EP1708829A1 - Procede pour eliminer une couche - Google Patents

Procede pour eliminer une couche

Info

Publication number
EP1708829A1
EP1708829A1 EP05700980A EP05700980A EP1708829A1 EP 1708829 A1 EP1708829 A1 EP 1708829A1 EP 05700980 A EP05700980 A EP 05700980A EP 05700980 A EP05700980 A EP 05700980A EP 1708829 A1 EP1708829 A1 EP 1708829A1
Authority
EP
European Patent Office
Prior art keywords
removal area
removal
component
damage
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05700980A
Other languages
German (de)
English (en)
Other versions
EP1708829B1 (fr
Inventor
Georg Bostanjoglo
Stefan Krause
Michael Ott
Ralph Reiche
Jan Steinbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP07010914A priority Critical patent/EP1818112A3/fr
Priority to EP05700980A priority patent/EP1708829B1/fr
Publication of EP1708829A1 publication Critical patent/EP1708829A1/fr
Application granted granted Critical
Publication of EP1708829B1 publication Critical patent/EP1708829B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents

Definitions

  • the invention relates to a method for removing a layer according to claim 1.
  • Turbine blades for example, have corrosion products such as e.g. Oxides, sulfides, nitrides, carbides, phosphates, etc., which form a layer.
  • Such components can be used again after their use, if, among other things. the corrosion products have been removed.
  • the complete removal of the corrosion products is done, for example, by sandblasting, but this can damage the substrate.
  • US Pat. No. 5,575,858 describes a method for removing a removal area, in particular a corrosion product of a component, in which the removal area is pretreated before final cleaning, so that the removal area is damaged, so that an erosion rate in the final cleaning of the removal area is greater than without damaging the range.
  • the object is achieved by a method according to claim 1.
  • FIG. 1 shows a component with a corrosion product
  • FIG. 6 shows a gas turbine
  • FIG. 7 a combustion chamber
  • Figure 8 is a turbine blade
  • Figure 9 is a steam turbine.
  • Figure 1 shows a component 1, which with the invention
  • the component 1 consists of a ceramic or metallic substrate 4 (base body) which, for example, is a cobalt, iron or nickel-based superalloy, in particular for turbines.
  • Component 1 is, for example, a guide vane or rotor blade 120 (FIGS. 6, 8), a gas 100 (FIG. 6), a steam turbine 300, 303 (FIG. 9), or an aircraft turbine, a combustion chamber lining 155 (FIG. 7) or another component of a turbine subjected to hot gas.
  • the component 1 can either be newly manufactured or remanufactured.
  • Refurbishment means that components 1 may be separated from layers (thermal insulation layer) after their use, and corrosion and oxidation products removed. Cracks may still need to be repaired. Such a component 1 can then be coated again; this is particularly advantageous since the base body is very expensive.
  • the component 1 can have at least one ceramic or metallic layer on the surface 13 for use, such as an MCrAlX layer and / or a thermal insulation layer lying thereon, which can be roughly removed in a first process step.
  • the MCrAlX layer can also represent the removal area 10, which is treated with the method according to the invention.
  • the removal area 10 is considered as a corrosion product 10 (corrosion layer 10).
  • the removal area 10 can also be a functional layer without corrosion products.
  • the removal area 10 can be a metallic and / or ceramic layer, wherein the layer can be metallic and has corrosion products.
  • the corrosion product 10 for example an oxide, a sulfide, a nitride, a phosphide or a carbide etc., can be present on a surface 13 of the component 1 or in a crack 7 of the component 1.
  • the corrosion products 10 must be removed from the crack 7 or from the surface 13 so that the crack 7 can be filled with a solder or weld metal and the surface 13 can be coated again. Corrosion products 10 would otherwise have good solder adhesion or renewed adhesion Prevent or at least reduce the coating.
  • the corrosion product 10 according to the prior art has a certain removal rate (mass per time) when it is cleaned, for example, by the FIC method.
  • this removal rate is too low and can even be zero after a certain time.
  • FIG. 2 shows schematically the implementation of the method according to the invention.
  • a material 16 for example a salt 16 is applied, which can react chemically with the corrosion product 10 in order to damage the removal area 10.
  • Na 2 S0 4 (sodium sulfate) and / or CoS0 (cobalt sulfate) is preferably used as the salt.
  • Other salts or combinations are conceivable.
  • the corrosion products aluminum oxide and / or cobalt oxide and / or titanium oxide of the metals titanium, aluminum and / or cobalt, which are contained in the alloy (for example superalloy) of the substrate 4, can be removed very well.
  • a molten salt can be applied directly in the crack 7 or on the corrosion product 10 or the component 1 is immersed in a molten salt.
  • the salt 16 can, for example, be locally heated, for example by means of a laser 19 and its laser beams 22, so that a chemical reaction of the salt 16 with the corrosion product 10 or a thermal shock takes place.
  • the heating can also be carried out by electromagnetic induction, in particular when the substrate 4 is metallic.
  • the component 1 can be heated locally by means of induction or by means of a light source, for example using a laser, for example, in that the laser 19 only radiates into the crack 7 with the laser beam 22.
  • Local heating can also be carried out using tunable microwaves. Tunable means that, among other things, the wavelength and intensity can be changed.
  • FIG. 3 shows a component 1 with a corrosion product 10 after the corrosion product 10 has been damaged by a pretreatment according to the invention.
  • the pretreatment produces cracks 25 which extend from the surface 14 of the layer 10 in the direction of the substrate 4, so that there is a larger contact surface of the corrosion product 10 with the acid and / or the fluorine ions etc.
  • Such cracks 25 can also be produced by means of laser jets, high pressure water jets, sand blasting, in particular with coarse grains.
  • the intensity and duration of the sandblasting treatment must be set so that the substrate 4 is not reached and the corrosion product 10 is only partially removed.
  • component 1 is subjected to a final cleaning by means of an acid or fluorine ion treatment, which is carried out to completely remove the
  • Corrosion product 10 leads because the damage to the corrosion product 10 significantly increases the rate of removal in the FIC or another method and there is no significant reduction in the rate of removal over time.
  • FIG. 4 shows a further possibility of damaging the corrosion product 10.
  • the corrosion product 10, which rests on a surface 13 of the substrate 4, is subjected to a thermal shock.
  • the thermal shock can be done by immersion in a hot metal or salt bath or by rapid heating using electron beams or a laser 28.
  • the corrosion product 10 can also be partially melted.
  • FIG. 5 shows further damage in the corrosion product 10 according to the method according to the invention. If, for example, the material of the corrosion product 10 has been melted, the material contracts again when it cools down, so that mechanical stresses occur which may lead to crack formation.
  • cracks 31 can also be generated within the corrosion product 10.
  • delaminations 34 can form between the corrosion product 10 and a surface 13 on which the corrosion product 10 rests.
  • FIG. 6 shows an example of a gas turbine 100 in a partial longitudinal section.
  • the gas turbine 100 has on the inside a rotor 103 which is rotatably mounted about an axis of rotation 102 and is also referred to as a turbine rotor.
  • Combustion chamber 110 in particular ring combustion chamber 106, with multiple ren coaxially arranged burners 107, a turbine 108 and the exhaust housing 109.
  • the annular combustion chamber 106 communicates with an annular hot gas channel 111, for example.
  • annular hot gas channel 111 for example.
  • turbine stages 112 connected in series form the turbine 108.
  • Each turbine stage 112 is formed from two blade rings. Seen in the flow direction of a working medium 113, a row 125 of guide vanes is followed by a row 125 formed from rotor blades 120 in the hot gas channel 111.
  • the guide vanes 130 are fastened to an inner housing 138 of a stator 143, whereas the rotor blades 120 of a row 125 are attached to the rotor 103, for example by means of a turbine disk 133.
  • a generator or a work machine (not shown) is coupled to the rotor 103.
  • the compressor 105 draws in and compresses air 135 through the intake housing 104.
  • the compressed air provided at the turbine end of the compressor 105 is led to the burners 107 and mixed there with a fuel.
  • the mixture is then burned in the combustion chamber 110 to form the working medium 113.
  • the working medium 113 flows along the hot gas channel 111 past the guide vanes 130 and the moving blades 120.
  • the working medium 113 relaxes in a pulse-transmitting manner on the moving blades 120, so that the rotating blades 120 drive the rotor 103 and the working machine coupled to it ,
  • the components exposed to the hot working medium 113 are subject to thermal loads during the operation of the gas turbine 100.
  • the guide vanes 130 and rotor blades 120 of the first turbine stage 112, as seen in the flow direction of the working medium 113, are next to the annular combustion chamber 106 lining heat shield stones most thermally stressed.
  • the substrates can have a directional structure, ie they are single-crystal (SX structure) or only have longitudinal grains (DS structure). Iron, nickel or cobalt-based super alloys are used as the material.
  • the blades 120, 130 can have coatings against corrosion (MCrAlX; M is at least one element from the group iron (Fe), cobalt (Co), nickel (Ni), X stands for yttrium (Y) and / or at least one element of the rare Earth) and heat through a thermal barrier coating.
  • the thermal barrier coating is, for example, Zr0 2 , Y 2 0 4 -Zr0 2 , ie it is not, partially or completely stabilized by yttrium oxide and / or calcium oxide and / or magnesium oxide.
  • Appropriate coating processes such as electron beam evaporation (EB-PVD) produce stalk-shaped grains in the thermal insulation layer.
  • EB-PVD electron beam evaporation
  • corrosion products 10 can form on the component.
  • the corrosion products must be removed using the method according to the invention if the component is to be newly coated.
  • the guide vane 130 has a guide vane foot (not shown here) facing the inner casing 138 of the turbine 108 and a guide vane head opposite the guide vane foot.
  • the guide vane head faces the rotor 103 and is fixed to a fastening ring 140 of the stator 143.
  • FIG. 7 shows a combustion chamber 110 of a gas turbine.
  • the combustion chamber 110 is configured, for example, as a so-called annular combustion chamber, in which a plurality of burners 102 arranged in the circumferential direction around the turbine shaft 103 open into a common combustion chamber space.
  • combustion chamber 110 is configured in its entirety as an annular structure which is positioned around the turbine shaft 103.
  • the combustion chamber 110 is designed for a comparatively high temperature of the working medium M of approximately 1000 ° C. to 1600 ° C.
  • the combustion chamber wall 153 is provided on its side facing the working medium M with an inner lining formed from heat shield elements 155.
  • Each heat shield element 155 is equipped on the working medium side with a particularly heat-resistant protective layer or is made of high-temperature resistant material. Due to the high temperatures inside the combustion chamber 110, a cooling system is also provided for the heat shield elements 155 or for their holding elements.
  • the materials of the combustion chamber wall and their coatings can be similar to the turbine blades 120, 130.
  • the combustion chamber 110 is designed in particular for the detection of losses of the heat shield elements 155.
  • a number of temperature sensors 158 are positioned between the combustion chamber wall 153 and the heat shield elements 155.
  • FIG. 8 "' shows a perspective view of a blade 120, 130 which extends along a longitudinal axis 121.
  • the blade 120, 130 has, in succession along the longitudinal axis 121, a fastening area 400, one on it adjacent vane platform 403 and an airfoil area 406.
  • a blade root 183 is formed in the fastening area 400 and serves to fasten the moving blades 120, 130 to the shaft.
  • the blade root 183 is designed as a hammer head. Other configurations, for example as a fir tree or dovetail foot, are possible.
  • solid metal materials are used in all areas 400, 403, 406 of the rotor blades 120, 130.
  • the rotor blade 120, 130 can be manufactured by a casting process, a forging process, a milling process or combinations thereof.
  • FIG. 9 shows an example of a steam turbine 300, 303 with a turbine shaft 309 extending along an axis of rotation 306.
  • the steam turbine has a high-pressure sub-turbine 300 and a medium-pressure sub-turbine 303, each with an inner housing 312 and an outer housing 315 enclosing this.
  • the high-pressure turbine section 300 is, for example, of a pot design.
  • the medium pressure turbine section 303 is designed with two passages. It is also possible for the medium-pressure turbine section 303 to be single-flow.
  • a bearing 318 is arranged along the axis of rotation 306 between the high-pressure sub-turbine 300 and the medium-pressure sub-turbine 303, the turbine shaft 309 having a bearing region 321 in the bearing 318.
  • the turbine shaft 309 is supported on a further bearing 324 next to the high-pressure sub-turbine 300.
  • the high-pressure turbine section 300 has a shaft seal 345.
  • the turbine shaft 309 is sealed off from the outer housing 315 of the medium-pressure turbine part 303 by two further shaft seals 345.
  • the turbine shaft 309 in the high-pressure sub-turbine 300 has the high-pressure rotor blades 354, 357.
  • This high pressure barrel inspection Filling 354, 357 with the associated blades, not shown, represents a first blading area 360.
  • the medium-pressure turbine section 303 has a central steam inflow area 333.
  • the turbine shaft 309 Associated with the steam inflow region 333, the turbine shaft 309 has a radial-mechanical shaft shield 363, a cover plate, on the one hand for dividing the steam flow into the two floods of the medium-pressure turbine section 303 and for preventing direct contact of the hot steam with the turbine shaft 309.
  • the turbine shaft 309 has a second blading area 366 with the medium-pressure rotor blades 354, 342 in the medium-pressure turbine part 303.
  • the hot steam flowing through the second blading region 366 flows from the medium-pressure sub-turbine 303 from an outflow connection 369 to a low-pressure sub-turbine, not shown, which is connected downstream in terms of flow technology.
  • the components of the steam turbine 300, 303 also have protective layers and / or corrosion products 10 which are removed using the method according to the invention before the components can be reprocessed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

Des composants à produits de corrosion sont souvent réutilisés, et le produit de corrosion (10) doit être éliminé. Dans l'état de la technique, ce processus nécessite un temps important en raison du fait que les temps réactionnels avec la produit de corrosion sont souvent importants. Selon l'invention, le produit de corrosion subit un traitement préalable par attaque au sel, afin de produire des surfaces d'attaque importantes de sorte que l'élimination du produit de corrosion (10) peut s'effectuer plus rapidement. Le sulfate de sodium (Na2SO4) et/ou le sulfate de cobalt (CoSO4) est/sont utilisé(s) pour l'attaque au sel.
EP05700980A 2004-01-30 2005-01-17 Procede pour eliminer une couche Not-in-force EP1708829B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07010914A EP1818112A3 (fr) 2004-01-30 2005-01-17 Procédé pour éliminer une couche
EP05700980A EP1708829B1 (fr) 2004-01-30 2005-01-17 Procede pour eliminer une couche

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP04002158A EP1559485A1 (fr) 2004-01-30 2004-01-30 Procédé pour l'enlèvement d'une couche
PCT/EP2005/000405 WO2005072884A1 (fr) 2004-01-30 2005-01-17 Procede pour eliminer une couche
EP05700980A EP1708829B1 (fr) 2004-01-30 2005-01-17 Procede pour eliminer une couche

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP07010914A Division EP1818112A3 (fr) 2004-01-30 2005-01-17 Procédé pour éliminer une couche

Publications (2)

Publication Number Publication Date
EP1708829A1 true EP1708829A1 (fr) 2006-10-11
EP1708829B1 EP1708829B1 (fr) 2009-03-11

Family

ID=34639430

Family Applications (3)

Application Number Title Priority Date Filing Date
EP04002158A Withdrawn EP1559485A1 (fr) 2004-01-30 2004-01-30 Procédé pour l'enlèvement d'une couche
EP07010914A Withdrawn EP1818112A3 (fr) 2004-01-30 2005-01-17 Procédé pour éliminer une couche
EP05700980A Not-in-force EP1708829B1 (fr) 2004-01-30 2005-01-17 Procede pour eliminer une couche

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP04002158A Withdrawn EP1559485A1 (fr) 2004-01-30 2004-01-30 Procédé pour l'enlèvement d'une couche
EP07010914A Withdrawn EP1818112A3 (fr) 2004-01-30 2005-01-17 Procédé pour éliminer une couche

Country Status (5)

Country Link
US (1) US20070170150A1 (fr)
EP (3) EP1559485A1 (fr)
CN (1) CN1929931A (fr)
DE (1) DE502005006806D1 (fr)
WO (1) WO2005072884A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1559485A1 (fr) * 2004-01-30 2005-08-03 Siemens Aktiengesellschaft Procédé pour l'enlèvement d'une couche
DE102004061269A1 (de) * 2004-12-10 2006-06-14 Siemens Ag Verfahren zum Reinigen eines Werkstückes mit Halogenionen
DE102006030364A1 (de) * 2006-06-27 2008-01-03 Siemens Ag Verfahren zum Entfernen einer Schutzbeschichtung von einem Bauteil
KR100840902B1 (ko) 2007-03-20 2008-06-24 주식회사 에이팩 마이크로웨이브를 이용한 광디스크의 반사층 박리장치
EP2147138B1 (fr) 2007-05-24 2015-06-03 Trützschler Nonwovens GmbH Ligne de bancs d'étirage ou un banc d'étirage et son procédé de fonctionnement
DE102008005168A1 (de) * 2008-01-19 2009-07-23 Mtu Aero Engines Gmbh Verfahren zum zumindest selektiven Entfernen einer ersten Schicht von einem Triebwerksbauteil
ATE522630T1 (de) * 2008-12-17 2011-09-15 Saab Ab WIEDERHERSTELLUNG DER STÄRKE UND DER VERSCHLEIßBESTÄNDIGKEIT EINES METALLMATRIX- VERBUNDES
SG165202A1 (en) * 2009-03-25 2010-10-28 United Technologies Corp Method and apparatus for cleaning a component using microwave radiation
EP2327813A1 (fr) * 2009-11-11 2011-06-01 Siemens Aktiengesellschaft Nettoyage par fluor-ions renforcé de fissures contaminées
US9061375B2 (en) * 2009-12-23 2015-06-23 General Electric Company Methods for treating superalloy articles, and related repair processes
US9205509B2 (en) * 2011-08-31 2015-12-08 General Electric Company Localized cleaning process and apparatus therefor
CN102392249B (zh) * 2011-11-28 2013-06-05 江西省科学院应用物理研究所 一种去除硬质合金件表面涂层的方法
EP2716788A1 (fr) * 2012-10-08 2014-04-09 Siemens Aktiengesellschaft Procédé destiné à supprimer une couche métallique sur un substrat
JP6508823B2 (ja) * 2015-05-08 2019-05-08 三菱重工航空エンジン株式会社 酸化膜除去方法
CN105297056A (zh) * 2015-10-15 2016-02-03 谭华 一种银合金焊料的清洗方法
WO2018191861A1 (fr) * 2017-04-18 2018-10-25 General Electric Company Procédé d'élimination de matériaux oxydes d'une fissure
CN110497049B (zh) * 2019-07-19 2020-08-25 江苏江航智飞机发动机部件研究院有限公司 一种镍基超合金材料叶片的加工方法
WO2022005696A1 (fr) * 2020-07-03 2022-01-06 Applied Materials, Inc. Procédés de remise à neuf de composants aérospatiaux

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2120494A (en) * 1935-09-25 1938-06-14 Keystone Steel & Wire Co Method of cleaning metal articles
US2710271A (en) * 1951-08-09 1955-06-07 Int Nickel Co Process for annealing and cleaning oxidized metal in a salt bath
US3266477A (en) * 1964-04-15 1966-08-16 Du Pont Self-cleaning cooking apparatus
US4098450A (en) * 1977-03-17 1978-07-04 General Electric Company Superalloy article cleaning and repair method
US4439241A (en) * 1982-03-01 1984-03-27 United Technologies Corporation Cleaning process for internal passages of superalloy airfoils
KR940008936B1 (ko) * 1990-02-15 1994-09-28 가부시끼가이샤 도시바 고순도 금속재와 그 성질을 이용한 반도체 장치 및 그 제조방법
US5575858A (en) * 1994-05-02 1996-11-19 United Technologies Corporation Effective cleaning method for turbine airfoils
US5464479A (en) * 1994-08-31 1995-11-07 Kenton; Donald J. Method for removing undesired material from internal spaces of parts
US6174380B1 (en) * 1998-12-22 2001-01-16 General Electric Company Method of removing hot corrosion products from a diffusion aluminide coating
EP1312437A1 (fr) * 2001-11-19 2003-05-21 ALSTOM (Switzerland) Ltd Procédé pour réparer une fissure
EP1411149A1 (fr) * 2002-10-18 2004-04-21 Siemens Aktiengesellschaft Procédé pour l'enlèvement d'un revêtement d'un composant
EP1559485A1 (fr) * 2004-01-30 2005-08-03 Siemens Aktiengesellschaft Procédé pour l'enlèvement d'une couche

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005072884A1 *

Also Published As

Publication number Publication date
CN1929931A (zh) 2007-03-14
US20070170150A1 (en) 2007-07-26
DE502005006806D1 (de) 2009-04-23
EP1818112A3 (fr) 2007-09-12
EP1818112A2 (fr) 2007-08-15
EP1559485A1 (fr) 2005-08-03
EP1708829B1 (fr) 2009-03-11
WO2005072884A1 (fr) 2005-08-11

Similar Documents

Publication Publication Date Title
EP1708829B1 (fr) Procede pour eliminer une couche
EP1693473B1 (fr) Alliage-MCrAlX, couche protectrice en cet alliage et son procédé de fabrication
EP1670612A1 (fr) Procede pour produire un trou et dispositif
EP1722901B1 (fr) Procede de nettoyage au plasma d'un composant
EP1669545A1 (fr) Système de couches, utilisation et procédé pour la fabrication d'un système multicouche
EP2547488B1 (fr) Procédé de reconditionnement d'une aube de turbine avec au moins une plate-forme
EP1864742A1 (fr) Procédé pour usiner par électro-érosion des materiaux électriquement non-conducteur
WO2007048696A1 (fr) Procede de nettoyage aux ions fluor de composants oxydes ou attaques par la corrosion
EP1816316A1 (fr) Procédé de réparation de composants
EP1666625A1 (fr) Procédé de revêtement d'un composant a l'interieur d'un aparat
EP1797985A1 (fr) Procédé et dispositif de soudage
EP1707651A1 (fr) Système de revêtement et procédé de fabrication d'une système de revêtement
EP2230041A2 (fr) Procédé de fabrication d'un trou
WO2009053154A1 (fr) Procédé pour éliminer une couche métallique au moyen du procédé fic au cours d'une étape intermédiaire
EP1772529A1 (fr) Composition chimique sèche, utilisation de celle-ci composition pour fabriquer un revêtement multicouche et méthode pour fabriquer ce revêtement
DE202006021040U1 (de) Gegossenes Bauteil mit einer Markierung und eine Gruppe von Bauteilen
EP1967615A1 (fr) Procédé destiné à l'application d'une couche d'isolation thermique et pièce de turbine dotée d'une couche d'isolation thermique
EP1681374A1 (fr) Système de revêtement comprenant une couche barrière et procédé de fabrication
EP1645652A1 (fr) Procédé de fabrication d'un système de couches
EP1508628A1 (fr) Pièce comprenant un masque et méthode de revêtement d'une pièce
EP1658924A1 (fr) Pièce avec une rainure remplie
EP1808236A1 (fr) Procédé pour masquer des trous de refroidissement, en particulier d'aubes de turbine
EP1674193A1 (fr) Procédé de fabrication d'un trou
EP1676938A1 (fr) Methode de fabrication d'un component d'une turbine et le component d'une turbine
EP1867749A1 (fr) Procédé de revêtement d'un matériau à une pièce

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE GB IT LI

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE GB IT LI

17Q First examination report despatched

Effective date: 20070706

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REF Corresponds to:

Ref document number: 502005006806

Country of ref document: DE

Date of ref document: 20090423

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091214

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311