EP1809968A2 - Evaporateur a flux paralleles dote de collecteurs façonnes - Google Patents

Evaporateur a flux paralleles dote de collecteurs façonnes

Info

Publication number
EP1809968A2
EP1809968A2 EP05821090A EP05821090A EP1809968A2 EP 1809968 A2 EP1809968 A2 EP 1809968A2 EP 05821090 A EP05821090 A EP 05821090A EP 05821090 A EP05821090 A EP 05821090A EP 1809968 A2 EP1809968 A2 EP 1809968A2
Authority
EP
European Patent Office
Prior art keywords
chambers
parallel flow
set forth
manifold
inlet manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05821090A
Other languages
German (de)
English (en)
Other versions
EP1809968A4 (fr
Inventor
Allen C. Kirkwood
Michael F. Taras
Robert A. Chopko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Publication of EP1809968A2 publication Critical patent/EP1809968A2/fr
Publication of EP1809968A4 publication Critical patent/EP1809968A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/028Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using inserts for modifying the pattern of flow inside the header box, e.g. by using flow restrictors or permeable bodies or blocks with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • This invention generally relates to air conditioning and refrigeration systems and, more particularly, to parallel flow evaporators thereof.
  • a definition of a so-called parallel flow heat exchanger is widely used in the air conditioning and refrigeration industry now and designates a heat exchanger with a plurality of parallel passages, among which refrigerant is distributed and flown in the orientation generally substantially perpendicular to the refrigerant flow direction in the inlet and outlet manifolds. This definition is well adapted within the technical community and will be used throughout the text.
  • Refrigerant maldistribution in refrigerant system evaporators is a well-known phenomenon. It causes significant evaporator and overall system performance degradation over a wide range of operating conditions. Maldistribution of refrigerant may occur due to differences in flow impedances within evaporator channels, non-uniform airflow distribution over external heat transfer surfaces, improper heat exchanger orientation or poor manifold and distribution system design. Maldistribution is particularly pronounced in parallel flow evaporators due to their specific design with respect to refrigerant routing to each evaporator circuit. Attempts to eliminate or reduce the effects of this phenomenon on the performance of parallel flow evaporators have been made with little or no success.
  • Refrigerant maldistribution is one of the primary concerns and obstacles for the implementation of this technology in the evaporator applications.
  • refrigerant maldistribution in parallel flow heat exchangers occurs because of unequal pressure drop inside the channels and in the inlet and outlet manifolds, as well as poor manifold and distribution system design.
  • manifolds the difference in length of refrigerant paths, phase separation, gravity and turbulence are the primary factors responsible for maldistribution.
  • variations in the heat transfer rate, airflow distribution, manufacturing tolerances, and gravity are the dominant factors.
  • minichannels and microchannels which in rum negatively impacted refrigerant distribution. Since it is extremely difficult to control all these factors, many of the previous attempts to manage refrigerant distribution, especially in the parallel flow evaporators, have failed.
  • the inlet and outlet manifolds or headers usually have a conventional cylindrical shape.
  • the vapor phase is usually separated from the liquid phase. Since both phases flow independently, refrigerant maldistribution tends to occur.
  • the liquid phase i.e. droplets of liquid
  • the channels closest to the manifold entrance receive predominantly the vapor phase and the channels remote from the manifold entrance receive mostly the liquid phase.
  • the velocity of the two-phase flow entering the manifold is low, there is not enough momentum to carry the liquid phase along the header.
  • the liquid phase enters the channels closest to the inlet and the vapor phase proceeds to the most remote ones.
  • the liquid and vapor phases in the inlet manifold can be separated by the gravity forces, causing similar maldistribution consequences. In either case, maldistribution phenomenon quickly surfaces and manifests itself in evaporator and overall system performance degradation.
  • the inlet manifold is hour-glass shaped along its longitudinal axis such that alternate expansion and contraction chambers are provided, resulting in a mixing effect of the two phases of the refrigerant flowing therethrough and thereby providing a homogenous mixture of refrigerant entering the individual channels of the heat exchanger.
  • the individual channels are connected to the inlet manifold at its expansion chambers, and the contraction chamber portions are disposed between adjacent channels.
  • the expansion chambers are progressively smaller toward the downstream end of the inlet manifold to accommodate the progressively diminishing refrigerant flow in the inlet header.
  • the contraction chambers are equipped with the flow mixing devices, promoting homogeneous conditions at the entrance of the adjacent downstream expansion chambers.
  • FIG. 1 is a schematic illustration of a parallel flow heat exchanger in accordance with the prior art.
  • FIG. 2 is a schematic illustration of one embodiment of the present invention.
  • FIG. 3 is a schematic illustration of an alternative embodiment of the present invention.
  • FIG. 4 is a schematic illustration of yet another embodiment of the present invention.
  • FIG. 5 is a schematic illustration of still another embodiment of the present invention.
  • FIG. 6 is a schematic illustration of still another embodiment of the present invention.
  • a parallel flow heat exchanger is shown to include an inlet header or manifold 11, an outlet header or manifold 12 and a plurality of parallel channels 13 fluidly connecting the inlet manifold 11 to the outlet manifold 12.
  • the inlet and outlet manifolds 11 and 12 are cylindrical in shape, and the channels 13 are usually tubes (or extrusions) of flattened or round shape.
  • Channels 13 normally have a plurality of internal and external heat transfer enhancement elements, such as fins. For instance, external fins, disposed therebetween for the enhancement of the heat exchange process and structural rigidity are typically furnace-brazed.
  • Channels 13 may have internal heat transfer enhancements and structural elements as well.
  • two-phase refrigerant flows into the inlet opening 14 and into the internal cavity 16 of the inlet header 11.
  • the refrigerant in the form of a liquid, a vapor or a mixture of liquid and vapor (the latter is a typical scenario) enters the tube openings 17 to pass through the channels 13 to the internal cavity 18 of the outlet header 12.
  • the refrigerant which is now usually in the form of a vapor, passes out the outlet opening 19 and then to the compressor (not shown).
  • the two-phase refrigerant passing from the inlet header 11 to the individual channels 13 do so in a uniform manner (or in other words, with equal vapor quality) such that the full heat exchange benefit of the individual channels can be obtained and flooding conditions are not created and observed at the compressor suction (this may damage the compressor).
  • a non-uniform flow of refrigerant to the individual channels 13 occurs.
  • the applicants have introduced design features that will create a mixing and jetting effects in the two- phase refrigerant flow in the inlet manifold 11 to thereby bring about a more uniform homogeneous flow into to the channels 13.
  • the heat exchanger is formed with a conventional outlet manifold 12 and channels 13, but with a differently shaped inlet manifold 21, as shown.
  • the inlet manifold 21 is hour-glass shaped (i.e. with a plurality of alternating expansion and contraction chambers).
  • the inlet manifold 21 is shown to include three expansion chambers 22, 23 and 24 with interconnecting contraction chambers 26 and 27.
  • Each of the expansion chambers 22, 23 and 24 is preferably interconnected to an associated channel 13, as shown. In actual practice, a larger number of expansion chambers and associated channels 13 would be provided. Further, each of the expansion chambers may be connected to more than one channel 13. It is preferred, however, that none of the channels 13 would be connected directly to a contraction chamber.
  • the two-phase refrigerant enters the inlet opening 28 and enters the first expansion chamber 22 where it is partially expanded with a portion thereof entering the associated channel(s).
  • the remaining two-phase refrigerant is then forced through the contraction chamber 26 such that when it enters the expansion chamber 23 in more homogeneous manner due to increased velocity, partial evaporation (or tlirottling) occurs, thereby presenting a homogeneous condition for the refrigerant mixture flowing to the associated channel(s) and to the downstream channels.
  • the remaining refrigerant then passes through the contraction chamber 27, where more mixing and jetting of the two (liquid and vapor) refrigerant phases occurs and into the expansion chamber 24, wherein, once again, a partial evaporation process is taking place, thereby presenting a homogenous mixture to the associated channel(s).
  • the partial evaporation process is incrementally (i.e. progressively) maintained through the length of the inlet manifold 21, so as to result in a more uniform distribution of refrigerant among the channels.
  • the cross- section areas of the contraction chambers 26 and 27 must be properly sized for a particular application and for a particular configuration of the heat exchanger to maintain the balance between the desired partial evaporation process and undesired additional hydraulic resistance for the refrigerant flowing to the downstream channels.
  • flow impedance of the contraction chamber should be at least one and a half times lower than the hydraulic resistance of the associated channels 13. It is also desirable to balance the impedance of the contraction chambers in the inlet manifold 21 with corresponding pressure drops in the outlet manifold as will be further described hereinafter.
  • the inlet manifold 31 is again hour-glass shaped but with expansions chambers 32, 33 and 34 being progressively smaller in a cross section to accommodate the reduced refrigerant flow, as it moves from the inlet 38 toward the downstream end thereof.
  • the contraction chambers 36 and 37 are also preferably formed of a progressive smaller size for the same reasons.
  • the cross-section area reduction ratio of the expansion chambers is proportional to the refrigerant flow rate ratio reduction entering and leaving the chamber. If this ratio is not uniform, the average value should be used instead for the estimates.
  • the contraction chambers can be sized by employing an identical procedure and values. [0026] In Fig. 4, a further embodiment is shown wherein the inlet manifold
  • the outlet manifold 41 is identical to that as described in respect to Fig. 2 or that shown in Fig. 3, but the outlet manifold 41 also being hour-glass shaped with expansion chambers 42, 43 and 44 and contraction chambers 46 and 47 alternately disposed as shown. These expansion and contraction chambers are not necessarily and most likely will not be of the same sizes as those of the inlet manifold 21, since the refrigerant flowing within the outlet manifold 41 in a completely different thermodynamic state. Although if the chamber of the inlet manifold 21 are progressively smaller in size toward the downstream end thereof, the chambers of the outlet manifold 41 should preferably be progressively larger toward the downstream end thereof, as shown in Fig. 5, and identical aspect ratio can be utilized in sizing the outlet manifold chambers.
  • the impedances that are presented in the inlet manifold 21 are matched by those in the outlet manifold 41 such that, the most favorable conditions for the uniform refrigerant flow distribution among the parallel channels 13 are created throughout the heat exchanger, enhancing the system performance and improving compressor reliability, by preventing flooded conditions at the compressor suction.
  • the inlet manifold 51 is again hour-glass shaped with the expansions chambers 52, 53 and 54 and the contraction chambers 55 and 56 disposed in between the expansion chambers.
  • refrigerant-mixing inserts 57 are placed within the contraction chambers 55 and 56 to promote mixing and even more homogeneous conditions at the entrance of the adjacent downstream expansion chambers.
  • inserts 57 can be spiral in shape or have internal fins or indentations, any other configurations promoting mixing are also acceptable. In all other aspects this embodiment is similar to the embodiments discussed above.
  • the expansion and contraction chambers may be of any shape, cross-section area and configuration as long as a repetitive process of partial evaporation is created and a proper balance of hydraulic resistances is maintained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Selon l'invention, dans un évaporateur à flux parallèles, la construction du collecteur d'admission consiste en des chambres d'expansion et de contraction alternant, de manière à favoriser des conditions homogènes du réfrigérant, quand il s'écoule de manière longitudinale dans le collecteur d'admission, une évaporation partielle (étranglement) et des effets de mélange et de lançages (en raison de l'augmentation de la vitesse) étant ainsi obtenus. Dans un mode de réalisation préféré, les canaux parallèles sont connectés de manière fluide aux chambres d'expansion, de manière à recevoir un mélange de réfrigérant homogène de celles-ci. Dans un mode de réalisation, les chambres d'expansion et de contraction sont progressivement plus petites en direction d'une extrémité aval, de manière à recevoir le flux de réfrigérant diminuant lors de sa progression longitudinale le long du collecteur d'admission. Dans un autre mode de réalisation, le collecteur d'évacuation comprend également un motif répétitif de chambres d'expansion et de contraction alternant, de manière à équilibrer les impédances du collecteur d'admission. Encore dans un autre mode de réalisation, ces chambres sont progressivement plus grandes en direction d'une extrémité aval du collecteur d'évacuation. Encore dans un autre mode de réalisation, les pièces rapportées de mélange de flux sont introduites dans les chambres de contraction, de manière à favoriser encore des conditions homogènes dans le collecteur. Par conséquent, une mauvaise distribution dans l'échangeur thermique est évitée, les performances du systèmes et la fiabilité du compresseur étant ainsi améliorées.
EP05821090A 2004-11-12 2005-11-14 Evaporateur a flux paralleles dote de collecteurs façonnes Withdrawn EP1809968A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/987,961 US20060101850A1 (en) 2004-11-12 2004-11-12 Parallel flow evaporator with shaped manifolds
PCT/US2005/041249 WO2006053311A2 (fr) 2004-11-12 2005-11-14 Evaporateur a flux paralleles dote de collecteurs façonnes

Publications (2)

Publication Number Publication Date
EP1809968A2 true EP1809968A2 (fr) 2007-07-25
EP1809968A4 EP1809968A4 (fr) 2011-04-20

Family

ID=36337310

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05821090A Withdrawn EP1809968A4 (fr) 2004-11-12 2005-11-14 Evaporateur a flux paralleles dote de collecteurs façonnes

Country Status (3)

Country Link
US (2) US20060101850A1 (fr)
EP (1) EP1809968A4 (fr)
WO (1) WO2006053311A2 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005062297A1 (de) * 2005-12-24 2007-07-05 Dr.Ing.H.C. F. Porsche Ag Wärmeübertragereinrichtung
US20110127023A1 (en) * 2008-07-10 2011-06-02 Taras Michael F Design characteristics for heat exchangers distribution insert
JP2013002688A (ja) * 2011-06-14 2013-01-07 Sharp Corp パラレルフロー型熱交換器及びそれを搭載した空気調和機
JP5763436B2 (ja) * 2011-06-20 2015-08-12 シャープ株式会社 パラレルフロー型熱交換器及びそれを搭載した空気調和機
US20130199288A1 (en) * 2012-02-02 2013-08-08 Visteon Global Technologies, Inc. Fluid flow distribution device
KR101409196B1 (ko) * 2012-05-22 2014-06-19 한라비스테온공조 주식회사 증발기
KR101457585B1 (ko) * 2012-05-22 2014-11-03 한라비스테온공조 주식회사 증발기
KR101878317B1 (ko) * 2012-05-22 2018-07-16 한온시스템 주식회사 증발기
US20140202672A1 (en) * 2013-01-22 2014-07-24 Visteon Global Technologies, Inc. Heat exchanger manifold improvements for transient start-up
EP3091321B1 (fr) * 2013-12-13 2019-07-17 Nec Corporation Dispositif de distribution de fluide frigorigène et dispositif de refroidissement
CN103697745A (zh) * 2014-01-20 2014-04-02 丹佛斯微通道换热器(嘉兴)有限公司 集流管组件以及具有该集流管组件的换热器
US10539377B2 (en) * 2017-01-12 2020-01-21 Hamilton Sundstrand Corporation Variable headers for heat exchangers
JP2019052770A (ja) * 2017-09-12 2019-04-04 セイコーエプソン株式会社 熱交換装置、冷却装置及びプロジェクター
US10982870B2 (en) * 2018-08-31 2021-04-20 Jonhson Controls Technology Company Working fluid distribution systems

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1291617A (fr) * 1961-03-13 1962-04-27 Const Mecaniques Et Aeronautiq Perfectionnements aux radiateurs d'automobiles
US5329990A (en) * 1990-07-02 1994-07-19 Sanden Corporation Heat exchanger
FR2712077A1 (fr) * 1993-11-04 1995-05-12 Valeo Thermique Moteur Sa Echangeur de chaleur à faisceau de tubes, d'encombrement réduit dans la direction longitudinale des tubes.
JPH08136182A (ja) * 1994-11-11 1996-05-31 Toshiba Corp 熱交換器
DE19515527A1 (de) * 1995-04-27 1996-10-31 Thermal Werke Beteiligungen Gm Verdampfer in Flachrohr- oder Plattenbauweise für den Kältemittelkreislauf einer Kraftfahrzeugklimaanlage
DE19719261A1 (de) * 1997-05-07 1998-11-12 Valeo Klimatech Gmbh & Co Kg Zweiflutiger Flachrohrverdampfer einer Kraftfahrzeugklimaanlage
EP1065453A2 (fr) * 1999-07-02 2001-01-03 Denso Corporation Evaporateur de réfrigérant avec distribution de réfrigérant
JP2001241806A (ja) * 2000-02-28 2001-09-07 Sanden Corp 耐圧部品及び耐圧部品を用いた熱交換器並びに耐圧部品を用いた冷凍装置
EP1471323A2 (fr) * 2003-03-31 2004-10-27 Calsonic Kansei Corporation Boíte collectrice pour échangeur de chaleur

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2097602A (en) * 1936-03-06 1937-11-02 Warren Webster & Co Radiator
US3976128A (en) * 1975-06-12 1976-08-24 Ford Motor Company Plate and fin heat exchanger
FR2417732A1 (fr) * 1978-02-20 1979-09-14 Cem Comp Electro Mec Procede pour fournir ou enlever de la chaleur a un fluide condensable
US4277953A (en) * 1979-04-30 1981-07-14 Kramer Daniel E Apparatus and method for distributing volatile refrigerant
US4382468A (en) * 1979-05-17 1983-05-10 Hastwell P J Flat plate heat exchanger modules
US4309987A (en) * 1980-02-14 1982-01-12 H & H Tube & Mfg. Co. Fluid flow assembly for solar heat collectors or radiators
DE3311579C2 (de) * 1983-03-30 1985-10-03 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co. KG, 7000 Stuttgart Wärmetauscher
DE3413931A1 (de) * 1984-04-13 1985-10-24 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co. KG, 7000 Stuttgart Verdampfer, insbesondere fuer klimaanlagen in kraftfahrzeugen
JPH0619965Y2 (ja) * 1988-01-22 1994-05-25 サンデン株式会社 熱交換器
DE3914773C2 (de) * 1989-05-05 1994-03-03 Mtu Muenchen Gmbh Wärmetauscher mit mindestens zwei Sammelrohren
FR2690235A1 (fr) * 1992-04-16 1993-10-22 Valeo Thermique Moteur Sa Paroi tubulaire de boîte à fluide et procédé pour la fabrication d'un échangeur de chaleur par enfoncement de tubes de circulation.
JPH05332693A (ja) * 1992-06-02 1993-12-14 Showa Alum Corp 熱交換器
US5523607A (en) * 1993-04-01 1996-06-04 Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Integrated current-limiter device for power MOS transistors
CA2166395C (fr) * 1993-07-03 2006-05-09 Josef Osthues Echangeur de chaleur a plaques avec distributeur de frigorigene
FR2713320B1 (fr) * 1993-12-02 1996-02-02 Mc International Procédé de commande et de dégivrage en continu d'un échangeur frigorifique et installation équipée d'un tel échangeur.
JP3216960B2 (ja) * 1994-09-19 2001-10-09 株式会社日立製作所 空気調和機の室外機、室内機及びそれらに用いられる冷媒分配器
JPH08189725A (ja) * 1995-01-05 1996-07-23 Nippondenso Co Ltd 冷媒蒸発器
JP3705859B2 (ja) * 1996-03-29 2005-10-12 サンデン株式会社 分配装置を備えた熱交換器
KR0165067B1 (ko) * 1996-04-09 1999-01-15 구자홍 2열 플랫튜브형 열교환기
JPH1089883A (ja) * 1996-09-17 1998-04-10 Zexel Corp 熱交換器用ヘッダーパイプとその製造装置
US5881456A (en) * 1997-03-20 1999-03-16 Arup Alu-Rohr Und Profil Gmbh Header tubes for heat exchangers and the methods used for their manufacture
US5765393A (en) * 1997-05-28 1998-06-16 White Consolidated Industries, Inc. Capillary tube incorporated into last pass of condenser
US6070428A (en) * 1997-05-30 2000-06-06 Showa Aluminum Corporation Stack type evaporator
US5941303A (en) * 1997-11-04 1999-08-24 Thermal Components Extruded manifold with multiple passages and cross-counterflow heat exchanger incorporating same
US6179051B1 (en) * 1997-12-24 2001-01-30 Delaware Capital Formation, Inc. Distributor for plate heat exchangers
DE19918616C2 (de) * 1998-10-27 2001-10-31 Valeo Klimatechnik Gmbh Verflüssiger zum Kondensieren des inneren Kältemittels einer Kraftfahrzeugklimatisierung
FR2786259B1 (fr) * 1998-11-20 2001-02-02 Valeo Thermique Moteur Sa Echangeur de chaleur combine, en particulier pour vehicule automobile
US6374911B1 (en) * 1999-06-17 2002-04-23 Modine Manufacturing Company Charge air cooler and method of making the same
US6988539B2 (en) * 2000-01-07 2006-01-24 Zexel Valeo Climate Control Corporation Heat exchanger
JP2002031436A (ja) * 2000-05-09 2002-01-31 Sanden Corp サブクールタイプコンデンサ
JP2002130985A (ja) * 2000-10-18 2002-05-09 Mitsubishi Heavy Ind Ltd 熱交換器
JP2002130988A (ja) * 2000-10-20 2002-05-09 Mitsubishi Heavy Ind Ltd 積層型熱交換器
US6729386B1 (en) * 2001-01-22 2004-05-04 Stanley H. Sather Pulp drier coil with improved header
US7017656B2 (en) * 2001-05-24 2006-03-28 Honeywell International, Inc. Heat exchanger with manifold tubes for stiffening and load bearing
US20030010483A1 (en) * 2001-07-13 2003-01-16 Yasuo Ikezaki Plate type heat exchanger
US20030116310A1 (en) * 2001-12-21 2003-06-26 Wittmann Joseph E. Flat tube heat exchanger core with internal fluid supply and suction lines
CA2381214C (fr) * 2002-04-10 2007-06-26 Long Manufacturing Ltd. Tube d'admission d'echangeur de chaleur avec agitateur pour la repartition du flux
US6688138B2 (en) * 2002-04-16 2004-02-10 Tecumseh Products Company Heat exchanger having header
US6814136B2 (en) * 2002-08-06 2004-11-09 Visteon Global Technologies, Inc. Perforated tube flow distributor
US6688137B1 (en) * 2002-10-23 2004-02-10 Carrier Corporation Plate heat exchanger with a two-phase flow distributor
EP1548380A3 (fr) * 2003-12-22 2006-10-04 Hussmann Corporation Evaporateur à tubes plats avec micro-distributeur

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1291617A (fr) * 1961-03-13 1962-04-27 Const Mecaniques Et Aeronautiq Perfectionnements aux radiateurs d'automobiles
US5329990A (en) * 1990-07-02 1994-07-19 Sanden Corporation Heat exchanger
FR2712077A1 (fr) * 1993-11-04 1995-05-12 Valeo Thermique Moteur Sa Echangeur de chaleur à faisceau de tubes, d'encombrement réduit dans la direction longitudinale des tubes.
JPH08136182A (ja) * 1994-11-11 1996-05-31 Toshiba Corp 熱交換器
DE19515527A1 (de) * 1995-04-27 1996-10-31 Thermal Werke Beteiligungen Gm Verdampfer in Flachrohr- oder Plattenbauweise für den Kältemittelkreislauf einer Kraftfahrzeugklimaanlage
DE19719261A1 (de) * 1997-05-07 1998-11-12 Valeo Klimatech Gmbh & Co Kg Zweiflutiger Flachrohrverdampfer einer Kraftfahrzeugklimaanlage
EP1065453A2 (fr) * 1999-07-02 2001-01-03 Denso Corporation Evaporateur de réfrigérant avec distribution de réfrigérant
JP2001241806A (ja) * 2000-02-28 2001-09-07 Sanden Corp 耐圧部品及び耐圧部品を用いた熱交換器並びに耐圧部品を用いた冷凍装置
EP1471323A2 (fr) * 2003-03-31 2004-10-27 Calsonic Kansei Corporation Boíte collectrice pour échangeur de chaleur

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2006053311A2 *

Also Published As

Publication number Publication date
WO2006053311A2 (fr) 2006-05-18
EP1809968A4 (fr) 2011-04-20
WO2006053311A3 (fr) 2009-04-09
US20060101850A1 (en) 2006-05-18
US20100071392A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
WO2006053311A2 (fr) Evaporateur a flux paralleles dote de collecteurs façonnes
EP1809958B1 (fr) Evaporateur a equicourant avec profondeur variable d'insertion de canal
US8171987B2 (en) Minichannel heat exchanger header insert for distribution
US8235101B2 (en) Parallel flow heat exchanger for heat pump applications
US8302673B2 (en) Parallel flow evaporator with spiral inlet manifold
AU2005326711B2 (en) Parallel flow heat exchangers incorporating porous inserts
US20080105420A1 (en) Parallel Flow Heat Exchanger With Crimped Channel Entrance
US20080104975A1 (en) Liquid-Vapor Separator For A Minichannel Heat Exchanger
US20060102332A1 (en) Minichannel heat exchanger with restrictive inserts
WO2006053310A2 (fr) Evaporateur a flux parallele presentant des caracteristiques non uniformes
US20100170664A1 (en) Parallel flow heat exchanger with connectors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070507

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

DAX Request for extension of the european patent (deleted)
R17D Deferred search report published (corrected)

Effective date: 20090409

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 9/02 20060101ALI20090804BHEP

Ipc: F28D 1/02 20060101AFI20090804BHEP

A4 Supplementary search report drawn up and despatched

Effective date: 20110321

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111018