EP1812560B1 - In vitro aus knochenmarkstammzellen differenzierte retina-spezifische zellen, ihre herstellung und verwendung - Google Patents

In vitro aus knochenmarkstammzellen differenzierte retina-spezifische zellen, ihre herstellung und verwendung Download PDF

Info

Publication number
EP1812560B1
EP1812560B1 EP05798063A EP05798063A EP1812560B1 EP 1812560 B1 EP1812560 B1 EP 1812560B1 EP 05798063 A EP05798063 A EP 05798063A EP 05798063 A EP05798063 A EP 05798063A EP 1812560 B1 EP1812560 B1 EP 1812560B1
Authority
EP
European Patent Office
Prior art keywords
cells
stem cells
medium
differentiation
retina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05798063A
Other languages
English (en)
French (fr)
Other versions
EP1812560A1 (de
Inventor
Axel R. Zander
Katrin Engelmann
Monika Valtink
Claudia Lange
Boris Fehse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universitatsklinikum Hamburg Eppendorf
Original Assignee
Universitatsklinikum Hamburg Eppendorf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitatsklinikum Hamburg Eppendorf filed Critical Universitatsklinikum Hamburg Eppendorf
Publication of EP1812560A1 publication Critical patent/EP1812560A1/de
Application granted granted Critical
Publication of EP1812560B1 publication Critical patent/EP1812560B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0621Eye cells, e.g. cornea, iris pigmented cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/062Sensory transducers, e.g. photoreceptors; Sensory neurons, e.g. for hearing, taste, smell, pH, touch, temperature, pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/08Coculture with; Conditioned medium produced by cells of the nervous system
    • C12N2502/085Coculture with; Conditioned medium produced by cells of the nervous system eye cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1346Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells
    • C12N2506/1353Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells from bone marrow mesenchymal stem cells (BM-MSC)

Definitions

  • the invention relates to retina-specific cells derived from human adult bone marrow stem cells, and to their production and use for the preparation of a pharmaceutical composition for the treatment of diseases associated with acquired or congenital dysfunction of the retinal pigment epithelium of the retina or choroid.
  • Degenerative diseases of the retina are one of the main causes that lead to a loss of sight. Such diseases are often based on diseases of the retinal pigment epithelium (RPE).
  • RPE retinal pigment epithelium
  • the cells of the RPE vary in size from 10 to 60 microns with smaller cells in the fovea that are heavily pigmented by larger and larger melanosomes, and larger and less heavily pigmented cells with fewer melanosomes at the peripheral retina.
  • RPE cells are polarized with a villous apex on the photoreceptor-facing apical side and a basal side with few folds.
  • the apical side has microvilli surrounding the photoreceptor outer segments.
  • the basal side faces the rupture membrane, on which the cells sit or on which they are "anchored".
  • RPE cells continue to be among the most metabolically active cells in the body and contain numerous mitochondria, rough endoplasmic reticulum, Golgi apparatus and a large round nucleus. Occasionally, a cell may contain 2 cores. With age, the number of cells with two nuclei increases.
  • choriocapillaris lamina choroidocapillaris basally adjacent to the RPE may also degenerate as a result of degeneration of the RPE, resulting in pathological neovascularization. This pathology is accompanied by bleeding from the new vessels and leads to a further deterioration of vision [ WOOD, FG & PAULEIKHOFF, D. (1996) Ophthalmologist 93: 299-315 ].
  • AMD age-related macular degeneration
  • retinopathia pigmentosa a group of disorders also referred to as retinitis pigmentosa
  • degeneration of the retinal epithelium without concomitant inflammation, atrophy of the optic nerve, and extensive pigment changes in the retina Retina are characterized, which result in a progressive decrease in visibility.
  • Retinitis pigmentosa with its numerous sub-forms is one of the most common reasons for blindness, especially in people over the age of 30 [cf. LORENZ, B. et al. (2001) Dt. Doctors Bl 98: A3445-3451 ; Information of the patient association "Pro Retina eV" under www.pro-retina.de].
  • RPE fully functional donor cells
  • TANG L ET AL "Differentiation of Adult Stem Cells into Retinal Cells in vitro and In Vivo" IOVS, Vol. 45, No. Suppl. 2, April 2004 (2004-04), page U649 , XP009058479 & ANNUAL MEETING OF THE ASSOCIATION-FOR-RESEARCH-IN-VISION-AND-OPH THALM OLOGY; FT LAUDERDALE, FL, USA; APRIL 24 -29, 2004 and KICIC ANTHONY ET AL: "Differentiation of marrow stromal cells into photoreceptors in the rat eye.” JOURNAL OF NEUROSCIENCE, Vol. 23, No. 21, August 27, 2003 (2003-08-27), pages 7742-7749 describe a differentiation of bone marrow stem cells into retina-specific cells in different media.
  • the object underlying the invention is to provide a therapy for retinal pathologies.
  • this problem is solved by differentiation of mesenchymal or hematopoietic stem cells from the bone marrow or a mixture of both cell types into retina-specific cells, in particular by methods according to claims 1 to 29 and 43, a use according to any one of claims 30 to 38 and 50 to 53, cells or cell preparations according to claims 39 to 42 and 44 to 47 and / or a pharmaceutical preparation according to claim 49.
  • retina-specific cells refers to a subgroup of neural cells naturally occurring in the retina, and includes cells having neural morphology that resemble specific cells from the retina and whose function (s ) exercise.
  • stem cells refers to adult mesenchymal or hematopoietic stem cells from the bone marrow which can be obtained from a bone marrow aspirate by suitable methods known to those skilled in the art. These procedures for obtaining bone marrow are harmless to the donor and are performed as part of a minor procedure.
  • adult mesenchymal stem cells from the bone marrow are used as starting material in this differentiation process.
  • the method according to the invention leads to differentiation into retina-specific cells.
  • mesenchymal stem cells with their known ability to differentiate into a large number of different cells, such as bone, cartilage, lung, spleen, central nervous system, muscles and liver cells [cf. PEREIRA, RF et al. (1995) Proc Natl Acad Sci USA 92: 4857-4861 ; AZIZI, S. et al. (1998) Proc Natl Acad Sci USA 95: 3908 ; FERRARI, G. et al. (1998) Science 279: 1528-1530 ; KOPEN, GC et al. (1999) Proc Natl Acad Sci USA 96: 10711-10716 ], can also be differentiated into retina-specific cells in vitro.
  • the mesenchymal stem cells used according to the invention express at least two typical surface antigens selected from the group consisting of CD59, CD90, CD105 and MHC I.
  • the mesenchymal stem cells according to the invention are not characterized solely by the expression of one or more specific surface markers, but generally by the expression pattern of a large number of antigens that are characterized by the detectability (expression present) or the missing Detectability (no expression present) distinguishes these antigens in specific detection methods. For example, no expression of CD34 and CD45 is measurable.
  • the mesenchymal stem cells express the surface antigens CD105 (endoglin) and CD90 (Thy-1).
  • the adherently growing, expanded mesenchymal stem cells are used (see Example 2).
  • adult hematopoietic stem cells from the bone marrow are used as starting material in the differentiation method according to the invention.
  • the hematopoietic stem cells used in the present invention express at least one typical surface antigen selected from the group consisting of CD34 and CD45.
  • the hematopoietic stem cells according to the invention are likewise not solely by the expression of one or more specific Surface marker, but generally by the expression pattern of a variety of antigens.
  • the hematopoietic stem cells express the surface antigens CD34 and CD45.
  • the detection of expression of the specific markers (surface antigens) for the hematopoietic stem cells can also be carried out by commercially available specific antibodies by using standard immunodetection methods [cf. LOTTSPEICH F. & ZORBAS H. "Bioanalytics", Spektrum Akademischer Verlag GmbH, Heidelberg-Berlin (1998 ) ⁇ ]
  • the purification of the hematopoietic stem cells according to the invention can be carried out by means of MACS ("magnetically activated cell sorting", Miltenyi). In this technique, purification is via columns placed inside a magnet, to which bone marrow cells are incubated, and incubated with antibodies coupled to ferromagnets. Stem cell and antibody complexes bind to the column and can be specifically purified [ SUTHERLAND, et al. (1996) J Hematotherapy 5: 213-226 ]. Further methods are familiar to the person skilled in the art.
  • the hematopoietic stem cells are preferably used immediately after their purification. However, a further culture or expansion of the purified cells is also included according to the invention.
  • stem cells from the bone marrow are used from starting material which comprise both mesenchymal and hematopoietic stem cells.
  • starting material which comprise both mesenchymal and hematopoietic stem cells.
  • this medium is a standard medium selected from the group consisting of RPMI, medium 199, DMEM (low glucose, this medium corresponds to Modified Eagles's medium (Gibco 31885) and Iscove's medium each alone or as a 1: 1 mixture with Ham's F12 nutrient mixture
  • the medium may also be a special medium selected from the group consisting of Medium Human Endothelial-SFM (Gibco 11111), START V (Biochrom F8075) and Neurobasal or Neurobasal-A medium (Gibco 21103 or 10888) and their supplements N -2 (Gibco 17502) or B27 (Gibco 17504-044) These media are used with or without additives
  • a possible adjunct to these special media is Ham's F12 Nutrient Mixture, which contains high levels of amino
  • 10% DMSO is particularly preferred as antifreeze and at least 10% serum (or albumin in serum-free culture) is added to stabilize sensitive biological substances.
  • the medium DMEM low glucose
  • HEPES Gabco 22320
  • HEPES as a buffer substance stabilizes the pH of the medium more effectively than eg a carbonate or phosphate buffer and is well tolerated by the stem cells.
  • neurobasal or neurobasal A medium are preferably used only for the culture of the differentiated cells obtained in stage c) of the method according to the invention, since the survivability of undifferentiated stem cells in these media is drastically reduced ,
  • the in vitro differentiation of the retina-specific cells according to the invention or the initiation of differentiation of the cells takes place on simple and reliable manner, by culturing the cells in step b) in a special medium.
  • This medium contains either the supernatant of a culture medium in which Chorioideae and / or parts thereof were cultured (see Example 3), or the supernatant obtained after complete homogenization of retina by centrifugation (see Example 4).
  • This medium is hereinafter referred to generally as "differentiation medium”.
  • the differentiation medium preferably contains chorioidea-conditioned medium (CCM) or retinal extract (RE) [cf. PEPPER, BA (1991) Prog Retina Res 10: 251-291 ; Hu, J. & BOK, D. (2001) Mol. Vis. 7: 14-19 ; VENTURA, AC et al. (1996) Ophthalmology 93: 262-267 ; VALTINK, M. et al. (1999) Graefe's Arch Clin Exp. Ophthalmol 237: 1001-1006 ; COULOMBE, JN et al. (1993) Neuron 10: 899-906 ]; ENGELMANN, K. et al. (2004) Graefe's Arch Clin Exp Ophtalmol 242: 65-67 ,
  • CCM may also be used in conjunction with RE.
  • Standard cell culture media can be used as the culture medium in step c) of this method (see Examples).
  • the culture of Chorioideae is carried out at 37 ° C in a humid atmosphere (90 to 97% humidity) in an incubator in a gas mixture of 5% CO 2 and 95% air.
  • the media used to prepare the chorioidea-conditioned medium are standard media such as RPMI, medium 199, DMEM (low glucose, equivalent to modified Eagle's medium (Gibco 31885)) or Iscove's medium each alone or in a 1: 1 mixture used with Ham's F12 Nutrient Mixture.
  • DMEM low glucose
  • HEPES HEPES
  • the culture medium contains fetal calf serum (FCS) as a further additive.
  • a 1: 1 mixture of medium 199 and Ham's F12 supplemented with 1% (v / v) FCS is used to prepare the chorioidea-conditioned medium.
  • the serum may be replaced with serum substitutes.
  • serum substitutes are preferably selected from the group consisting of insulin, albumin (Gibco 11020 or 11021), transferrin, selenium and other trace elements, lipids, lipoproteins, ethanolamine / phosphoethanolamine and other hormones such as hydrocortisone.
  • the serum substitutes insulin, transferrin and selenium are used according to the invention preferably as an ITS supplement (Gibco 51300).
  • the preferred concentration range of the individual substances for insulin is 1 - 10 ⁇ g / ml, for transferrin 1 - 20 ⁇ g / ml and 20 nM for selenium.
  • the trace elements are preferably selected from the group consisting of manganese, tin, nickel, vanadium or molybdenum.
  • Lipids and lipoproteins are preferably used as final cell culture optimized supplement (e.g., Sigma F7175, L0288, L9655 or L0163).
  • Ethanolamine or phosphoethanolamine are added to the medium because they are needed by the cells both to support lipid transport and in serum-free media without serum supplementation essential in phospholipid biosynthesis to build the cell membrane. They are used in the standard concentration of up to 50 ⁇ mol / l which is customary for cell cultures [cf. GRAFF, L. et al. (2002) Am J Pathol 160: 1561-1565 ; KIM, EJ (1999) In Vitro Cell Dev Biol Anim 35 (4): 178-182 ]. Hydrocortisone is preferably used in a concentration of 1-10 nM and serves for the nutrition of, inter alia, neural cells in the culture medium.
  • the medium used in step c) for producing the chorioidea-conditioned medium by culturing the chorioidea and / or fragments thereof is a synthetic serum replacement which contains all of the minimal required substances in the finished concentration.
  • a synthetic serum replacement Biochrom K3611 or K3620.
  • the choroidae are incubated for the preparation of the choroid-conditioned medium (CCM) over a period of 2 to 8 days, preferably 4 days.
  • CCM choroid-conditioned medium
  • the supernatant of this culture is preferably recovered as a conditioned medium at the end of the incubation. There is no incubation with intermittent removal of the supernatant to produce a larger amount of conditioned medium by combining the individual supernatants performed as this repeated "milking" of the culture to a differentiation medium with poorer quality and z.T. inhibitory effect leads.
  • the choroid of a donor eye is incubated for 4 days in medium F99 to which 1% (v / v) FCS has been added. After completion of the culture, the conditioned medium is recovered by centrifugation (see Examples).
  • the chorioidea-conditioned medium (CCM) or the retina extract (RE) as an additive for the differentiation medium are each filtered under sterile conditions and stored at about - 20 ° C or used directly for the differentiation of mesenchymal stem cells (see examples).
  • CCM chorioidea-conditioned medium
  • RE retina extract
  • the stem cells are incubated in the presence of 1 to 20% CCM or in the presence of 0.1 to 5.0% RE.
  • the stem cells are incubated in the presence of 1-15% CCM or in the presence of 0.5-5% RE.
  • the stem cells are incubated in the presence of 10% CCM or in the presence of 1% RE.
  • the stem cells are cultured for differentiation into retina-specific cells for a period of 3 to 21 days in the presence of the differentiation medium.
  • the stem cells are cultured for differentiation into retina-specific cells for a period of 14 to 21 days in the presence of the differentiation medium.
  • differentiation in the presence of the differentiation medium leads to first morphological changes in the cells, which initially assume a stellar morphology. This change manifests in the course of up to 3 weeks (cf. FIGS. 2 to 4 ). After 14 days in culture, the cells are differentiated, as no further differentiation is observed and the cells retain their altered, now neuronal appearing morphology.
  • the cells differ according to the differentiation step from un-differentiated or differentiated cells by their morphology (cf. FIGS. 1 to 4 ).
  • Undifferentiated cells are oblong (see FIG. 1 ), whereas cells after induction of differentiation into retina-specific cells form foothills and assume a star-shaped, stellar form (see FIG. 2 ). Some of these star-shaped cells show granular, dark-appearing accumulations around the nucleus.
  • the cells change their morphology in the course of differentiation and form dendritic processes and ramifications. After about 9 days, the first cells appearing neural appear, while the stellar cells were slowly found in culture no longer.
  • the neural appearing cells show phenotypic similarity to cultured neural stem differentiated astrocytes and oligodendrocytes. After about 9 to 14 days small thickenings appear at the ends of the branched cell foothills, which look morphologically like podiums (see Figures 3 and 4 ). In further development, the already formed Zellaus contacterr thicker, new Zellausmatir are hardly formed. This phenotype is retained in the following 5 to 7 days.
  • the stem cells are cultured only for a short period of 3 to 14 days in the presence of the differentiation medium to induce differentiation of the stem cells into retina-specific cells, whereby the differentiation process subsequent to the induction is not completed.
  • the stem cells are cultured for differentiation into retina-specific cells for a period of 3 to 9 days in the presence of the differentiation medium.
  • the completion of the differentiation of the pre- or predifferentiated cells into retina-specific cells is carried out in these embodiments after administration of the cells to the eye in vivo under the influence of the microenvironment of the eye.
  • the stem cells are differentiated in a multi-step process in which both CCM and RE are used for differentiation. This is followed by a 3 to 14 days continuous differentiation of the isolated and expanded stem cells in a CCM-containing differentiation medium up to 4 weeks lasting culture of the cells in a RE containing differentiation medium.
  • a 3 to 5 day culture in a differentiation medium containing CCM is followed by a culture of the cells in a differentiation medium containing RE for 1 to 14 days, e.g. to obtain retinal pigment epithelium.
  • the stem cells are further differentiated after culture in a differentiation medium containing CCM instead of in a differentiation medium containing RE in a special medium designated for neuronal cultures in order to obtain neuronal cells.
  • This special medium Neurobasal or START V used for further differentiation is preferred.
  • the density of the stem cells during the incubation for differentiation into retina-specific cells in step b) of the method according to the invention is between 0.5 ⁇ 10 3 and 2.5 ⁇ 10 3 cells per cm 2 , particularly preferably 2 ⁇ 10 3 cells per cm 2 .
  • the adjustment of cell density is crucial for the differentiation of stem cells into retina-specific cells and the change in the morphology of the stem cells towards the target cells.
  • the total number of stem cells that can be used for differentiation depends on the size of the culture vessel, which defines the area that can be covered by cells.
  • a total cell count in the range of 1 ⁇ 10 3 to 2.5 ⁇ 10 3 Cells result from using 24-well culture dishes with a 1.88 cm 2 fouling area per well when seeding 2 x 10 2 to 5 x 10 3 cells per well.
  • a total number of cells at the lower end of the preferred range is used, since the cells are then present in the sowing sowed in the shell and proliferate slowly.
  • Using higher seed densities of greater than 5 x 10 3 cells per well subcrucific to confluent cell cultures are formed with highly proliferating cells, but do not differentiate, resulting in no changes in morphology.
  • the chorioidea-conditioned medium or the retina extract contains one or more growth factors or their subtypes according to their use as an additive to the differentiation medium according to the invention.
  • the retina extract is additionally a supplier of further trophic factors of the retina and additionally supplements the differentiation medium with lipoproteins and proteins as well as vitamin A and vitamin A derivatives.
  • the potential risk of contamination of the differentiation medium with pathogenic germs from the supplements due to the addition of biological supplements such as CCM, RE or FCS into the differentiation medium can be avoided by replacing these complex additives.
  • the replacement takes place by administration of defined individual substances contained in the complex media, which are selected from the group consisting of members of the FGF family (FGF: "fibroblast growth factor”), members of the NT family (NT: “neurotrophin”) , Bone morphogenic protein (BMP), platelet-derived growth factor (PDGF), epidermal growth factor (EGF), brain-derived neurotrophic factor (BDNF), CNTF (" ciliary neurotrophic factor "), HGF (“ hepatocyte growth factor ”) and NGF (" nerve growth factor ").
  • FGF fibroblast growth factor
  • NT neurotrophin
  • BMP Bone morphogenic protein
  • PDGF platelet-derived growth factor
  • EGF epidermal growth factor
  • BDNF brain-derived neurotrophic factor
  • CNTF ciliary neurotrophic factor
  • the mention of the individual growth factors according to the invention also includes their subtypes whose use according to the invention is also claimed.
  • the subtypes of the growth factors are known in the art and include i.a. PDGF-AA, PDGF-BB and PDGF-AB.
  • the member of the FGF family is preferably the basic fibroblast growth factor bFGF (FGF-2).
  • the members of the neurotrophin family are preferably NT-3 and NT-4.
  • the member of the BMP family is preferably BMP-4.
  • BDNF growth factor
  • CNTF neuronal cell types
  • NT-3 acts as a mitogen to retinal progenitor cells and thus promotes the development of an undifferentiated cell pool, from which all retinal cell types can arise [ DAS, et al. (2000) J Neurosci 20 (8): 2887-2895 On the other hand, it also plays a role in neuronal development and promotes, synergistically enhanced by BDNF, for example, the outgrowth of neurites from neuronal precursor cells. HOSSAIN, et al. (2000) Exp Neurol 175 (1): 138-151 ]. In addition, NT-3 has demonstrated cell-cycle-controlling function in the progenitor cells of sensory neurons, which fail to lead to cell cycle-dependent cell death [ ELSHAMY, et al.
  • Neurotrophins such as NT-3, NT-4/5 and BDNF, respectively, have activity as a "survival factor" for striatal neurons because they can prevent such cells from dying in degenerative diseases [ PEREZ-NAVARRO, et al. (2000) J Neurochem 75 (5): 2190-2199 ].
  • BDNF in combination with CNTF promotes growth and branching of axons after lesions [ LOH, et al. (2001) Exp Neurol 170 (1): 72-84 ], whereas BDNF alone is able to promote the differentiation of neuronal stem cells from the hippocampus [ SUZUKI, et al. (2003) Biochem Biophys Res Commun 309 (4): 843-847 ].
  • the growth factors of the FGF and BMP family as well as HGF are involved in the cell division of cells of the retina. These cells include retinal ganglion cells (neurons), amacrine, bipolar and horizontal cells, photoreceptor cells (rods and cones), Müllerian support cells and retinal pigment epithelium (RPE).
  • BMP-4 and BMP-7 members of the BMP family are instrumental in the development of various eye structures such as the retina, retinal pigment epithelium, ciliary pigment epithelium and optic nerve that differentiate from the neuroepithelium, as well as the closure of the neural connection between brain and retina at the optic nerve head [ LIU, et al. (2003) Dev Biol 256 (1); 34-48 ; ADLER, et al.
  • BMP-4 exerts its controlling effect by promoting cell division and by targeted induction of programmed cell death [ TROUSSE, et al. (2001) J Neurosci 15; 21 (4): 1292-1301 ] and can both activate different signal transduction pathways in cells and cause the differentiation of stem cells into smooth muscle cells or into glial cells [ RAJAN, et al. (2003) J Cell Biol 161 (5): 911-921 ].
  • BMPs in general are crucial in the differentiation of cortical stem cells involved in neurons and astrocytes [ CHANG, et al.
  • bFGF acts on both endothelial cells of the cornea and on the retinal pigment epithelium either as a mitogen or as a differentiation factor. Furthermore, an effect of bFGF is known as a factor for retinal cells, especially for photoreceptor cells, which can ensure the survival of these cells [cf. GU, et al. (1996) Invest Ophthalmol Vis Sci 37: 2326-2334 ; ITAYA, et al.
  • HGF hepatocyte growth factor
  • HGF is a growth and differentiation factor for neuronal stem cells and promotes the proliferation of "neurospheres" (cell clusters consisting of neural precursor cells) as well as the differentiation of neural stem cells into neurons [ KOKUZAWA, et al. (2003) Mol Cell Neurosci 24: 190-197 ].
  • the invention further relates to the use of chorioidea-conditioned medium (CCM) for the differentiation of stem cells from bone marrow into retina-specific cells.
  • CCM chorioidea-conditioned medium
  • CCM is used to differentiate adult bone marrow-derived mesenchymal stem cells into retina-specific cells.
  • CCM is used to differentiate adult bone marrow hematopoietic stem cells into retina-specific cells.
  • CCM is used to differentiate a mixture of adult bone marrow-derived mesenchymal and hematopoietic stem cells into retina-specific cells.
  • the choroid-conditioned medium may contain one or more growth factors selected from the group consisting of members of the FGF family (FGF: fibroblast growth factor), members of the NT family (NT: “neurotrophin”), members of the bone morphogenic protein (BMP) family, platelet-derived growth factor (PDGF), epidermal growth factor (EGF), brain-derived neurotrophic factor (BDNF) , Ciliary neurotrophic factor (CNTF), hepatocyte growth factor (HGF), nerve growth factor (NGF) or subtypes.
  • FGF fibroblast growth factor
  • NT neurotrophin
  • BMP bone morphogenic protein
  • PDGF platelet-derived growth factor
  • EGF epidermal growth factor
  • BDNF brain-derived neurotrophic factor
  • CNTF Ciliary neurotrophic factor
  • HGF hepatocyte growth factor
  • NGF nerve growth factor
  • the member of the FGF family is preferably basic fibroblast growth factor bFGF (FGF-2), in the members of the neurotrophin family preferably NT-3 and NT-4 and the member of BMP Family preferably around BMP-4.
  • FGF-2 basic fibroblast growth factor bFGF
  • Another object of the invention is the use of retina extract (RE) for differentiation of stem cells from the bone marrow into retina-specific cells.
  • RE retina extract
  • RE is preferably used for the differentiation of adult mesenchymal stem cells and / or hematopoietic stem cells from bone marrow into retina-specific cells.
  • the invention also relates to the use of chorioidea-conditioned medium (CCM) and retina extract (RE) for the differentiation of bone marrow stem cells into retina-specific cells.
  • CCM chorioidea-conditioned medium
  • RE retina extract
  • Table 1 Table 1: ⁇ / b> Expression pattern of antigens in various retina-specific cells of the present invention cell type positive signal negative signal Retinal pigment epithelium RPE65 IRBP ("interphotoreceptor-retinol-binding protein") ZO-1 CD31 occludin CD34 CD36 Cytokeratin 7,8,18,19 S-100 photoreceptors Rhodopsin (chopsticks) Calbindin (cones) PKC (predominantly ⁇ -isoform, only in rods) PKC (cones) S-antigen (S-Ag; adult cells and in later stages of development Müller cells (and astrocytes) S-100 PKC GFAP ("glial fibrillary acidic protein”) amacrine
  • retina-specific cells are a further subject of the invention.
  • these retina-specific cells according to the invention which are isolated, have a specific expression pattern (see Table 1), which is characterized by expression (see column “positive signal”) or undetectable expression (see column “negative signal”) of certain antigens localized on the surface or intracellularly in the cytoplasm.
  • the antigens tested are not specific for the cell type.
  • the antigens studied are tissue-specific for retinal and also neural tissue, in addition to the morphological differences in the cells, they allow differentiation of the retina-specific cells from the stem cells from which they have emerged (see above) by immunostaining and interpretation of the characteristic Staining results (positive / negative staining).
  • the retina-specific cells open up a broad field for genetic modification and therapy.
  • the isolated stem cells from the bone marrow per se or the ultimately differentiated retina-specific cells are transfected or transduced with one or more genes.
  • retina-specific transgenes is meant herein those genes that are naturally expressed in healthy retinal cells but not in the undifferentiated or differentiated stem cells.
  • Autologous stem cells and the retinal cells of a patient have identical defects in their genomes when activated
  • the affected genes lead to the establishment of a disease by lacking or incorrect expression, in the case of retinal cells, for example in the retina.
  • Targeted gene therapy of such diseases can be carried out by transfecting the stem cells used according to the invention or the retina-specific cells differentiated therefrom before transplanting the cells with a healthy copy of the defective gene. If genes are introduced into the stem cells in the course of the method according to the invention, these preferably also remain in the retina-specific cells differentiating from the stem cells and express the transfected gene after transplantation into the recipient also at the site of the transplantation.
  • Methods of transfecting cells with transgenes are well known to those skilled in the art [cf. SAMBROOK, J. et al. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press ].
  • the gene constructs used to transfect the stem cells or the retina-specific cells differentiated therefrom may be designed and assembled in a variety of ways known to those skilled in the art.
  • missing or defective genes should be repaired or replaced in their natural context, which is practically unrealizable in the current state of the art. Therefore, the missing or defective genes must additionally be introduced into the genome of the stem or retina-specific cells and expressed there ectopically.
  • retroviral Baum et al., Curr Opin Mol Ther. 1999 Oct; 1 (5): 605-612 ] or lentiviral [ Trono, Gene Ther 2000; 7: 20-33 ] possibly also AAV vectors [ Monahan & Samulski, Gene Ther 2000; 7: 24-30 ] are used as gene shuttles.
  • the viruses from which these vectors are derived are characterized by the fact that they naturally integrate stably into the target cell genome and are thus inherited as their own genes.
  • lentiviral (usually HIV-derived) vectors use only SIN constructs. Because SIN vectors lack the viral promoter and enhancer elements, they could potentially be associated with a lower risk of deleterious side effects ("insertion mutagenesis") Kalle et al., Stem Cell Clonality and Genotoxicity in Hematopoietic Cells: Gene Activation Side Effects Should Be Avoidable. Seminars in Hematology, in press ]. For the context given here, SIN vectors are particularly interesting in that they allow the use of gene-specific [ Moreau-Gaudry et al., Blood. 2001; 98: 2664-2672 ] or else regulatable or inducible promoters.
  • retina-specific promoters would certainly be the optimal solution.
  • Inducible systems are currently based mostly on the tetracycline system of Gossen & Bujard [Proc Natl Acad Sci USA. 1992; 89 (12): 5547-51 ].
  • the expression of the transgene during the culture can be suppressed. Will the patient after transplantation of the retina-specific cells If this substance is not added, the inhibition is terminated, the promoter is activated and the transgene is expressed.
  • genes By transfecting with one or more foreign genes on the one hand genes can be introduced into the cells, which are required for the maintenance of cell-specific metabolic activities in the retina-specific cells, but on the other hand, a transfection of genes is included, the retina-specific cells new Give functions or mark the cell.
  • the cells are transfected with the green fluorescent protein (GFP), the enhanced green fluorescent protein (eGFP) or the gene lacZ as marker or reporter gene for labeling the cells [cf. ALLAY, JA et al. (1997) Hum Gene Ther 8: 1417 ; AYUK, F. et al. (1999) Gene Ther 6: 1788-1792 ; FEHSE, B. et al. (1998) Gene Ther 5: 429-430 ].
  • GFP green fluorescent protein
  • eGFP enhanced green fluorescent protein
  • the invention further relates to cell preparations containing retina-specific cells according to the invention as isolated cells. Such cell preparations can be used for the storage or transport of the cells.
  • Cell preparations may contain isolated vital retina-specific cells according to the invention which are characterized by missing or undetectable expression of markers selected from the group consisting of IRBP and CD34 or by the expression of at least one of the markers selected from the group consisting of RPE65, ZO- 1, occludin, CD36, cytokeratin 7, cytokeratin 8, cytokeratin 18, cytokeratin 19, S-100, rhopopsin (in sticks), calbindin (in cones), PKC, S-antigen, GFAP, GABA and neurofilament an amount of at least 1, preferably from 1 to 50%, more preferably from 50 to 70%, and most preferably from 70 to 90%, based on the total number of cells present in the preparation in a suitable medium , wherein in the aforementioned Value range all integer values (ie 11, 12, 13, ...
  • Cell suspensions are preferred in a cell-compatible cell culture or transport medium, such as a standard medium selected from the group consisting of RPMI, medium 199, DMEM (low glucose, this medium corresponds to the modified Eagles's medium (Gibco 31885)) with or without HEPES as additive and Iscove's medium alone or as a 1/1 mixture with Ham's F12 Nutrient Mixture.
  • a cell-compatible cell culture or transport medium such as a standard medium selected from the group consisting of RPMI, medium 199, DMEM (low glucose, this medium corresponds to the modified Eagles's medium (Gibco 31885)) with or without HEPES as additive and Iscove's medium alone or as a 1/1 mixture with Ham's F12 Nutrient Mixture.
  • the medium may also be a special medium selected from the group consisting of Medium Human Endothelial-SFM (Gibco 11111), START V (Biochrom F8075) and Neurobasal or Neurobasal-A
  • Cryo-SFM Promocell C-29910
  • Cryomedias are those media which allow deep freezing of the cells without damage to the cells.
  • the differentiated retina-specific cells are separated from undifferentiated stem cells in order to achieve the greatest possible enrichment of retina-specific cells according to the invention with simultaneous depletion of the non-differentiated stem cells.
  • the separation of undifferentiated stem cells from the differentiated retina-specific cells takes place with Assistance of (surface) antigens specifically expressed on the (to) differentiated retina-specific cells but not or not detectable on the undifferentiated stem cells.
  • Antigens that can be used for such a separation are, for example, CD36 or S-100 and all the antigens from the "positive signal" column (see Table 1).
  • Examples of methods known in the art by means of which cells can be sorted by means of certain surface marker cells include "immuno magnetic bead sorting" [cf. ROMANI, et al. (1996) J. Immunol. Methods 196: 137-151 ], fluorescence-activated cell sorting (FACS) and magnetically-activated cell sorting (MACS) [loc. cit.]. Other such methods are known in the art.
  • the retina-specific cells of the invention are used per se for the preparation of a pharmaceutical composition for the treatment of diseases associated with acquired or congenital dysfunction of the cells of the Retinal pigment epithelium, the cells of the adjacent structures of the entire retina and Chorioidea and other eye tissue are associated, or used for the regeneration of the optic nerve (optic nerve), for example, during or after glaucoma damage.
  • the bone marrow from which the stem cells are isolated may be of autologous or allogeneic origin.
  • autologous refers to tissue or cells taken from the same individual intended to receive the differentiated retina-specific cells as a transplant.
  • An allogenic origin indicates that the donor of the bone marrow and the recipient of the retina-specific cells differentiated from the bone marrow are different but belong to the same species, e.g. Donors and recipients are people.
  • the retina-specific cells are autologous cells, i. the bone marrow stem cells are from the patient to be treated with the retina-specific cells differentiated from these stem cells.
  • the administration of stem cell-differentiated retina-specific cells does not cause immunological problems in the form of cell rejection because the tissue characteristics of the cells and the recipient are identical.
  • the pharmaceutical preparations may contain the retina-specific cells according to the invention, ie on and / or differentiated cells, suspended in a physiologically tolerated medium.
  • Suitable media are, for example, standard media selected from the group consisting of RPMI, medium 199, DMEM (low glucose, this medium corresponds to Modified Eagles's medium (Gibco 31885)) with or without HEPES as additive and Iscove's medium either alone or as 1: 1.
  • Mixture with Ham's F12 Nutrient Mixture or special media selected from the group from Medium Human Endothelial-SFM, START V and Neurobasal or Neurobasal-A medium with or without Ham's F12 Nutrient.
  • the media are suitable for this use and do not contain hormones, peptides or the like to which the patient may be sensitive. It is important to note that the medium used for transplantation must not contain any serum. Alternatively, physiological solutions, eg. B. Ringer solution used.
  • the retina-specific cells characterized by at least one of the markers selected from the group consisting of RPE65, ZO-1, occludin, CD36, cytokeratin 7, cytokeratin 8, cytokeratin 18, cytokeratin 19, S-100, rhopopsin (in Chills), calbindin (in cones), PKC, S antigen, GFAP, GABA and neurofilament are preferably present in such pharmaceutical compositions in an amount of at least 50%, preferably at least 60%, based on the total number of those present in the preparation Cells, wherein in the aforementioned range of values all integer values (ie 51, 52 ... 59 and 61, 62 ... 99, 100) are expressly included.
  • the pharmaceutical preparations may optionally contain further pharmaceutically acceptable excipients and / or carriers.
  • At least 1 ⁇ 10 4 retinal cells according to the invention are present per ⁇ l in the pharmaceutical preparations. However, preferably no more than 5 ⁇ 10 4 retinal cells according to the invention are present per ⁇ l, in order to avoid clumping of the cells.
  • Preferred application forms for the in vitro differentiated retina-specific cells are injection, infusion or implantation of the cells into a specific cell association of the eye, to achieve that the cells grow there on the one hand by direct contact with the cell structure and take over by appropriate tissue-specific differentiation functions of the damaged tissue.
  • a particularly preferred form of administration is the injection of the in vitro differentiated retina-specific cells. This implantation is preferably carried out locally intraocularly.
  • the local intraocular administration into the retina (intraretinal, see. GUO, Y. et al. (2003) Invest Ophthalmol Vis Sci 44 (7): 3194-3201 ), under the retina (subretinal, cf. WOJCIECHOWSKI, AB et al. (2002) Exp Eye Res 75 (1): 23-37 ) or close to the retina into the vitreous (intravitreal, cf. JORDAN, JF et al. (2002) Graefe's Arch Clin Exp. Ophthalmol 240 (5): 403-407 ).
  • a further preferred embodiment of the invention relates to the systemic infusion of the in vitro differentiated retina-specific cells according to the invention via the bloodstream for the enrichment of the cells in the retina.
  • glaucoma refers to a series of degeneration of the nerve fibers and the optic nerve, which are attributed to a mostly abnormal intraocular pressure. This is characterized by a loss of the ganglion cells of the retina and the nerve fibers as well as an atrophy of the optic nerve.
  • the term "glaucoma” according to the invention covers all types of glaucoma, i. High, low pressure glaucoma, open angle glaucoma, PEX glaucoma etc.
  • the treatment of glaucoma according to the invention comprises the replacement of destroyed ganglion and nerve cells of the retina and in the optic nerve by administration according to the invention in retina-specific cells or differentiated stem cells from the bone marrow to form a replacement of the destroyed cells.
  • the damage to the chorioidea (diabetic retinopathy) associated with diabetes is also treatable.
  • a dose of the cells according to the invention stabilizes the vessels which have become brittle as a result of the diabetes and thereby reduces or prevents the occurrence of retinal hemorrhages.
  • preferred embodiments of the invention are the use of the retina-specific cells for the preparation of pharmaceutical compositions for the treatment of retinitis pigmentosa, age-related macular degeneration or glaucoma.
  • hematopoietic stem cells differentiated or differentiated retina-specific cells for the preparation of a pharmaceutical composition for the treatment of diseases characterized by a degeneration of the vascular structures of Chorioidea, e.g. diabetic retinopathy in diabetes.
  • the cells may be of autologous or allogenic origin as described above, i.
  • the bone marrow from which the mesenchymal or hematopoietic stem cells were isolated comes from the body of the recipient or a representative of its kind.
  • the first culture after isolation of the cells is generally carried out in 24-well plates. Depending on the size of the culture, 12-well plates, 6-well plates, T25 culture bottles or T75 culture bottles may also be considered.
  • the cell cultures obtained by this method can be cultured in DMEM (low glucose) medium with 10% FCS for several months, every 7 to 14 days, depending on the seeding density, the donor's influence, the age of the culture and on reaching the subconfluence (60-80%) are passaged (see Example 2).
  • DMEM low glucose
  • the culture medium and non-adherent cells were removed from the plastically adherent growing mesenchymal stem cells by aspiration or decay.
  • the adherent to the culture dish adhdidt Growing mesenchymal stem cells were rinsed 1-2 times with PBS (containing no calcium or magnesium ions!) to remove other non-adherent cells.
  • PBS containing no calcium or magnesium ions
  • trypsin / EDTA solution was aspirated again and the cells left for a further 2-3 minutes at room temperature.
  • the culture vessel was gently shaken by tapping by hand to release the cells from the surface of the culture vessel by the mechanical stress.
  • the detached cells were suspended in DMEM low glucose / 10% FCS.
  • the total number of vital cells is calculated in both cases, including the dilution.
  • the cells were now seeded in corresponding uncoated culture vessels and cultured in the same culture medium, which was used for sowing. It may be necessary to further dilute the cell suspension with culture medium.
  • the cell suspension can also be sedimented by centrifugation, the sedimented cells suspended in freezing medium (90% FCS + 10% DMSO) and cryopreserved in liquid nitrogen.
  • CCM chorioidea-conditioned medium
  • VALTINK M. et al. (1999) Graefe's Arch Clin Exp. Ophthalmol 237: 1001-1006 ; VALTINK, M. & ENGELMANN, K. (2002) In: WILHELM, F., DUNCKER, GIW, BREDEHORN, T. (ed.) Augenbanken. Walter de Gruyter Verlag Berlin New York, pp. 75-87 ].
  • the choroid is still complete.
  • the subsequent conditioning process is not affected.
  • the enzyme activity was subsequently stopped by adding an excess of serum-containing culture medium (DMEM + FCS, see Example 1). Thereafter, the choroidal tissue was transferred to 2 ml culture medium consisting of F99 medium supplemented with 1% FCS per chorioidea, ie 4 ml medium per eye pair. The tissue was incubated in an incubator under 5% CO 2 at 37 ° C for 4 days.
  • the enzyme activity of the collagenase is only partially stopped by the addition of an excess of serum-containing culture medium, since commercial collagenases in addition to the proteolytic cleavage of collagens as the main activity further, difficult inactivatable proteolytic activities that are directed against other protein structures.
  • this non-inactivatable residual activity is low and has no influence on the formation of the conditioned medium and its use for cell cultivation and differentiation.
  • CCM formed as a supernatant. This was separated from the choroidal tissue by centrifugation at room temperature at 300xg for 10 min. The resulting supernatant was used directly as an addition to differentiation or frozen at -20 ° C.
  • Example 2 Approximately 15,000 stem cells derived from bone marrow (see Example 1 and Example 2 for mesenchymal stem cells) and cultured maximally until passage 6 (see Example 2) were mixed with 5 ml of medium F99 (this is a 1: 1 mixture of medium 199 and Ham's F12 Nutrient Mixture) supplemented with 1 to 10% FCS, 1 ⁇ g / ml insulin, 1 mmol / l sodium pyruvate and 10% CCM in a T25 culture flask for 14 to 21 days. 2 to 3 times a week, the differentiation medium was changed, resulting in a total of about 30 to 45 ml differentiation medium results needed to differentiate a donor culture.
  • medium F99 this is a 1: 1 mixture of medium 199 and Ham's F12 Nutrient Mixture
  • the cells After 10 to 14 days in culture, the cells began to develop a neuronal morphology, with dendritic, multi-branched shoots, often accompanied by formation of podia at contact sites with adjacent cells (cf. FIG. 3b and FIG. 4 ).
  • the stem cells are also able to differentiate into pigmented cell types, such as, for example, cells of the retinal pigment epithelium or melanocytes.
  • pigmented cell types such as, for example, cells of the retinal pigment epithelium or melanocytes.
  • the ability of the cells to pigment via the tyrosinase path is the decisive differentiation criterion.
  • the evidence is positive when melanin black-brown granules are visible as deposits from the added L-DOPA by the enzyme present in the cells Tyrosinase and its derivatives and the subsequent enzymes are formed in this reaction chain.
  • retinal extract produced by homogenizing retinas was used.
  • the neurosensory retina was prepared. First, the anterior segment and then the vitreous of the eyes were removed. The neurosensory retina of the eyes was then lifted with forceps and severed with scissors at the optic nerve head. The retinas obtained were made up to a volume of 50 ml in a vessel with PBS and supplemented with proteinase inhibitors (eg 1 tablet Complete Protease Inhibitor Cocktail (Roche) to 50 ml homogenate) in a glass hand or tissue homogenizer Ice homogenized. The supernatant representing the RE was recovered by centrifugation at 500 x g for 15 min and further centrifugation at 10,000 x g for 45 min. The RE was then sterile filtered through a 0.22 ⁇ m sterile filter.
  • proteinase inhibitors eg 1 tablet Complete Protease Inhibitor Cocktail (Roche) to 50 ml homogenate
  • the supernatant representing the RE was recovered by centrifugation at 500 x g for 15 min and further centrifug
  • the differentiation of the passaged stem cells with RE containing differentiation medium was carried out analogously to Example 3.
  • the differentiation medium was deviating 1% RE instead of CCM added.
  • the differentiation of the stem cells into retina-specific cells took place during a culture for 2 to 3 weeks in the differentiation medium.
  • the supernatant from the choroid culture was separated into 80 fractions as described in Example 3 through a Superdex ® column by gel filtration (Pharmacia Biotech).
  • a chromatogram of the individual fractions was prepared (see FIG. 5 ).
  • fractions 22-37, fractions 38-41, and fractions 42-46 were pooled separately.
  • Fractions 22-37 contain smaller peptide / protein molecules that were not present at this concentration prior to conditioning the medium and are newly synthesized smaller peptides / proteins or degradation products of the serum.
  • Fractions 38-41 contain peptides / proteins from the largest peak already present in the medium prior to conditioning but increased in amount by incubation with choroid.
  • Fractions 42-46 contain peptides / proteins that were not present in the medium prior to conditioning.
  • the size of the peptides / proteins contained in this peak suggests that they do not represent degradation products of the serum, but have to originate from the choroid and have been released into it during the conditioning of the medium.
  • the fractions were tested for their biological activity after incorporation by adding to a culture medium used to grow human mesenchymal stem cells and human retinal pigment epithelial cells.
  • the biological activity of the fractions was determined by the difference between the number of cells at the end and at the beginning of the cultivation.
  • the difference thus obtained corresponds to the cells produced by proliferation during the culture, which changes depending on the biological activity of the added CCM fraction.
  • Biologically active fractions increase the proliferation of the cells compared to the negative control, but the increase reaches the value of the positive control at most.
  • the test with the human mesenchymal stem cells was carried out analogously, but diverging 5000 cells per well were seeded in 24-hole culture dishes.
  • Fractions having a biological activity that had a positive effect on the proliferation of the stem cells were then subjected to analysis by MALDI-TOF mass spectrometry to identify the peptides or proteins in the fraction that underlie the biological activity of the fractions.
  • the proteins of the corresponding fraction were first separated by means of 2D gel electrophoresis in a protein gel and the proteins were proteolytically restricted in the excised protein band. After extraction of the resulting peptides from the gel, these were characterized by mass spectrometry and identified on the basis of their physical data via a database search.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurology (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Neurosurgery (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Analytical Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

  • Die Erfindung betrifft Retina-spezifische Zellen, die aus menschlichen adulten Knochenmarkstammzellen abgeleitet sind, sowie auf deren Herstellung und Verwendung zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung von Krankheiten, die mit erworbener oder angeborener Dysfunktion des retinalen Pigmentepithels der Retina oder der Chorioidea verbunden sind.
  • Degenerative Erkrankungen der Netzhaut (Retina) sind eine der Hauptursachen, die zu einem Verlust des Augenlichts führen. Solche Erkrankungen beruhen häufig auf Erkrankungen des retinalen Pigmentepithels (RPE).
  • Die Zellen des RPE variieren in der Größe von 10 bis 60 µm mit kleineren Zellen in der Fovea, die durch mehr und größere Melanosomen stark pigmentiert sind, und größeren und weniger stark pigmentierten Zellen mit weniger Melanosomen an der peripheren Retina. RPE-Zellen sind polarisiert mit einem villösen Apex auf der den Photorezeptoren zugewandten apikalen Seite und einer basalen Seite mit wenigen Einfaltungen. Die apikale Seite weist Mikrovilli auf, welche die Photorezeptor-Außensegmente umschließen. Die basale Seite ist der Bruchmembran zugewandt, auf der die Zellen aufsitzen bzw. an der sie "verankert" sind. RPE-Zellen gehören weiterhin zu den metabolisch aktivsten Zellen im Körper und enthalten zahlreiche Mitochondrien, rauhes Endoplasmatisches Reticulum, Golgi-Apparat und einen großen runden Kern. Gelegentlich kann eine Zelle 2 Kerne enthalten. Mit dem Alter nimmt die Zahl der Zellen mit zwei Kernen zu.
  • Die Rolle der RPE-Zellen ist vielgestaltig und umfaßt verschiedene Aufgaben
    • ➢ im Vitamin A-Metabolismus (z.B. bei der Aufnahme von Vitamin A aus dem Blutstrom und dessen Umwandlung in 11-cis-Retinal, welches an die Photorezeptoren abgegeben wird, dort an Opsin bindet und dadurch Rhodopsin bildet; dieses wird während des Sehvorgangs durch Licht deaktiviert, dadurch verbraucht und in der verbrauchten Form zum RPE zurück transportiert, wo es erneut zu 11-cis-Retinal umgesetzt wird);
    • ➢ als äußere Blut-Retina-Barriere;
    • ➢ in der Phagozytose von äußeren Segmenten der Photorezeptoren, da jede RPE-Zelle bis zu 4000 Scheiben der äußeren Segmente der Photorezeptoren pro Tag aufnehmen kann, die in Phagosomen eingekapselt und nachfolgend in Lysosomen abgebaut werden;
    • ➢ in der Absorption von Licht durch Absorption des Streulichts, wodurch dieses minimiert wird;
    • ➢ in der Bildung der Interphotorezeptormatrix, die z.B. an der Haftung der Retina an das RPE beteiligt ist;
    • ➢ in dem aktiven Transport von Wasser und Metaboliten wie z.B. D-Glukose und Tyrosin über Na+/K+-ATPase-Pumpen auf der apikalen Oberfläche und Chlorid-Bicarbonat-Transportern auf der basalen Oberfläche;
    • ➢ in der Reaktion auf mechanische und thermale Schädigung durch Reparatur, Regenerierung, fibrovaskuläre Proliferation und Pigmentmigration; und
    • ➢ beim Abfangen von Toxinen und Radikalen durch Bindung an das im RPE gelegene Melanin, wodurch die Chorioidea und die Retina als benachbarte Strukturen vor oxidativer Schädigung geschützt werden.
  • Wegen ihrer herausragenden, das Sehen ermöglichenden Rolle im Auge führen erworbene oder angeborene Dysfunktionen der RPE-Zellen, d.h. Verlust der Zellintegrität, Proliferation oder Migration der Zellen mit der sekundären Konsequenz einer Degenerierung der nicht-regenerierenden Photorezeptoren unausweichlich zu konsekutivem, irreversiblem Verlust des (zentralen) Sehens.
  • Zusätzlich kann die basal an das RPE grenzende Choriokapillaris (Lamina choroidocapillaris) als Folge einer Degenerierung des RPE ebenfalls degenerieren, was eine pathologische Neovaskularisation zur Folge hat. Diese Pathologie wird von Blutungen aus den neuen Gefäßen begleitet und führt zu einer weiteren Verschlechterung des Sehvermögens [HOLZ, F.G. & PAULEIKHOFF, D. (1996) Ophthalmologe 93: 299-315].
  • Eine derartige Degeneration der Chorioidea (Aderhaut) tritt häufig im Verlauf einer Diabeteserkrankung auf.
  • Ein Beispiel für eine erworbene retinale Erkrankung, die ihre Ursache im RPE hat, ist die altersabhängige Makuladegeneration (AMD), unter der etwa 20% der Patienten über 65 leiden [WILLIAMS, R.A. et al. (1998) Arch Ophthalmol 116: 514-520; YOUNG, R.W. (1987) Surv Ophthalmol 31: 291-306]. Makuladegeneration ist die ungenaue historische Bezeichnung einer Gruppe von Krankheiten, welche in den licht-sensorischen Zellen in der Makulazone der Retina zu Fehlfunktion oder Funktionsverlusten führen und letztlich in einem schwächenden Verlust der vitalen zentralen oder peripheren Sicht führen. Bis heute konnte die Pathogenese von AMD nicht ausreichend geklärt werden [HOGAN, M.J. (1972) Trans Am Acad Ophthalmol Otol 76: 64-80; YOUNG, R.W. (1987) Surv Ophthalmol 31: 291-306; LAHIRI-MUNIR, D. (1995) "Retinal Pigment Epithelial Transformation." Springer-Verlag, Heidelberg].
  • Ein Beispiel einer angeborenen Degenerierung der Retina ist die Retinopathia pigmentosa, bei der es sich um eine Gruppe von Erkrankungen handelt, die auch als Retinitis pigmentosa bezeichnet werden und durch eine Degenerierung des Retinalepithels ohne begleitende Entzündung, durch Atrophierung des optischen Nervs und weitläufige Pigmentveränderungen in der Retina gekennzeichnet sind, die in einer fortschreitenden Abnahme der Sicht münden. Retinitis pigmentosa mit ihren zahlreichen Unterformen ist eine der häufigsten Gründe für Blindheit gerade bei Menschen ab dem 30. Lebensjahr [vgl. LORENZ, B. et al. (2001) Dt. Ärztebl 98: A3445-3451; Information der Patientenvereinigung "Pro Retina e.V." unter www.pro-retina.de].
  • Therapeutische Ansätze für eine Behandlung oder Heilung von retinalen Erkrankungen, die heutzutage angewandt werden, einschließlich Lasertherapie oder chirurgische Entfernung von Neovaskularisationsmembranen setzen relativ spät im Krankheitsverlauf ein und sind im besten Fall nur in der Lage, die Krankheit aufzuhalten. Bis heute gibt es keine Heilung für retinale Erkrankungen.
  • Die Verwendung von voll funktionalen Spenderzellen (RPE) als Transplantat zum Ersatz für erkrankte Zellen bietet einen vielversprechenden Ansatz in Richtung Heilung solcher Krankheiten. Gewöhnlich werden Spenderzellen postmortal aus Spenderaugen entnommen und entweder frisch oder nach einem Kulturschritt verwendet. Nachteile der postmortal entnommenen Zellen sind eine verringerte Vitalität und ein durch den Kultivierungsschritt verschlechterter Differenzierungsstatus der Zellen. Trotz dieser Nachteile ist es gelungen, Transplantationen mit mittelfristigem Erfolg im Tiermodell zu erreichen [vgl. ALGERVE, P.V. et al. (1997) Graefe's Arch Clin Ophthalmol 235: 149-158; CRAFOORD, S. et al. (1999) Acta Ophthalmol Scand 77: 247-254; GOURAS, P. et al. (1985) Curr Eye Res 4: 253-265; GOURAS, P. et al. (1989) Prog Clin Biol Res 314: 659-671; LI, L. et al. (1988) Exp Eye Res 47: 771-785; LI, L. et al. (1991) Exp Eye Res 52: 669-679; LITTLE, C.W. et al. (1996) Invest Ophthalmol Vis Sci 37: 204-211; PEYMAN, G.A. et al. (1991) Ophthal Surg 22: 102-108; SHEEDLO, H.J. et al. (1989) Exp Eye Res. 48: 841-854; SEILER, M.J. & ARAMANT, R.B. (1998) Invest Ophthalmol Vis Sci 39: 2121-2131]. Versuche einer Transplantation bei Humanpatienten scheiterten jedoch an der geringen Qualität der Spenderzellen. Bislang wurden andere retinale Zellen, wie z.B. Photorezeptoren, nur experimentell und nur als embryonale Zelle verpflanzt [vgl. ARAMANT, R.B. et al. (1999) Invest Ophthalmol Vis Sci 40: 1557-1564], wodurch dieser Ansatz zur Zeit nach heutigen wissenschaftlichen und ethischen Standards für eine Therapie nicht denkbar ist.
  • TANG L ET AL: "Differentiation of Adult Stem Cells into retinal cells in vitro and in vivo" IOVS, Bd. 45, Nr. Suppl. 2, April 2004 (2004-04), Seite U649, XP009058479 & ANNUAL MEETING OF THE ASSOCIATION-FOR-RESEARCH-IN-VISION-AND-OPH THALM OLOGY; FT LAUDERDALE, FL, USA; APRIL 24 -29, 2004 und KICIC ANTHONY ET AL: "Differentiation of marrow stromal cells into photoreceptors in the rat eye." JOURNAL OF NEUROSCIENCE, Bd. 23, Nr. 21, 27. August 2003 (2003-08-27), Seiten 7742-7749 beschreiben eine Differenzierung von knochenmarksstammzellen in Retina-spezifische Zellen in verschiedenen Medien.
  • In Anbetracht der ungelösten Probleme besteht die der Erfindung zugrunde liegende Aufgabe in der Bereitstellung einer Therapie für retinale Pathologien.
  • Entsprechend der vorliegenden Erfindung wird dieses Problem durch Differenzierung von mesenchymalen oder hämatopoetischen Stammzellen aus dem Knochenmark oder einer Mischung aus beiden Zelltypen in Retina-spezifische Zellen gelöst, insbesondere durch Verfahren nach den Ansprüchen 1 bis 29 und 43, eine Verwendung nach einem der Ansprüche 30 bis 38 und 50 bis 53, Zellen bzw. Zellzubereitungen nach den Ansprüchen 39 bis 42 bzw. 44 bis 47 und/oder eine pharmazeutische Zubereitung nach Anspruch 49.
  • Beschreibung der Figuren
  • Figur 1:
    Lichtmikroskopische Aufnahme von isolierten, undifferenzierten mesenchymalen Stammzellen nach 2 Tagen in Kultur in Anwesenheit von CCM als Differenzierungsmedium (Vergrößerung × 100).
    Figur 2:
    Lichtmikroskopische Aufnahme von isolierten mesenchymalen Stammzellen nach 5 Tagen in Kultur in Anwesenheit von CCM als Differenzierungsmedium mit beginnender Differenzierung der Stammzellen in Zellen mit neural erscheinender Zellmorphologie, die durch Ausbildung dendritischer Fortsätze gekennzeichnet sind (Vergrößerung × 100).
    Figur 3:
    Lichtmikroskopische Aufnahme von isolierten mesenchymalen Stammzellen nach 9 Tagen in Kultur in Anwesenheit von CCM als Differenzierungsmedium mit weiter fortgeschrittener Differenzierung der Stammzellen in Zellen mit neural erscheinender Zellmorphologie, die durch beginnende Verästelung der dendritischen Fortsätze gekennzeichnet sind (Vergrößerung in Figur 3A × 100 und Figur 3B × 200).
    Figur 4:
    Lichtmikroskopische Aufnahme von isolierten mesenchymalen Stammzellen, die nach 14 Tagen Kultur in Anwesenheit von CCM als Differenzierungsmedium eine neurale Zellmorphologie mit dendritischen Fortsätzen und Verästelungen aufweisen (Vergrößerung in Figur 4A × 100, Figur 4B × 200 und Figur 4C × 320).
    Figur 5:
    Chromatogramm (violette Kurve - 214 nm; blaue Kurve - 280 nm) der Fraktionen 20 - 50 eines Kulturmediums vor Inkubation von Chorioidea in diesem Medium (oberer Teil der Figur) und eines konditionierten Mediums, das nach Inkubation von Chorioidea in diesem Medium erhalten wird (unterer Teil der Figur); Darstellung der Veränderungen der Proteinzusammensetzung.
  • Der Begriff "Retina-spezifische Zellen, wie er hier verwendet wird, bezeichnet eine Untergruppe neuraler Zellen, die natürlicherweise in der Retina vorkommen. Weiterhin werden von diesem Begriff Zellen mit neuraler Morphologie umfaßt, die spezifischen Zellen aus der Retina gleichen und deren Funktion(en) ausüben.
  • Der Begriff "Stammzellen", wie der hier verwendet wird, bezeichnet adulte mesenchymale oder hämatopoetische Stammzellen aus dem Knochenmark, die aus einem Knochenmarkaspirat durch geeignete, dem Fachmann bekannte Verfahren gewonnen werden können. Diese Verfahren zur Gewinnung von Knochenmark sind für den Spender unbedenklich und werden im Rahmen eines kleinen Eingriffs durchgeführt.
  • In einer bevorzugten Ausführungsform der Erfindung werden isolierte und expandierte Stammzellen aus dem Knochenmark mit einem Verfahren in Retina-spezifische Zellen differenziert, bei dem man
    1. a) die Stammzellen in einem geeigneten Kulturmedium expandiert;
    2. b) die expandierten Stammzellen in einem Differenzierungsmedium kultiviert; und
    3. c) die Retina-spezifischen Zellen durch Trennung der Zellen vom Differenzierungsmedium isoliert.
  • In einer Ausführungsform der Erfindung werden dabei in diesem Differenzierungsverfahren adulte mesenchymale Stammzellen aus dem Knochenmark als Ausgangsmaterial verwendet.
  • Überraschenderweise konnte gezeigt werden, daß das erfindungsgemäße Verfahren zu einer Differenzierung zu Retina-spezifischen Zellen führt.
  • Dabei konnte zum ersten Mal überhaupt gezeigt werden, daß mesenchymale Stammzellen mit ihrer bekannten Fähigkeit einer Differenzierung in eine große Zahl verschiedener Zellen, wie z.B. Knochen, Knorpel, Lunge, Milz, Zentralnervensystem, Muskeln und Leberzellen [vgl. PEREIRA, R.F. et al. (1995) Proc Natl Acad Sci USA 92: 4857-4861; AZIZI, S. et al. (1998) Proc Natl Acad Sci USA 95: 3908; FERRARI, G. et al. (1998) Science 279: 1528-1530; KOPEN, G.C. et al. (1999) Proc Natl Acad Sci USA 96: 10711-10716], in vitro auch in Retina-spezifische Zellen differenziert werden können.
  • Die erfindungsgemäß verwendeten mesenchymalen Stammzellen exprimieren mindestens zwei typische Oberflächenantigene ausgewählt aus der Gruppe bestehend aus CD59, CD90, CD105 und MHC I. Die erfindungsgemäßen mesenchymalen Stammzellen sind jedoch nicht allein durch die Expression eines oder mehrerer spezifischer Oberflächenmarker gekennzeichnet, sondern generell durch das Expressionsmuster einer Vielzahl von Antigenen, das sich durch die Nachweisbarkeit (Expression vorhanden) bzw. die fehlende Nachweisbarkeit (keine Expression vorhanden) dieser Antigene in spezifischen Nachweisverfahren auszeichnet. So ist z.B. keine Expression von CD34 und CD45 messbar. In einer besonders bevorzugten Ausführungsform exprimieren die mesenchymalen Stammzellen die Oberflächenantigene CD105 (Endoglin) und CD90 (Thy-1).
  • Die Expression dieser spezifischen Marker (Oberflächenantigene) kann durch kommerziell erhältliche Antikörper mit Spezifität gegen die jeweiligen Antigene unter Verwendung von Standard-Immunnachweisverfahren detektiert werden [vgl. LOTTSPEICH F. & ZORBAS H. "Bioanalytik", Spektrum Akademischer Verlag GmbH, Heidelberg-Berlin (1998))}]. Der Nachweis des Gesamt-MHC I-Komplex erfolgt beispielsweise mit dem Antikörper gegen HLA-A,B,C (Hersteller BD Pharmingen, Katalognummer 555552).
  • Während der Proliferations- oder Vermehrungsphase der Zellen haftet eine unterschiedliche Anzahl der Zellen am Boden oder an der Wand des jeweiligen Kulturgefäßes an. Für die Differenzierung in die Retina-spezifischen Zellen in Stufe b) des erfindungsgemäßen Verfahrens werden die adhärent wachsenden, expandierten mesenchymalen Stammzellen verwendet (vgl. Beispiel 2).
  • In einer weiteren Ausführungsform der Erfindung werden in dem erfindungsgemäßen Differenzierungsverfahren adulte hämatopoetische Stammzellen aus dem Knochenmark als Ausgangsmaterial verwendet.
  • Die erfindungsgemäß verwendeten hämatopoetischen Stammzellen exprimieren mindestens ein typisches Oberflächenantigen ausgewählt aus der Gruppe bestehend aus CD34 und CD45. Analog zu den erfindungsgemäßen mesenchymalen Stammzellen sind die erfindungsgemäßen hämatopoetischen Stammzellen ebenfalls nicht allein durch die Expression eines oder mehrerer spezifischer Oberflächenmarker gekennzeichnet, sondern generell durch das Expressionsmuster einer Vielzahl von Antigenen. In einer besonders bevorzugten Ausführungsform exprimieren die hämatopoetischen Stammzellen die Oberflächenantigene CD34 und CD45.
  • Der Nachweis einer Expression der spezifischen Marker (Oberflächenantigene) für die hämatopoetischen Stammzellen kann ebenfalls durch kommerziell erhältliche spezifische Antikörper durch Verwendung von Standard-Immunnachweisverfahren erfolgen [vgl. LOTTSPEICH F. & ZORBAS H. "Bioanalytik", Spektrum Akademischer Verlag GmbH, Heidelberg-Berlin (1998)}]
  • Die Aufreinigung der erfindungsgemäßen hämatopoetischen Stammzellen kann mittels MACS ("Magnetic-activated Cell Sorting"; Firma Miltenyi) erfolgen. Bei dieser Technik erfolgt die Aufreinigung über innerhalb eines Magneten platzierte Säulen, auf die Zellen des Knochenmarks gegeben werden, welche mit Antikörpern inkubiert wurden, die mit Ferromagneten gekoppelt sind. Komplexe aus Stammzellen und Antikörpern binden an die Säule und können so spezifisch aufgereinigt werden [SUTHERLAND, et al. (1996) J Hematotherapy 5: 213-226]. Weitere Verfahren sind dem Fachmann geläufig.
  • Für die Differenzierung in die Retina-spezifischen Zellen in Stufe b) des erfindungsgemäßen Verfahrens werden die hämatopoetischen Stammzellen bevorzugt unmittelbar nach ihrer Aufreinigung verwendet. Eine weitere Kultur bzw. Expansion der aufgereinigten Zellen ist jedoch auch erfindungsgemäß umfasst.
  • In einer weiteren Ausführungsform der Erfindung wiederum werden in dem erfindungsgemäßen Differenzierungsverfahren Stammzellen aus dem Knochenmark aus Ausgangsmaterial verwendet, die sowohl mesenchymale als auch hämatopoetische Stammzellen umfassen. Dabei ist sowohl die direkte Verwendung des aus dem Knochenmark entnommenen Aspirats als auch jegliche Mischung erfindungsgemäß umfasst, welche die zuvor isolierten mesenchymalen sowie die zuvor isolierten hämatopoetischen Stammzellen nachträglich wieder vereint enthält.
  • Nach Erhalt der Retina-spezifischen Zellen in Stufe c) des Differenzierungsverfahrens werden diese vorzugsweise in einem geeignetem Zellkulturmedium suspendiert und nachfolgend für eine Lagerung ohne Verlust ihres therapeutischen Potentials tiefgefroren. Bevorzugt ist dieses Medium ein Standardmedium ausgewählt aus der Gruppe bestehend aus RPMI, Medium 199, DMEM (low glucose; dieses Medium entspricht dem Modified Eagles's Medium (Gibco 31885) und Iscove's Medium jeweils allein oder als 1:1-Mischung mit Ham's F12 Nutrient Mixture. Das Medium kann ferner ein Spezialmedium sein ausgewählt aus der Gruppe bestehend aus Medium Human Endothelial-SFM (Gibco 11111), START V (Biochrom F8075) und Neurobasal- bzw. Neurobasal-A Medium (Gibco 21103 bzw. 10888) sowie deren Supplemente N-2 (Gibco 17502) oder B27 (Gibco 17504-044). Diese Medien werden mit oder ohne Zusatz eingesetzt. Ein möglicher Zusatz für die genannten Spezialmedien ist Ham's F12 Nutrient Mixture, das einen hohen Gehalt an Aminosäuren und Vitaminen aufweist. Dem ausgewählten Medium werden bevorzugt DMSO oder Methylzellulose als Gefrierschutz und Proteine zur Stabilisierung empfindlicher biologischer Substanzen zugesetzt.
  • Besonders bevorzugt werden als Gefrierschutz 10 % DMSO und zur Stabilisierung empfindlicher biologischer Substanzen mindestens 10 % Serum (bzw. Albumin bei serumfreier Kultur) zugesetzt.
  • Das Medium DMEM (low glucose) kann wahlweise mit HEPES (Gibco 22320) als zusätzlicher Puffersubstanz oder ohne diesen Zusatz verwendet werden. HEPES als Puffersubstanz stabilisiert den pH des Mediums effektiver als z.B. ein Carbonat- oder Phosphat-Puffer und wird von den Stammzellen gut vertragen.
  • Bei der erfindungsgemäßen Verwendung von Neurobasal bzw. Neurobasal-A Medium ist zu beachten, daß diese Medien bevorzugt nur für die Kultur der in der Stufe c) des erfindungsgemäßen Verfahrens erhaltenen differenzierten Zellen verwendet werden, da die Überlebensfähigkeit undifferenzierter Stammzellen in diesen Medien drastisch reduziert ist.
  • Die in vitro-Differenzierung der erfindungsgemäßen Retina-spezifischen Zellen bzw. die Einleitung der Differenzierung der Zellen (das "priming"), die morphologisch nicht sichtbar ist und sich erst nach Transplantation der Zellen ins Auge unter dem Einfluß der umliegenden Gewebe vollendet, erfolgt auf einfache und zuverlässige Weise, indem man die Zellen in Schritt b) in einem besonderem Medium kultiviert. Dieses Medium enthält entweder den Überstand eines Kulturmediums, in dem Chorioideae und/oder Teile davon kultiviert wurden (vgl. Beispiel 3), oder den Überstand, den man nach abgeschlossenem Homogenisieren von Retina durch Zentrifugation erhält (siehe Beispiel 4). Dieses Medium wird nachfolgend allgemein als "Differenzierungsmedium" bezeichnet.
  • Vorzugsweise enthält das Differenzierungsmedium Chorioidea-konditioniertes Medium (CCM) oder Retinaextrakt (RE) [vgl. PFEFFER, B.A. (1991) Prog Retina Res 10: 251-291; Hu, J. & BOK, D. (2001) Mol Vis 7: 14-19; VENTURA, A.C. et al. (1996) Ophthalmologie 93: 262-267; VALTINK, M. et al. (1999) Graefe's Arch Clin Exp Ophthalmol 237: 1001-1006; COULOMBE, J.N. et al. (1993) Neuron 10: 899-906]; ENGELMANN, K. et al. (2004) Graefe's Arch Clin Exp Ophtalmol 242:65 - 67.
  • Gemäß einer besonderen Ausführungsform kann CCM auch in Verbindung mit RE eingesetzt werden.
  • Für die Differenzierung der Stammzellen in Retina-spezifische Zellen kann zur Gewinnung des Chorioidea-konditionierten Mediums ein Verfahren angewendet werden, bei dem man
    1. a) das anteriore Segment, den Glaskörper und die neurosensorische Retina aus humanen Spenderaugen entfernt;
    2. b) die Chorioidea und/oder Fragmente davon vom Auge abpräpariert;
    3. c) anhaftende, zum retinalen Pigmentepithel gehörende Zellen von der präparierten Chorioidea und/oder den Fragmenten davon durch Waschen und nachfolgende Inkubation in einer Kollagenaselösung entfernt;
    4. d) die Chorioidea und/oder Fragmente davon in einem geeigneten Kulturmedium inkubiert; und
    5. e) den Überstand des Kulturmediums nach erfolgter Inkubation als Differenzierungsmedium sammelt.
  • Standardzellkulturmedien können als Kulturmedium in Schritt c) dieses Verfahrens verwendet werden (vgl. Beispiele). Die Kultur der Chorioideae erfolgt bei 37°C in feuchter Atmosphäre (90 bis 97 % Luftfeuchtigkeit) in einem Inkubator in einem Gasgemisch aus 5 % CO2 und 95 % Luft.
  • In bevorzugten Ausführungsformen der Erfindung werden als Kulturmedien zur Herstellung des Chorioidea-konditionierten Mediums Standardmedien wie RPMI, Medium 199, DMEM (low glucose; entspricht dem Modified Eagle's Medium (Gibco 31885)) oder Iscove's Medium jeweils allein oder in einer 1:1-Mischung mit Ham's F12 Nutrient Mixture verwendet. DMEM (low glucose) kann wahlweise mit HEPES (Gibco 22320) als zusätzlicher Puffersubstanz oder ohne diesen Zusatz verwendet werden. Ferner enthält das Kulturmedium als weiteren Zusatz fötales Kälberserum (FCS).
  • Bevorzugt wird zur Herstellung des Chorioidea-konditionierten Mediums eine 1:1-Mischung aus Medium 199 und Ham's F12 verwendet, das mit 1% (v/v) FCS supplementiert ist.
  • Weiterhin kann in dem Medium zur Herstellung des Chorioidea-konditionierten Mediums das Serum durch Serumersatzstoffe ersetzt werden. Diese Serumersatzstoffe sind bevorzugt ausgewählt aus der Gruppe bestehend aus Insulin, Albumin (Gibco 11020 oder 11021), Transferrin, Selen und weiteren Spurenelementen, Lipiden, Lipoproteinen, Ethanolamin/Phosphoethanolamin und weiteren Hormonen wie Hydrocortison.
  • Die Serumersatzstoffe Insulin, Transferrin und Selen werden erfindungsgemäß bevorzugt als ITS-Supplement (Gibco 51300) eingesetzt. Bei Verwendung der einzelnen Substanzen beträgt der bevorzugte Konzentrationsbereich der einzelnen Substanzen beim Insulin 1 - 10 µg/ml, beim Transferrin 1 - 20 µg/ml und 20 nM beim Selen.
  • Die Spurenelemente sind bevorzugt ausgewählt aus der Gruppe bestehend aus Mangan, Zinn, Nickel, Vanadium oder Molybdän. Lipide und Lipoproteine werden bevorzugt als fertiges, für den Zellkulturbereich optimiertes Supplement eingesetzt (z.B. Sigma F7175, L0288, L9655 oder L0163).
  • Ethanolamin oder Phosphoethanolamin werden dem Medium zugesetzt, da sie von den Zellen sowohl zur Unterstützung des Lipidtransports als auch in serumfreien Medien bzw. Medien ohne Serumsupplementation essentiell bei der Phospholipidbiosynthese zum Aufbau der Zellmembran benötigt werden. Sie werden in der für Zellkulturen üblichen Standardkonzentration von bis zu 50 µmol/l eingesetzt [vgl. GRAFF, L. et al. (2002) Am J Pathol 160: 1561-1565; KIM, E.J. (1999) In Vitro Cell Dev Biol Anim 35(4): 178-182]. Hydrocortison wird bevorzugt in einer Konzentration von 1 - 10 nM eingesetzt und dient der Ernährung u.a. neuraler Zellen im Kulturmedium.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung wird als Medium in Schritt c) zur Herstellung des Chorioidea-konditionierten Mediums durch Kultur der Chorioidea und/oder Fragmente davon ein synthetischer Serumersatz verwendet, der in fertiger Konzentration alle minimal erforderlichen Substanzen enthält. Besonders bevorzugt wird dabei der synthetische Serumersatz Biochrom K3611 oder K3620 verwendet.
  • In einer Ausführungsform der Erfindung werden die Chorioideae zur Herstellung des Chorioidea-konditionierten Mediums (CCM) über einen Zeitraum von 2 bis 8 Tagen, bevorzugt von 4 Tagen inkubiert.
  • Der Überstand dieser Kultur wird als konditioniertes Medium bevorzugt am Ende der Inkubation gewonnen. Es wird keine Inkubation mit zwischenzeitlichem Abnehmen des Überstandes zur Erzeugung einer größeren Menge konditionierten Mediums durch Vereinigung der einzelnen Überstände durchgeführt, da dieses mehrmalige "Melken" der Kultur zu einem Differenzierungsmedium mit schlechterer Qualität und z.T. inhibierender Wirkung führt.
  • In einer bevorzugten Ausführungsform der Erfindung werden die Chorioidea eines Spenderauges nach enzymatischer Ablösung der zum retinalen Pigmentepithel gehörenden Zellen 4 Tage in Medium F99, dem 1% (v/v) FCS zugegeben wurden, inkubiert. Nach Beendigung der Kultur wird das konditionierte Medium durch Zentrifugation gewonnen (vgl. Beispiele).
  • Zur Gewinnung des Retina-Extraktes (RE) zur Differenzierung der Stammzellen in Retina-spezifische Zellen kann ein Verfahren angewendet werden (siehe Beispiel 4), bei dem man
    1. a) aus humanen Spenderaugen die Retina isoliert;
    2. b) die Retina unter Zusatz von Proteinasehemmern homogenisiert; und
    3. c) aus dem Homogenat durch Zentrifugation den Überstand als Retina-Extrakt gewinnt.
  • Das Chorioidea-konditionierte Medium (CCM) bzw. der Retinaextrakt (RE) als Zusatz für das Differenzierungsmedium werden jeweils unter sterilen Bedingungen filtriert und bei ca. - 20°C gelagert oder direkt für die Differenzierung der mesenchymalen Stammzellen eingesetzt (siehe Beispiele). Wie oben gezeigt, erfolgt die erfindungsgemäße Differenzierung der Stammzellen in Retina-spezifische Zellen bzw. die Induktion dieser Differenzierung durch Wachstum der Stammzellen in Gegenwart eines Differenzierungsmediums, das entweder den Überstand eines Kulturmediums, in dem Chorioideae und/oder Teile davon kultiviert wurden, oder den Überstand enthält, den man nach abgeschlossenem Homogenisieren von Retina durch Zentrifugation erhält (vgl. Beispiele 3 und 4).
  • In einer Ausführungsform der Erfindung werden die Stammzellen in Gegenwart von 1 bis 20 % CCM bzw. in Gegenwart von 0,1 bis 5,0 % RE inkubiert.
  • In einer bevorzugten Ausführungsform der Erfindung werden die Stammzellen in Gegenwart von 1 - 15 % CCM bzw. in Gegenwart von 0,5 - 5 % RE inkubiert.
  • In einer besonders bevorzugten Ausführungsform werden die Stammzellen in Gegenwart von 10 % CCM bzw. in Gegenwart von 1 % RE inkubiert.
  • In einer Ausführungsform der Erfindung werden die Stammzellen zur Differenzierung in Retina-spezifische Zellen für einen Zeitraum von 3 bis 21 Tagen in Gegenwart des Differenzierungsmediums kultiviert.
  • Bevorzugt werden die Stammzellen zur Differenzierung in Retina-spezifische Zellen für einen Zeitraum von 14 bis 21 Tagen in Gegenwart des Differenzierungsmediums kultiviert.
  • Nach 3 bis 5 Tagen treten durch die Differenzierung in Anwesenheit des Differenzierungsmediums erste morphologische Veränderungen an den Zellen auf, die zunächst eine stellare Morphologie annehmen. Diese Veränderung manifestiert sich im Laufe von bis zu 3 Wochen (vgl. Figuren 2 bis 4). Nach 14 Tagen in Kultur sind die Zellen ausdifferenziert, da keine weitere Differenzierung zu beobachten ist und die Zellen ihre veränderte, nun neuronal erscheinenden Morphologie beibehalten.
  • Die Zellen unterscheiden sich nach dem Differenzierungsschritt von un- bzw. ausdifferenzierten Zellen durch ihre Morphologie (vgl. Figuren 1 bis 4). Undifferenzierte Zellen sind länglich (siehe Figur 1), während Zellen nach Induktion der Differenzierung in Retina-spezifische Zellen Ausläufer ausbilden und eine sternförmige, stellare Form annehmen (siehe Figur 2). Einige dieser sternförmigen Zellen zeigen granuläre, dunkel erscheinende Ansammlungen um den Kern. Die Zellen verändern ihre Morphologie im weiteren Verlauf der Differenzierung und bilden dendritenartige Fortsätze und Verästelungen aus. Nach etwa 9 Tagen lassen sich erste neural erscheinende Zellen beobachten, während die stellaren Zellen langsam in der Kultur nicht mehr auffindbar waren.
  • Die neural erscheinenden Zellen weisen phänotypische Ähnlichkeit mit aus kultivierten neuralen Stammzellen differenzierten Astrozyten und Oligodendrozyten auf. Nach ca. 9 bis 14 Tagen treten an den Enden der verästelten Zellausläufer kleine Verdickungen auf, die morphologisch wie Podien aussehen (siehe Figuren 3 und 4). In der weiteren Entwicklung werden die bereits gebildeten Zellausläufer dicker, neue Zellausläufer werden kaum gebildet. Dieser Phänotyp bleibt in den folgenden 5 bis 7 Tagen erhalten.
  • In einer weiteren Ausführungsform werden die Stammzellen nur für einen kurzen Zeitraum von 3 bis 14 Tagen in Gegenwart des Differenzierungsmediums kultiviert, um die Differenzierung der Stammzellen in Retina-spezifische Zellen zu induzieren, wobei der sich an die Induktion anschließende Differenzierungsprozeß nicht vollendet wird.
  • Erfindungsgemäß besonders bevorzugt werden die Stammzellen zur Andifferenzierung in Retina-spezifische Zellen für einen Zeitraum von 3 bis 9 Tagen in Gegenwart des Differenzierungsmediums kultiviert.
  • Die Vollendung der Differenzierung der an- bzw. vordifferenzierten Zellen in Retina-spezifische Zellen erfolgt bei diesen Ausführungsbeispielen nach Verabreichung der Zellen ins Auge in vivo unter dem Einfluß des Mikroenvironments des Auges.
  • In weiteren Ausführungsformen werden die Stammzellen in einem mehrstufigen Verfahren differenziert, bei dem sowohl CCM als auch RE zur Differenzierung eingesetzt werden. Dabei folgt auf eine 3 bis 14 Tage dauernde Andifferenzierung der isolierten und expandierten Stammzellen in einem CCM enthaltenden Differenzierungsmedium eine bis zu 4 Wochen dauernde Kultur der Zellen in einem RE enthaltenden Differenzierungsmedium.
  • In einer besonderen Ausführungsform der Erfindung folgt dabei auf eine 3- bis 5-tägige Kultur in einem CCM enthaltenden Differenzierungsmedium eine Kultur der Zellen in einem RE enthaltenden Differenzierungsmedium für 1 bis 14 Tage, um z.B. retinales Pigmentepithel zu erhalten.
  • In einer weiteren besonderen Ausführungsform werden die Stammzellen nach der Kultur in einem CCM enthaltenden Differenzierungsmedium statt in einem RE enthaltenden Differenzierungsmedium in einem für Neuronenkulturen ausgewiesenen Spezialmedium weiter differenziert, um neuronale Zellen zu erhalten.
  • Bevorzugt ist dieses zur Weiterdifferenzierung verwendete Spezialmedium Neurobasal oder START V.
  • Erfindungsgemäß bevorzugt ist auch eine mehrstufige Kultur, bei der sich an eine Kultur in CCM enthaltendem Differenzierungsmedium eine Kultur für bis zu 2 Wochen in einem für Neuronenkulturen ausgewiesenen Spezialmedium, wie beispielsweise Neurobasal oder START V, anschließt, um retinale Zellen zu erhalten.
  • Erfindungsgemäß bevorzugt beträgt die Dichte der Stammzellen während der Inkubation zur Differenzierung in Retina-spezifische Zellen in Schritt b) des erfindungsgemäßen Verfahrens zwischen 0,5 × 103 und 2,5 × 103 Zellen pro cm2, besonders bevorzugt 2 × 103 Zellen pro cm2.
  • Die Einstellung der Zelldichte ist entscheidend für die Differenzierung der Stammzellen in Retina-spezifische Zellen und die Veränderung der Morphologie der Stammzellen hin zu den Zielzellen. Die Gesamtzahl der zur Differenzierung einsetzbaren Stammzellen hängt von der Größe des Kulturgefäßes ab, welches die Fläche definiert, die von Zellen bewachsen werden kann. Eine Gesamtzellzahl im Bereich von 1 × 103 bis 2,5 × 103 Zellen ergibt sich bei Verwendung von 24 Loch-Kulturschalen mit einer zum Bewuchs bereitstehenden Fläche von 1,88 cm2 pro Loch, wenn 2 × 102 bis 5 × 103 Zellen pro Loch eingesät werden. Besonders bevorzugt wird eine Gesamtzellzahl am unteren Ende des bevorzugten Bereichs eingesetzt, da die Zellen dann bei der Aussaat vereinzelt in der Schale vorliegen und langsam proliferieren. Werden höhere Aussaatdichten von mehr als 5 × 103 Zellen pro Loch verwendet, entstehen subkonfluente bis konfluente Zellkulturen mit stark proliferierenden Zellen, die sich jedoch nicht differenzieren, wodurch keine Veränderungen der Morphologie auftreten.
  • Das Chorioidea-konditionierte Medium bzw. der Retina-Extrakt enthalten entsprechend ihrer Verwendung als Zusatz zum erfindungsgemäßen Differenzierungsmedium ein oder mehrere Wachstumsfaktoren oder deren Subtypen. Der Retina-Extrakt ist zusätzlich Lieferant weiterer trophischer Faktoren der Retina und ergänzt das Differenzierungsmedium zusätzlich mit Lipoproteinen und Proteinen sowie Vitamin A und Vitamin A-Derivaten.
  • Das durch die Zugabe von biologischen Supplementen wie CCM, RE oder FCS in das Differenzierungsmedium verbundene potentielle Risiko einer Verunreinigung des Differenzierungsmediums mit pathogenen Keimen aus den Supplementen kann durch Ersatz dieser komplexen Zusätze vermieden werden. Der Ersatz erfolgt dabei durch Gabe definierter, in den komplexen Medien enthaltener Einzelsubstanzen, die ausgewählt sind aus der Gruppe bestehend aus Mitgliedern der FGF-Familie (FGF: "fibroblast growth factor"), Mitgliedern der NT-Familie (NT: "neurotrophin"), Mitgliedern der BMP-Familie (BMP: "bone morphogenic protein"), PDGF ("platelet-derived growth factor"), EGF ("epidermal growth factor"), BDNF ("brain-derived neurotrophic factor"), CNTF ("ciliary neurotrophic factor"), HGF ("hepatocyte growth factor") und NGF ("nerve growth factor").
  • Die Nennung der einzelnen Wachstumsfaktoren umfaßt erfindungsgemäß auch ihre Subtypen, deren erfindungsgemäße Verwendung ebenfalls beansprucht wird. Die Subtypen der Wachstumsfaktoren sind dem Fachmann bekannt und umfassen u.a. PDGF-AA, PDGF-BB und PDGF-AB.
  • In einer bevorzugten Ausführungsform der Erfindung handelt es sich bei dem Mitglied der FGF-Familie vorzugsweise um den basischen Fibroblasten-Wachstumsfaktor bFGF (FGF-2).
  • Die Mitglieder der Neurotrophin-Familie sind vorzugsweise NT-3 und NT-4.
  • Bei dem Mitglied der BMP-Familie handelt es sich vorzugsweise um BMP-4.
  • Die Wirkung der Wachstumsfaktoren BDNF, CNTF und Wachstumsfaktoren der NT-Familie auf das Wachstum und das Überleben von Nerven und/oder Gliazellen (BDNF) bzw. die Differenzierung verschiedener neuronaler Zelltypen (CNTF) sind sehr vielfältig.
  • Während NT-3 einerseits gegenüber retinalen Vorläuferzellen allgemein wie ein Mitogen wirkt und so die Entstehung eines undifferenzierten Zellpools fördert, aus dem alle retinalen Zelltypen entstehen können [DAS, et al. (2000) J Neurosci 20(8) : 2887-2895], spielt es andererseits auch bei der neuronalen Entwicklung eine Rolle und fördert, synergistisch verstärkt durch BDNF, beispielsweise das Auswachsen von Neuriten aus neuronalen Präkursorzellen [HOSSAIN, et al. (2000) Exp Neurol 175 (1) : 138-151]. Zusätzlich konnte für NT-3 eine Zellzyklus-kontrollierende Funktion in den Vorläuferzellen von sensorischen Neuronen nachgewiesen werden, deren Ausbleiben zum Zellzyklus-abhängigen Zelltod führt [ELSHAMY, et al. (1998) Neuron 21(5) : 1003-1015]. Eine Kultur von neuralen Vorläuferzellen aus dem embryonalen Striatum differenziert unter Einfluß von neurotrophen Faktoren wie NT-3 und CNTF zu bipolaren Neuronen und Oligodendrozyten, während BDNF die Differenzierung zu multipolaren Neuronen fördert [LACHYANKAR, et al. (1997) Exp Neurol 144(2): 350-360].
  • Neurotrophine wie NT-3, NT-4/5 bzw. BDNF besitzen eine Aktivität als "Überlebensfaktor" für Neurone des Striatums, da sie derartige Zellen bei degenerativen Erkrankungen vor dem Absterben bewahren können [PEREZ-NAVARRO, et al. (2000) J Neurochem 75(5): 2190-2199]. BDNF in Kombination mit CNTF fördert das Wachstum und die Verzweigung von Axonen nach Läsionen [LOH, et al. (2001) Exp Neurol 170(1): 72-84], während BDNF alleine die Ausdifferenzierung neuronaler Stammzellen aus dem Hippokampus zu fördern vermag [SUZUKI, et al. (2003) Biochem Biophys Res Commun 309(4): 843-847].
  • Die Wachstumsfaktoren der FGF- und der BMP-Familie sowie HGF wirken bei der Zellteilung von Zellen der Retina mit. Zu diesen Zellen gehören retinale Ganglionzellen (Neuronen), amakrine, bipolare und horizontale Zellen, Photorezeptorzellen (Stäbchen und Zapfen), Müller'sche Stützzellen und retinales Pigmentepithel (RPE). BMP-4 und BMP-7 als Mitglieder der BMP-Familie sind maßgeblich an der Ausbildung verschiedener Augenstrukturen wie Retina, retinalem Pigmentepithel, ciliarem Pigmentepithel und optischem Nerv beteiligt, die sich aus dem Neuroepithel ausdifferenzieren, sowie an der Schließung der Nervenverbindung zwischen Gehirn und Retina am Sehnervenkopf [LIU, et al. (2003) Dev Biol 256(1); 34-48; ADLER, et al. (2002) Development 129(13): 3161-3171]. BMP-4 übt seine steuernde Wirkung durch Förderung der Zellteilung und durch gezielte Induktion des programmierten Zelltods aus [TROUSSE, et al. (2001) J Neurosci 15;21(4) : 1292-1301] und kann sowohl verschiedene Signaltransduktionswege in Zellen aktivieren als auch die Ausdifferenzierung von Stammzellen in glatte Muskelzellen oder in Gliazellen bewirken [RAJAN, et al. (2003) J Cell Biol 161(5): 911-921]. BMPs im allgemeinen sind maßgeblich an der Ausdifferenzierung von kortikalen Stammzellen in Neurone und Astrozyten beteiligt [CHANG, et al. (2003) Mol Cell Neurosci 23(3): 414-416], während BMP-7 für die Entwicklung des Ciliarkörpers des Auges verantwortlich ist [ZHAO, et al. (2002) Development 129(19): 4435-4442]. bFGF wirkt in Abhängigkeit von der Konzentration sowohl auf Endothelzellen der Hornhaut als auch auf das retinale Pigmentepithel entweder als Mitogen oder als Differenzierungsfaktor. Ferner ist eine Wirkung des bFGF als Faktor für retinale Zellen, vor allem für Photorezeptorzellen, bekannt, der das Überleben dieser Zellen sichern kann [vgl. GU, et al. (1996) Invest Ophthalmol Vis Sci 37: 2326-2334; ITAYA, et al. (2001) Am J Ophthalmol 132: 94-100; TRAVERSO, et al. (2003) Invest Ophthalmol Vis Sci 44: 4550-4558; VALTER, et al. (2002) Growth Factors 20: 177-188; EZEONU, et al. (2000) DNA Cell Biol 19: 527-537; AKIMOTO, et al. (1999) Invest Ophthalmol Vis Sci 40: 273-279; STERNFELD, et al. (1989) Curr Eye Res 8: 1029-1037; SCHWEGLER, et al. (1997) Mol Vis 3: 10].
  • Der "hepatocyte growth factor" (HGF) stimuliert die Migration und Proliferation von retinalem Pigmentepithel in vitro und ist so förderlich bei der Wundheilung von RPE-Defekten, wobei die neu gebildeten Zellen unter Einfluß des HGF eine deutlich epitheliale Morphologie annehmen und durch Verlust von "tight junctions" frei beweglich werden [MIURA, et al. (2003) Jpn J Ophthalmol 47: 268-275; JIN, et al. (2002) Invest Ophthalmol Vis Sci 43: 2782-2790]. Ferner ist HGF ein Wachstums- und Differenzierungsfaktor für neuronale Stammzellen und fördert die Vermehrung von "Neurospheres" (aus neuralen Vorläuferzellen bestehende Zellhaufen) sowie die Ausdifferenzierung der neuralen Stammzellen in Neurone [KOKUZAWA, et al. (2003) Mol Cell Neurosci 24: 190-197].
  • Gegenstand der Erfindung ist ferner die Verwendung von Chorioidea-konditioniertem Medium (CCM) zur Differenzierung von Stammzellen aus dem Knochenmark in Retina-spezifische Zellen.
  • In einer Ausführungsform der Erfindung wird CCM zur Differenzierung von adulten mesenchymalen Stammzellen aus dem Knochenmark in Retina-spezifische Zellen verwendet.
  • In einer weiteren Ausführungsform der Erfindung wird CCM zur Differenzierung von adulten hämatopoetischen Stammzellen aus dem Knochenmark in Retina-spezifische Zellen verwendet.
  • In einer weiteren Ausführungsform der Erfindung wird CCM zur Differenzierung einer Mischung von adulten mesenchymalen und hämatopoetischen Stammzellen aus dem Knochenmark in Retina-spezifische Zellen verwendet.
  • Wie oben angeführt kann das Chorioidea-konditionierte Medium bei der Verwendung im erfindungsgemäßen Differenzierungsmedium ein oder mehrere Wachstumsfaktoren enthalten, ausgewählt aus der Gruppe bestehend aus Mitgliedern der FGF-Familie (FGF: "fibroblast growth factor"), Mitgliedern der NT-Familie (NT: "neurotrophin"), Mitgliedern der BMP-Familie (BMP: "bone morphogenic protein"), PDGF ("platelet-derived growth factor"), EGF ("epidermal growth factor"), BDNF ("brain-derived neurotrophic factor"), CNTF ("ciliary neurotrophic factor"), HGF ("hepatocyte growth factor"), NGF ("nerve growth factor") oder deren Subtypen.
  • In bevorzugten Ausführungsformen der Erfindung handelt es sich bei dem Mitglied der FGF-Familie vorzugsweise um basischen Fibroblasten-Wachstumsfaktor bFGF (FGF-2), bei den Mitgliedern der Neurotrophin-Familie vorzugsweise um NT-3 und NT-4 und bei dem Mitglied der BMP-Familie vorzugsweise um BMP-4.
  • Weiterer Gegenstand der Erfindung ist die Verwendung von Retina-Extrakt (RE) zur Differenzierung von Stammzellen aus dem Knochenmark in Retina-spezifische Zellen.
  • Erfindungsgemäß wird dabei bevorzugt RE zur Differenzierung von adulten mesenchymalen Stammzellen und/oder hämatopoetischen Stammzellen aus dem Knochenmark in Retina-spezifische Zellen verwendet.
  • Gegenstand der Erfindung ist auch die Verwendung von Chorioidea-konditioniertem Medium (CCM) und Retina-Extrakt (RE) zur Differenzierung von Stammzellen aus dem Knochenmark in Retina-spezifische Zellen. Tabelle 1: Expressionsmuster von Antigenen in verschiedenen erfindungsgemäßen Retina-spezifischen Zellen
    Zelltyp positives Signal negatives Signal
    Retinales Pigmentepithel RPE65 IRBP ("interphotoreceptor-retinol-binding protein")
    ZO-1 CD31
    Occludin CD34
    CD36
    Cytokeratin 7,8,18,19
    S-100
    Photorezeptoren Rhodopsin (Stäbchen)
    Calbindin (Zapfen)
    PKC (überwiegend α-Isoform, nur in Stäbchen) PKC (Zapfen)
    S-Antigen (S-Ag; adulte Zellen und in späteren Entwicklungsstadien
    Müller-Zellen (und Astrozyten) S-100 PKC
    GFAP ("glial fibrillary acidic protein")
    amakrine Zellen GABA ("gamma-aminobutyric acid")
    Ganglionzellen Neurofilament
    bipolare Zellen PKC S-100
    horizontale Zellen Calbindin D
    Choroideales Gefäßendothel CD31
  • Die aus Stammzellen abgeleiteten und durch das erfindungsgemäße Verfahren erhältlichen Retina-spezifischen Zellen sind ein weiterer Gegenstand der Erfindung. Als Besonderheit weisen diese erfindungsgemäßen Retina-spezifischen Zellen, die isoliert vorliegen, ein spezifisches Expressionsmuster auf (siehe Tabelle 1), das durch Expression (vgl. Spalte "positives Signal") bzw. nicht nachweisbare Expression (vgl. Spalte "negatives Signal") bestimmter, auf der Oberfläche oder intrazellulär im Cytoplasma lokalisierter Antigene gekennzeichnet ist. Bis auf die Antigene RPE65 und Rhodopsin sind die untersuchten Antigene nicht spezifisch für den Zelltyp. Da die untersuchten Antigene jedoch gewebespezifisch für retinales und auch neurales Gewebe sind, ermöglichen sie zusätzlich zu den morphologischen Unterschieden bei den Zellen eine Differenzierung der Retina-spezifischen Zellen von den Stammzellen, aus denen sie hervorgegangen sind (siehe oben) durch Immunfärbung und Interpretation der charakteristischen Färbeergebnisse (Positiv-/Negativfärbung).
  • Durch die erfindungsgemäßen Retina-spezifischen Zellen wird ein weites Feld für die genetische Modifikation und Therapie eröffnet. Gemäß einer Ausführungsform der Erfindung sind die isolierten Stammzellen aus dem Knochenmark per se oder die letztlich daraus differenzierten Retina-spezifischen Zellen mit einem oder mehreren Genen transfiziert oder transduziert. In einer bevorzugten Ausführungsform der Erfindung werden die isolierten Stammzellen im Anschluß an die Isolierung aus dem Knochenmark bzw. im Zuge des Differenzierungsverfahrens im Anschluß an die Expansion im Verfahrensschritt a), im Anschluß an die Differenzierung im Verfahrensschritt b) oder die daraus differenzierten Retina-spezifischen Zellen mit einem oder mehreren humanen, Retina-spezifischen Genen als Transgene transfiziert.
  • Unter den Retina-spezifischen Transgenen werden hierin solche Gene verstanden, die natürlicherweise in gesunden Retinazellen, aber nicht in den undifferenzierten oder differenzierten Stammzellen exprimiert werden.
  • Autologe Stammzellen und die Netzhautzellen eines Patienten weisen identische Defekte in ihren Genomen auf, die bei Aktivierung der betroffenen Gene durch ausbleibende oder fehlerhafte Expression zur Etablierung eines Krankheitsbildes führen, in Falle von Netzhautzellen z.B. in der Netzhaut. Eine gezielte Gentherapie derartiger Krankheiten, z.B. der Retinitis pigmentosa, kann durch Transfektion der erfindungsgemäß verwendeten Stammzellen oder der daraus differenzierten Retina-spezifischen Zellen vor einer Transplantation der Zellen mit einer gesunden Kopie des defekten Gens erfolgen. Werden im Verlauf des erfindungsgemäßen Verfahrens Gene in die Stammzellen eingeführt, bleiben diese bevorzugt auch in den sich aus den Stammzellen differenzierenden Retina-spezifischen Zellen erhalten und exprimieren das transfizierte Gen nach Transplantation in den Empfänger auch am Ort der Transplantation. Verfahren zur Transfektion von Zellen mit Transgenen sind dem Fachmann wohlbekannt [vgl. SAMBROOK, J. et al. (2001) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press].
  • Die Genkonstrukte, die zur Transfizierung der Stammzellen oder der daraus differenzierten Retina-spezifischen Zellen verwendet werden, können auf verschiedene, dem Fachmann bekannte Arten gestaltet und zusammengesetzt sein.
  • Idealerweise sollten defekte oder fehlende Gene in ihrem natürlichen Kontext repariert bzw. ersetzt werden, was nach dem heutigen Stand der Technik jedoch praktisch nicht realisierbar ist. Daher müssen die fehlenden bzw. defekten Gene zusätzlich in das Genom der Stamm- bzw. Retina-spezifischen Zellen eingebracht und dort ektop exprimiert werden. Um eine stabile Expression sowie die Weitergabe der eingebrachten Gene an die Tochterzellen im Zuge der Zellteilung zu gewährleisten, sollten nach dem Stand der Technik retrovirale [Baum et al., Curr Opin Mol Ther. 1999 Oct; 1(5):605-612] oder lentivirale [Trono, Gene Ther 2000; 7: 20-33], evtl. auch AAV-Vektoren [Monahan & Samulski, Gene Ther 2000; 7:24-30] als Genfähren benutzt werden. Die Viren, von denen diese Vektoren abgeleitet sind, zeichnen sich dadurch aus, dass sie natürlicherweise stabil in das Zielzellgenom integrieren und mithin wie eigene Gene weitervererbt werden.
  • Nach einer Transduktion mit herkömmlichen von γ-Retroviren abgeleiteten Vektoren würde eine ungesteuerte Expression des eingebrachten Transgens erfolgen. Die Höhe dieser Expression kann jedoch vorab durch die Wahl geeigneter viraler Promotoren in relativ großen Grenzen bestimmt werden [Baum et al., Curr Opin Mol Ther. 1999 Oct; 1(5):605-612; Wahlers et al., Gene Ther. 2001 Mar; 8(6):477-486]. Die Nutzung sog. SIN ("selfinactivating") Vektoren erlaubt es dagegen, die viralen Promotoren durch jeden anderen Promotor der Wahl zu ersetzen [Kraunus et al., Gene Ther. 2004 Nov; 11(21):1568-1578]. Aus Gründen der Biosicherheit werden bei lentiviralen (in der Regel HIVabgeleiteten) Vektoren ausschließlich SIN-Konstrukte benutzt. Da SIN-Vektoren die viralen Promotor- und Enhancerelemente fehlen, könnten sie möglicherweise mit einem geringeren Risiko schädlicher Nebenwirkungen ("Insertionsmutagenese") behaftet sein [von Kalle et al., Stem Cell Clonality and Genotoxicity in Hematopoietic Cells: Gene Activation Side Effects Should Be Avoidable. Seminars in Hematology, in press]. Für den hier gegebenen Kontext sind SIN-Vektoren vor allem dadurch interessant, dass sie den Einsatz genspezifischer [Moreau-Gaudry et al., Blood. 2001; 98:2664-2672] oder aber regulierbarer bzw. induzierbarer Promotoren erlauben. Der Einsatz Retina-spezifischer Promotoren wäre sicher die optimale Lösung. Induzierbare Systeme beruhen zur Zeit zumeist auf dem Tetrazyklin-System von Gossen & Bujard [Proc Natl Acad Sci USA. 1992; 89(12):5547-51]. Mit derartigen Systemen kann während der Proliferation der Stammzellen bzw. der Differenzierung der Stammzellen in Retina-spezifische Zellen durch Zugabe des jeweiligen inhibierenden Stoffes in das jeweilige Kulturmedium die Expression des Transgens während der Kultur unterbunden werden. Wird dem Patienten nach Transplantation der Retina-spezifischen Zellen dieser Stoff nicht zugeführt, wird die Inhibierung beendet, der Promoter aktiviert und das Transgen exprimiert.
  • Durch die Transfektion mit einem oder mehreren Fremdgenen können einerseits Gene in die Zellen eingeführt werden, die für die Aufrechterhaltung zelltypischer metabolischer Leistungen in den Retina-spezifischen Zellen erforderlich sind, andererseits ist aber auch eine Transfektion von Genen eingeschlossen, die den Retina-spezifischen Zellen neue Funktionen verleihen oder die Zelle markieren. In einer besonders bevorzugten Ausführungsform der Erfindung werden die Zellen mit dem "green fluorescent protein" (GFP), dem "enhanced green fluorescent protein" (eGFP) oder dem Gen lacZ als Marker- oder Reportergen zur Markierung der Zellen transfiziert [vgl. ALLAY, J.A. et al. (1997) Hum Gene Ther 8: 1417; AYUK, F. et al. (1999) Gene Ther 6: 1788-1792; FEHSE, B. et al. (1998) Gene Ther 5: 429-430].
  • Die Erfindung betrifft weiterhin Zellzubereitungen, die erfindungsgemäße Retina-spezifische Zellen als isolierte Zellen enthalten. Solche Zellzubereitungen sind für die Lagerung oder den Transport der Zellen einsetzbar.
  • Zellzubereitungen können isolierte vitale Retina-spezifische Zellen gemäß der Erfindung, die durch fehlende oder nicht nachweisbare Expression von Markern ausgewählt aus der Gruppe bestehend aus IRBP und CD34 bzw. durch die Expression von mindestens einem der Marker ausgewählt aus der Gruppe bestehend aus RPE65, ZO-1, Occludin, CD36, Cytokeratin 7, Cytokeratin 8, Cytokeratin 18, Cytokeratin 19, S-100, Rhopopsin (in Stäbchen), Calbindin (in Zapfen), PKC, S-Antigen, GFAP, GABA und Neurofilament, gekennzeichnet sind, in einer Menge von mindestens 1, bevorzugt von 1 - 50 %, in besonders bevorzugter Weise von 50 bis 70%, und in äußerst bevorzugter Weise von 70 bis 90%, bezogen auf die Gesamtzahl der in dem Präparat vorhandenen Zellen in einem geeigneten Medium, enthalten, wobei in dem vorgenannten Wertebereich alle ganzzahligen Werte (d.h. 11, 12, 13, ... 90 %) ausdrücklich eingeschlossen sind. Bevorzugt sind Zellsuspensionen in einem zellverträglichen Zellkultur- oder Transportmedium, wie z.B. einem Standardmedium ausgewählt aus der Gruppe bestehend aus RPMI, Medium 199, DMEM (low glucose; dieses Medium entspricht dem Modified Eagles's Medium (Gibco 31885)) mit oder ohne HEPES als Zusatz und Iscove's Medium jeweils allein oder als 1/1-Mischung mit Ham's F12 Nutrient Mixture. Das Medium kann ferner ein Spezialmedium sein ausgewählt aus der Gruppe bestehend aus Medium Human Endothelial-SFM (Gibco 11111), START V (Biochrom F8075) und Neurobasal- bzw. Neurobasal-A Medium (Gibco 21103 bzw. 10888) mit oder ohne Ham's F12 Nutrient Mixture als Zusatz.
  • In Frage kommen auch tiefgefrorene Zellzubereitungen, bei denen die Zellen durch Zentrifugation sedimentiert und beispielsweise in 90 % FCS und 10 % DMSO aufgenommen wurden. Dem Kryomedium werden 10% Methylcellulose oder DMSO als Hilfsstoff zugegeben, um das Überleben der Zellen während der Kryokonservierung zu unterstützen. Bei serumfreier Behandlung der Zellen müssen zusätzlich schützende Proteine zugegeben werden, an die empfindliche Proteine anhaften können und dadurch während der Kryokonservierung geschützt sind. Bevorzugt werden diese als Albumin zugegeben. Statt in Differenzierungsmedium können die Zellen auch in serumfreiem Kryomedium (z.B. Cryo-SFM (Promocell C-29910) aufgenommen werden. Dabei sind Kryomedien solche Medien, die ein Tieffrieren der Zellen ohne Beschädigung der Zellen erlauben.
  • In einer Ausführungsform der Erfindung werden nach der Differenzierung die differenzierten Retina-spezifischen Zellen von undifferenzierten Stammzellen abgetrennt, um eine größtmögliche Anreicherung erfindungsgemäßer Retina-spezifischer Zellen bei gleichzeitiger Abreicherung der nicht-differenzierten Stammzellen zu erzielen. Die Trennung der undifferenzierten Stammzellen von den differenzierten Retina-spezifischen Zellen erfolgt mit Hilfe von (Oberflächen)antigenen, die spezifisch auf den (an)differenzierten Retina-spezifischen Zellen, aber nicht oder nicht nachweisbar auf den undifferenzierten Stammzellen exprimiert werden. Antigene, die für eine derartige Trennung verwendet werden können, sind beispielsweise CD36 oder S-100 sowie alle Antigene aus der Spalte "positives Signal" (siehe Tabelle 1). Durch die Trennung der Zellen wird weitestgehend verhindert, daß sich in der Menge der Zellen neben den Retina-spezifischen Zellen mit rein proliferativer Kapazität quantitativ große Mengen differenzierungsfähiger Zellen befinden. Ferner kann so gewährleistet werden, daß eingestellte Zellzahlen, beispielsweise bei der Herstellung einer pharmazeutischen Zusammensetzung, tatsächlich die erfindungsgemäßen Retina-spezifischen Zellen repräsentieren.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung erfolgt nach der Differenzierung keine Trennung der differenzierten Retina-spezifischen Zellen von undifferenzierten Stammzellen, sondern eine Anreicherung der differenzierten Zellen bzw. eine Abreicherung der undifferenzierten Stammzellen. Eine derartige An- bzw. Abreicherung erfolgt ebenfalls mit Hilfe von spezifischen Oberflächenantigenen.
  • Beispiele für im Stand der Technik bekannte Verfahren mittels derer anhand bestimmter Oberflächenmarker Zellen sortiert werden können, umfassen das "Immuno magnetic bead sorting" [vgl. ROMANI, et al. (1996) J Immunol Methods 196: 137-151], das "Fluorescence-Activated Cell Sorting" (FACS) und das "Magnetic-Activated Cell Sorting" (MACS) [loc. cit.]. Weitere derartige Verfahren sind dem Fachmann bekannt.
  • In einer Ausführungsform der Erfindung werden die erfindungsgemäßen Retina-spezifischen Zellen per se zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung von Krankheiten, die mit erworbener oder angeborener Dysfunktion der Zellen des retinalen Pigmentepithels, der Zellen der benachbarten Strukturen der gesamten Retina und der Chorioidea sowie weiterer Augengewebe assoziiert sind, oder zur Regeneration des Sehnerven (Nervus opticus) z.B. bei oder nach Glaukomschaden eingesetzt.
  • Das Knochenmark, aus dem die Stammzellen isoliert werden, kann autologen oder allogenen Ursprungs sein. Der Begriff "autolog" bezeichnet Gewebe oder Zellen, die dem gleichen Individuum entnommen wurden, das die differenzierten Retina-spezifischen Zellen als Transplantat erhalten soll. Ein allogener Ursprung deutet an, daß der Spender des Knochenmarks und der Empfänger der Retina-spezifischen Zellen, die aus dem Knochenmark differenziert wurden, unterschiedlich sind, jedoch zur gleichen Spezies gehören, z.B. sind Spender und Empfänger Menschen.
  • Gemäß einer besonders bevorzugten Ausführungsform der Erfindung sind die Retina-spezifischen Zellen autologe Zellen, d.h. die Stammzellen aus dem Knochenmark stammen von dem Patienten, der mit den Retina-spezifischen Zellen, die aus diesen Stammzellen differenziert wurden, behandelt werden soll. In einem solchen Fall verursacht die Gabe von aus Stammzellen differenzierten Retina-spezifischen Zellen keine immunologischen Problemen in Form einer Zellabstoßung, da die Gewebemerkmale der Zellen und des Empfängers identisch sind.
  • Die pharmazeutischen Präparate können die erfindungsgemäßen Retina-spezifischen Zellen, d.h. an- und/oder ausdifferenzierte Zellen, in einem physiologisch verträglichen Medium suspendiert enthalten. Geeignete Medien sind beispielsweise Standardmedien ausgewählt aus der Gruppe bestehend aus RPMI, Medium 199, DMEM (low glucose; dieses Medium entspricht dem Modified Eagles's Medium (Gibco 31885)) mit oder ohne HEPES als Zusatz und Iscove's Medium jeweils allein oder als 1:1-Mischung mit Ham's F12 Nutrient Mixture, oder Spezialmedien ausgewählt aus der Gruppe bestehend aus Medium Human Endothelial-SFM, START V und Neurobasal- bzw. Neurobasal-A Medium mit oder ohne Ham's F12 Nutrient. Bei Verwendung der Spezialmedien zur Herstellung einer pharmazeutischen Zusammensetzung muß darauf geachtet werden, daß die Medien für diese Verwendung geeignet sind und keine Hormone, Peptide oder dergleichen enthalten, auf die der Patient empfindlich reagieren könnte. Unbedingt zu beachten ist, daß das zur Transplantation benutzte Medium kein Serum enthalten darf. Ersatzweise können physiologische Lösungen, z. B. Ringerlösung, eingesetzt werden.
  • Die Retina-spezifischen Zellen gemäß der Erfindung, die durch mindestens einen der Marker ausgewählt aus der Gruppe bestehend aus RPE65, ZO-1, Occludin, CD36, Cytokeratin 7, Cytokeratin 8, Cytokeratin 18, Cytokeratin 19, S-100, Rhopopsin (in Stäbchen), Calbindin (in Zapfen), PKC, S-Antigen, GFAP, GABA und Neurofilament gekennzeichnet sind, liegen in derartigen pharmazeutischen Zusammensetzungen bevorzugt in einer Menge von mindestens 50%, bevorzugt mindestens 60% bezogen auf die Gesamtzahl der in dem Präparat vorhandenen Zellen vor, wobei in dem vorgenannten Wertebereich alle ganzzahligen Werte (d.h. 51, 52 ... 59 und 61, 62 ... 99, 100) ausdrücklich eingeschlossen sind. Die pharmazeutischen Präparate können gegebenenfalls weitere pharmazeutisch verträgliche Hilfs- und/oder Trägerstoffe enthalten.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung liegen in den pharmazeutischen Präparaten mindestens 1 × 104 erfindungsgemäße Retina-spezifische Zellen pro µl vor. Bevorzugt liegen jedoch nicht mehr als 5 × 104 erfindungsgemäße Retina-spezifische Zellen pro µl vor, um ein Verklumpen der Zellen zu vermeiden.
  • Bevorzugte Applikationsformen für die in vitro differenzierten Retina-spezifischen Zellen sind Injektion, Infusion oder Implantation der Zellen in einen spezifischen Zellverband des Auges, um zu erreichen, daß die Zellen dort einerseits durch den direkten Kontakt mit dem Zellverband anwachsen und durch entsprechende gewebegemäße Differenzierung Funktionen des geschädigten Gewebes übernehmen.
  • Eine besonders bevorzugte Applikationsform ist die Injektion der in vitro differenzierten Retina-spezifischen Zellen. Diese Implantation erfolgt bevorzugt lokal intraokular.
  • Besonders bevorzugt erfolgt die lokal intraokulare Applikation in die Retina (intraretinal, vgl. GUO, Y. et al. (2003) Invest Ophthalmol Vis Sci 44(7) : 3194-3201), unter die Retina (subretinal, vgl. WOJCIECHOWSKI, A.B. et al. (2002) Exp Eye Res 75(1): 23-37) oder nahe an der Retina in den Glaskörper (intravitreal, vgl. JORDAN, J.F. et al. (2002) Graefe's Arch Clin Exp Ophthalmol 240(5): 403-407).
  • Eine weitere bevorzugte Ausführungsform der Erfindung betrifft die systemische Infusion der erfindungsgemäßen in vitro differenzierten Retina-spezifischen Zellen über die Blutbahn zur Anreicherung der Zellen in der Retina.
  • Bevorzugte Beispiele für in diesem Zusammenhang relevante Indikationen sind Retinitis pigmentosa, altersabhängige Makuladegeneration oder Glaukom. Der Begriff "Glaukom" bezeichnet dabei eine Reihe von Degenerationen der Nervenfasern und des Sehnerven, die einem zumeist anomalen intraokularen Druck zugeschrieben werden. Gekennzeichnet ist dies durch einen Untergang der Ganglienzellen der Retina und der Nervenfasern sowie eine Atrophierung des Sehnerven. Mit dem Begriff "Glaukom" werden erfindungsgemäß alle Arten von Glaukomen erfaßt, d.h. Hoch-, Normal-Niederdruckglaukom, Offenwinkelglaukom, PEX-Glaukom etc.
  • Die erfindungsgemäße Behandlung des Glaukoms umfaßt den Ersatz zerstörter Ganglien- und Nervenzellen der Retina und im Sehnerven durch Gabe erfindungsgemäß in Retina-spezifische Zellen anoder ausdifferenzierte Stammzellen aus dem Knochenmark zur Bildung eines Ersatzes der zerstörten Zellen.
  • Mit den erfindungsgemäß aus hämatopoetischen Stammzellen differenzierten Retina-spezifischen Zellen sind auch die mit einer Diabeteserkrankung einhergehenden Schäden an der Chorioidea (Retinopathia diabetica) behandelbar. Eine Gabe der erfindungsgemäßen Zellen stabilisiert die infolge der Diabetes brüchig gewordenen Gefäße und verringert oder verhindert dadurch das Auftreten von Netzhautblutungen.
  • Folglich sind bevorzugte Ausführungsformen der Erfindung die Verwendung der Retina-spezifischen Zellen zur Herstellung pharmazeutischer Zusammensetzungen zur Behandlung von Retinitis pigmentosa, altersabhängiger Makuladegeneration oder Glaukom.
  • Weiterhin erfindungsgemäß bevorzugt ist die Verwendung der aus hämatopoetischen Stammzellen an- oder ausdifferenzierten Retina-spezifischen Zellen zur Herstellung einer pharmazeutischen Zusammensetzung zur Behandlung von Erkrankungen, die durch eine Degeneration der Gefäßstrukturen der Chorioidea gekennzeichnet sind, z.B. der Retinopathia diabetica bei Diabetes.
  • Die Zellen können, wie oben beschrieben, autologen oder allogenen Ursprungs sein, d.h. das Knochenmark, aus dem die mesenchymalen oder hämatopoetischen Stammzellen isoliert wurden, stammt aus dem Körper des Empfängers oder eines Vertreters seiner Art.
  • Die Erfindung wird nachfolgend anhand von Beispielen erläutert und beschrieben, ohne auf diese Ausführungsbeispiele beschränkt zu sein:
  • Beispiel 1 Isolierung von Knochenmarkzellen
  • Adulte mesenchymale Stammzellen wurden aus Knochenmarkproben (Aspiraten) gewonnen, die einem lebenden Spender im Verlauf eines kleinen Eingriffs entnommen wurden. Die Stammzellen wurden aus der Probe durch Zentrifugation über einen Ficollgradienten (Biochrom KG, "Biocoll Separation Solution, isotonic solution; Dichte 1,077 g/ml) abgetrennt. Die Zellen aus der Schicht der mononukleären Zellen wurden in einem Kulturmedium (DMEM, low glucose) ergänzt mit 10% fötalem Kälberserum (FCS) resuspendiert und in unbeschichteten "tissue culture-treated plastic"-Kulturschalen (Polystyrol) kultiviert.
  • Die erste Kultur nach der Isolierung der Zellen erfolgt im allgemeinen in 24-Lochplatten. Je nach Größe der Kultur kommen auch 12-Lochplatten, 6-Lochplatten, T25-Kulturflaschen oder T75-Kulturflaschen in Betracht.
  • Die durch dieses Verfahren erhaltenen Zellkulturen können in DMEM (low glucose)-Medium mit 10% FCS für mehrere Monate kultiviert werden, indem sie alle 7 bis 14 Tage in Abhängigkeit von der Aussaatdichte, dem Spendereinfluß, dem Alter der Kultur und bei Erreichen der Subkonfluenz (60-80 %) passagiert werden (siehe Beispiel 2).
  • Beispiel 2 Passagierung der mesenchymalen Stammzellen
  • Zur Passagierung der mesenchymalen Stammzellen wurden das Kulturmedium und nicht-anhaftende Zellen von den plastikadhärent wachsenden mesenchymalen Stammzellen durch Absaugen oder Abnahme entfernt. Die an der Kulturschale haftenden adhärent wachsenden mesenchymalen Stammzellen wurden 1-2 mal mit PBS (das keine Calcium- oder Magnesiumionen enthielt!) gespült, um weitere nicht-adhärente Zellen zu entfernen. Es schloß sich eine 1-minütige Inkubation bei Raumtemperatur in einer Trypsin/EDTA-Lösung an (Trypsin 0,02 %, EDTA 0,05 % in Calcium- oder Magnesiumionen-freiem PBS). Nach Abschluß der Inkubation wurde die Trypsin/EDTA-Lösung wieder abgesaugt und die Zellen weitere 2-3 Minuten bei Raumtemperatur belassen. Anschließend wurde das Kulturgefäß vorsichtig durch Klopfen mit der Hand erschüttert, um durch die mechanische Beanspruchung die Zellen von der Oberfläche des Kulturgefäßes zu lösen. Die losgelösten Zellen wurden in DMEM low glucose/10% FCS suspendiert.
  • Zur Bestimmung der Zellzahl wurden entweder 10 µl der Suspension mit 10 µl einer Trypanblaulösung vermischt, in eine Neubauerkammer pipettiert und unter dem Mikroskop avitale (gefärbte Zellen) und vitale (nichtgefärbte) Zellen gezählt, oder es wurden 0,5 ml der Suspension mit 12,5 bis 19,5 ml einer isotonen Salzlösung (speziell zur Anwendung in einem "Coulter Counter"-Zellzählgerät) verdünnt und diese in einem "Coulter Counter"-Zellzählgerät gezählt.
  • Die Gesamtzahl vitaler Zellen wird in beiden Fällen unter Einbeziehung der Verdünnung rechnerisch ermittelt. Zur Passagierung wurden die Zellen nun in entsprechende unbeschichtete Kulturgefäße ausgesät und im gleichen Kulturmedium weiter kultiviert, das zur Aussaat verwendet wurde. Eventuell ist dazu eine weitere Verdünnung der Zellsuspension mit Kulturmedium notwendig.
  • Die Zellsuspension kann ferner durch Zentrifugation sedimentiert, die sedimentierten Zellen in Einfriermedium (90 % FCS + 10 % DMSO) suspendiert und in flüssigem Stickstoff kryokonserviert werden.
  • Beispiel 3 Herstellung von Retina-spezifischen Zellen durch Einsatz von CCM
  • Für die Differenzierung adhärent wachsender mesenchymaler Stammzellen nach Isolierung aus dem Knochenmark (siehe Beispiel 1 und 2), wurden zuerst 4 bis 8 ml Chorioidea-konditioniertes Medium (CCM) generiert. Zur Herstellung von 4 ml CCM wurden 2 Augen (entspricht einem Augenpaar) eines allogenen Donors wie folgt behandelt:
  • Zuerst wurden das anteriore Segment, der Glaskörper und die neurosensorische Netzhaut des Auges entfernt, gefolgt von einer Präparation der Chorioideae und/oder deren Fragmenten mit einer Schere und einer Pinzette [vgl. VALTINK, M. et al. (1999) Graefe's Arch Clin Exp Ophthalmol 237: 1001-1006; VALTINK, M. & ENGELMANN, K. (2002) In: WILHELM, F., DUNCKER, G.I.W., BREDEHORN, T. (Hrsg.) Augenbanken. Walter de Gruyter Verlag Berlin New York, S. 75-87]. In der Regel ist die Chorioidea noch vollständig. Durch Waschen mit 2 ml phosphatgepufferter Salzlösung (PBS) pro Chorioidea wurden Blut, lose anhaftende, avitale Zellen und Gewebefragmente entfernt, die bei der weiteren Behandlung der Chorioidea stören würden. Es schloß sich eine Inkubation in einer Kollagenaselösung (1:1 Kollagenase IA und IV [vgl. VALTINK, M. et al. (1999) Graefe's Arch Clin Exp Ophthalmol 237: 1001-1006; VALTINK, M. & ENGELMANN, K. (2002) In: WILHELM, F., DUNCKER, G.I.W., BREDEHORN, T. (Hrsg.) Augenbanken. Walter de Gruyter Verlag Berlin New York, S. 75-87]; Endkonzentration 0.5 mg/ml; 2 ml Lösung pro Chorioidea) in einem Brutschrank unter 5% CO2 bei 37°C für etwa 4 bis 16 Stunden an, um Zellen des retinalen Pigmentepithels von dem chorioidealen Gewebe abzulösen. Bei Verwendung höherer Kollagenase-Endkonzentrationen (z.B. 1 mg/ml) genügt eine Inkubationszeit von 1 bis 4 Stunden. In einigen Fällen ist die Chorioidea durch die Enzymaktivität der Kollagenase aufgelockert und zerfällt bei Überführung in neues Medium.
  • Der nachfolgende Konditionierungsprozeß wird dadurch nicht beeinträchtigt. Die Enzymaktivität wurde nachfolgend durch Zugabe eines Überschusses von Serum-enthaltendem Kulturmedium (DMEM + FCS, siehe Beispiel 1) gestoppt. Danach wurde das chorioidale Gewebe in 2 ml Kulturmedium bestehend aus F99-Medium ergänzt mit 1 % FCS pro Chorioidea, also 4 ml Medium pro Augenpaar, überführt. Das Gewebe wurde in einem Brutschrank unter 5% CO2 bei 37°C für 4 Tage inkubiert.
  • Die Enzymaktivität der Kollagenase wird durch Zugabe eines Überschusses von Serum-enthaltendem Kulturmedium nur partiell gestoppt, da kommerzielle Kollagenasen neben der proteolytischen Spaltung von Kollagenen als Hauptaktivität weitere, schwer inaktivierbare proteolytische Aktivitäten aufweisen, die sich gegen andere Proteinstrukturen richten. Diese nicht inaktivierbare Restaktivität ist jedoch gering und hat keinen Einfluß auf die Bildung des konditionierten Mediums und dessen Verwendung zur Zellkultivierung und Differenzierung.
  • Während dieser Inkubation bildete sich CCM als Überstand. Dieser wurde von dem chorioidalen Gewebe durch Zentrifugation bei Raumtemperatur mit 300 × g für 10 Min abgetrennt. Der erhaltene Überstand wurde direkt als Zusatz zur Differenzierung verwendet oder bei - 20°C tiefgefroren.
  • Ca. 15.000 Stammzellen, die aus Knochenmark stammen (siehe Beispiel 1 und Beispiel 2 für mesenchymale Stammzellen) und maximal bis Passage 6 kultiviert wurden (siehe Beispiel 2), wurden mit 5 ml Medium F99 (dies ist eine 1:1-Mischung aus Medium 199 und Ham's F12 Nutrient Mixture), welches mit 1 bis 10 % FCS, 1 µg/ml Insulin, 1 mmol/l Natriumpyruvat und 10 % CCM supplementiert ist, in einer T25-Kulturflasche für 14 bis 21 Tage inkubiert. 2 bis 3 mal pro Woche wurde das Differenzierungsmedium gewechselt, wodurch sich eine Gesamtmenge von ca. 30 bis 45 ml Differenzierungsmedium ergibt, die zur Differenzierung einer Spenderkultur benötigt wird.
  • Nach ungefähr 5 Tagen wurde bei den Zellen eine Abnahme der Teilungsgeschwindigkeit und deutliche morphologische Veränderungen hin zu einer stellaren Morphologie beobachtet (vgl. Figur 2). Zusätzlich war eine Ansammlung von dunklen Granula um den Kern zu beobachten.
  • Nach 10 bis 14 Tagen in Kultur begannen die Zellen eine neuronale Morphologie auszubilden, mit dendritischen, vielfach verzweigten Ausläufern, häufig begleitet von einer Bildung von Podien an Kontaktstellen mit benachbarten Zellen (vgl. Figur 3b und Figur 4).
  • Nach 19 Tagen in Kultur wurde zur weiteren Charakterisierung der Zellen nach Entfernen des Kulturmediums zu nicht fixierten bzw. zu vorab bei 4°C mit 5 %igem Formalin fixierten Zellen eine Lösung des Aminosäurederivates L-3,4-Dihydroxyphenylalanin (L-DOPA, 0,1 %-ige Lösung in PBS mit neutralem pH, entspricht 1 mg/l) für den Nachweis aktiver Tyrosinase, dem Schlüsselenzym der Melanogenese, gegeben und für 45 min bei 37°C inkubiert. Nach Beendigung der 45-minütigen Inkubation wurde die Lösung jeweils erneuert, bis eine Gesamtdauer der Inkubation von 3 Stunden erreicht war, wobei alle 30 min auf das Fortschreiten der Reaktion geachtet wurde.
  • Mit Hilfe dieses Nachweises wird überprüft, ob die Stammzellen auch in pigmentierte Zelltypen, wie beispielsweise Zellen des retinalen Pigmentepithels oder Melanozyten, zu differenzieren vermögen. Die Fähigkeit der Zellen zur Pigmentierung über den Tyrosinaseweg ist dabei das entscheidende Differenzierungskriterium. Der Nachweis ist positiv, wenn aus Melanin bestehende schwarzbraune Körnchen als Ablagerungen sichtbar werden, die aus dem zugegebenen L-DOPA durch das in den Zellen vorhandene Enzym Tyrosinase und seine Abkömmlinge sowie der nachfolgenden Enzyme in dieser Reaktionskette gebildet werden.
  • Derartige Zellen waren nach 19 Tagen in Kultur nachweisbar.
  • Beispiel 4 Herstellung von Retina-spezifischen Zellen durch Einsatz von RE
  • Zur Differenzierung der aus Knochenmark isolierten adhärent wachsenden mesenchymalen Stammzellen (siehe Beispiele 1 und 2) bzw. nicht-adhärent wachsenden hämatopoetischen Stammzellen (siehe Beispiele 1 und XY), wurde Retina-Extrakt (RE) verwendet, der durch Homogenisieren von Retinas erzeugt wurde.
  • RE wurde wie folgt hergestellt:
  • Aus 10 humanen Spenderaugen wurde die neurosensorische Retina präpariert. Dazu wurde zuerst das anteriore Segment und dann der Glaskörper der Augen entfernt. Die neurosensorische Netzhaut der Augen wurde anschließend mit einer Pinzette angehoben und mit einer Schere am Sehnervenkopf abgetrennt. Die erhaltenen Retinas wurden als Ganzes in einem Gefäß mit PBS auf ein Volumen von 50 ml aufgefüllt und unter Zusatz von Proteinasehemmern (z.B. 1 Tablette Complete Protease Inhibitor Cocktail (Roche) auf 50 ml Homogenat) in einem Hand- oder Gewebe-Homogenisator aus Glas auf Eis homogenisiert. Der Überstand, der den RE repräsentiert, wurde durch eine Zentrifugation mit 500 × g für 15 min und eine weitere Zentrifugation mit 10000 × g für 45 min gewonnen. Der RE wurde anschließend durch einen 0,22 µm-Sterilfilter sterilfiltriert.
  • Die Differenzierung der passagierten Stammzellen mit RE enthaltendem Differenzierungsmedium erfolgte analog zu Beispiel 3. Dem Differenzierungsmedium wurde jedoch abweichend 1 % RE statt des CCM zugegeben. Die Differenzierung der Stammzellen in Retina-spezifische Zellen erfolgte während einer Kultur über 2 bis 3 Wochen im Differenzierungsmedium.
  • Beispiel 5 Analyse der Zusammensetzung des Chorioidea-konditionierten Mediums über MALDI-TOF
  • Obwohl die Wirkung des CCM auf die Proliferation und Differenzierung der mesenchymalen Stammzellen (MSC) und der Zellen des retinalen Pigmentepithels (RPE) gezeigt werden konnte (siehe Beispiele 3 und 4), war die genaue Zusammensetzung dieses Mediums zunächst nicht bekannt.
  • Um die Zusammensetzung des CCM zu ermitteln, wurde der Überstand aus der Chorioidea-Kultur nach Beispiel 3 mittels Gelfiltration über eine Superdex®-Säule (Pharmacia Biotech) in 80 Fraktionen aufgetrennt. Durch Bestimmung des Proteingehalts der einzelnen Fraktionen in einem Chromatographen mittels Messung der Absorption bei 214 und 280 nm wurde ein Chromatogramm der einzelnen Fraktionen erstellt (siehe Figur 5).
  • Anhand der in dem Chromatogramm sichtbaren Signalpeaks wurden die Fraktionen vereint, die jeweils einer Gruppe von Peptiden/Proteinen zugeordnet werden konnten. Beispielsweise wurden jeweils die Fraktionen 22 - 37, die Fraktionen 38 - 41 und die Fraktionen 42 - 46 getrennt vereinigt. Die Fraktionen 22 - 37 enthalten kleinere Peptid-/Proteinmoleküle, die vor der Konditionierung des Mediums in dieser Konzentration nicht vorhanden waren und neu synthetisierte kleinere Peptide/Proteine oder Abbauprodukte des Serums sind. Die Fraktionen 38 - 41 enthalten Peptide/Proteine aus dem größten Peak, die schon im Medium vor der Konditionierung vorhanden war, deren Menge durch die Inkubation mit den Chorioidea jedoch erhöht wurde.
  • Dies deutet darauf hin, daß durch die Konditionierung nicht alle Serumproteine verbraucht worden sind, die dem Medium ursprünglich zugefügt wurden. Die Fraktionen 42 - 46 enthalten Peptide/Proteine, die im Medium vor der Konditionierung nicht vorhanden waren. Die Größe der in diesem Peak enthaltenen Peptide/Proteine legt nahe, daß sie keine Abbauprodukte des Serums darstellen, sondern aus der Chorioidea stammen müssen und bei der Konditionierung des Mediums in dieses abgegeben wurden.
  • Die Fraktionen wurden nach Vereinigung auf ihre biologische Aktivität getestet, indem sie einem Kulturmedium zugesetzt wurden, das zur Züchtung von humanen mesenchymalen Stammzellen und humanen retinalen Pigmentepithelzellen verwendet wurde.
  • Dazu wurden normale humane RPE-Zellen zweier Spender aus der ersten und dritten Passage mit einer Aussaatdichte von 500 Zellen pro Vertiefung in 12 Loch-Kulturschalen mit F99-Medium, das mit 10% FCS supplementiert wurde, ausgesät und über Nacht inkubiert, damit die Zellen an der Schale adhärieren konnten. Anschließend wurde das Medium gegen die Testmedien ausgetauscht, die sich aus F99, 5% FCS und den Fraktionen aus der Fraktionierung des CCM zusammensetzen. Als Negativkontrolle wurde F99 versetzt mit 5% FCS ohne Zusatz einer CCM-Fraktion, als Positivkontrolle F99 versetzt mit 5%. FCS und CCM eingesetzt. Als Positivkontrolle wurde CCM einerseits ohne Fraktionierung als Ganzes, andererseits auch nach Fraktionierung und erneuter Vereinigung eingesetzt. Es wurden jeweils 3 Vertiefungen mit dem selben Medium versehen, so daß jede Fraktion 2 mal mit jeweils drei Wiederholungen getestet wurde. Nach 12 Tagen für Test 1 bzw. 14 Tagen für Test 2 wurden die Zellen durch Trypsinierung von der Kulturplatte gelöst und die Zellzahl in den einzelnen Vertiefungen durch Zählung ermittelt.
  • Die biologische Aktivität der Fraktionen bestimmte sich aus der Differenz aus Zellzahl am Ende und zu Beginn der Kultivierung. Die so ermittelte Differenz entspricht der während der Kultur durch Proliferation erzeugten Zellen, die sich in Abhängigkeit von der biologischen Aktivität der zugesetzten CCM-Fraktion verändert. Biologisch aktive Fraktionen steigern dabei die Proliferation der Zellen im Vergleich zur Negativkontrolle, wobei die Steigerung jedoch maximal den Wert der Positivkontrolle erreicht.
  • Der Test mit den humanen mesenchymalen Stammzellen wurde analog durchgeführt, es wurden jedoch abweichend 5000 Zellen pro Vertiefung in 24 Loch-Kulturschalen eingesät.
  • Fraktionen mit einer biologischer Aktivität, die sich positiv auf die Proliferation der Stammzellen auswirkte, wurden anschließend einer Analyse durch MALDI-TOF Massenspektrometrie unterzogen, um die Peptide bzw. Proteine in der Fraktion zu identifizieren, die der biologischen Aktivität der Fraktionen zu Grunde liegen. Dazu wurden die Proteine der entsprechenden Fraktion zuerst mittels 2D-Gelelektrophorese in einem Proteingel aufgetrennt und die Proteine in der ausgeschnittene Proteinbande proteolytisch restringiert. Nach einer Extraktion der entstandenen Peptide aus dem Gel wurden diese massenspektrometrisch charakterisiert und anhand ihrer physikalischen Daten über eine Datenbankrecherche identifiziert.

Claims (37)

  1. Verfahren zur Differenzierung isolierter und expandierter Stammzellen aus dem Knochenmark in Retina-spezifische Zellen, bei dem man
    a) die Stammzellen in einem geeigneten Kulturmedium expandiert;
    b) die expandierten Stammzellen in einem Differenzierungsmedium kultiviert, welches Chorioidea-konditioniertes Medium (CCM) und/oder Retinaextrakt (RE) enthält, wobei die Dichte der Stammzellen zwischen 0,5 × 103 und 2,5 × 103 Zellen pro cm2 beträgt; und
    c) die Retina-spezifischen Zellen durch Trennung der Zellen vom Differenzierungsmedium isoliert.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Stammzellen aus dem Knochenmark mesenchymale Stammzellen sind.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die mesenchymalen Stammzellen mindestens zwei Oberflächenantigene ausgewählt aus der Gruppe bestehend aus CD59, CD90, CD105 und MHC I exprimieren.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die mesenchymalen Stammzellen die Oberflächenantigene CD90 und CD105 exprimieren.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß man für die Differenzierung die adhärent wachsenden mesenchymalen Stammzellen verwendet.
  6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Stammzellen aus dem Knochenmark hämatopoetische Stammzellen sind.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die hämatopoetischen Stammzellen mindestens ein Oberflächenantigen ausgewählt aus der Gruppe bestehend aus CD34 und CD45 exprimieren.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die hämatopoetischen Stammzellen die Oberflächenantigene CD34 und CD45 exprimieren.
  9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Stammzellen aus dem Knochenmark mesenchymale und hämatopoetische Stammzellen sind.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß man die Zellen im Anschluß an Schritt c) in einem flüssigem Medium suspendiert.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß das Medium ausgewählt ist aus der Gruppe bestehend aus RPMI, DMEM, Iscove's Medium und Medium 199 jeweils allein oder als 1:1-Mischungen mit Ham's F12 Nutrient Mixture, sowie Spezialmedien wie Human Endothelial-SFM, START V, Neurobasal/Neurobasal-A-Medium oder deren Supplemente N-2 und B27.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die suspendierten Zellen nach Zugabe eines Gefrierschutzes und Proteinen zur Stabilisierung empfindlicher biologischer Substanzen tiefgefroren werden.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß dem Medium als Gefrierschutz DMSO oder Methylzellulose zugesetzt wird.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß als Gefrierschutz 10 % DMSO und zur Stabilisierung empfindlicher biologischer Substanzen 10 % Serum oder 10 % Albumin bei serumfreier Kultur zugesetzt werden.
  15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß das Differenzierungsmedium 1 bis 20 % CCM und/oder 0,1 bis 5,0 % RE enthält.
  16. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß das Differenzierungsmedium 1 bis 15 % CCM und/oder 0,5 bis 5,0 % RE enthält.
  17. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß das Differenzierungsmedium 10 % CCM und/oder 1 % RE enthält.
  18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß man in Schritt b) des Verfahrens die Zellen 3 bis 21 Tage in dem Differenzierungsmedium kultiviert.
  19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß man in Schritt b) des Verfahrens die Zellen 14 bis 21 Tage in dem Differenzierungsmedium kultiviert.
  20. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß man in Schritt b) des Verfahrens die Zellen während einer Kulturdauer von 3 bis 14 Tagen andifferenziert.
  21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß man in Schritt b) des Verfahrens die Zellen während einer Kulturdauer von 3 bis 9 Tagen andifferenziert.
  22. Verfahren nach Anspruch 20, dadurch gekennzeichnet, daß man in Schritt b) des Verfahrens die Zellen während einer Kulturdauer von 5 Tagen andifferenziert.
  23. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, daß man in Schritt b) des Verfahrens die andifferenzieren Stammzellen nach einer Kulturdauer von 3 bis 14 Tagen in einem CCM enthaltendem Differenzierungsmedium für 1 bis 28 Tage in RE enthaltendem Differenzierungsmedium weiter differenziert.
  24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, daß in Schritt b) des Verfahrens die andifferenzieren Stammzellen nach einer Kulturdauer von 3 bis 5 Tagen in einem CCM enthaltendem Differenzierungsmedium für 1 bis 14 Tage in einem RE enthaltendem Differenzierungsmedium weiter differenziert.
  25. Verfahren nach Anspruch 23 oder 24, dadurch gekennzeichnet, daß in Schritt b) des Verfahrens die andifferenzierten Stammzellen nach einer Kultur in einem CCM enthaltendem Differenzierungsmedium statt in einem RE enthaltendem Differenzierungsmedium in einem für Neuronenkulturen ausgewiesenen Spezialmedium weiter differenziert werden.
  26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, daß das zur Weiterdifferenzierung verwendete Spezialmedium Neurobasal oder START V ist.
  27. Verfahren nach einem der Ansprüche 1 bis 26, dadurch gekennzeichnet, daß die Dichte der Stammzellen in Schritt b) des Verfahrens 2,0 × 103 Zellen pro cm2 beträgt.
  28. Verwendung von Chorioidea-konditioniertem Medium (CCM) und/oder Retina-Extrakt (RE) zur Differenzierung von Stammzellen aus dem Knochenmark in Retina-spezifische Zellen.
  29. Verwendung nach Anspruch 28, dadurch gekennzeichnet, daß die Stammzellen aus dem Knochenmark mesenchymale Stammzellen sind.
  30. Verwendung nach Anspruch 28, dadurch gekennzeichnet, daß die Stammzellen aus dem Knochenmark hämatopoetische Stammzellen sind.
  31. Verwendung nach Anspruch 28, dadurch gekennzeichnet, daß die Stammzellen aus dem Knochenmark mesenchymale und hämatopoetische Stammzellen sind.
  32. Verwendung nach einem der Ansprüche 28 bis 31, dadurch gekennzeichnet, daß das Chorioidea-konditionierte Medium (CCM) einen oder mehrere Wachstumsfaktoren aus der Gruppe bestehend aus Mitgliedern der FGF-Familie, Mitgliedern der Neurotrophin-Familie, Mitgliedern der BMP-Familie, PDGF, EGF, BDNF, CNTF, HGF und NGF enthält.
  33. Verwendung nach Anspruch 32, dadurch gekennzeichnet, daß das Mitglied der FGF-Familie basischer Fibroblasten-Wachstumsfaktor (bFGF, FGF-2) ist.
  34. Verwendung nach Anspruch 32, dadurch gekennzeichnet, daß die Mitglieder der Neurotrophin-Familie NT-3 und NT-4 sind.
  35. Verwendung nach Anspruch 32, dadurch gekennzeichnet, daß das Mitglied der BMP-Familie BMP-4 ist.
  36. Verwendung nach Anspruch 32, dadurch gekennzeichnet, daß PDGF ausgewählt ist aus der Gruppe bestehend aus PDGF-AA, PDGF-BB und PDGF-AB.
  37. Verfahren nach einem der Ansprüche 1 bis 27, dadurch gekennzeichnet, daß man die Stammzellen entweder im Anschluß an die Isolierung aus dem Knochenmark, im Verlauf des Differenzierungsverfahrens im Anschluß an die Expansion im Verfahrensschritt a), im Anschluß an die Differenzierung im Verfahrensschritt b) oder die daraus differenzierten Retina-spezifischen Zellen mit einem oder mehreren Fremdgenen transfiziert.
EP05798063A 2004-11-16 2005-10-26 In vitro aus knochenmarkstammzellen differenzierte retina-spezifische zellen, ihre herstellung und verwendung Active EP1812560B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004055615A DE102004055615A1 (de) 2004-11-16 2004-11-16 In vitro aus Knochenmarkstammzellen differenzierte Retina-spezifische Zellen, ihre Herstellung und Verwendung
PCT/EP2005/011468 WO2006053629A1 (de) 2004-11-16 2005-10-26 In vitro aus knochenmarkstammzellen differenzierte retina-spezifische zellen, ihre herstelllung und verwendung

Publications (2)

Publication Number Publication Date
EP1812560A1 EP1812560A1 (de) 2007-08-01
EP1812560B1 true EP1812560B1 (de) 2009-12-23

Family

ID=35431102

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05798063A Active EP1812560B1 (de) 2004-11-16 2005-10-26 In vitro aus knochenmarkstammzellen differenzierte retina-spezifische zellen, ihre herstellung und verwendung

Country Status (6)

Country Link
US (1) US20090053809A1 (de)
EP (1) EP1812560B1 (de)
JP (1) JP2008520215A (de)
AT (1) ATE452968T1 (de)
DE (2) DE102004055615A1 (de)
WO (1) WO2006053629A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070292884A1 (en) * 2006-06-19 2007-12-20 Becton, Dickinson And Company Methods and compositions for obtaining amplifiable nucleic acids from tissues, cells, or viruses exposed to transport media
DE602007012290D1 (de) 2006-11-03 2011-03-10 Aastrom Biosciences Inc Mischzell-populationen für die gewebereparatur und trenntechnik für die zellaufbereitung
CN102575220B (zh) 2009-09-03 2015-09-16 贝克顿·迪金森公司 用于直接化学裂解的方法和组合物
KR102278978B1 (ko) 2013-08-23 2021-07-19 스미또모 가가꾸 가부시끼가이샤 망막 조직 및 망막 관련 세포의 제조 방법
CN105765059B (zh) * 2013-11-04 2021-05-25 伊索波根控股公司 细胞培养方法
CA2965248A1 (en) 2014-10-24 2016-04-28 Sumitomo Dainippon Pharma Co., Ltd. Production method for nerve tissue
MY183058A (en) 2014-10-24 2021-02-09 Riken Production method for retinal tissue
WO2017183732A1 (ja) 2016-04-22 2017-10-26 大日本住友製薬株式会社 網膜組織の製造法
CN106282094B (zh) * 2016-10-13 2018-11-27 吴欣怡 人皮肤来源的前体细胞诱导分化为角膜内皮样细胞的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2216439A1 (en) * 1996-09-25 1998-03-25 Derek Van Der Kooy Pharmaceuticals containing retinal stem cells
PL216193B1 (pl) * 2002-07-25 2014-03-31 Scripps Research Inst Wyizolowana, ssacza, pochodząca ze szpiku kostnego linia populacji niezróżnicowanych krwiotwórczych komórek macierzystych

Also Published As

Publication number Publication date
DE102004055615A1 (de) 2006-05-18
DE502005008759D1 (de) 2010-02-04
ATE452968T1 (de) 2010-01-15
US20090053809A1 (en) 2009-02-26
JP2008520215A (ja) 2008-06-19
EP1812560A1 (de) 2007-08-01
WO2006053629A1 (de) 2006-05-26

Similar Documents

Publication Publication Date Title
EP1812560B1 (de) In vitro aus knochenmarkstammzellen differenzierte retina-spezifische zellen, ihre herstellung und verwendung
JP6673966B2 (ja) 神経変性を治療するための方法及び組成物
Johnson et al. Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model
DE19756864C1 (de) Neurale Vorläuferzellen, Verfahren zu ihrer Herstellung und ihre Verwendung zur Therapie von neuralen Defekten
Brewer Isolation and culture of adult rat hippocampal neurons
Park et al. Induction of retinal regeneration in vivo by growth factors
Jones et al. Mesenchymal stem cells rescue Purkinje cells and improve motor functions in a mouse model of cerebellar ataxia
Singh et al. Limitations and promise of retinal tissue from human pluripotent stem cells for developing therapies of blindness
EP1636347A1 (de) Isolierte adulte pluripotente stammzellen und verfahren zu deren isolierung und kultivierung
JP2003521910A (ja) 網膜幹細胞の分離及び移植
CA2216439A1 (en) Pharmaceuticals containing retinal stem cells
DE60035191T2 (de) Materialien und methoden zur entwicklung von dopaminergen neuronen
Walsh et al. Human central nervous system tissue culture: a historical review and examination of recent advances
Calafiore et al. Progenitor cells from the adult mouse brain acquire a neuronal phenotype in response to β-amyloid
DE10108412A1 (de) Pigmentepithelzelle des Auges, ihre Herstellung und Verwendung in der Therapie einer Augen- oder Nervenerkrankung
El Seady et al. Uncomplicated differentiation of stem cells into bipolar neurons and myelinating glia
DE69634363T2 (de) Vorläufer von normalen neuralen epithelzellen
US20220387513A1 (en) Compositions and methods for enhancing retinal ganglion cell development and pluripotent stem cell-derived three-dimensional tissue
DE69633604T2 (de) Flüssigmedium für nervenzellen, verfahren für dessen herstellung und eine methode für die inkubation von nervenzellen unter verwendung desselben
AU2878400A (en) Integration of transplanted neural progenitor cells into neural tissue of immature and mature dystrophic recipients
CN110199985A (zh) 一种神经元冻存液的制备方法
US11345888B2 (en) Method and pharmaceutical composition for continuously maintaining growth of a motor neuron progenitor cell
Oorschot et al. Tissue culture analysis of neurite outgrowth in the presence and absence of serum: possible relevance for central nervous system regeneration
DE19928210B4 (de) Neuronales Zellmaterial und Verfahren zu dessen Herstellung
Heath Morphological and Proliferative Changes that Occur in Rat Retinal Progenitor Cells Following Incubation with Retinoic Acid and RPE-Secreted Proteins

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070525

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17Q First examination report despatched

Effective date: 20080708

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. AG PATENT- UND MARKENANWAELTE VSP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502005008759

Country of ref document: DE

Date of ref document: 20100204

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100423

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100423

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100323

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100403

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100324

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101014

Year of fee payment: 6

Ref country code: FR

Payment date: 20101020

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20101012

Year of fee payment: 6

Ref country code: DE

Payment date: 20101020

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101020

Year of fee payment: 6

BERE Be: lapsed

Owner name: UNIVERSITATSKLINIKUM HAMBURG-EPPENDORF

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111026

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120501

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111102

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111026

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005008759

Country of ref document: DE

Effective date: 20120501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101026

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091223

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 452968

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111026