EP1810053A1 - Systeme detecteur destine a des vehicules automobiles comportant des detecteurs radar fmcw et permettant de determiner la distance avec resolution angulaire d'un objet par triangulation - Google Patents

Systeme detecteur destine a des vehicules automobiles comportant des detecteurs radar fmcw et permettant de determiner la distance avec resolution angulaire d'un objet par triangulation

Info

Publication number
EP1810053A1
EP1810053A1 EP05796970A EP05796970A EP1810053A1 EP 1810053 A1 EP1810053 A1 EP 1810053A1 EP 05796970 A EP05796970 A EP 05796970A EP 05796970 A EP05796970 A EP 05796970A EP 1810053 A1 EP1810053 A1 EP 1810053A1
Authority
EP
European Patent Office
Prior art keywords
oscillator
signal
sensor modules
signals
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP05796970A
Other languages
German (de)
English (en)
Inventor
Klaus VOIGTLÄNDER
Hans Irion
Matthias Steinhauer
Wolfgang Menzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1810053A1 publication Critical patent/EP1810053A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S13/48Indirect determination of position data using multiple beams at emission or reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0232Avoidance by frequency multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0235Avoidance by time multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Definitions

  • the present invention relates to a device for angular resolution
  • One way to increase the safety of a vehicle is to automatically detect obstacles in traffic. For this purpose, a determination of the distance of the vehicle to a possible obstacle is required, as well as a determination of the direction in which the obstacle is located.
  • the direction to the obstacle must be determined to distinguish between obstacles that are on the road or at the edge of the road.
  • One way to increase the comfort of the vehicle is to determine the speed of a preceding vehicle in dense traffic and automatically adjust the speed of your own vehicle. This requires the distance be determinable to the vehicle in front, its speed and whether this vehicle is on the same lane or offset to the own vehicle in a second lane. These are two possible uses for a radar system in the vehicle sector, another would be, inter alia, a parking aid. All of these methods require a device which allows the distance and
  • a primary source is provided for microwaves, the emission of which is focused by means of suitable optics onto a beam with a half-width of 3-4 ° and then by means of a deflection optics 3-4
  • the portions reflected by an object are detected separately with a detection device.
  • An amplitude comparison of the reflected components for the individual beams makes it possible to determine the direction in which the object is located.
  • the achievable angular resolution, as well as the covered angle range are disadvantageously determined by the mechanical structure and thus limit the range of application of the sensor.
  • Another method provides to determine from the phase of the reflected rays, the geometric arrangement of the object to a sensor array.
  • a sensor arrangement provides that a suitable transmitting device illuminates the entire desired viewing area and a plurality of receiving devices detect the signals reflected by the object. The receiving devices determine the phase of the individual reflected signals and a signal processing device calculates, based on these phase signals, the different path lengths that the reflected signals have covered and thus the geometric arrangement of the object to the vehicle.
  • a disadvantage of this arrangement is that a high output power of the transmitting device is required because for all receiving devices a part of the transmission signal must be provided for a receiving mixer and due to the strong attenuation of the frequencies used in the range of 76-81, 122-
  • Another sensor arrangement provides to use only one receiver device and to connect these temporally sequentially with a plurality of antenna devices.
  • the disadvantage of this device is that the duration for a measurement with all antenna devices due to the multiplexing process is too long for this device to be used for dynamic situations in traffic.
  • a further sensor arrangement provides for combining the receiving device with the transmitting device and for connecting the receiving device to a plurality of antenna devices in chronological succession.
  • This device also has the disadvantage of a too long measurement time.
  • the idea underlying the present invention is to arrange a plurality of sensor modules at intervals with each sensor module having a local oscillator device.
  • the oscillator device generates an oscillator signal, which is forwarded to a transceiver device, and the oscillator signal is radiated.
  • the transceiver is arranged to receive signals reflected from the object.
  • a phase detection device is coupled to an input with the oscillator device and with a second input to the transceiver. Based on the oscillator signal and the received reflected signals, the phase detection means determines a phase signal.
  • Signal processing device determines a direction of the object to the sensor module based on the distances between the sensor modules to each other and the phase signals.
  • the present invention has the advantage over the known approach that each sensor module has its own local oscillator device.
  • Distribution device for distributing the microwave signal from a central oscillator device to the individual sensor modules is therefore not required and thus the losses of the device are kept low.
  • the method according to the invention for an angle-resolved distance determination for an object using the device according to the invention provides that at least one of the transmitter / receiver devices of the sensor modules transmits the oscillator signal.
  • the reflected rays from the object are received by the transmitting / receiving device from a direction of the object.
  • a phase signal is determined, which in turn is the basis for determining the direction of the object to a sensor module by means of the control and signal processing means.
  • the distances of the sensor modules to each other are equidistant or in a further preferred embodiment, the distances are different in size. Equidistant distances have the advantage that a high signal to noise ratio can be achieved. By contrast, an arrangement with different sized spacings has the advantage that this reduces the number of ambiguities for the direction determination.
  • a co -imation device comprising a lens and / or a dielectric polyrod is arranged in the emission direction of one of the sensor modules.
  • a quasi-optical filter is arranged in the emission direction of one of the sensor modules, with which a suppression of ambiguities can be achieved from certain directions.
  • At least one of the phase detection devices has a controllable filter device with an adjustable filter characteristic.
  • At least one of the sensor modules has a controllable oscillator device with adjustable oscillator frequency.
  • the control and processing device is connected to at least one of the sensor modules in order to adjust the filter device and / or the oscillator frequency of the sensor module with control signals. This allows the
  • the phase detection device has a
  • the phase detection device is set up such that the phase signal can be determined by direct sampling of the received reflected signal.
  • At least two oscillator devices are not synchronized with one another.
  • a synchronization device is provided with which at least two oscillator devices can be synchronized.
  • the oscillator means may comprise a phase locked loop. This allows the oscillator device with the aid of a low-frequency signal to synchronize each other.
  • the sensor modules are arranged along a line or flat.
  • the oscillator signals of two sensor modules are adjusted by means of the control and signal processing device such that they have different oscillator frequencies.
  • control and signal processing device changes the oscillator frequency of the oscillator module according to a
  • the oscillator frequency of the oscillator modules is changed according to the same frequency ramp after a time offset, wherein the time offset for the individual sensor modules is different. In this way, the individual
  • an FMCW (frequency modulated continuous wave) method for determining the distance of the object to the sensors can be made possible by the frequency ramp.
  • a filter characteristic of a filter device of the phase detection device of at least one of the sensor modules is set such that the phase detection device only determines phase signals which are based on the signals emitted by this sensor module. This allows parallel operation of the sensor modules with high angular resolution.
  • the phase detection device only detects phase signals which are based on signals radiated by a second sensor module.
  • Figure 1 is a schematic representation of an embodiment of the present invention
  • Figure 2 is a schematic side view of an embodiment of the present invention
  • Figure 3 is a second schematic side view of the embodiment from a second orthogonal direction
  • Figures 4a - 4d are schematic representations of four embodiments of a sensor module
  • Figure 5 is a schematic representation of an interconnection of an embodiment
  • Figure 6 is a schematic representation of a synchronization of two oscillator devices
  • Figure 7 is a schematic representation of a frequency characteristic
  • Figure 8 is a schematic representation of a frequency response of an embodiment of the present invention. DESCRIPTION OF THE EMBODIMENTS
  • FIG. 1 shows a schematic illustration of an embodiment of a present invention in a side view.
  • a plurality of sensor modules 2 1 , 2 2 , 2 3 , 2 n are arranged on a support 1.
  • This carrier 1 may, for. B. attached to a surface on a front side of a vehicle.
  • the sensor modules 2 1 , 2 2 , 2 3 , 2 n are arranged along a spatial direction x with the distances di, d 2 .
  • the distances di, d 2 can be in the range of 1 mm to 4 cm.
  • the distances 2 1 , 2 2 , 2 3 , 2 n between the transmission modules 2 1 , 2 2 , 2 3 , 2 n and the object K are generally of different lengths.
  • the distances S 1 , S 2 , S 3 , S n take an angle a 1 , a 2 , a 3 , a n to the direction y, which also differ. From geometrical considerations it follows that the angles a 1 , a 2 , a 3 , a n can be unambiguously determined from the lengths of the distances S 1, S 2 , S 3 , S n and the distances d 1 , d 2 .
  • the angles a 1 , a 2 , a 3 , a n are also referred to as the direction of the object K to the sensor modules S 1 , S 2 , S 3 , S n .
  • each sensor module 2 1 , 2 2 , 2 3 , 2 n transmits an oscillator signal having an oscillator frequency.
  • These oscillator signals are from the
  • each transmit module 2 1 , 2 2 , 2 3 , 2 n only takes into account the reflected signal which emerges from an oscillator signal sent by these transmit modules 2 1 , 2 2 , 2 3 , 2 n .
  • Sensor modules 2 1 , 2 2 , 2 3 , 2 n specific phase differences are dependent on the lengths of the distances S 1 , S 2 , S 3 , S n between the sensor modules 2 1 , 2 2 , 2 3 , 2 n and the object K.
  • the phase differences are fed as phase signals to a signal processor, which based on the differences of the phase signals, the length differences of the Distances S ⁇ S 2 , S 3 , S n and the angles a 1 , a 2 , a 3 , a n can determine.
  • a relative phase information of the individual oscillator signals of the various sensor modules 2 1 , 2 2 , 2 3 , 2 n to each other is not required, only the phase difference of the respective oscillator signal to the reflected signal must be determined by the respective sensor modules.
  • the angles can be determined by means of a Fourier transformation and / or adaptive methods such. For example, the so-called “minimum variance beamforming" can be determined, and corresponding methods are used for radar and sonar systems.
  • ambiguities arise, which inter alia depend on the distances di, d 2 .
  • d 2 of a wavelength of the oscillator signal results in an ambiguity for an angle a 1 , a 2 , a 3 , a n and the angle , which are 30 ° or smaller than the angle a 1 , a 2 , a 3 , a n .
  • the angular range in which an ambiguity results is smaller and, accordingly, more ambiguities arise within the observed angular range.
  • the distances di, d 2 are in the range of / 2 to 5, wherein the wavelength of the oscillator signal indicates.
  • the oscillator frequencies of the individual sensor modules 2 1 , 2 2 , 2 3 , 2 n may be different. At a minimum, in one embodiment they are chosen differently for each time. In this way, an assignment of the reflected signals to the individual sensor modules 2 1 , 2 2 , 2 3 , 2 n is possible.
  • a time-multiplexing method may be used in which the sensor modules 2 1 , 2 2 , 2 3 , 2 n transmit an oscillator signal offset in time from one another and receive the reflected signals.
  • a further embodiment of the present invention provides that not all sensor modules 2 1 , 2 2 , 2 3 , 2 n transmit an oscillator signal.
  • the sensor module 2 1 sends an oscillator signal, and the reflected components of the oscillator signal are received by the sensor modules 2 1 , 2 2 , 2 3 , 2 n .
  • Phase difference of the reflected signal, which receives the sensor module 2 2, to an oscillator signal of the sensor module 2 2 is determined by the fact that the oscillator signal of the sensor module is synchronized to 2 2 the oscillator signal of the sensor module 2. 1
  • the thus determined phase differences are transmitted from sensor modules 2 1 , 2 2 , 2 3 , 2 n as phase signals to a signal processing device and based on the differences of the phase signals, the lengths of the distances S 1 , S 2 , S 3 , S n and the angle a 1 , a 2 , a 3 , a n are determined.
  • the advantage of a single transmitter is that neither frequency nor time division multiplexing is needed. For two or more transmitting sensor modules 2 1 , 2 2 , 2 3 , 2 n corresponding multiplexing methods are to be used.
  • the sensor modules 2 1 , 2 2 , 2 3 , 2 n are arranged so that they do not all send an oscillator signal.
  • a second possibility of achieving only a single quasi-active is to set the oscillator frequency of the transmission module 2 1 to a first oscillator frequency and oscillator frequencies of the other
  • Sensor modules 2 1 , 2 2 , 2 3 , 2 n set to another or more other oscillator frequencies.
  • a filter device which can base only phase signals with the first oscillation frequency of the sensor module 2 1 . In this way, the phase signals based on the oscillator signals of the second sensor modules 2 1 , 2 2 , 2 3 , 2 n are suppressed.
  • Figure 2 shows a schematic side view of an embodiment of the present invention.
  • a support 1 which may be mounted on a vehicle, a plurality of sensor modules 2 1 , 2 2 , 2 3 , 2 n spaced with the distances di, d 2 are arranged.
  • a plurality of sensor modules 2 1 , 2 2 , 2 3 , 2 n spaced with the distances di, d 2 are arranged.
  • Polyrods 3 can be arranged.
  • the polyrod 3 are tapered dielectric rods that can be used as a co-ordinator.
  • the transmission and reception angle of the sensor module is limited to about ⁇ 20 °.
  • the signal processing device must be provided with corresponding calculation routines which take into account only angles within the transmission and reception angles.
  • an optical lens 5 for example a cylindrical lens, the signal intensity is increased in a desired angular range and thus enables an improvement of the signal-to-noise ratio. Further suppression of the ambiguities can be achieved by a so-called quasi-optical filter 6.
  • This quasi-optical filter 6 consists of a plurality of dielectric layers, which are arranged in the direction y to each other.
  • the quasi-optical filter 6 has a transmission characteristic, which depends on the frequency of the signal and the angle of incidence of the signal to the quasi-optical filter 6. This is used to transmit signals with an oscillation frequency from one direction and to suppress them from other directions.
  • the information about the filter characteristic is supplied to the signal processing for suppressing the ambiguities.
  • FIG. 3 shows a side view of the preceding embodiment from a second spatial direction.
  • An arrangement of the sensor modules 2 1 , 2 2 , 2 3 , 2 n can be done in one or more rows.
  • the sensor modules can be 2 1 , 2 2 , 2 3 , 2 n individual integrated components, or can be produced together on the carrier 1 integrated.
  • FIGS. 4a-d Four embodiments of a sensor module 2 are shown in FIGS. 4a-d.
  • FIGS. 4a and 4b each show a heterodyne and 4c and 4d each a homodyne detection.
  • a local oscillator 21a is shown, which with a
  • the local oscillator 21a generates an oscillator signal having a frequency in the range of 76-81 GHz, 122-123 GHz (see above) or 126-145 GHz.
  • the local oscillator 21 may be arranged so that its oscillation frequency is adjustable.
  • the local oscillator 21a may include a phase-locked loop that allows synchronization of the oscillator signal with a low-frequency applied signal.
  • the oscillator device is connected via a path to a transceiver device 20.
  • the transmitting / receiving device 20 has an antenna device. The transmitting / receiving device can be unlocked and then sends the oscillator signal 110 via the antenna device. About the Transceiver, a reflected signal 111 can be received.
  • Phase detection means 30, a second local oscillator 21 b whose oscillator signal is mixed with the oscillator signal 110 of the local oscillator 21a and the reflected signal 111 by means of two mixers 25a and 25b.
  • the two signals mixed in this way are supplied to a third mixer 24, thus demultipulating the reflected signal 111 with the oscillator signal.
  • the mixer 24 may be a push-pull mixer.
  • the demixed signal 112 includes a phase signal 100 that depends on the phase difference of the oscillator signal 110 and the reflected signal.
  • a filter device 27 is connected downstream of the mixer 24 in order to filter out higher-frequency components of the demixed signal 112.
  • the filter device 27 may have an adjustable filter characteristic. The filter characteristic of the filter
  • the filter characteristic of the filter 27 can have a correspondingly broad filter band.
  • the filter characteristic is adjusted so that only reflected signals 111 are taken into account in the phase signal, which have the same frequency as the oscillator signal of a primary or central sensor module 2 1 .
  • the coupling device 24b is replaced by a circulator device 26.
  • FIGS. 4c and 4d show a homodyne detection device.
  • Phase detection device 30 has in both cases only one mixing device 24.
  • the mixer 24 is supplied with portions of the oscillator signal 110 and the reflected signal 111 via two coupling means 23a and 23b.
  • the demixed by the mixer 24 signal 112 is as before a Filter device 27 is supplied to determine the phase signal 100.
  • the coupling device 23 b is replaced by a circulator device 26.
  • FIG. 5 shows a schematic representation of the signal routing of an embodiment of the present invention.
  • the sensor modules 2 1 , 2 2 , 2 3 , 2 n each give their
  • Phase signals 100 1 , 100 2 , 100 3 , 100 n off.
  • the phase signals 100 1 , 100 2 , 100 3 , 100 n are respectively determined and output in parallel in the described frequency-division multiplexing method or in a time-multiplexing method.
  • the phase signals 100 1 , 100 2 , 100 3 , 100 n are fed to a conversion device 8.
  • the conversion device 8 has an analog-to-digital converter. The digitized
  • Phase signals 100 1 , 100 2 , 100 3 , 100 n are supplied to a signal processing and control device 10.
  • This signal processing and control device 10 determines, based on the digitized phase signals 100 1 , 100 2 , 100 3 , 100 n, the lengths of the distances S 1 , S 2 , S 3 , S n and the angles a 1 , a 2 , a 3 , a n .
  • the signal processing and control device via control signals 102 1 ,
  • control signals can be provided which enable the transceiver modules 20 so that the transceivers 20 send the oscillator signal 110.
  • FIG. 6 shows a schematic representation of a synchronization of two oscillator devices.
  • An oscillator device 21 of a first sensor module 2 1 is connected to a first phase-locked loop 29 1 .
  • an oscillator device 21 2 is connected to a second phase-locked loop 29 2 .
  • the phase-locked loops 29 1 and 29 2 are equipped with a low-frequency oscillator device
  • the signal processing device interprets this erroneously as an angle between the signal paths S 1 , S 2 , S 3 , S n . Since the phase difference is proportional to the product of the oscillator frequency and the length of the signal path S 1 , S 2 , S 3 , S n , the errors in the angle determination increase with increasing oscillator frequency and increasing distance of the object K.
  • FIG. 7 shows a further embodiment of the present invention which provides for changing the oscillator frequency w according to the illustrated frequency curve over time t.
  • the frequency is changed according to one or more frequency ramps 201, 202, 203, 204 with different slope.
  • the duration of a ramp is T.
  • a modulation method which uses the frequency characteristic shown in FIG. 7 is the continuous-wave frequency modulation method (FMCW). This
  • Frequency modulation method is suitable for use in vehicles due to its ease of implementation.
  • the various slopes of the ramps 201, 202, 203, 204 make it possible to distinguish the contribution of the length of the signal path S 1 , S 2 , S 3 , S n and a Doppler shift by a moving object K to the determined phase difference.
  • FIG. 8 shows the profile of the oscillator frequency for the oscillator signals of the individual sensor modules 2 1 , 2 2 , 2 3 , 2 n . These change their oscillation frequency w in accordance with the frequency characteristic of FIG. 7, but the frequency characteristics are carried out with a short time offset dt to one another. Thus, at one time all frequencies are the
  • Sensor module 2 different and have at least the frequency difference dw on.
  • the phase signals which are each time offset by dt can be used to evaluate the phase signals.
  • An error results in the determination of the angle characterized in that the vehicle and / or the object K moves within the time span dt and thus within this period corresponding to the angle a 1 , a 2 , a 3 , a n and the signal paths S 1 , S 2 , S 3 , S n change.
  • the time difference dt is significantly less than the duration T to choose a ramp.
  • the modulation speed is so fast that within a period the vehicle moves only slightly and thus the errors in the angle determination remain very small.

Abstract

La présente invention concerne un dispositif ayant une pluralité de modules détecteurs 2, 21,22, 23, 2n placés à des distances d1, d2 les uns des autres. Chaque module détecteur 2, 21,22, 23, 2n a un dispositif oscillateur local. Le dispositif oscillateur génère un signal d'oscillateur qui est transmis à un dispositif émetteur/récepteur et le signal d'oscillateur est émis. Le dispositif émetteur/récepteur est installé de manière à pouvoir recevoir des signaux réfléchis par l'objet. Le dispositif de détection de phase est couplé par une première entrée au dispositif oscillateur et par une deuxième entrée au dispositif émetteur/récepteur. Le dispositif de détection de phase détermine un signal de phase sur la base du signal d'oscillateur et des signaux réfléchis reçus. Un dispositif de commande et de traitement de signaux détermine la direction a1, a2, a3, an entre l'objet et le module détecteur sur la base des distances des modules détecteurs et les signaux de phase.
EP05796970A 2004-10-29 2005-09-08 Systeme detecteur destine a des vehicules automobiles comportant des detecteurs radar fmcw et permettant de determiner la distance avec resolution angulaire d'un objet par triangulation Ceased EP1810053A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004052518A DE102004052518A1 (de) 2004-10-29 2004-10-29 Vorrichtung und Verfahren zur winkelaufgelösten Entfernungs- und Geschwindigkeitsbetimmung eines Objekts
PCT/EP2005/054458 WO2006045668A1 (fr) 2004-10-29 2005-09-08 Systeme detecteur destine a des vehicules automobiles comportant des detecteurs radar fmcw et permettant de determiner la distance avec resolution angulaire d'un objet par triangulation

Publications (1)

Publication Number Publication Date
EP1810053A1 true EP1810053A1 (fr) 2007-07-25

Family

ID=35456945

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05796970A Ceased EP1810053A1 (fr) 2004-10-29 2005-09-08 Systeme detecteur destine a des vehicules automobiles comportant des detecteurs radar fmcw et permettant de determiner la distance avec resolution angulaire d'un objet par triangulation

Country Status (5)

Country Link
US (1) US7764221B2 (fr)
EP (1) EP1810053A1 (fr)
CN (1) CN101052892A (fr)
DE (1) DE102004052518A1 (fr)
WO (1) WO2006045668A1 (fr)

Families Citing this family (182)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005062128A1 (de) * 2005-12-23 2007-08-30 Robert Bosch Gmbh Radarvorrichtung
US8055203B2 (en) * 2007-03-14 2011-11-08 Mks Instruments, Inc. Multipoint voltage and current probe system
DE102007036262A1 (de) * 2007-08-02 2009-02-05 Robert Bosch Gmbh Radarsensor für Kraftfahrzeuge
DE102007043535A1 (de) * 2007-09-12 2009-03-19 Robert Bosch Gmbh FMCW-Radarortungsvorrichtung und entsprechendes FMCW-Radarortungsverfahren
DE102009045141A1 (de) 2009-09-30 2011-03-31 Robert Bosch Gmbh Radarsensor mit IQ-Empfänger
US8493263B2 (en) * 2011-06-28 2013-07-23 Intelligent Sciences, Ltd. Short baseline helicopter positioning radar for low visibility using combined phased array and phase difference array receivers
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
DE102013205892A1 (de) * 2013-04-03 2014-10-09 Robert Bosch Gmbh Radarvorrichtung und Verfahren zum Betrieb einer Radarvorrichtung
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
DE102013108490A1 (de) * 2013-08-07 2015-02-12 Endress + Hauser Gmbh + Co. Kg Dispersionskorrektur für FMCW-Radar in einem Rohr
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) * 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
CN105572675B (zh) * 2016-03-04 2017-12-26 鲁东大学 一种汽车防撞预警方法
US10261179B2 (en) 2016-04-07 2019-04-16 Uhnder, Inc. Software defined automotive radar
US9689967B1 (en) * 2016-04-07 2017-06-27 Uhnder, Inc. Adaptive transmission and interference cancellation for MIMO radar
US9846228B2 (en) 2016-04-07 2017-12-19 Uhnder, Inc. Software defined automotive radar systems
WO2017187331A1 (fr) 2016-04-25 2017-11-02 Uhnder, Inc. Système radar de véhicule comportant un système radar et de communication partagé
US9945935B2 (en) 2016-04-25 2018-04-17 Uhnder, Inc. Digital frequency modulated continuous wave radar using handcrafted constant envelope modulation
WO2017187278A1 (fr) 2016-04-25 2017-11-02 Uhnder, Inc. Atténuation d'interférences entre ondes entretenues à modulation de phase
US9753121B1 (en) 2016-06-20 2017-09-05 Uhnder, Inc. Power control for improved near-far performance of radar systems
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10434966B2 (en) * 2016-10-26 2019-10-08 Ford Global Technologies, Llc Gap based airbag deployment
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US11454697B2 (en) 2017-02-10 2022-09-27 Uhnder, Inc. Increasing performance of a receive pipeline of a radar with memory optimization
WO2018146633A1 (fr) 2017-02-10 2018-08-16 Uhnder, Inc. Génération de code programmable pour systèmes de détection radar
WO2018146530A1 (fr) 2017-02-10 2018-08-16 Uhnder, Inc. Corrélation basée sur une fft à complexité réduite pour un radar automobile
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10690769B2 (en) * 2017-08-17 2020-06-23 GM Global Technology Operations LLC Target angle determination using vehicle radar elements with local reference signals
DE102017218160B4 (de) * 2017-10-11 2024-04-18 Audi Ag Verfahren zum Betrieb eines Radarsystems eines Kraftfahrzeugs und Kraftfahrzeug
US11105890B2 (en) 2017-12-14 2021-08-31 Uhnder, Inc. Frequency modulated signal cancellation in variable power mode for radar applications
DE102018124503A1 (de) * 2018-10-04 2020-04-09 HELLA GmbH & Co. KGaA Radarsystem für ein Fahrzeug
US11474225B2 (en) 2018-11-09 2022-10-18 Uhnder, Inc. Pulse digital mimo radar system
JP6840308B2 (ja) * 2019-01-31 2021-03-10 三菱電機株式会社 レーダ装置および信号処理方法
EP3691026B1 (fr) * 2019-02-04 2021-05-19 VEGA Grieshaber KG Ensemble d'antenne
US11681017B2 (en) 2019-03-12 2023-06-20 Uhnder, Inc. Method and apparatus for mitigation of low frequency noise in radar systems
WO2021144710A2 (fr) 2020-01-13 2021-07-22 Uhnder, Inc. Procédé et système pour le fonctionnement multi-puce de systèmes radar

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1236494A (en) * 1969-06-23 1971-06-23 Marconi Co Ltd Improvements in or relating to phase difference detectors
US4310852A (en) * 1980-04-08 1982-01-12 General Dynamics Corp., Electronics Division Real-time electromagnetic radiation intensity distribution imaging system
JPS6130428A (ja) * 1984-07-20 1986-02-12 Nissan Motor Co Ltd 車両走行制御装置
US4717916A (en) * 1986-05-16 1988-01-05 Holodyne Ltd., 1986 High resolution imaging doppler interferometer
US4818999A (en) * 1986-10-29 1989-04-04 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for measuring frequency and phase difference
US5654715A (en) * 1995-12-15 1997-08-05 Honda Giken Kogyo Kabushiki Kaisha Vehicle-surroundings monitoring apparatus
GB9602250D0 (en) * 1996-02-05 1996-04-03 Secr Defence Collision warning system
US5872536A (en) * 1997-02-19 1999-02-16 Hittite Microwave Corporation Multi-sensor anticipatory object detection system
US5839096A (en) * 1997-03-10 1998-11-17 Hittite Microwave Corporation Self-implementing diagnostic system
JP3061261B2 (ja) * 1997-04-01 2000-07-10 本田技研工業株式会社 Fmレーダ装置
WO1999034234A1 (fr) * 1997-12-25 1999-07-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Radar
US6069581A (en) * 1998-02-20 2000-05-30 Amerigon High performance vehicle radar system
JP2002522773A (ja) * 1998-08-06 2002-07-23 フオルクスヴアーゲン アクチエンゲゼルシヤフト 例えば自動車の駐車支援装置として、対象物を検出するための方法および装置
DE19948025A1 (de) * 1999-10-06 2001-04-12 Bosch Gmbh Robert Asymmetrischer, mehrstrahliger Radarsensor
JP5063851B2 (ja) * 2000-08-16 2012-10-31 ヴァレオ・レイダー・システムズ・インコーポレーテッド 近接物体検出システム
US6577269B2 (en) * 2000-08-16 2003-06-10 Raytheon Company Radar detection method and apparatus
DE10049906A1 (de) * 2000-10-10 2002-04-11 Bosch Gmbh Robert Sensoranordnung mit einem Puls-Echo-Radar
JP3883847B2 (ja) * 2001-11-19 2007-02-21 株式会社日立製作所 車載用信号処理装置
US6750810B2 (en) * 2001-12-18 2004-06-15 Hitachi, Ltd. Monopulse radar system
DE10213987A1 (de) * 2002-03-27 2003-10-16 Bosch Gmbh Robert Einrichtung für insbesondere bistatische Anwendungen
JP3988653B2 (ja) * 2003-02-10 2007-10-10 株式会社デンソー アンテナの配列方法、及びレーダ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006045668A1 *

Also Published As

Publication number Publication date
WO2006045668A1 (fr) 2006-05-04
US7764221B2 (en) 2010-07-27
DE102004052518A1 (de) 2006-05-04
US20080150790A1 (en) 2008-06-26
CN101052892A (zh) 2007-10-10

Similar Documents

Publication Publication Date Title
WO2006045668A1 (fr) Systeme detecteur destine a des vehicules automobiles comportant des detecteurs radar fmcw et permettant de determiner la distance avec resolution angulaire d'un objet par triangulation
EP2044458B1 (fr) Capteur de radar fmcw
EP2044459B1 (fr) Détecteur radar à résolution angulaire
WO2010000251A2 (fr) Système radar pourvu d'antennes d'émission et de réception chevauchantes
DE69826070T2 (de) Frequenzmoduliertes Dauerstrichradarsystem
WO2006063915A1 (fr) Système de radar à conformation adaptative numérique du faisceau de réception et caractéristique directionnelle d'émission commutable pour la couverture des plages proche et lointaine
DE102013201865A1 (de) Fahrzeug-radarvorrichtung
DE69834355T2 (de) Vorwärtsgerichteter Sensor für Kraftfahrzeuge
DE2542628C2 (de) Korrelationsradar zur Entfernungsmessung
WO2018137835A1 (fr) Procédé pour déterminer au moins une information sur au moins un objet détecté par un système de radar en particulier d'un véhicule, système de radar et système d'aide à la conduite
WO2019233645A1 (fr) Système à capteurs radars
DE112012001279T5 (de) Fahrzeugneigungs-Detektiervorrichtung
EP1828804B1 (fr) Radar fmcw a attenuation d'emplacements cibles
EP2215497B1 (fr) Capteur radar à résolution angulaire
DE102004051276A1 (de) Radarsensor zur Ermittlung des Abstands und der Relativgeschwindigkeit von Objekten
EP1969394A1 (fr) Dispositif radar
EP1804074B1 (fr) Dispositif de radar
DE102009013300A1 (de) Funktionsmoduliertes FMCW-Radar mit Integratorempfänger
DE102004034429A1 (de) Radar Front-End
WO2008006654A1 (fr) Détecteur radar avec plusieurs canaux d'émission et de réception
WO2020225314A1 (fr) Système de radar multistatique cohérent, en particulier pour une utilisation dans un véhicule
DE102011051969A1 (de) Radargerät und Verfahren zum Betreiben des Radargerätes
DE3917794C2 (de) Verfahren zur Bestimmung des Zündpunktes eines Flugkörpers sowie Schaltungsanordnung zur Durchführung des Verfahrens
EP4363895A1 (fr) Système radar de véhicules à moteur
DE112021001051T5 (de) Radarvorrichtung, fahrzeug und abstandsmessverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070529

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17Q First examination report despatched

Effective date: 20070906

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20140328