EP1809955B1 - Erzeugung von Tiefkühlung in einer thermochemischen Vorrichtung. - Google Patents

Erzeugung von Tiefkühlung in einer thermochemischen Vorrichtung. Download PDF

Info

Publication number
EP1809955B1
EP1809955B1 EP05814788.5A EP05814788A EP1809955B1 EP 1809955 B1 EP1809955 B1 EP 1809955B1 EP 05814788 A EP05814788 A EP 05814788A EP 1809955 B1 EP1809955 B1 EP 1809955B1
Authority
EP
European Patent Office
Prior art keywords
dipole
gas
temperature
heat
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05814788.5A
Other languages
English (en)
French (fr)
Other versions
EP1809955A1 (de
Inventor
Nathalie Mazet
Driss Stitou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1809955A1 publication Critical patent/EP1809955A1/de
Application granted granted Critical
Publication of EP1809955B1 publication Critical patent/EP1809955B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • F25B17/083Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt with two or more boiler-sorbers operating alternately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/005Regeneration

Definitions

  • the present invention relates to a thermochemical device for the production of cold at very low temperature, as described by US5174367 and US5857346 .
  • a system constituted by a thermochemical dipole implementing two reversible thermochemical phenomena is a known means for producing cold.
  • the thermochemical dipole comprises a BT reactor, an HT reactor and means for exchanging a gas between BT and HT.
  • the two reactors are the seat of selected reversible thermochemical phenomena such that, at a given pressure in the dipole, the equilibrium temperature in BT is lower than the equilibrium temperature in HT.
  • the reversible phenomenon in the LV reactor involves the same gas G. It can be a change in the liquid / gas phase of the gas G or a reversible adsorption of G by a microporous solid S 1 , or a reversible chemical reaction between a reactive solid S 1 and G, or an absorption of G by a solution S1, the sorbent S1 being different from S.
  • the cold production step of the device corresponds to the synthesis step in HT "Sorbent S" + BOY WUT ⁇ S sorbent + BOY WUT .
  • the regeneration step corresponds to the decomposition step in HT S sorbent + BOY WUT ⁇ "Sorbent S" + BOY WUT .
  • thermochemical phenomena currently used make it possible to produce cold at a negative temperature in BT, but they do not meet the above criteria with the aim of producing cold at very low temperatures (T F typically from -20 ° C to - 40 ° C) for applications for freezing and long-term storage of foodstuffs from a heat source whose thermal potential is of the order of 60 to 80 ° C, the heat sink generally consisting of the ambient environment being at a temperature TB of the order of 10 ° C to 25 ° C.
  • T F typically from -20 ° C to - 40 ° C
  • the heat sink generally consisting of the ambient environment being at a temperature TB of the order of 10 ° C to 25 ° C.
  • BT is the seat of a phase change L / G ammonia NH 3
  • HT is the seat "d" a chemical sorption of NH 3 by a reactive solid S: if S is BaCl 2 , it would be necessary to have a heat sink at 0 ° C for the BT reactor during the cold production step, whereas if S is CaCl 2 , would need a heat sink at -5 ° C, that is to say at a temperature much lower than To, during the regeneration step.
  • Solar energy or geothermal energy is an interesting source of heat, but it provides low temperature heat, which is generally not higher than 60-70 ° C if capture technology is used. inexpensive, such as planar sensors conventionally used for the production of domestic hot water. The use of these types of energy therefore does not achieve the goal.
  • the object of the present invention is therefore to provide a method and a device for the production of cold at a temperature Tf lower than -20 ° C, from a heat source at a temperature Th of the order of 60 -80 ° C and a heat sink at room temperature To of the order of 10 ° C to 25 ° C.
  • the dipoles therefore operate in phase opposition: one of the dipoles is in a gas absorption phase in the sorbent, while the other is in the gas desorption phase by the sorbent.
  • the different steps can be performed continuously or on demand.
  • the elements of the same dipole must be put in communication, so that thermochemical phenomena can occur.
  • the process can be carried out permanently if the heat at the temperature Th is permanently available, for example if it is geothermal energy.
  • the operation will be discontinuous if the heat source is not permanent, for example if it is solar energy whose availability varies during a day.
  • the coupling of the dipoles is effected thermally between the evaporator / condenser EC1 of the dipole D1 and the evaporator / condenser EC2 of the dipole D2, and the thermochemical phenomena are chosen such that, in this phase of coupling, T (EC1) ⁇ T (EC2) ⁇ T (R1) ⁇ T (R2).
  • G1 and G2 are different.
  • the thermal connection between EC1 and EC2 can be achieved for example by a heat transfer fluid loop, by a heat pipe or by a direct contact.
  • the method of this first embodiment is characterized in that, in the second step, the evaporators / condensers EC1 and EC2 are thermally bonded, and heat is simultaneously supplied at the temperature Th to the reactor R2 to cause the endothermic desorption of G2 in R2 and the exothermic condensation of G2 in EC2, the heat released in EC2 being transferred to the EC1 reactor, which causes endothermic evaporation of G1 in EC1 and concomitant exothermic absorption of G1 by S1 in R1.
  • the device produces cold at the temperature Tf during the cold generation step of the dipole D2 concomitant with the regeneration step of the auxiliary dipole D1.
  • cold can be produced at the temperature Ti lower than To in EC1 by the dipole D1, if the heat required during this step for the evaporation phase in EC1 is greater than the heat provided by the condensation phase in EC2.
  • the cold production method according to the first embodiment is illustrated on the Figures 1a and 1b , which represent the Clapeyron diagram respectively for the cold production stage ( Fig. 1a ), and for the regeneration stage ( Fig. 1b ).
  • the lines 0, 1, 2 and 3 represent the equilibrium curve respectively for the phase change L / G of the gas G1, the reversible phenomenon G1 + S1 ⁇ (G1, S1), the reversible phenomenon G2 + S2 ⁇ (G2 , S2) and the L / G phase change of the G2 gas.
  • each of the EC elements is an assembly comprising an evaporator E and a condenser C connected by a conduit allowing the passage of gas or liquid.
  • the elements involved in thermal coupling, ie E1 and C2 are thermally isolated from the ambient environment.
  • the two dipoles operate with the same gas G.
  • the dipoles D1 and D2 of the device according to the invention are coupled, during the regeneration phase of the dipole D1, by a link mass which allows the passage of gas between the reactor R1 of the dipole D1 and the reactor R2 of the dipole D2 on the one hand, between the evaporators / condensers EC1 and EC2 on the other hand.
  • the cold production method according to this second embodiment is characterized in that, at the beginning of the second step, the communication between EC2 and R2 is stopped, R1 and R2 are put in communication, and the heat at the temperature Th to the reactor R2, which causes the endothermic desorption of G by S2 in R2, cooling the reactor R1, which causes absorption of the gas G in R1. Cooling can be performed using cooling fluid circuits. The cooling can also be controlled by external conditions, for example by natural cooling at night, in the absence of sun.
  • EC1 and EC2 are placed in communication to convert G in liquid form from EC1 to EC2. This operation can be performed during an additional step. It may also be performed during the 1 st or the 2nd stage, if the device comprises an expansion valve on the conduit connecting EC1 and EC2.
  • the cold production method of this second embodiment is illustrated on the Figures 2a and 2b , which represent the Clapeyron diagram respectively for the cold production stage ( Fig. 2a ), and for the regeneration stage ( Fig. 2b ).
  • the lines 0, 1 and 2 represent the equilibrium curve respectively for the L / G phase change of the gas G, the reversible phenomenon G + S1 ⁇ (G, S1), and the reversible phenomenon G + S2 ⁇ (G, S2).
  • This example illustrates a device for the production of cold, in which the dipoles cooperate by a thermal connection.
  • Each of the elements EC is constituted by a condenser and an evaporator connected by a conduit allowing the passage of gas or liquid, and designated C1, C2, E1 and E2.
  • a schematic representation of the device is given on the figure 3 .
  • the dipole D1 comprises a reactor R1, a condenser C1 and an evaporator E1.
  • R1 and C1 are connected by a conduit provided with a valve 1.1, C1 and E1 are connected by a single conduit.
  • R1 is provided with heating means 2.1 and means 3.1 for evacuating heat.
  • C1 is provided with means 4.1 to evacuate condensation heat.
  • the dipole D2 comprises a reactor R2, a condenser C2 and an evaporator E2.
  • R2 and C2 are connected by a conduit provided with a valve 1.2, R2 and E2 are connected by a duct equipped with a valve 8.2, C2 and E2 are connected by a duct provided with an expansion valve 9.2.
  • R2 is provided with heating means 2.2 and means 3.2 for removing heat.
  • E2 is equipped with means 5.2 for taking heat from the medium to be cooled.
  • E1 and C2 are provided with means 6 allowing the exchange of heat between them and a device 7 which thermally isolates them from the environment.
  • R1 is the seat of a reversible chemical sorption of methylamine (gas G1) on CaCl 2 , 2 NH 2 CH 3 (the reactive solid S1), C1 and E1 being the seat of a phenomenon of condensation / evaporation of methylamine (the G1 gas).
  • R2 is the seat of a reversible chemical sorption of NH 3 (gas G2) on CaCl 2 , 4 NH 3 (the solid S 2), C2 and E2 being the seat of a phenomenon of condensation / evaporation of the NH 3 gas.
  • the parts of the device that are active during the cold production step are represented on the figure 4 .
  • the valves 1.1 and 1.2 are opened and the heat transfer means 6 are inactivated.
  • the opening of the valves 8.2 and 9.2 causes the spontaneous production of the gas G2 in E2, the transfer of G2 to R2 through the valve 8.2, which on the one hand causes the production of cold around E2 by the sampling means. 5.2 heat, and the synthesis in R2 with removal of heat formed to the atmosphere around R2 using means 3.2.
  • the heating means 2.1 provide R1 with heat which is at the temperature Th, which causes the production of G2 in G2, G2 passing in C1 connected thermally to the environment by means 4.1.
  • G2 condenses in C2 and goes into E1.
  • the parts of the device that are active during the regeneration step of the device are represented on the figure 5 .
  • the valves 1.1 and 1.2 remain open, R2 is supplied by the means 2.2 of the heat at the temperature Th, which releases the gas G2 which passes into the condenser C2 in which it condenses before passing simultaneously or later in the evaporator E2, depending on the state of the valve 9.2.
  • the heat generated by the condensation in C2 is transferred to E1 by the means 6.
  • This heat input in E1 causes an evaporation of G1 which is transferred via C1 and the valve 1.1 into R1 where it is absorbed by S1, the heat released by this absorption being transferred to the environment at the temperature To by the means 3.1.
  • the device is again ready to produce cold. If the production must be immediate, we repeat the first step. If the production has to be deferred, the device is maintained in the regenerated state by closing the valves 1.1, 1.2 and 8.2.
  • Such a device makes it possible to produce cold at an intermediate temperature Ti between To and Tf during the regeneration step of the device. For example, referring to the figure 9 If the heat supplied by EC2 by the condensation of NH 3 to EC1 for evaporation of CH 3 NH 2 is insufficient to release the entire NH 2 CH 3, heat is taken from the environment, which will produce cold at the temperature Ti close to 0 ° C.
  • This example illustrates a device for the production of cold, in which the dipoles cooperate by a mass bond.
  • EC1 and EC2 are respectively a condenser C1 and an evaporator E2.
  • a schematic representation of the device is given on the figure 6 .
  • the dipole D1 comprises the reactor R1 and the condenser C1 connected by a conduit provided with a valve 11.
  • R1 comprises means 21 for bringing the heat and means 31 for removing heat.
  • C1 comprises means 41 for removing heat.
  • the dipole D2 comprises the reactor R2 and the evaporator E2 connected by a conduit provided with a valve 12.
  • R2 comprises means 22 for supplying heat and means 32 for removing heat.
  • E2 comprises means 52 for supplying heat.
  • R1 and R2 are connected by a conduit which is placed before the valves 11 and 12, and which is provided with a valve 8.
  • C1 is connected by a conduit to a reservoir which is itself connected to E2 by a conduit provided with an expansion valve 9 which can for example be controlled and activated by a drop in liquid level or pressure prevailing in E2.
  • the active parts of the device during the cold production step are represented on the figure 7 .
  • the valve 8 is closed, the expansion valve 9 is activated according to the liquid filling or the pressure in E2, and the valves 11 and 12 are opened.
  • the opening of the valve 12 causes the exothermic evaporation of gas in E2 with production of cold, and the exothermic synthesis in R2, the heat being removed by 32.
  • R1 is supplied via 21 heat at the temperature Tf, which causes the release of gas in R1, the transfer of this gas to C in which it condenses, the heat of condensation being transferred to the environment by 41.
  • the condensed liquid in C is transferred into the tank 10.
  • step e regeneration The active parts of the device during step e regeneration are represented on the figure 8 .
  • the valves 11 and 12 are closed, the valve 8 is opened and the expansion valve 9 is closed, given that the pressure or the liquid level in E2 have not decreased.
  • a supply of heat at the temperature Tf to R2 via 22 causes a gas evolution in R2, the transfer of this gas to R1 via the valve 8, and the exothermic synthesis in R1, the heat released being eliminated via 31.
  • Such a device can be implemented using ammonia as gas G, CaCl 2 , NH 3 as solid S 2 in R 2 and BaCl 2 as solid S 1 in R 1.
  • Thermochemical phenomena are as follows: NH 3 (gas) ⁇ NH 3 (liquid) (CaCl 2 , 4 NH 3 ) + 4 NH 3 ⁇ (CaCl 2 , 8 NH 3 ) (BaCl 2 ) + 8 NH 3 ⁇ (BaCl 2 , 8 NH 3 )
  • the cold production step is represented by the positions 1 and 2 of the dipoles D1 and D2.
  • D2 is in the cold production phase, by taking heat from the medium to be cooled to a temperature Tf of the order of -30 ° C.
  • the step of regeneration of D2 is materialized by the position 3.
  • the supply of available heat at the temperature Th of the order of 70 ° C causes the decomposition of (CaCl 2 , 8.NH 3 ) by releasing NH 3 , which is transferred to R1 to cause synthesis of BaCl 2 , 8NH 3 .
  • the reactors R1 and R2 are in the state required for a regenerated device, and the opening of the valve 9 makes it possible to put C1 and E2 in the state required for complete regeneration of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Claims (7)

  1. Vorrichtung für die Erzeugung von Kälte in einer Temperatur Tf unter -20 °C auf der Basis einer Wärmequelle in einer Temperatur Th von zirka 60-80 °C und einer Wärmesenke in Raumtemperatur To von zirka 10 °C bis 25 °C, umfassend einen kälteproduzierenden Dipol D2 und einen Hilfsdipol D1, dadurch gekennzeichnet, dass:
    • die thermochemischen Phänomene im Dipol D2 derart sind, dass dieser Dipol Kälte in Tf mit einer Wärmesenke in Raumtemperatur To erzeugen kann,
    • die thermochemischen Phänomene im Dipol D1 derart sind, dass dieser Dipol auf der Basis der Wärmequelle Th und einer Wärmesenke in der Temperatur To regenerierbar ist,
    • D1 einen Verdampfer/Kondensator EC1 und einen Reaktor R1 umfasst, die mittels einer Leitung verbunden sind, welche den kontrollierten Durchgang von Gas erlaubt, und D2 einen Verdampfer/Kondensator EC2 und einen Reaktor R2 umfasst, die mittels einer Leitung verbunden sind, welche den kontrollierten Durchgang von Gas erlaubt,
    • EC1 ein Gas G1 enthält und R1 ein Sorptionsmittel S1 enthält, das imstande ist, einen reversiblen physikalisch-chemischen Prozess mit G1 zu bilden, und EC2 ein Gas G2 enthält und R2 ein Sorptionsmittel S2 enthält, das imstande ist, einen reversiblen physikalisch-chemischen Prozess mit G2 zu bilden,
    • die umgesetzten Gase und Sorptionsmittel derart ausgewählt sind, dass bei einem bestimmten Druck die Gleichgewichtstemperaturen der thermochemischen Phänomene in den Reaktoren und den Verdampfern/Kondensatoren derart sind, dass T(EC1 ) ≤ T(EC2) < T(R1) < T(R2),
    • die Dipole D1 und D2 mit Mitteln ausgestattet sind, die erlauben, sie untereinander thermisch zu koppeln, wenn G1 und G2 unterschiedlich sind, und auf dem Massenweg, wenn G1 und G2 identisch sind,
    • die thermochemischen Phänomene in den Verdampfern/Kondensatoren aus dem Phasenwechsel L/G des Ammoniaks (NH3), dem Phasenwechsel des Methylamins (NH2CH3) und dem Phasenwechsel von H2O ausgewählt sind,
    • die thermochemischen Phänomene in den Reaktoren aus den reversiblen chemischen Sorptionen von NH3 durch CaCl2, durch SrCl2 oder durch BaCl2 oder von NH2CH3 durch CaCl2, die Adsorption von Wasser durch Zeolith oder ein Silicagel, die Adsorption von Methanol oder von Ammoniak in Aktivkohle und die Absorption von NH3 in einer flüssigen Ammoniaklösung (NH3, H2O) ausgewählt sind.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass jeder der Verdampfer/Kondensatoren von einer Einheit gebildet ist, die einem Verdampfer E und einen Kondensator C umfasst, die mittels einer Leitung verbunden sind, welche den Durchgang von Gas oder von Flüssigkeit erlaubt.
  3. Verfahren für die Erzeugung von Kälte in einer Temperatur Tf unter -20 °C auf der Basis einer Wärmequelle in einer Temperatur Th von zirka 60-80 °C und einer Wärmesenke in Raumtemperatur To von zirka 10 °C bis 25 °C, dadurch gekennzeichnet, dass es darin besteht, die Vorrichtung nach Anspruch 1 auf der Basis eines Ausgangszustands zu betreiben, in welchem der Dipol D2 im regenerierten Zustand ist und der Dipol D1 zu regenerieren ist, wobei die zwei Elemente eines bestimmten Dipols voneinander isoliert sind, wobei das Verfahren eine Reihe aufeinanderfolgender Zyklen umfasst, die von einem Kälteerzeugungsschritt und einem Regenerationsschritt gebildet sind:
    - zu Beginn des ersten Schritts, welcher der Kälteerzeugungsschritt bei Tf ist, werden die beiden Elemente jeder der Dipole in Kommunikation versetzt, was die spontane endotherme Verdampfungsphase in EC2 (Kälteproduktion bei Tf) auslöst, die G2 in Form von Gas erzeugt, und den Transfer des freigesetzten Gases zu R2 zwecks exothermer Adsorption durch S2 in R2, und parallel wird Wärme in der Temperatur Th dem Reaktor R1 zugeführt, was die Desorption des Gases G1 durch S1 in R1 und die Kondensationsphase von G1 in EC1 auslöst,
    - während eines zweiten Schritts, welcher der Regenerationsschritt der Vorrichtung ist, wird Wärme in der Temperatur Th dem Reaktor R2 zugeführt, um die Desorption von G2 mit Hilfe des Sorptionsmittels S2 in R2 durchzuführen, und es wird von D2 zu D1 entweder Wärme, wenn G1 und G2 unterschiedlich sind, oder Gas, wenn G1 und G2 identisch sind, transferiert, um eine Gassorption mit Hilfe von S1 in R1 durchzuführen.
  4. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Kopplung der Dipole auf thermischem Weg zwischen dem Verdampfer/Kondensator EC1 des Dipols D1 und dem Verdampfer/Kondensator EC2 des Dipols D2 durchgeführt wird, G1 und G2 unterschiedlich sind und die thermochemischen Phänomene derart ausgewählt sind, dass in dieser Kopplungsphase T(EC1) < T(EC2) < T(R1) < T(R2).
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass während des zweiten Schritts die Verdampfer/Kondensatoren EC1 und EC2 thermisch verbunden sind und gleichzeitig Wärme in der Temperatur Th dem Reaktor R2 zugeführt wird, um die endotherme Desorption von G2 in R2 und die exotherme Kondensation von G2 in EC2 auszulösen, wobei die in EC2 freigesetzte Wärme zum Reaktor EC1 transferiert wird, was eine endotherme Verdampfung von G1 in EC1 und eine gleichzeitige exotherme Absorption von G1 mittels S1 in R1 auslöst.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Dipole D1 und D2 mit demselben Gas G arbeiten und während der Regenerationsphase des Dipols D1 mittels einer Massenverbindung gekoppelt sind, was das Passieren von Gas zwischen dem Reaktor R1 des Dipols D1 und dem Reaktor R2 des Dipols D2 zum einen, zwischen den Verdampfern/Kondensatoren EC1 und EC2 zum anderen erlaubt, wobei die thermochemischen Phänomene derart ausgewählt sind, dass T(EC1) = T(EC2) < T(R1) < T(R2).
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass zu Beginn des zweiten Schritts die Kommunikation zwischen EC2 und R2 und gestoppt wird und EC2 und R2 in Kommunikation versetzt werden, und gleichzeitig Wärme in der Temperatur Th dem Reaktor R2 zugeführt wird, was die endotherme Desorption von G in R2 auslöst und, bei Kühlung des Reaktors R1, was die Absorption des Gases G in R1 auslöst.
EP05814788.5A 2004-11-04 2005-11-04 Erzeugung von Tiefkühlung in einer thermochemischen Vorrichtung. Active EP1809955B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0411766A FR2877426B1 (fr) 2004-11-04 2004-11-04 Production de froid a tres basse temperature dans un dispositif thermochimique.
PCT/FR2005/002748 WO2006048558A1 (fr) 2004-11-04 2005-11-04 Production de froid a tres basse temperature dans un dispositif thermochimique.

Publications (2)

Publication Number Publication Date
EP1809955A1 EP1809955A1 (de) 2007-07-25
EP1809955B1 true EP1809955B1 (de) 2017-08-16

Family

ID=34953523

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05814788.5A Active EP1809955B1 (de) 2004-11-04 2005-11-04 Erzeugung von Tiefkühlung in einer thermochemischen Vorrichtung.

Country Status (6)

Country Link
US (1) US8327660B2 (de)
EP (1) EP1809955B1 (de)
JP (1) JP4889650B2 (de)
ES (1) ES2647901T3 (de)
FR (1) FR2877426B1 (de)
WO (1) WO2006048558A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2304341B1 (de) * 2008-06-19 2015-08-12 SorTech AG Verfahren zum ausführen einer wärmeübertragung zwischen alternierend arbeitenden adsorbern und vorrichtung
CN101818967B (zh) * 2010-05-20 2012-08-29 上海交通大学 热化学变温吸附冷热联供复合储能供能装置
GB201402059D0 (en) * 2014-02-06 2014-03-26 Univ Newcastle Energy Storage device
CN104132476B (zh) * 2014-07-18 2017-02-01 上海交通大学 低品位热能驱动高效吸湿‑热化学反应单级变温器
CN104110913B (zh) * 2014-07-18 2016-04-13 上海交通大学 低品位废热驱动高效吸湿-热化学反应双级变温器
FR3034179B1 (fr) * 2015-03-23 2018-11-02 Centre National De La Recherche Scientifique Dispositif solaire de production autonome de froid par sorption solide-gaz.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0131869B1 (de) * 1983-07-08 1988-09-28 Matsushita Electric Industrial Co., Ltd. Thermisches System basiert auf thermisch gekuppelten intermittierenden Absorptionswärmepumpenkreisläufen
FR2615602B1 (fr) * 1987-05-22 1989-08-04 Faiveley Ets Procede pour produire du froid par reaction solide-gaz et dispositif s'y rapportant
US5174367A (en) * 1989-03-13 1992-12-29 Sanyo Electric Co., Ltd. Thermal utilization system using hydrogen absorbing alloys
FR2653541B1 (fr) * 1989-10-24 1995-02-10 Elf Aquitaine Dispositifs pour produire du froid et/ou de la chaleur par reaction solide-gaz geres par caloducs gravitationnels.
US5351493A (en) * 1991-12-10 1994-10-04 Sanyo Electric Co., Ltd. Thermally driven refrigeration system utilizing metal hydrides
FR2726282B1 (fr) * 1994-10-28 1999-02-19 Elf Aquitaine Reactif pour systemes thermochimiques et systeme thermochimique destine a utiliser un tel reactif
FR2748093B1 (fr) * 1996-04-25 1998-06-12 Elf Aquitaine Dispositif thermochimique pour produire du froid et/ou de la chaleur
US8302425B2 (en) * 2004-05-11 2012-11-06 Cyclect Singapore Pte Ltd. Regenerative adsorption system with a spray nozzle for producing adsorbate vapor and condensing desorbed vapor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20090094996A1 (en) 2009-04-16
WO2006048558A1 (fr) 2006-05-11
ES2647901T3 (es) 2017-12-27
JP2008519239A (ja) 2008-06-05
EP1809955A1 (de) 2007-07-25
US8327660B2 (en) 2012-12-11
FR2877426B1 (fr) 2007-03-02
FR2877426A1 (fr) 2006-05-05
JP4889650B2 (ja) 2012-03-07

Similar Documents

Publication Publication Date Title
EP1809955B1 (de) Erzeugung von Tiefkühlung in einer thermochemischen Vorrichtung.
US4055962A (en) Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles
JPH06510595A (ja) 二重温度熱ポンプ装置およびシステム
CA2007451C (fr) Dispositif pour la production du froid et/ou de la chaleur par reaction solide-gaz
EP0425368B1 (de) Von Gravitationswärmerohren gesteuerte Vorrichtungen zur Erzeugung von Kälte und/oder Wärme mittels einer Reaktion zwischen einem festen Körper und einem Gas
JP2020090943A (ja) 太陽熱発電システム
WO2020021039A1 (fr) Cellule photovoltaïque à thermomanagement
EP1809956B1 (de) Erzeugung von tiefkühlung in einer thermochemischen vorrichtung
CA2161578C (fr) Reactif pour systemes thermochimiques et systeme thermochimique destine a utiliser un tel reactif
EP1432953B1 (de) Verfahren zur Erzeugung von Kälte oder Wärme unter Verwendung eines Sorptionssystems
EP1306526A1 (de) Kraftanlage mit einer wasserstoff speichernden legierung und einer mittel/niedertemperaturwärme
EP1831616B1 (de) Kälteerzeugung durch ein thermochemisches verfahren zur klimatisierung eines gebäudes
JP6061462B2 (ja) 化学蓄熱装置
USRE30840E (en) Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles
FR3004246A1 (fr) Systeme de stockage par voie thermochimique a efficacite de stockage amelioree
JPS5943720B2 (ja) 蓄熱および蓄熱取出方法
JPH06109388A (ja) ケミカル蓄熱方法及び装置
WO2004039488A2 (fr) Dispositif comportant un reacteur chimique et un transformateur thermochimique et procede d’utilisation du dit procede
FR2730299A1 (fr) Echangeur de chaleur diphasique a temperature controlee

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070516

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150319

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170323

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 919458

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005052560

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170816

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2647901

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 919458

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171116

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171117

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171216

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005052560

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

26N No opposition filed

Effective date: 20180517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171104

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20051104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231129

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231128

Year of fee payment: 19

Ref country code: FR

Payment date: 20231127

Year of fee payment: 19

Ref country code: DE

Payment date: 20231130

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240129

Year of fee payment: 19