EP1818112A2 - Procédé pour éliminer une couche - Google Patents

Procédé pour éliminer une couche Download PDF

Info

Publication number
EP1818112A2
EP1818112A2 EP07010914A EP07010914A EP1818112A2 EP 1818112 A2 EP1818112 A2 EP 1818112A2 EP 07010914 A EP07010914 A EP 07010914A EP 07010914 A EP07010914 A EP 07010914A EP 1818112 A2 EP1818112 A2 EP 1818112A2
Authority
EP
European Patent Office
Prior art keywords
removal
removal area
products
component
damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07010914A
Other languages
German (de)
English (en)
Other versions
EP1818112A3 (fr
Inventor
Georg Dr. Bostanjoglo
Stefan Krause
Michael Dr. Ott
Ralph Reiche
Jan Dr. Steinbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP07010914A priority Critical patent/EP1818112A3/fr
Publication of EP1818112A2 publication Critical patent/EP1818112A2/fr
Publication of EP1818112A3 publication Critical patent/EP1818112A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents

Definitions

  • the invention relates to a method for removing a layer according to claim 1.
  • Components such as turbine blades, for example, after use corrosion products such as oxides, sulfides, nitrides, carbides, phosphates, etc., which form a layer. Such components can be used again after their use, if, inter alia, the corrosion products have been removed. The complete removal of the corrosion products, for example, by sandblasting, but this can lead to damage to the substrate.
  • corrosion products such as oxides, sulfides, nitrides, carbides, phosphates, etc.
  • the U.S. Patent 5,575,858 describes a method for removing a removal area, in particular a corrosion product of a component, in which the removal area is pre-negotiated before a final cleaning, so that a damage of the removal area takes place, so that then a removal rate in the final cleaning of the removal area is greater than without the damage to the removal area ,
  • the object is achieved by a method according to claim 1.
  • FIG. 1 shows a component 1 which can be treated by the method according to the invention.
  • the component 1 consists of a ceramic or metallic substrate 4 (main body), which is, for example, especially for turbines, a cobalt-, iron- or nickel-based superalloy.
  • the component 1 is, for example, a guide 130 or blade 120 (FIGS. 5, 7) of a gas 100 (FIG. 5), a steam turbine 300, 303 (FIG. 8), or an aircraft turbine, a combustion chamber lining 155 (FIG. 6) or another hot gas charged component of a turbine.
  • the component 1 can either be newly manufactured or remanufactured. Refurbishment means that after use, components 1 may be separated from layers (thermal barrier coating) and corrosion and oxidation products removed. If necessary, cracks still have to be repaired. Thereafter, such a component 1 can be coated again; This is particularly advantageous because the body is very expensive.
  • the component 1 can have at least one ceramic or metallic layer on the surface 13 for use, such as, for example, an MCrAlX layer and / or a thermal insulation layer lying thereon, which can be roughly removed in a first method step.
  • the MCrAlX layer can also represent the removal region 10, which is treated by the method according to the invention.
  • the removal region 10 is considered as a corrosion product 10 (corrosion layer 10).
  • the removal region 10 can also be a functional layer without corrosion products.
  • the removal region 10 may be a metallic and / or ceramic layer, wherein the layer may be metallic and has corrosion products.
  • the corrosion product 10, for example an oxide, a sulfide, a nitride, a phosphide or a carbide, etc., may be present on a surface 13 of the component 1 or in a crack 7 of the component 1.
  • the corrosion products 10 must be removed from the crack 7 or from the surface 13, so that the crack 7 can be filled with a solder or weld metal and the surface 13 can be coated again. Corrosion products 10 would otherwise prevent or at least reduce good adhesion of the solder or recoating.
  • the prior art corrosion product 10 has a certain removal rate (mass per time) when it is cleaned, for example, by the FIC process. However, this erosion rate is too low and may even be zero after a certain time.
  • FIG. 2 shows schematically the implementation of the method according to the invention.
  • a salt 16 is applied to the corrosion product 10 in order to damage it, which salt can chemically react with the corrosion product 10 in order to damage the removal region 10.
  • the salt used is preferably Na 2 SO 4 (sodium sulfate) and / or CoSO 4 (cobalt sulfate).
  • Other salts or combinations are conceivable.
  • the corrosion products aluminum oxide and / or cobalt oxide and / or titanium oxide of the metals titanium, aluminum and / or cobalt, which are contained in the alloy (for example superalloy) of the substrate 4, can be removed very well.
  • a molten salt can be applied directly in the crack 7 or on the corrosion product 10 or the component 1 is immersed in a molten salt.
  • the salt in the form of a slurry in the crack 7 and on the surface 13.
  • laying a film containing the material 16 or salt 16 is suitable.
  • the salt 16 may, for example, be locally heated by means of a laser 19 and its laser beams 22, so that a chemical reaction of the salt 16 with the corrosion product 10 or a thermal shock takes place.
  • the heating can also be effected by electromagnetic induction, in particular when the substrate 4 is metallic.
  • the heating of the component 1 can take place locally by means of induction or by means of a light source, for example by means of a laser, in that the laser 19 irradiates the laser beam 22 only into the crack 7.
  • the local heating can also be done by means of tunable microwaves. Tunable means that among other things, the wavelength and intensity can be changed.
  • FIG. 3 shows a component 1 with a corrosion product 10 after the damage of the corrosion product 10 by a pretreatment according to the invention.
  • the pretreatment produces cracks 25 which extend from the surface 14 of the layer 10 towards the substrate 4, so that a larger surface of attack of the corrosion product 10 with respect to the acid and / or the fluorine ions, etc. is given.
  • the component 1 is subjected to a final cleaning by means of an acid or fluorine ion treatment, which leads to the complete removal of the corrosion product 10, since the damage rate of the corrosion product 10, the removal rate in FIC or another method is significantly increased and no significant reduction of Removal rate occurs over time.
  • FIG. 4 shows further damage in the corrosion product 10 according to the method according to the invention. If the material of the corrosion product 10 has been melted, for example, the material contracts again on cooling, so that mechanical stresses occur which may lead to cracking.
  • cracks 31 within the corrosion product 10 may also be generated.
  • delaminations 34 may form between the corrosion product 10 and a surface 13 on which the corrosion product 10 rests.
  • the special feature of the method is that the damaged by corrosion products 10 and to be repaired component 1 with the corrosion products 10 is damaged again in the field of corrosion products 10.
  • FIG. 5 shows by way of example a gas turbine 100 in a longitudinal partial section.
  • the gas turbine 100 has inside a rotatably mounted about a rotation axis 102 rotor 103, which is also referred to as a turbine runner.
  • a suction housing 104 a compressor 105, for example, a toroidal combustion chamber 110, in particular annular combustion chamber 106, with a plurality of coaxially arranged burners 107, a turbine 108 and the exhaust housing 109th
  • the annular combustion chamber 106 communicates with an annular annular hot gas channel 111, for example.
  • Each turbine stage 112 is formed of two blade rings.
  • a series 125 formed of rotor blades 120 follows.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the moving blades 120 of a row 125 are attached to the rotor 103 by means of a turbine disk 133, for example. Coupled to the rotor 103 is a generator or a work machine (not shown).
  • air 105 is sucked in and compressed by the compressor 105 through the intake housing 104.
  • the compressed air provided at the turbine-side end of the compressor 105 is supplied to the burners 107 where it is mixed with a fuel.
  • the mixture is then burned to form the working fluid 113 in the combustion chamber 110.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the rotor blades 120.
  • the working medium 113 expands in a pulse-transmitting manner, so that the rotor blades 120 drive the rotor 103 and drive the machine coupled to it.
  • the components exposed to the hot working medium 113 are subject to thermal loads during operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, viewed in the direction of flow of the working medium 113, are subjected to the greatest thermal stress in addition to the heat shield bricks lining the annular combustion chamber 106. In order to withstand the temperatures prevailing there, they are cooled by means of a coolant.
  • the substrates may have a directional structure, ie they are monocrystalline (SX structure) or have only longitudinal grains (DS structure).
  • the material used is iron-, nickel- or cobalt-based superalloys.
  • the blades 120, 130 may be anti-corrosion coatings (MCrAlX; M is at least one element of the group iron (Fe), cobalt (Co), nickel (Ni), X is yttrium (Y) and / or at least one element of the rare ones Erden) and have heat through a thermal barrier coating.
  • the thermal barrier coating consists for example of ZrO 2 , Y 2 O 4 -ZrO 2 , ie it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
  • suitable coating processes such as electron beam evaporation (EB-PVD), stalk-shaped grains are produced in the thermal barrier coating.
  • EB-PVD electron beam evaporation
  • the vane 130 has a guide vane foot (not shown here) facing the inner housing 138 of the turbine 108 and a vane head opposite the vane foot.
  • the vane head faces the rotor 103 and fixed to a mounting ring 140 of the stator 143.
  • FIG. 6 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of burners 102 arranged around the turbine shaft 103 in the circumferential direction open into a common combustion chamber space.
  • the combustion chamber 110 is configured in its entirety as an annular structure, which is positioned around the turbine shaft 103 around.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of about 1000 ° C to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M side with an inner lining formed from heat shield elements 155.
  • Each heat shield element 155 is equipped on the working medium side with a particularly heat-resistant protective layer or made of high-temperature-resistant material. Due to the high temperatures in the interior of the combustion chamber 110, a cooling system is additionally provided for the heat shield elements 155 or for their holding elements.
  • the materials of the combustor wall and their coatings may be similar to the turbine blades 120, 130.
  • the combustion chamber 110 is designed in particular for detecting losses of the heat shield elements 155.
  • a number of temperature sensors 158 are positioned between the combustion chamber wall 153 and the heat shield elements 155.
  • FIG. 7 shows a perspective view of a blade 120, 130 which extends along a longitudinal axis 121.
  • the blade 120, 130 has along the longitudinal axis 121 consecutively a fastening region 400, a blade platform 403 adjoining thereto and an airfoil region 406.
  • a blade root 183 is formed, which serves for fastening the rotor blades 120, 130 to the shaft.
  • the blade root 183 is designed as a hammer head.
  • Other configurations, for example as a Christmas tree or Schwalbenschwanzfuß are possible.
  • solid metallic materials are used in all regions 400, 403, 406 of the blades 120, 130.
  • the blade 120, 130 may be manufactured by a casting process, by a forging process, by a milling process or combinations thereof.
  • FIG. 8 shows by way of example a steam turbine 300, 303 with a turbine shaft 309 extending along a rotation axis 306.
  • the steam turbine has a high-pressure turbine section 300 and a medium-pressure turbine section 303, each having an inner housing 312 and an outer housing 315 enclosing this.
  • the high-pressure turbine part 300 is designed, for example, in Topfbauart.
  • the medium-pressure turbine section 303 is double-flow. It is also possible for the medium-pressure turbine section 303 to be single-flow.
  • a bearing 318 is arranged between the high-pressure turbine section 300 and the medium-pressure turbine section 303, the turbine shaft 309 having a bearing region 321 in the bearing 318.
  • the turbine shaft 309 is supported on another bearing 324 adjacent to the high pressure turbine sub 300. In the area of this bearing 324, the high-pressure turbine section 300 has a shaft seal 345.
  • the turbine shaft 309 is sealed from the outer housing 315 of the medium-pressure turbine section 303 by two further shaft seals 345. Between a high-pressure steam inflow region 348 and a steam outlet region 351, the turbine shaft 309 in the high-pressure turbine section 300 has the high-pressure impeller blade 354, 357. This high-pressure bladed runner 354, 357, together with the associated blades, not shown, represents a first blading region 360.
  • the middle-pressure blast turbine 303 has a central steam inflow region 333.
  • the turbine shaft 309 Associated with the steam inflow region 333, the turbine shaft 309 has a radially symmetrical shaft shield 363, a cover plate, on the one hand for dividing the steam flow into the two flows of the medium-pressure turbine section 303 and for preventing direct contact of the hot steam with the turbine shaft 309.
  • the turbine shaft 309 has in the medium-pressure turbine section 303 a second blading area 366 with the medium-pressure blades 354, 342.
  • the hot steam flowing through the second blading area 366 flows out of the medium-pressure turbine section 303 from a discharge connection 369 to a downstream low-pressure turbine, not shown.
  • the components of the steam turbine 300, 303 have protective layers and / or corrosion products 10, which are removed by the method according to the invention, before a reprocessing of the components can take place.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
EP07010914A 2004-01-30 2005-01-17 Procédé pour éliminer une couche Withdrawn EP1818112A3 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07010914A EP1818112A3 (fr) 2004-01-30 2005-01-17 Procédé pour éliminer une couche

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04002158A EP1559485A1 (fr) 2004-01-30 2004-01-30 Procédé pour l'enlèvement d'une couche
EP07010914A EP1818112A3 (fr) 2004-01-30 2005-01-17 Procédé pour éliminer une couche
EP05700980A EP1708829B1 (fr) 2004-01-30 2005-01-17 Procede pour eliminer une couche

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP05700980A Division EP1708829B1 (fr) 2004-01-30 2005-01-17 Procede pour eliminer une couche

Publications (2)

Publication Number Publication Date
EP1818112A2 true EP1818112A2 (fr) 2007-08-15
EP1818112A3 EP1818112A3 (fr) 2007-09-12

Family

ID=34639430

Family Applications (3)

Application Number Title Priority Date Filing Date
EP04002158A Withdrawn EP1559485A1 (fr) 2004-01-30 2004-01-30 Procédé pour l'enlèvement d'une couche
EP07010914A Withdrawn EP1818112A3 (fr) 2004-01-30 2005-01-17 Procédé pour éliminer une couche
EP05700980A Not-in-force EP1708829B1 (fr) 2004-01-30 2005-01-17 Procede pour eliminer une couche

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP04002158A Withdrawn EP1559485A1 (fr) 2004-01-30 2004-01-30 Procédé pour l'enlèvement d'une couche

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP05700980A Not-in-force EP1708829B1 (fr) 2004-01-30 2005-01-17 Procede pour eliminer une couche

Country Status (5)

Country Link
US (1) US20070170150A1 (fr)
EP (3) EP1559485A1 (fr)
CN (1) CN1929931A (fr)
DE (1) DE502005006806D1 (fr)
WO (1) WO2005072884A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1559485A1 (fr) * 2004-01-30 2005-08-03 Siemens Aktiengesellschaft Procédé pour l'enlèvement d'une couche
DE102004061269A1 (de) * 2004-12-10 2006-06-14 Siemens Ag Verfahren zum Reinigen eines Werkstückes mit Halogenionen
DE102006030364A1 (de) * 2006-06-27 2008-01-03 Siemens Ag Verfahren zum Entfernen einer Schutzbeschichtung von einem Bauteil
KR100840902B1 (ko) 2007-03-20 2008-06-24 주식회사 에이팩 마이크로웨이브를 이용한 광디스크의 반사층 박리장치
WO2008141602A1 (fr) 2007-05-24 2008-11-27 Fleissner Gmbh Procédé et dispositif permettant de faire fonctionner une ligne de bancs d'étirage ou un banc d'étirage
DE102008005168A1 (de) * 2008-01-19 2009-07-23 Mtu Aero Engines Gmbh Verfahren zum zumindest selektiven Entfernen einer ersten Schicht von einem Triebwerksbauteil
ATE522630T1 (de) * 2008-12-17 2011-09-15 Saab Ab WIEDERHERSTELLUNG DER STÄRKE UND DER VERSCHLEIßBESTÄNDIGKEIT EINES METALLMATRIX- VERBUNDES
SG165202A1 (en) * 2009-03-25 2010-10-28 United Technologies Corp Method and apparatus for cleaning a component using microwave radiation
EP2327813A1 (fr) * 2009-11-11 2011-06-01 Siemens Aktiengesellschaft Nettoyage par fluor-ions renforcé de fissures contaminées
US9061375B2 (en) * 2009-12-23 2015-06-23 General Electric Company Methods for treating superalloy articles, and related repair processes
US9205509B2 (en) * 2011-08-31 2015-12-08 General Electric Company Localized cleaning process and apparatus therefor
CN102392249B (zh) * 2011-11-28 2013-06-05 江西省科学院应用物理研究所 一种去除硬质合金件表面涂层的方法
EP2716788A1 (fr) * 2012-10-08 2014-04-09 Siemens Aktiengesellschaft Procédé destiné à supprimer une couche métallique sur un substrat
JP6508823B2 (ja) * 2015-05-08 2019-05-08 三菱重工航空エンジン株式会社 酸化膜除去方法
CN105297056A (zh) * 2015-10-15 2016-02-03 谭华 一种银合金焊料的清洗方法
WO2018191861A1 (fr) * 2017-04-18 2018-10-25 General Electric Company Procédé d'élimination de matériaux oxydes d'une fissure
CN110497049B (zh) * 2019-07-19 2020-08-25 江苏江航智飞机发动机部件研究院有限公司 一种镍基超合金材料叶片的加工方法
US11739429B2 (en) * 2020-07-03 2023-08-29 Applied Materials, Inc. Methods for refurbishing aerospace components

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2120494A (en) * 1935-09-25 1938-06-14 Keystone Steel & Wire Co Method of cleaning metal articles
US2710271A (en) * 1951-08-09 1955-06-07 Int Nickel Co Process for annealing and cleaning oxidized metal in a salt bath
US4098450A (en) * 1977-03-17 1978-07-04 General Electric Company Superalloy article cleaning and repair method
US4439241A (en) * 1982-03-01 1984-03-27 United Technologies Corporation Cleaning process for internal passages of superalloy airfoils
US5464479A (en) * 1994-08-31 1995-11-07 Kenton; Donald J. Method for removing undesired material from internal spaces of parts
US5575858A (en) * 1994-05-02 1996-11-19 United Technologies Corporation Effective cleaning method for turbine airfoils
EP1013797A1 (fr) * 1998-12-22 2000-06-28 General Electric Company Procédé d'enlèvement de produits de corrosion à haute température d'un revêtement d'une aluminure par diffusion
EP1312437A1 (fr) * 2001-11-19 2003-05-21 ALSTOM (Switzerland) Ltd Procédé pour réparer une fissure
EP1411149A1 (fr) * 2002-10-18 2004-04-21 Siemens Aktiengesellschaft Procédé pour l'enlèvement d'un revêtement d'un composant
EP1559485A1 (fr) * 2004-01-30 2005-08-03 Siemens Aktiengesellschaft Procédé pour l'enlèvement d'une couche

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3266477A (en) * 1964-04-15 1966-08-16 Du Pont Self-cleaning cooking apparatus
KR940008936B1 (ko) * 1990-02-15 1994-09-28 가부시끼가이샤 도시바 고순도 금속재와 그 성질을 이용한 반도체 장치 및 그 제조방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2120494A (en) * 1935-09-25 1938-06-14 Keystone Steel & Wire Co Method of cleaning metal articles
US2710271A (en) * 1951-08-09 1955-06-07 Int Nickel Co Process for annealing and cleaning oxidized metal in a salt bath
US4098450A (en) * 1977-03-17 1978-07-04 General Electric Company Superalloy article cleaning and repair method
US4439241A (en) * 1982-03-01 1984-03-27 United Technologies Corporation Cleaning process for internal passages of superalloy airfoils
US5575858A (en) * 1994-05-02 1996-11-19 United Technologies Corporation Effective cleaning method for turbine airfoils
US5464479A (en) * 1994-08-31 1995-11-07 Kenton; Donald J. Method for removing undesired material from internal spaces of parts
EP1013797A1 (fr) * 1998-12-22 2000-06-28 General Electric Company Procédé d'enlèvement de produits de corrosion à haute température d'un revêtement d'une aluminure par diffusion
EP1312437A1 (fr) * 2001-11-19 2003-05-21 ALSTOM (Switzerland) Ltd Procédé pour réparer une fissure
EP1411149A1 (fr) * 2002-10-18 2004-04-21 Siemens Aktiengesellschaft Procédé pour l'enlèvement d'un revêtement d'un composant
EP1559485A1 (fr) * 2004-01-30 2005-08-03 Siemens Aktiengesellschaft Procédé pour l'enlèvement d'une couche

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIGLIETTI W ET AL: "Advantages of fluoride ion cleaning at sub-atmospheric pressure" ENGINEERING FAILURE ANALYSIS, PERGAMON, Bd. 5, Nr. 2, Juni 1998 (1998-06), Seiten 149-169, XP002402336 ISSN: 1350-6307 *

Also Published As

Publication number Publication date
EP1559485A1 (fr) 2005-08-03
CN1929931A (zh) 2007-03-14
DE502005006806D1 (de) 2009-04-23
EP1818112A3 (fr) 2007-09-12
EP1708829B1 (fr) 2009-03-11
US20070170150A1 (en) 2007-07-26
EP1708829A1 (fr) 2006-10-11
WO2005072884A1 (fr) 2005-08-11

Similar Documents

Publication Publication Date Title
EP1708829B1 (fr) Procede pour eliminer une couche
DE102011055612B4 (de) Turbinenkomponenten mit Kühleinrichtungen und Verfahren zur Herstellung derselben
EP1693473B1 (fr) Alliage-MCrAlX, couche protectrice en cet alliage et son procédé de fabrication
EP1722901B1 (fr) Procede de nettoyage au plasma d'un composant
EP2547488A1 (fr) Procédé de remise en état d'une aube de turbine comportant au moins une plate-forme
EP1864742A1 (fr) Procédé pour usiner par électro-érosion des materiaux électriquement non-conducteur
WO2007048696A1 (fr) Procede de nettoyage aux ions fluor de composants oxydes ou attaques par la corrosion
EP1798299A1 (fr) Alliage, couche de protection et élément de construction
EP1794340A1 (fr) Procede de production d'un systeme stratifie
EP1666625A1 (fr) Procédé de revêtement d'un composant a l'interieur d'un aparat
EP2230041B1 (fr) Procédé de fabrication d'un trou
EP2150636A1 (fr) Revêtements céramiques polymères pour la protection de surfaces contre des ions fluorure lors d'un processus de nettoyage
EP1707651A1 (fr) Système de revêtement et procédé de fabrication d'une système de revêtement
WO2005037483A1 (fr) Procede pour produire un systeme stratifie
EP1772529A1 (fr) Composition chimique sèche, utilisation de celle-ci composition pour fabriquer un revêtement multicouche et méthode pour fabriquer ce revêtement
EP1967615A1 (fr) Procédé destiné à l'application d'une couche d'isolation thermique et pièce de turbine dotée d'une couche d'isolation thermique
EP1508628A1 (fr) Pièce comprenant un masque et méthode de revêtement d'une pièce
EP2082076A1 (fr) Procédé d'optimisation de revêtement par un coupon et composant avec coupon
EP1808236A1 (fr) Procédé pour masquer des trous de refroidissement, en particulier d'aubes de turbine
WO2007085512A1 (fr) Procede de fabrication d'un composant dote de trous
EP1676938A1 (fr) Methode de fabrication d'un component d'une turbine et le component d'une turbine
EP1867749A1 (fr) Procédé de revêtement d'un matériau à une pièce
WO2007082787A1 (fr) Procede de soudage suivi par un traitement de diffusion
WO2006053838A2 (fr) Procede de coulee et piece coulee
EP1561839A1 (fr) Procédé de fabrication d'une structure en couches comprenant une couche céramique et colonnaire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AC Divisional application: reference to earlier application

Ref document number: 1708829

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE GB IT LI

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE GB IT LI

17P Request for examination filed

Effective date: 20070814

AKX Designation fees paid

Designated state(s): CH DE GB IT LI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100701