fabriqué à partir d'un matériau thermiquement isolé afin d'empêcher un transfert de chaleur entre les surfaces supérieure et inférieure du séparateur (14).
EP20060110075 2006-02-17 2006-02-17 Dispositifs de fabrication de glace rapide Expired - Fee Related EP1821051B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE200660003181 DE602006003181D1 (de) 2006-02-17 2006-02-17 Schnelleisherstellungseinheiten
ES06110075T ES2315996T3 (es) 2006-02-17 2006-02-17 Unidad de fabricacion rapida de hielo.
EP20060110075 EP1821051B1 (fr) 2006-02-17 2006-02-17 Dispositifs de fabrication de glace rapide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20060110075 EP1821051B1 (fr) 2006-02-17 2006-02-17 Dispositifs de fabrication de glace rapide

Publications (2)

Publication Number Publication Date
EP1821051A1 EP1821051A1 (fr) 2007-08-22
EP1821051B1 true EP1821051B1 (fr) 2008-10-15

Family

ID=36263854

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060110075 Expired - Fee Related EP1821051B1 (fr) 2006-02-17 2006-02-17 Dispositifs de fabrication de glace rapide

Country Status (3)

Country Link
EP (1) EP1821051B1 (fr)
DE (1) DE602006003181D1 (fr)
ES (1) ES2315996T3 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581363B2 (en) 2012-12-13 2017-02-28 Whirlpool Corporation Cooling system for ice maker
US20170284724A1 (en) * 2014-09-02 2017-10-05 Samsung Electronics Co., Ltd. Refrigerator

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100863042B1 (ko) * 2006-12-29 2008-10-13 엘지전자 주식회사 냉장고용 제빙 트레이
CN101858675B (zh) * 2009-04-09 2011-08-17 宁波金通电器有限公司 电子快速制冰机
KR20100133155A (ko) 2009-06-11 2010-12-21 엘지전자 주식회사 제빙장치를 구비하는 냉장고
US9513045B2 (en) 2012-05-03 2016-12-06 Whirlpool Corporation Heater-less ice maker assembly with a twistable tray
US8925335B2 (en) 2012-11-16 2015-01-06 Whirlpool Corporation Ice cube release and rapid freeze using fluid exchange apparatus and methods
US9593870B2 (en) 2012-12-03 2017-03-14 Whirlpool Corporation Refrigerator with thermoelectric device for ice making
US9115918B2 (en) * 2012-12-03 2015-08-25 Whirlpool Corporation Refrigerator with icemaker chilled by thermoelectric device cooled by fresh food compartment air
US9212843B2 (en) 2012-12-03 2015-12-15 Whirlpool Corporation Custom bin interface
US9175888B2 (en) 2012-12-03 2015-11-03 Whirlpool Corporation Low energy refrigerator heat source
US9109825B2 (en) 2012-12-03 2015-08-18 Whirlpool Corporation Convertible ice storage
US9587872B2 (en) 2012-12-03 2017-03-07 Whirlpool Corporation Refrigerator with thermoelectric device control process for an icemaker
US9182157B2 (en) 2012-12-03 2015-11-10 Whirlpool Corporation On-door ice maker cooling
US9383132B2 (en) 2012-12-03 2016-07-05 Whirlpool Corporation Refrigerator providing air flow to door
US9115922B2 (en) 2012-12-03 2015-08-25 Whirlpool Corporation Fresh ice
US9151524B2 (en) 2012-12-03 2015-10-06 Whirlpool Corporation Refrigerator with icemaker chilled by thermoelectric device cooled by fresh food compartment air
US9766005B2 (en) 2012-12-03 2017-09-19 Whirlpool Corporation Refrigerator with ice mold chilled by fluid exchange from thermoelectric device with cooling from fresh food compartment or freezer compartment
US9383128B2 (en) 2012-12-03 2016-07-05 Whirlpool Corporation Refrigerator with ice mold chilled by air exchange cooled by fluid from freezer
US9714784B2 (en) 2012-12-03 2017-07-25 Whirlpool Corporation Refrigerator with icemaker chilled by thermoelectric device cooled by fresh food compartment air
US9863685B2 (en) 2012-12-03 2018-01-09 Whirlpool Corporation Modular cooling and low energy ice
US9518770B2 (en) 2012-12-13 2016-12-13 Whirlpool Corporation Multi-sheet spherical ice making
US9759472B2 (en) 2012-12-13 2017-09-12 Whirlpool Corporation Clear ice maker with warm air flow
US9599385B2 (en) 2012-12-13 2017-03-21 Whirlpool Corporation Weirless ice tray
US9518773B2 (en) 2012-12-13 2016-12-13 Whirlpool Corporation Clear ice maker
US9410723B2 (en) 2012-12-13 2016-08-09 Whirlpool Corporation Ice maker with rocking cold plate
US9500398B2 (en) 2012-12-13 2016-11-22 Whirlpool Corporation Twist harvest ice geometry
US9470448B2 (en) 2012-12-13 2016-10-18 Whirlpool Corporation Apparatus to warm plastic side of mold
US9476629B2 (en) 2012-12-13 2016-10-25 Whirlpool Corporation Clear ice maker and method for forming clear ice
US9310115B2 (en) 2012-12-13 2016-04-12 Whirlpool Corporation Layering of low thermal conductive material on metal tray
US9557087B2 (en) 2012-12-13 2017-01-31 Whirlpool Corporation Clear ice making apparatus having an oscillation frequency and angle
KR101626651B1 (ko) * 2014-05-16 2016-06-13 엘지전자 주식회사 냉장고
EP3209953B1 (fr) 2014-10-23 2020-03-25 Whirlpool Corporation Procédé et appareil permettant d'augmenter la vitesse de production de glace dans une machine à glaçons automatique
US9915459B2 (en) 2015-03-09 2018-03-13 Whirlpool Corporation Use of thermoelectric elements for clear ice making, ice harvesting, and creating a temperature condition for clear ice making
US20180120015A1 (en) * 2015-04-21 2018-05-03 Bsh Hausgeraete Gmbh A domestic cooling device with shock freezing
US20180112903A1 (en) 2015-06-02 2018-04-26 Arcelik Anonim Sirketi Refrigerator wherein ice is obtained quickly
DE102016005522B4 (de) * 2016-04-29 2019-02-21 Emz-Hanauer Gmbh & Co. Kgaa Eisbereiter mit Gefrierhilfe
CN107166838B (zh) * 2017-05-31 2019-12-06 青岛海尔股份有限公司 制冰机侧进风结构
US10739053B2 (en) 2017-11-13 2020-08-11 Whirlpool Corporation Ice-making appliance
KR102454181B1 (ko) 2017-12-19 2022-10-14 엘지전자 주식회사 냉장고
US10907874B2 (en) 2018-10-22 2021-02-02 Whirlpool Corporation Ice maker downspout
JP7483241B2 (ja) * 2019-12-05 2024-05-15 アクア株式会社 製氷機及び製氷機を備えた冷蔵庫
JP2022042145A (ja) * 2020-09-02 2022-03-14 アクア株式会社 製氷機

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133768A (ja) * 1988-11-11 1990-05-22 Matsushita Refrig Co Ltd 冷蔵庫の製氷装置
JP2002139268A (ja) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd 製氷装置及びそれを備えた冷凍冷蔵庫
JP2003269830A (ja) * 2002-03-19 2003-09-25 Sanyo Electric Co Ltd 冷蔵庫
US6735959B1 (en) * 2003-03-20 2004-05-18 General Electric Company Thermoelectric icemaker and control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581363B2 (en) 2012-12-13 2017-02-28 Whirlpool Corporation Cooling system for ice maker
US20170284724A1 (en) * 2014-09-02 2017-10-05 Samsung Electronics Co., Ltd. Refrigerator

Also Published As

Publication number Publication date
DE602006003181D1 (de) 2008-11-27
ES2315996T3 (es) 2009-04-01
EP1821051A1 (fr) 2007-08-22

Similar Documents

Publication Publication Date Title
EP1821051B1 (fr) Dispositifs de fabrication de glace rapide
EP2833089B1 (fr) Réfrigérateur et son procédé de fonctionnement
EP1684036B1 (fr) Distributeur de glace et de l'eau sur la porte d'un réfrigérateur
KR101570349B1 (ko) 냉장고
KR101798553B1 (ko) 냉장고용 제빙장치 및 이를 포함하는 냉장고
US10352596B2 (en) Refrigerator with icemaker chilled by thermoelectric device cooled by fresh food compartment air
US20180274828A1 (en) On-door ice maker cooling
WO2015176581A1 (fr) Réfrigérateur
JP2000009372A (ja) 冷凍冷蔵庫
US10612831B2 (en) Refrigerator with icemaker chilled by thermoelectric device cooled by fresh food compartment air
JP2004144365A (ja) 冷蔵庫
KR100483919B1 (ko) 열전모듈을 이용한 온도조절 챔버를 구비한 냉장고
JP4959474B2 (ja) 冷蔵庫
JP3657184B2 (ja) 冷蔵庫
JP2006189209A (ja) 冷却庫
JP5133634B2 (ja) 冷蔵庫
JP4832966B2 (ja) 冷蔵庫
KR101626668B1 (ko) 냉장고
CN107816832A (zh) 冰箱
JPS60111873A (ja) 急冷解凍室付冷蔵庫
ES2399016A2 (es) Aparato refrigerador
JP2008045847A (ja) 冷蔵庫
JP2002048452A (ja) 冷蔵庫
JPH1019452A (ja) 冷凍冷蔵庫の冷蔵室の仕切装置
JPH10185405A (ja) 冷蔵庫

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20071005

AKX Designation fees paid

Designated state(s): DE ES FR GB IT TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602006003181

Country of ref document: DE

Date of ref document: 20081127

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2315996

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

26N No opposition filed

Effective date: 20090716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120104

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20120120

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120124

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130217