EP1809955B1 - Production of very low-temperature refrigeration in a thermochemical device. - Google Patents

Production of very low-temperature refrigeration in a thermochemical device. Download PDF

Info

Publication number
EP1809955B1
EP1809955B1 EP05814788.5A EP05814788A EP1809955B1 EP 1809955 B1 EP1809955 B1 EP 1809955B1 EP 05814788 A EP05814788 A EP 05814788A EP 1809955 B1 EP1809955 B1 EP 1809955B1
Authority
EP
European Patent Office
Prior art keywords
dipole
gas
temperature
heat
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05814788.5A
Other languages
German (de)
French (fr)
Other versions
EP1809955A1 (en
Inventor
Nathalie Mazet
Driss Stitou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1809955A1 publication Critical patent/EP1809955A1/en
Application granted granted Critical
Publication of EP1809955B1 publication Critical patent/EP1809955B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • F25B17/083Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt with two or more boiler-sorbers operating alternately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/005Regeneration

Definitions

  • the present invention relates to a thermochemical device for the production of cold at very low temperature, as described by US5174367 and US5857346 .
  • a system constituted by a thermochemical dipole implementing two reversible thermochemical phenomena is a known means for producing cold.
  • the thermochemical dipole comprises a BT reactor, an HT reactor and means for exchanging a gas between BT and HT.
  • the two reactors are the seat of selected reversible thermochemical phenomena such that, at a given pressure in the dipole, the equilibrium temperature in BT is lower than the equilibrium temperature in HT.
  • the reversible phenomenon in the LV reactor involves the same gas G. It can be a change in the liquid / gas phase of the gas G or a reversible adsorption of G by a microporous solid S 1 , or a reversible chemical reaction between a reactive solid S 1 and G, or an absorption of G by a solution S1, the sorbent S1 being different from S.
  • the cold production step of the device corresponds to the synthesis step in HT "Sorbent S" + BOY WUT ⁇ S sorbent + BOY WUT .
  • the regeneration step corresponds to the decomposition step in HT S sorbent + BOY WUT ⁇ "Sorbent S" + BOY WUT .
  • thermochemical phenomena currently used make it possible to produce cold at a negative temperature in BT, but they do not meet the above criteria with the aim of producing cold at very low temperatures (T F typically from -20 ° C to - 40 ° C) for applications for freezing and long-term storage of foodstuffs from a heat source whose thermal potential is of the order of 60 to 80 ° C, the heat sink generally consisting of the ambient environment being at a temperature TB of the order of 10 ° C to 25 ° C.
  • T F typically from -20 ° C to - 40 ° C
  • the heat sink generally consisting of the ambient environment being at a temperature TB of the order of 10 ° C to 25 ° C.
  • BT is the seat of a phase change L / G ammonia NH 3
  • HT is the seat "d" a chemical sorption of NH 3 by a reactive solid S: if S is BaCl 2 , it would be necessary to have a heat sink at 0 ° C for the BT reactor during the cold production step, whereas if S is CaCl 2 , would need a heat sink at -5 ° C, that is to say at a temperature much lower than To, during the regeneration step.
  • Solar energy or geothermal energy is an interesting source of heat, but it provides low temperature heat, which is generally not higher than 60-70 ° C if capture technology is used. inexpensive, such as planar sensors conventionally used for the production of domestic hot water. The use of these types of energy therefore does not achieve the goal.
  • the object of the present invention is therefore to provide a method and a device for the production of cold at a temperature Tf lower than -20 ° C, from a heat source at a temperature Th of the order of 60 -80 ° C and a heat sink at room temperature To of the order of 10 ° C to 25 ° C.
  • the dipoles therefore operate in phase opposition: one of the dipoles is in a gas absorption phase in the sorbent, while the other is in the gas desorption phase by the sorbent.
  • the different steps can be performed continuously or on demand.
  • the elements of the same dipole must be put in communication, so that thermochemical phenomena can occur.
  • the process can be carried out permanently if the heat at the temperature Th is permanently available, for example if it is geothermal energy.
  • the operation will be discontinuous if the heat source is not permanent, for example if it is solar energy whose availability varies during a day.
  • the coupling of the dipoles is effected thermally between the evaporator / condenser EC1 of the dipole D1 and the evaporator / condenser EC2 of the dipole D2, and the thermochemical phenomena are chosen such that, in this phase of coupling, T (EC1) ⁇ T (EC2) ⁇ T (R1) ⁇ T (R2).
  • G1 and G2 are different.
  • the thermal connection between EC1 and EC2 can be achieved for example by a heat transfer fluid loop, by a heat pipe or by a direct contact.
  • the method of this first embodiment is characterized in that, in the second step, the evaporators / condensers EC1 and EC2 are thermally bonded, and heat is simultaneously supplied at the temperature Th to the reactor R2 to cause the endothermic desorption of G2 in R2 and the exothermic condensation of G2 in EC2, the heat released in EC2 being transferred to the EC1 reactor, which causes endothermic evaporation of G1 in EC1 and concomitant exothermic absorption of G1 by S1 in R1.
  • the device produces cold at the temperature Tf during the cold generation step of the dipole D2 concomitant with the regeneration step of the auxiliary dipole D1.
  • cold can be produced at the temperature Ti lower than To in EC1 by the dipole D1, if the heat required during this step for the evaporation phase in EC1 is greater than the heat provided by the condensation phase in EC2.
  • the cold production method according to the first embodiment is illustrated on the Figures 1a and 1b , which represent the Clapeyron diagram respectively for the cold production stage ( Fig. 1a ), and for the regeneration stage ( Fig. 1b ).
  • the lines 0, 1, 2 and 3 represent the equilibrium curve respectively for the phase change L / G of the gas G1, the reversible phenomenon G1 + S1 ⁇ (G1, S1), the reversible phenomenon G2 + S2 ⁇ (G2 , S2) and the L / G phase change of the G2 gas.
  • each of the EC elements is an assembly comprising an evaporator E and a condenser C connected by a conduit allowing the passage of gas or liquid.
  • the elements involved in thermal coupling, ie E1 and C2 are thermally isolated from the ambient environment.
  • the two dipoles operate with the same gas G.
  • the dipoles D1 and D2 of the device according to the invention are coupled, during the regeneration phase of the dipole D1, by a link mass which allows the passage of gas between the reactor R1 of the dipole D1 and the reactor R2 of the dipole D2 on the one hand, between the evaporators / condensers EC1 and EC2 on the other hand.
  • the cold production method according to this second embodiment is characterized in that, at the beginning of the second step, the communication between EC2 and R2 is stopped, R1 and R2 are put in communication, and the heat at the temperature Th to the reactor R2, which causes the endothermic desorption of G by S2 in R2, cooling the reactor R1, which causes absorption of the gas G in R1. Cooling can be performed using cooling fluid circuits. The cooling can also be controlled by external conditions, for example by natural cooling at night, in the absence of sun.
  • EC1 and EC2 are placed in communication to convert G in liquid form from EC1 to EC2. This operation can be performed during an additional step. It may also be performed during the 1 st or the 2nd stage, if the device comprises an expansion valve on the conduit connecting EC1 and EC2.
  • the cold production method of this second embodiment is illustrated on the Figures 2a and 2b , which represent the Clapeyron diagram respectively for the cold production stage ( Fig. 2a ), and for the regeneration stage ( Fig. 2b ).
  • the lines 0, 1 and 2 represent the equilibrium curve respectively for the L / G phase change of the gas G, the reversible phenomenon G + S1 ⁇ (G, S1), and the reversible phenomenon G + S2 ⁇ (G, S2).
  • This example illustrates a device for the production of cold, in which the dipoles cooperate by a thermal connection.
  • Each of the elements EC is constituted by a condenser and an evaporator connected by a conduit allowing the passage of gas or liquid, and designated C1, C2, E1 and E2.
  • a schematic representation of the device is given on the figure 3 .
  • the dipole D1 comprises a reactor R1, a condenser C1 and an evaporator E1.
  • R1 and C1 are connected by a conduit provided with a valve 1.1, C1 and E1 are connected by a single conduit.
  • R1 is provided with heating means 2.1 and means 3.1 for evacuating heat.
  • C1 is provided with means 4.1 to evacuate condensation heat.
  • the dipole D2 comprises a reactor R2, a condenser C2 and an evaporator E2.
  • R2 and C2 are connected by a conduit provided with a valve 1.2, R2 and E2 are connected by a duct equipped with a valve 8.2, C2 and E2 are connected by a duct provided with an expansion valve 9.2.
  • R2 is provided with heating means 2.2 and means 3.2 for removing heat.
  • E2 is equipped with means 5.2 for taking heat from the medium to be cooled.
  • E1 and C2 are provided with means 6 allowing the exchange of heat between them and a device 7 which thermally isolates them from the environment.
  • R1 is the seat of a reversible chemical sorption of methylamine (gas G1) on CaCl 2 , 2 NH 2 CH 3 (the reactive solid S1), C1 and E1 being the seat of a phenomenon of condensation / evaporation of methylamine (the G1 gas).
  • R2 is the seat of a reversible chemical sorption of NH 3 (gas G2) on CaCl 2 , 4 NH 3 (the solid S 2), C2 and E2 being the seat of a phenomenon of condensation / evaporation of the NH 3 gas.
  • the parts of the device that are active during the cold production step are represented on the figure 4 .
  • the valves 1.1 and 1.2 are opened and the heat transfer means 6 are inactivated.
  • the opening of the valves 8.2 and 9.2 causes the spontaneous production of the gas G2 in E2, the transfer of G2 to R2 through the valve 8.2, which on the one hand causes the production of cold around E2 by the sampling means. 5.2 heat, and the synthesis in R2 with removal of heat formed to the atmosphere around R2 using means 3.2.
  • the heating means 2.1 provide R1 with heat which is at the temperature Th, which causes the production of G2 in G2, G2 passing in C1 connected thermally to the environment by means 4.1.
  • G2 condenses in C2 and goes into E1.
  • the parts of the device that are active during the regeneration step of the device are represented on the figure 5 .
  • the valves 1.1 and 1.2 remain open, R2 is supplied by the means 2.2 of the heat at the temperature Th, which releases the gas G2 which passes into the condenser C2 in which it condenses before passing simultaneously or later in the evaporator E2, depending on the state of the valve 9.2.
  • the heat generated by the condensation in C2 is transferred to E1 by the means 6.
  • This heat input in E1 causes an evaporation of G1 which is transferred via C1 and the valve 1.1 into R1 where it is absorbed by S1, the heat released by this absorption being transferred to the environment at the temperature To by the means 3.1.
  • the device is again ready to produce cold. If the production must be immediate, we repeat the first step. If the production has to be deferred, the device is maintained in the regenerated state by closing the valves 1.1, 1.2 and 8.2.
  • Such a device makes it possible to produce cold at an intermediate temperature Ti between To and Tf during the regeneration step of the device. For example, referring to the figure 9 If the heat supplied by EC2 by the condensation of NH 3 to EC1 for evaporation of CH 3 NH 2 is insufficient to release the entire NH 2 CH 3, heat is taken from the environment, which will produce cold at the temperature Ti close to 0 ° C.
  • This example illustrates a device for the production of cold, in which the dipoles cooperate by a mass bond.
  • EC1 and EC2 are respectively a condenser C1 and an evaporator E2.
  • a schematic representation of the device is given on the figure 6 .
  • the dipole D1 comprises the reactor R1 and the condenser C1 connected by a conduit provided with a valve 11.
  • R1 comprises means 21 for bringing the heat and means 31 for removing heat.
  • C1 comprises means 41 for removing heat.
  • the dipole D2 comprises the reactor R2 and the evaporator E2 connected by a conduit provided with a valve 12.
  • R2 comprises means 22 for supplying heat and means 32 for removing heat.
  • E2 comprises means 52 for supplying heat.
  • R1 and R2 are connected by a conduit which is placed before the valves 11 and 12, and which is provided with a valve 8.
  • C1 is connected by a conduit to a reservoir which is itself connected to E2 by a conduit provided with an expansion valve 9 which can for example be controlled and activated by a drop in liquid level or pressure prevailing in E2.
  • the active parts of the device during the cold production step are represented on the figure 7 .
  • the valve 8 is closed, the expansion valve 9 is activated according to the liquid filling or the pressure in E2, and the valves 11 and 12 are opened.
  • the opening of the valve 12 causes the exothermic evaporation of gas in E2 with production of cold, and the exothermic synthesis in R2, the heat being removed by 32.
  • R1 is supplied via 21 heat at the temperature Tf, which causes the release of gas in R1, the transfer of this gas to C in which it condenses, the heat of condensation being transferred to the environment by 41.
  • the condensed liquid in C is transferred into the tank 10.
  • step e regeneration The active parts of the device during step e regeneration are represented on the figure 8 .
  • the valves 11 and 12 are closed, the valve 8 is opened and the expansion valve 9 is closed, given that the pressure or the liquid level in E2 have not decreased.
  • a supply of heat at the temperature Tf to R2 via 22 causes a gas evolution in R2, the transfer of this gas to R1 via the valve 8, and the exothermic synthesis in R1, the heat released being eliminated via 31.
  • Such a device can be implemented using ammonia as gas G, CaCl 2 , NH 3 as solid S 2 in R 2 and BaCl 2 as solid S 1 in R 1.
  • Thermochemical phenomena are as follows: NH 3 (gas) ⁇ NH 3 (liquid) (CaCl 2 , 4 NH 3 ) + 4 NH 3 ⁇ (CaCl 2 , 8 NH 3 ) (BaCl 2 ) + 8 NH 3 ⁇ (BaCl 2 , 8 NH 3 )
  • the cold production step is represented by the positions 1 and 2 of the dipoles D1 and D2.
  • D2 is in the cold production phase, by taking heat from the medium to be cooled to a temperature Tf of the order of -30 ° C.
  • the step of regeneration of D2 is materialized by the position 3.
  • the supply of available heat at the temperature Th of the order of 70 ° C causes the decomposition of (CaCl 2 , 8.NH 3 ) by releasing NH 3 , which is transferred to R1 to cause synthesis of BaCl 2 , 8NH 3 .
  • the reactors R1 and R2 are in the state required for a regenerated device, and the opening of the valve 9 makes it possible to put C1 and E2 in the state required for complete regeneration of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

La présente invention concerne un dispositif thermochimique pour la production de froid à très basse température, comme décrit par US5174367 et US5857346 . Un système constitué par un dipôle thermochimique mettant en oeuvre deux phénomènes thermochimiques renversables est un moyen connu pour produire du froid. Le dipôle thermochimique comprend un réacteur BT, un réacteur HT et des moyens pour échanger un gaz entre BT et HT. Les deux réacteurs sont le siège de phénomènes thermochimiques renversables choisis tels que, à une pression donnée dans le dipôle, la température d'équilibre dans BT est inférieure à la température d'équilibre dans HT.The present invention relates to a thermochemical device for the production of cold at very low temperature, as described by US5174367 and US5857346 . A system constituted by a thermochemical dipole implementing two reversible thermochemical phenomena is a known means for producing cold. The thermochemical dipole comprises a BT reactor, an HT reactor and means for exchanging a gas between BT and HT. The two reactors are the seat of selected reversible thermochemical phenomena such that, at a given pressure in the dipole, the equilibrium temperature in BT is lower than the equilibrium temperature in HT.

Le phénomène renversable dans le réacteur HT met en jeu un sorbant S et un gaz G et peut être :

  • une adsorption renversable de G par un solide microporeux S ;
  • une réaction chimique renversable entre un solide réactif S et G ;
  • une absorption de G par une solution saline ou binaire S selon le schéma ʺsorbant Sʺ + ʺGʺ ⇆ ʺsorbant S + .
    Figure imgb0001
The reversible phenomenon in the HT reactor involves an S sorbent and a G gas and can be:
  • reversible adsorption of G by a microporous solid S;
  • a reversible chemical reaction between a solid reagent S and G;
  • absorption of G by saline or binary S according to the scheme "Sorbent S" + "G" S "sorbent + BOY WUT .
    Figure imgb0001

Le phénomène renversable dans le réacteur BT met en jeu le même gaz G. Il peut être un changement de phase liquide /gaz du gaz G ou une adsorption renversable de G par un solide microporeux S1, ou une réaction chimique renversable entre un solide réactif S1 et de G, ou une absorption de G par un solution S1, le sorbant S1 étant différent de S. L'étape de production de froid du dispositif correspond à l'étape de synthèse dans HT ʺsorbant Sʺ + ʺGʺ ʺsorbant S + .

Figure imgb0002
L'étape de régénération correspond à l'étape de décomposition dans HT ʺsorbant S + ʺsorbant Sʺ + ʺGʺ .
Figure imgb0003
The reversible phenomenon in the LV reactor involves the same gas G. It can be a change in the liquid / gas phase of the gas G or a reversible adsorption of G by a microporous solid S 1 , or a reversible chemical reaction between a reactive solid S 1 and G, or an absorption of G by a solution S1, the sorbent S1 being different from S. The cold production step of the device corresponds to the synthesis step in HT "Sorbent S" + BOY WUT S sorbent + BOY WUT .
Figure imgb0002
The regeneration step corresponds to the decomposition step in HT S sorbent + BOY WUT "Sorbent S" + BOY WUT .
Figure imgb0003

La production de froid à une température TF dans un dipôle (BT,HT) à partir d'une source de chaleur à la température Tc et d'un puits thermique à la température To, implique que le phénomène thermochimique dans BT et le phénomène thermochimique dans HT sont tels que :

  • au cours de l'étape de production de froid par le dipôle, la consommation exothermique de gaz dans HT a lieu à une température proche de et supérieure à To, qui créé dans le dipôle une pression telle que la température d'équilibre dans le réacteur BT est proche de et inférieure à TF.
  • au cours de l'étape de régénération du dipôle, la libération endothermique de gaz dans HT est effectuée à la température Tc qui crée dans le dipôle une pression telle que la température à laquelle s'effectue la consommation exothermique de gaz dans BT est proche de et supérieure à To.
The production of cold at a temperature T F in a dipole (BT, HT) from a heat source at the temperature T c and a thermal sink at the temperature To, implies that the thermochemical phenomenon in BT and the Thermochemical phenomenon in HT are such that:
  • during the step of producing cold by the dipole, the exothermic consumption of gas in HT takes place at a temperature close to and greater than To, which creates in the dipole a pressure such that the equilibrium temperature in the reactor BT is close to and lower than T F.
  • during the regeneration step of the dipole, the endothermic release of gas in HT is carried out at the temperature Tc which creates in the dipole a pressure such that the temperature at which the exothermic consumption of gas in BT occurs is close to and greater than To.

Les phénomènes thermochimiques actuellement utilisés permettent de produire du froid à une température négative dans BT, mais ils ne répondent pas aux critères ci-dessus dans l'objectif de produire du froid à très basse température (TF typiquement de -20°C à -40°C) pour des applications de congélation et de conservation longue durée de denrées à partir d'une source de chaleur dont le potentiel thermique est de l'ordre de 60 à 80°C, le puits thermique constitué généralement par le milieu ambiant étant à une température To de l'ordre de 10°C à 25°C. Soit ces phénomènes nécessitent lors de la régénération une température Tc nettement supérieure à 70°C pour fonctionner avec un puits thermique à la température ambiante To, soit ils nécessitent un puits thermique à une température inférieure à To si l'on utilise une source de chaleur à Tc = 60-80°C.The thermochemical phenomena currently used make it possible to produce cold at a negative temperature in BT, but they do not meet the above criteria with the aim of producing cold at very low temperatures (T F typically from -20 ° C to - 40 ° C) for applications for freezing and long-term storage of foodstuffs from a heat source whose thermal potential is of the order of 60 to 80 ° C, the heat sink generally consisting of the ambient environment being at a temperature TB of the order of 10 ° C to 25 ° C. Either these phenomena require during regeneration a Tc temperature well above 70 ° C to operate with a heat sink at room temperature To, or they require a heat sink at a temperature lower than To if a heat source is used at Tc = 60-80 ° C.

Par exemple, pour produire du froid à -30°C en utilisant une source chaude à 70°C, si BT est le siège d'un changement de phase L/G d'ammoniac NH3, et HT est le siège "d'une sorption chimique de NH3 par un solide réactif S : si S est BaCl2, il faudrait un puits thermique à 0°C pour le réacteur BT lors de l'étape de production de froid, alors que si S est CaCl2, il faudrait un puits thermique à -5°C, c'est-à-dire à une température très inférieure à To, lors de l'étape de régénération.For example, to produce cold at -30 ° C using a hot source at 70 ° C, if BT is the seat of a phase change L / G ammonia NH 3 , and HT is the seat "d" a chemical sorption of NH 3 by a reactive solid S: if S is BaCl 2 , it would be necessary to have a heat sink at 0 ° C for the BT reactor during the cold production step, whereas if S is CaCl 2 , would need a heat sink at -5 ° C, that is to say at a temperature much lower than To, during the regeneration step.

L'énergie solaire ou l'énergie géothermique sont des sources de chaleur intéressantes, mais elles fournissent de la chaleur à bas niveau de température qui n'est en général pas supérieure à 60-70°C si l'on utilise une technologie de captation peu coûteuse, comme par exemple des capteurs plans classiquement utilisés pour la production d'eau chaude sanitaire. L'utilisation de ces types d'énergie ne permet par conséquent pas d'atteindre le but visé.Solar energy or geothermal energy is an interesting source of heat, but it provides low temperature heat, which is generally not higher than 60-70 ° C if capture technology is used. inexpensive, such as planar sensors conventionally used for the production of domestic hot water. The use of these types of energy therefore does not achieve the goal.

Les inventeurs ont maintenant trouvé qu'il était possible de produire du froid à une température Tf inférieure à -20°C à partir d'une source de chaleur à une température Th entre 60 et 80°C et d'un puits thermique à la température ambiante To variant de 10°C à 25°C, en associant deux dipôles D1 et D2 de sorte que :

  • le dipôle D2 fonctionne avec des phénomènes thermochimiques capables de produire du froid à une température Tf inférieure à -20°C avec un puits thermique à To, mais qui nécessiterait pour sa régénération une source chaleur à une température supérieure à la température Th avec un puits thermique à To ;
  • le dipôle D1 fonctionne avec des phénomènes thermochimiques régénérables à partir d'une source de chaleur disponible à la température Th et d'un puits thermique à la température To.
The inventors have now found that it is possible to produce cold at a temperature Tf lower than -20 ° C from a heat source at a temperature Th between 60 and 80 ° C and a heat sink at the room temperature To ranging from 10 ° C to 25 ° C, by associating two dipoles D1 and D2 so that:
  • the dipole D2 operates with thermochemical phenomena capable of producing cold at a temperature Tf lower than -20 ° C with a thermal well at To, but which would require for its regeneration a heat source at a temperature above the temperature Th with a well thermal to To;
  • the dipole D1 operates with regenerable thermochemical phenomena from a heat source available at the temperature Th and a heat sink at the temperature To.

Le but de la présente invention est par conséquent de fournir un procédé et un dispositif pour la production de froid à une température Tf inférieure à -20°C, à partir d'une source de chaleur à une température Th de l'ordre de 60-80°C et d'un puits thermique à la température ambiante To de l'ordre de 10°C à 25°C.The object of the present invention is therefore to provide a method and a device for the production of cold at a temperature Tf lower than -20 ° C, from a heat source at a temperature Th of the order of 60 -80 ° C and a heat sink at room temperature To of the order of 10 ° C to 25 ° C.

Le dispositif pour la production de froid selon la présente invention comprend un dipôle D2 producteur de froid et un dipôle auxiliaire D1, et il est caractérisé en ce que :

  • les phénomènes thermochimiques dans le dipôle D2 sont tels que ce dipôle peut produire du froid à Tf avec un puits thermique à la température ambiante To ;
  • les phénomènes thermochimiques dans le dipôle D1 sont tels que ce dipôle peut être régénéré à partir de la source de chaleur Th et un puits thermique à la température To ;
  • D1 comprend un évaporateur/condenseur EC1 et un réacteur R1 reliés par un conduit permettant le passage contrôlé de gaz, et D2 comprend un évaporateur/condenseur EC2 et un réacteur R2 relié par un conduit permettant le passage contrôlé de gaz ;
  • EC1 contient un gaz G1 et R1 contient un sorbant S1 capable de former un processus physico-chimique renversable avec G1, et EC2 contient un gaz G2 et R2 contient un sorbant S2 capable de former un processus physico-chimique renversable avec G2;
  • Les dipôles D1 et D2 sont munis de moyens permettant de les coupler entre eux par voie thermique lorsque G1 et G2 sont différents et par voie massique lorsque G1 et G2 sont identiques ;
  • les gaz et les sorbants mis en oeuvre sont choisis de manière que, lorsque les dipôles sont couplés, les températures d'équilibre des phénomènes thermochimiques dans les réacteurs et les évaporateurs/condenseurs sont telles que T (EC1) ≤ T(EC2) < T(R1) < T(R2) ; les phénomènes thermochimiques sont choisis parmi le changement de phase L/G de l'ammoniac (NH3), de la méthylamine (NH2CH3) ou de H2O dans les évaporateurs/ condenseurs, et pour les réacteurs, on choisi entre
    • une sorption chimique renversable de NH3 par SrCl2 ou par BaCl2, ou de NH2CH3 par CaCl2 ;
    • une adsorption d'eau par la zéolithe ou un silicagel ;
    • l'adsorption de méthanol (MeOH) ou de l'ammoniac dans du charbon actif ;
    • l'absorption de NH3 dans une solution liquide d'ammoniaque (NH3,H2O). Dans la suite du texte, l'expression "les éléments" d'un dipôle sera utilisée pour désigner simultanément le réacteur et l'évaporateur/condenseur du dipôle. Le procédé de production de froid à la température Tf à partir d'une source de chaleur à la température Th et d'un puits thermique à la température ambiante To consiste à faire fonctionner le dispositif selon l'invention à partir d'un état initial dans lequel le dipôle D2 est à l'état régénéré, et le dipôle D1 est à régénérer, les deux éléments d'un dipôle donné étant isolés l'un de l'autre, ledit procédé comprenant une série de cycles successifs constitués par une étape de production de froid et une étape de régénération :
    • au début de la première étape, qui est l'étape de production de froid à Tf, on met les deux éléments de chacun des dipôles en communication, ce qui provoque la phase d'évaporation endothermique spontanée dans EC2 (productrice de froid à Tf) qui produit G2 sous forme de gaz, et le transfert du gaz libéré vers R2 pour son adsorption exothermique par S2 dans R2, et parallèlement on apporte de la chaleur à la température Th au réacteur R1, ce qui provoque la désorption du gaz G1 par S1 dans R1 et la phase de condensation de G1 dans EC1 ;
    • au cours d'une deuxième étape, qui est l'étape de régénération du dispositif, on apporte de la chaleur à la température Th au réacteur R2 pour réaliser la désorption de G2 par le sorbant S2 dans R2, et on transfère de D2 vers D1 soit de la chaleur lorsque G1 et G2 sont différents, soit du gaz si G1 et G2 sont identiques, pour réaliser une sorption de gaz par S1 dans R1.
The cold generating device according to the present invention comprises a cold generating dipole D2 and an auxiliary dipole D1, and is characterized in that:
  • the thermochemical phenomena in the dipole D2 are such that this dipole can produce cold at Tf with a heat sink at room temperature To;
  • the thermochemical phenomena in the dipole D1 are such that this dipole can be regenerated from the heat source Th and a heat sink at the temperature To;
  • D1 comprises an evaporator / condenser EC1 and a reactor R1 connected by a conduit allowing the controlled passage of gas, and D2 comprises an evaporator / condenser EC2 and a reactor R2 connected by a conduit for the controlled passage of gas;
  • EC1 contains a gas G1 and R1 contains a sorbent S1 capable of forming a reversible physico-chemical process with G1, and EC2 contains a gas G2 and R2 contains a sorbent S2 capable of forming a reversible physico-chemical process with G2;
  • D1 and D2 dipoles are provided with means for coupling them thermally between them when G1 and G2 are different and mass when G1 and G2 are identical;
  • the gases and sorbents used are chosen so that, when the dipoles are coupled, the equilibrium temperatures of the thermochemical phenomena in the reactors and the evaporators / condensers are such that T (EC1) ≤ T (EC2) <T (R1) <T (R2); the thermochemical phenomena are chosen from the L / G phase change of ammonia (NH 3 ), of methylamine (NH 2 CH 3 ) or of H 2 O in the evaporators / condensers, and for the reactors, one chooses between
    • reversible chemical sorption of NH 3 by SrCl 2 or BaCl 2 , or of NH 2 CH 3 by CaCl 2 ;
    • water adsorption by zeolite or silica gel;
    • the adsorption of methanol (MeOH) or ammonia in activated carbon;
    • the absorption of NH 3 in a liquid solution of ammonia (NH 3 , H 2 O). In the rest of the text, the expression "the elements" of a dipole will be used to designate simultaneously the reactor and the evaporator / condenser of the dipole. The method for producing cold at temperature Tf from a heat source at temperature Th and a heat sink at ambient temperature To consists of operating the device according to the invention from an initial state. in which the dipole D2 is in the regenerated state, and the dipole D1 is to be regenerated, the two elements of a given dipole being isolated from one another, said method comprising a series of successive cycles constituted by a step of cold production and a regeneration step:
    • at the beginning of the first step, which is the cold production step at Tf, the two elements of each of the dipoles are brought into communication, which causes the spontaneous endothermic evaporation phase in EC2 (cold producer at Tf) which produces G2 in the form of gas, and the transfer of the liberated gas to R2 for its exothermic adsorption by S2 in R2, and at the same time heat is supplied at the temperature Th to the reactor R1, which causes the desorption of the gas G1 by S1 in R1 and the condensation phase of G1 in EC1;
    • during a second step, which is the regeneration step of the device, heat is supplied at the temperature Th to the reactor R2 to achieve the desorption of G2 by the sorbent S2 in R2, and is transferred from D2 to D1 either heat when G1 and G2 are different, or gas if G1 and G2 are identical, to perform gas sorption by S1 in R1.

Dans ce procédé, les dipôles fonctionnent donc en opposition de phase : l'un des dipôles est dans une phase d'absorption de gaz dans le sorbant, tandis que l'autre est en phase de désorption de gaz par le sorbant.In this process, the dipoles therefore operate in phase opposition: one of the dipoles is in a gas absorption phase in the sorbent, while the other is in the gas desorption phase by the sorbent.

Les différentes étapes peuvent être effectuées en continu ou à la demande. Au début d'une étape, les éléments d'un même dipôle doivent être mis en communication, pour que les phénomènes thermochimiques puissent se produire. Pour faire fonctionner le dispositif en continu, il suffit d'apporter à la fin d'une étape, la quantité de chaleur appropriée au réacteur approprié pour démarrer l'étape suivante. Si le dispositif est destiné à fonctionner de manière discontinue, il suffit d'isoler les éléments de chaque dipôle par les moyens d'isolement, à la fin d'une étape de production de froid ou d'une étape de régénération.The different steps can be performed continuously or on demand. At the beginning of a step, the elements of the same dipole must be put in communication, so that thermochemical phenomena can occur. For to operate the device continuously, it is sufficient to bring to the end of a step, the amount of heat appropriate to the appropriate reactor to start the next step. If the device is intended to operate discontinuously, it suffices to isolate the elements of each dipole by the isolation means at the end of a cold production step or a regeneration step.

Le procédé peut être mis en oeuvre de manière permanente si la chaleur à la température Th est disponible de manière permanente, par exemple s'il s'agit d'énergie géothermique. Le fonctionnement sera discontinu si la source de chaleur n'est pas permanente, par exemple s'il s'agit d'énergie solaire dont la disponibilité varie au cours d'une journée.The process can be carried out permanently if the heat at the temperature Th is permanently available, for example if it is geothermal energy. The operation will be discontinuous if the heat source is not permanent, for example if it is solar energy whose availability varies during a day.

Dans un premier mode de réalisation, le couplage des dipôles est effectué par voie thermique entre l'évaporateur/ condenseur EC1 du dipôle D1 et l'évaporateur/condenseur EC2 du dipôle D2, et les phénomènes thermochimiques sont choisis tels que, dans cette phase de couplage, T(EC1) < T(EC2) < T(R1) < T(R2). Dans ce cas, G1 et G2 sont différents.In a first embodiment, the coupling of the dipoles is effected thermally between the evaporator / condenser EC1 of the dipole D1 and the evaporator / condenser EC2 of the dipole D2, and the thermochemical phenomena are chosen such that, in this phase of coupling, T (EC1) <T (EC2) <T (R1) <T (R2). In this case, G1 and G2 are different.

La liaison thermique entre EC1 et EC2 peut être réalisée par exemple par une boucle de fluide caloporteur, par un caloduc ou par un contact direct.The thermal connection between EC1 and EC2 can be achieved for example by a heat transfer fluid loop, by a heat pipe or by a direct contact.

Le procédé de ce premier mode de réalisation est caractérisé en ce que, au cours de la seconde étape, on met les évaporateurs/condenseurs EC1 et EC2 en liaison thermique, et on apporte simultanément de la chaleur à la température Th au réacteur R2 pour provoquer la désorption endothermique de G2 dans R2 et la condensation exothermique de G2 dans EC2, la chaleur libérée dans EC2 étant transférée vers le réacteur EC1, ce qui provoque une évaporation endothermique de G1 dans EC1 et une absorption exothermique concomitante de G1 par S1 dans R1.The method of this first embodiment is characterized in that, in the second step, the evaporators / condensers EC1 and EC2 are thermally bonded, and heat is simultaneously supplied at the temperature Th to the reactor R2 to cause the endothermic desorption of G2 in R2 and the exothermic condensation of G2 in EC2, the heat released in EC2 being transferred to the EC1 reactor, which causes endothermic evaporation of G1 in EC1 and concomitant exothermic absorption of G1 by S1 in R1.

Dans ce mode de réalisation, le dispositif produit du froid à la température Tf lors de l'étape de production de froid du dipôle D2 concomitante à l'étape de régénération du dipôle auxiliaire D1.In this embodiment, the device produces cold at the temperature Tf during the cold generation step of the dipole D2 concomitant with the regeneration step of the auxiliary dipole D1.

Lors de l'étape de régénération du dipôle D2, du froid peut être produit à la température Ti inférieure à To dans EC1 par le dipôle D1, si la chaleur requise lors de cette étape pour la phase d'évaporation dans EC1 est supérieure à la chaleur fournie par la phase de condensation dans EC2.During the step of regeneration of the dipole D2, cold can be produced at the temperature Ti lower than To in EC1 by the dipole D1, if the heat required during this step for the evaporation phase in EC1 is greater than the heat provided by the condensation phase in EC2.

Le procédé de production de froid selon le premier mode de réalisation est illustré sur les figures 1a et 1b, qui représentent le diagramme de Clapeyron respectivement pour l'étape de production de froid (Fig. 1a), et pour l'étape de régénération (fig. 1b). Les droites 0, 1, 2 et 3 représentent la courbe d'équilibre respectivement pour le changement de phase L/G du gaz G1, le phénomène renversable G1 + S1 ⇆ (G1,S1), le phénomène renversable G2 + S2 ⇆ (G2,S2) et le changement de phase L/G du gaz G2.The cold production method according to the first embodiment is illustrated on the Figures 1a and 1b , which represent the Clapeyron diagram respectively for the cold production stage ( Fig. 1a ), and for the regeneration stage ( Fig. 1b ). The lines 0, 1, 2 and 3 represent the equilibrium curve respectively for the phase change L / G of the gas G1, the reversible phenomenon G1 + S1 ⇆ (G1, S1), the reversible phenomenon G2 + S2 ⇆ (G2 , S2) and the L / G phase change of the G2 gas.

Au cours de l'étape de production de froid, l'évaporation de G2 dans EC2 (point E2 de la droite 3) en prélevant de la chaleur au milieu ambiant à refroidir à Tf, et produit donc du froid à cette température. G2 gazeux ainsi produit se transfère dans R2 pour être absorbé par S2 en libérant de la chaleur à une température au-dessus de l'ambiante To (point R2S de la droite 2). Parallèlement, un apport à R1 de chaleur à la température Th (point R1D de la courbe 1) provoque la libération de G1 qui est transféré dans EC1 pour la condensation de G1 (point C1 de la courbe 0), libérant de la chaleur dans l'environnement à To.During the cold production step, the evaporation of G2 in EC2 (point E2 of line 3) by taking heat from the ambient environment to be cooled to Tf, and therefore produces cold at this temperature. G2 gas thus produced is transferred into R2 to be absorbed by S2 by releasing heat at a temperature above the ambient To (point R 2S of line 2). In parallel, a contribution to R1 of heat at the temperature Th (point R 1D of the curve 1) causes the release of G1 which is transferred in EC1 for the condensation of G1 (point C 1 of the curve 0), releasing heat in the environment at To.

Au cours de l'étape de régénération du dipôle D2, qui correspond à l'étape de régénération du dispositif, de la chaleur à la température Th est apportée à R2 (point RD2 de la droite 2) ce qui libère G2 gazeux qui va se condenser dans EC2 (point C2 de la droite 3) en libérant de la chaleur à la température Ti, ladite chaleur étant transférée vers EC1 pour y déclencher la libération de gaz G1 (point E1 de la courbe 0), ledit gaz G1 passant dans R1 pour l'étape de synthèse (point R1S de la courbe 1). Si la chaleur fournie par EC2 à EC1 est insuffisante pour libération la totalité du gaz dans EC1, de la chaleur est prélevé sur l'environnement, ce qui produira du froid à la température Ti inférieure à la température ambiante.During the step of regeneration of the dipole D2, which corresponds to the regeneration step of the device, heat at the temperature Th is brought to R2 (point R D2 of the line 2) which releases G2 gas which will condense in EC2 (point C 2 of line 3) by releasing heat at temperature Ti, said heat being transferred to EC1 to trigger the release of gas G1 (point E 1 of curve 0), said gas G1 passing in R1 for the synthesis step (point R 1S of curve 1). If the heat supplied by EC2 to EC1 is insufficient to release all of the gas in EC1, heat is taken from the environment, which will produce cold at the Ti temperature below room temperature.

Dans une forme préférée du premier mode de réalisation, chacun des éléments EC est constitué un ensemble comprenant un évaporateur E et un condenseur C reliés par un conduit permettant le passage de gaz ou de liquide. De plus, afin de limiter les pertes thermiques et d'améliorer l'efficacité de la régénération du dipôle D1, les éléments impliqués dans le 5 couplage thermique, c'est-à-dire E1 et C2, sont isolés thermiquement du milieu ambiant.In a preferred form of the first embodiment, each of the EC elements is an assembly comprising an evaporator E and a condenser C connected by a conduit allowing the passage of gas or liquid. In addition, in order to limit thermal losses and to improve the efficiency of D1 dipole regeneration, the elements involved in thermal coupling, ie E1 and C2, are thermally isolated from the ambient environment.

Dans un deuxième mode de réalisation, les deux dipôles fonctionnent avec le même gaz G. Dans ce mode de réalisation, les dipôles D1 et D2 du dispositif selon l'invention sont couplés, lors de la phase de régénération du dipôle D1, par une liaison massique qui permet le passage de gaz entre le réacteur R1 du dipôle D1 et le réacteur R2 du dipôle D2 d'une part, entre les évaporateurs/condenseurs EC1 et EC2 d'autre part. En outre, les phénomènes thermochimiques sont choisis de sorte que T(EC1) = T(EC2) < T(R1) < T(R2).In a second embodiment, the two dipoles operate with the same gas G. In this embodiment, the dipoles D1 and D2 of the device according to the invention are coupled, during the regeneration phase of the dipole D1, by a link mass which allows the passage of gas between the reactor R1 of the dipole D1 and the reactor R2 of the dipole D2 on the one hand, between the evaporators / condensers EC1 and EC2 on the other hand. In addition, the thermochemical phenomena are chosen such that T (EC1) = T (EC2) <T (R1) <T (R2).

Le procédé de production de froid selon ce deuxième mode de réalisation est caractérisé en ce que, au début de la deuxième étape, on arrête la communication entre EC2 et R2, on met en communication R1 et R2, et l'on apporte simultanément de la chaleur à la température Th au réacteur R2, ce qui provoque la désorption endothermique de G par S2 dans R2, en refroidissant le réacteur R1, ce qui provoque d'absorption du gaz G dans R1. Le refroidissement peut être effectué en utilisant des circuits de fluide de refroidis-sement. Le refroidissement peut aussi être contrôlé par les conditions extérieures, par exemple par un refroidissement naturel la nuit, en l'absence de soleil.The cold production method according to this second embodiment is characterized in that, at the beginning of the second step, the communication between EC2 and R2 is stopped, R1 and R2 are put in communication, and the heat at the temperature Th to the reactor R2, which causes the endothermic desorption of G by S2 in R2, cooling the reactor R1, which causes absorption of the gas G in R1. Cooling can be performed using cooling fluid circuits. The cooling can also be controlled by external conditions, for example by natural cooling at night, in the absence of sun.

Au cours du procédé, on met en communication EC1 et EC2 pour faire passer G sous forme liquide de EC1 vers EC2. Cette opération peut être effectuée au cours d'une étape supplémentaire. Elle peut en outre être effectuée pendant la 1ère ou la 2ème étape, si le dispositif comprend une vanne de détente sur le conduit reliant EC1 et EC2.During the process, EC1 and EC2 are placed in communication to convert G in liquid form from EC1 to EC2. This operation can be performed during an additional step. It may also be performed during the 1 st or the 2nd stage, if the device comprises an expansion valve on the conduit connecting EC1 and EC2.

Le procédé de production de froid de ce deuxième mode de réalisation est illustré sur les figures 2a et 2b, qui représentent le diagramme de Clapeyron respectivement pour l'étape de production de froid (Fig. 2a), et pour l'étape de régénération (fig. 2b). Les droites 0, 1 et 2 représentent la courbe d'équilibre respectivement pour le changement de phase L/G du gaz G, le phénomène renversable G + S1 ⇆ (G,S1), et le phénomène renversable G + S2 ⇆ (G,S2).The cold production method of this second embodiment is illustrated on the Figures 2a and 2b , which represent the Clapeyron diagram respectively for the cold production stage ( Fig. 2a ), and for the regeneration stage ( Fig. 2b ). The lines 0, 1 and 2 represent the equilibrium curve respectively for the L / G phase change of the gas G, the reversible phenomenon G + S1 ⇆ (G, S1), and the reversible phenomenon G + S2 ⇆ (G, S2).

Au cours de l'étape de production de froid, l'évaporation de G dans EC2 (point E de la droite 0) prélève de la chaleur à Tf dans le milieu ambiant et produit du froid à cette température. G gazeux ainsi libéré se transfère dans R2 pour l'étape de synthèse avec S2 en libérant de la chaleur à une température au-dessus de l'ambiante To (point R2s de la droite 2). Parallèlement, un apport à R1 de chaleur à la température Th (point R1D de la courbe 1) provoque la libération de G qui est transféré dans EC1 pour la condensation de G (point C de la courbe 0), libérant de la chaleur dans l'environnement à To.During the cold production step, the evaporation of G in EC2 (point E of line 0) takes heat at Tf in the environment and produces cold at this temperature. G gas thus released is transferred to R2 for the synthesis step with S2 by releasing heat at a temperature above the ambient To (point R 2s of line 2). In parallel, a contribution to R1 of heat at the temperature Th (point R 1D of the curve 1) causes the release of G which is transferred into EC1 for the condensation of G (point C of the curve 0), releasing heat in the environment in To.

Au cours de l'étape de régénération, de la chaleur à la température Th est apportée à R2 (point R2D de la droite 2) ce qui libère G gazeux qui est transféré dans R1 pour la synthèse avec S1 (point R1S de la courbe 0).During the regeneration step, heat at the temperature Th is brought to R2 ( 2D R point of the line 2) which releases G gas which is transferred in R1 for synthesis with S1 (R 1S point of the curve 0).

La présente invention est illustrée par les exemples suivants auxquels elle n'est cependant pas limitée.The present invention is illustrated by the following examples to which it is however not limited.

Exemple 1Example 1

Cet exemple illustre un dispositif pour la production de froid, dans lequel les dipôles coopèrent par une liaison thermique. Chacun des éléments EC est constitué par un condenseur et un évaporateur reliés par un conduit permettant le passage de gaz ou de liquide, et désignés par C1, C2, E1 et E2. Une représentation schématique du dispositif est donnée sur la figure 3.This example illustrates a device for the production of cold, in which the dipoles cooperate by a thermal connection. Each of the elements EC is constituted by a condenser and an evaporator connected by a conduit allowing the passage of gas or liquid, and designated C1, C2, E1 and E2. A schematic representation of the device is given on the figure 3 .

Conformément à la figure 3, le dipôle D1 comprend un réacteur R1, un condenseur C1 et un évaporateur E1. R1 et C1 sont reliés par un conduit muni d'une vanne 1.1, C1 et E1 sont reliés par un conduit simple. R1 est muni de moyens de chauffage 2.1 et de moyens 3.1 pour évacuer de la chaleur. C1 est muni de moyens 4.1 pour évacuer de la chaleur de condensation. Le dipôle D2 comprend un réacteur R2, un condenseur C2 et un évaporateur E2. R2 et C2 sont reliés par un conduit muni d'une vanne 1.2, R2 et E2 sont reliés par un conduit muni d'une vanne 8.2, C2 et E2 sont reliés par un conduit muni d'une vanne de détente 9.2. R2 est muni de moyens de chauffage 2.2 et de moyens 3.2 pour éliminer de la chaleur. E2 est muni de moyens 5.2 pour prélever de la chaleur sur le milieu à refroidir. E1 et C2 sont munis de moyens 6 permettant l'échange de chaleur entre eux et d'un dispositif 7 qui les isole thermiquement de l'environnement.In accordance with the figure 3 , the dipole D1 comprises a reactor R1, a condenser C1 and an evaporator E1. R1 and C1 are connected by a conduit provided with a valve 1.1, C1 and E1 are connected by a single conduit. R1 is provided with heating means 2.1 and means 3.1 for evacuating heat. C1 is provided with means 4.1 to evacuate condensation heat. The dipole D2 comprises a reactor R2, a condenser C2 and an evaporator E2. R2 and C2 are connected by a conduit provided with a valve 1.2, R2 and E2 are connected by a duct equipped with a valve 8.2, C2 and E2 are connected by a duct provided with an expansion valve 9.2. R2 is provided with heating means 2.2 and means 3.2 for removing heat. E2 is equipped with means 5.2 for taking heat from the medium to be cooled. E1 and C2 are provided with means 6 allowing the exchange of heat between them and a device 7 which thermally isolates them from the environment.

R1 est le siège d'une sorption chimique renversable de méthylamine (gaz G1) sur CaCl2, 2 NH2CH3 (le solide réactif S1), C1 et E1 étant le siège d'un phénomène de condensation /évaporation de méthylamine (le gaz G1). R2 est le siège d'une sorption chimique renversable de NH3 (le gaz G2) sur CaCl2, 4 NH3 (le solide S2), C2 et E2 étant le siège d'un phénomène de condensation /évaporation du gaz NH3.R1 is the seat of a reversible chemical sorption of methylamine (gas G1) on CaCl 2 , 2 NH 2 CH 3 (the reactive solid S1), C1 and E1 being the seat of a phenomenon of condensation / evaporation of methylamine (the G1 gas). R2 is the seat of a reversible chemical sorption of NH 3 (gas G2) on CaCl 2 , 4 NH 3 (the solid S 2), C2 and E2 being the seat of a phenomenon of condensation / evaporation of the NH 3 gas.

Les phénomènes thermochimiques sont comme suit :

  • pour le dipôle 1 :

            NH2CH3 (gaz) ⇆ NH2CH3 (liquide)

            (CaCl2, 2.NH2CH3) + 4.NH2CH3 ⇆ (CaCl2, 6.NH2CH3)

  • pour le dipôle 2 :

            NH3 (gaz) ⇆ NH3 (liquide)

            (CaCl2, 4.NH3) + 4.NH3 ⇆ (CaCl2, 8.NH3)

Thermochemical phenomena are as follows:
  • for the dipole 1:

    NH 2 CH 3 (gas) ⇆ NH 2 CH 3 (liquid)

    (CaCl 2 , 2.NH 2 CH 3 ) + 4.NH 2 CH 3 ⇆ (CaCl 2 , 6.NH 2 CH 3 )

  • for the dipole 2:

    NH 3 (gas) ⇆ NH 3 (liquid)

    (CaCl 2 , 4.NH 3 ) + 4.NH 3 ⇆ (CaCl 2 , 8.NH 3 )

Le fonctionnement du dispositif comportant ces réactifs est représenté sur la figure 9 qui donne les courbes d'équilibre des phénomènes thermochimiques concernés.The operation of the device comprising these reagents is represented on the figure 9 which gives the equilibrium curves of the thermochemical phenomena concerned.

Les parties du dispositif qui sont actives lors de l'étape de production de froid sont représentées sur la figure 4. On ouvre les vannes 1.1 et 1.2 et les moyens de transfert de chaleur 6 sont inactivés. L'ouverture des vannes 8.2 et 9.2 provoque la production spontanée du gaz G2 dans E2, le transfert de G2 vers R2 à travers la vanne 8.2, ce qui provoque d'une part la production de froid autour de E2 par les moyens de prélèvement de chaleur 5.2, et la synthèse dans R2 avec élimination de la chaleur formée vers l'atmosphère autour de R2 à l'aide des moyens 3.2. Parallèlement, les moyens de chauffage 2.1 apportent à R1 de la chaleur qui est à la température Th, ce qui provoque la production de G2 dans G2, G2 passant dans C1 relié thermiquement à l'environnement par les moyens 4.1. G2 condense dans C2 et passe dans E1.The parts of the device that are active during the cold production step are represented on the figure 4 . The valves 1.1 and 1.2 are opened and the heat transfer means 6 are inactivated. The opening of the valves 8.2 and 9.2 causes the spontaneous production of the gas G2 in E2, the transfer of G2 to R2 through the valve 8.2, which on the one hand causes the production of cold around E2 by the sampling means. 5.2 heat, and the synthesis in R2 with removal of heat formed to the atmosphere around R2 using means 3.2. Meanwhile, the heating means 2.1 provide R1 with heat which is at the temperature Th, which causes the production of G2 in G2, G2 passing in C1 connected thermally to the environment by means 4.1. G2 condenses in C2 and goes into E1.

Les parties du dispositifs qui sont actives lors de l'étape de régénération du dispositif sont représentées sur la figure 5. Les vannes 1.1 et 1.2 restent ouvertes, on apporte à R2 par les moyens 2.2 de la chaleur à la température Th, ce qui libère le gaz G2 qui passe dans le condenseur C2 dans lequel il se condense avant de passer simultanément ou ultérieurement dans l'évaporateur E2, en fonction de l'état de la vanne 9.2. La chaleur dégagée par la condensation dans C2 est transférée vers E1 par les moyens 6. Cet apport de chaleur dans E1 provoque une évaporation de G1 qui est transféré via C1 et la vanne 1.1 dans R1 où il est absorbé par S1, la chaleur libérée par cette absorption étant transférée vers l'environnement à la température To par les moyens 3.1. A la fin de cette étape, le dispositif est à nouveau prêt à produire du froid. Si la production doit être immédiate, on recommence la première étape. Si la production doit être différée, on maintient le dispositif à l'état régénéré en fermant les vannes 1.1, 1.2 et 8.2.The parts of the device that are active during the regeneration step of the device are represented on the figure 5 . The valves 1.1 and 1.2 remain open, R2 is supplied by the means 2.2 of the heat at the temperature Th, which releases the gas G2 which passes into the condenser C2 in which it condenses before passing simultaneously or later in the evaporator E2, depending on the state of the valve 9.2. The heat generated by the condensation in C2 is transferred to E1 by the means 6. This heat input in E1 causes an evaporation of G1 which is transferred via C1 and the valve 1.1 into R1 where it is absorbed by S1, the heat released by this absorption being transferred to the environment at the temperature To by the means 3.1. At the end of this step, the device is again ready to produce cold. If the production must be immediate, we repeat the first step. If the production has to be deferred, the device is maintained in the regenerated state by closing the valves 1.1, 1.2 and 8.2.

Un tel dispositif permet de produire du froid à une température Ti intermédiaire entre To et Tf lors de l'étape de régénération du dispositif. Par exemple, en se référant à la figure 9, si la chaleur fournie par EC2 par la condensation de NH3 à EC1 pour l'évaporation de NH2CH3 est insuffisante pour libération la totalité de NH2CH3, de la chaleur est prélevé sur l'environnement, ce qui produira du froid à la température Ti voisine de 0°C.Such a device makes it possible to produce cold at an intermediate temperature Ti between To and Tf during the regeneration step of the device. For example, referring to the figure 9 If the heat supplied by EC2 by the condensation of NH 3 to EC1 for evaporation of CH 3 NH 2 is insufficient to release the entire NH 2 CH 3, heat is taken from the environment, which will produce cold at the temperature Ti close to 0 ° C.

Exemple 2Example 2

Cet exemple illustre un dispositif pour la production de froid, dans lequel les dipôles coopèrent par une liaison massique. EC1 et EC2 sont respectivement un condenseur C1 et un évaporateur E2. Une représentation schématique du dispositif est donnée sur la figure 6.This example illustrates a device for the production of cold, in which the dipoles cooperate by a mass bond. EC1 and EC2 are respectively a condenser C1 and an evaporator E2. A schematic representation of the device is given on the figure 6 .

Conformément à la figure 6, le dipôle D1 comprend le réacteur R1 et le condenseur C1 reliés par un conduit muni d'une vanne 11. R1 comprend des moyens 21 pour amener de la chaleur et des moyens 31 pour éliminer de la chaleur. C1 comprend des moyens 41 pour éliminer de la chaleur. Le dipôle D2 comprend le réacteur R2 et l'évaporateur E2 reliés par un conduit muni d'une vanne 12. R2 comprend des moyens 22 pour amener de la chaleur et des moyens 32 pour éliminer de la chaleur. E2 comprend des moyens 52 pour apporter de la chaleur.In accordance with the figure 6 , the dipole D1 comprises the reactor R1 and the condenser C1 connected by a conduit provided with a valve 11. R1 comprises means 21 for bringing the heat and means 31 for removing heat. C1 comprises means 41 for removing heat. The dipole D2 comprises the reactor R2 and the evaporator E2 connected by a conduit provided with a valve 12. R2 comprises means 22 for supplying heat and means 32 for removing heat. E2 comprises means 52 for supplying heat.

R1 et R2 sont reliés par un conduit qui est placé avant les vannes 11 et 12, et qui est muni d'une vanne 8. C1 est relié par un conduit à un réservoir qui est lui-même relié à E2 par un conduit muni d'une vanne de détente 9 qui peut par exemple être contrôlée et activée par une baisse de niveau de liquide ou de pression régnant dans E2.R1 and R2 are connected by a conduit which is placed before the valves 11 and 12, and which is provided with a valve 8. C1 is connected by a conduit to a reservoir which is itself connected to E2 by a conduit provided with an expansion valve 9 which can for example be controlled and activated by a drop in liquid level or pressure prevailing in E2.

Les parties actives du dispositif lors de l'étape de production de froid sont représentées sur la figure 7. La vanne 8 est fermée, la vanne de détente 9 est activée selon le remplissage en liquide ou la pression régnant dans E2, et on ouvre les vannes 11 et 12. L'ouverture de la vanne 12 provoque l'évaporation exothermique de gaz dans E2 avec production de froid, et la synthèse exothermique dans R2, la chaleur étant évacuée par 32. Dans le même temps, on apporte à R1 via 21 de la chaleur à la température Tf, ce qui provoque la libération de gaz dans R1, le transfert de ce gaz vers C dans lequel il se condense, la chaleur de condensation étant transférée vers l'environnement par 41. Le liquide condensé dans C est transféré dans le réservoir 10.The active parts of the device during the cold production step are represented on the figure 7 . The valve 8 is closed, the expansion valve 9 is activated according to the liquid filling or the pressure in E2, and the valves 11 and 12 are opened. The opening of the valve 12 causes the exothermic evaporation of gas in E2 with production of cold, and the exothermic synthesis in R2, the heat being removed by 32. At the same time, R1 is supplied via 21 heat at the temperature Tf, which causes the release of gas in R1, the transfer of this gas to C in which it condenses, the heat of condensation being transferred to the environment by 41. The condensed liquid in C is transferred into the tank 10.

Les parties actives du dispositif lors de l'étape e régénération sont représentées sur la figure 8. Au début de cette étape, on ferme les vannes 11 et 12, on ouvre la vanne 8 et la vanne de détente 9 est fermée, compte tenu du fait que la pression ou le niveau de liquide dans E2 n'ont pas diminué. Un apport de chaleur à la température Tf à R2 via 22 provoque un dégagement de gaz dans R2, le transfert de ce gaz vers R1 via la vanne 8, et la synthèse exothermique dans R1, la chaleur libéree étant éliminée via 31.The active parts of the device during step e regeneration are represented on the figure 8 . At the beginning of this step, the valves 11 and 12 are closed, the valve 8 is opened and the expansion valve 9 is closed, given that the pressure or the liquid level in E2 have not decreased. A supply of heat at the temperature Tf to R2 via 22 causes a gas evolution in R2, the transfer of this gas to R1 via the valve 8, and the exothermic synthesis in R1, the heat released being eliminated via 31.

Un tel dispositif peut être mis en oeuvre en utilisant l'ammoniac comme gaz G, CaCl2, NH3 comme solide S2 dans R2 et BaCl2 comme solide S1 dans R1.Such a device can be implemented using ammonia as gas G, CaCl 2 , NH 3 as solid S 2 in R 2 and BaCl 2 as solid S 1 in R 1.

Les phénomènes thermochimiques sont comme suit :

        NH3 (gaz) ⇆ NH3 (liquide)

        (CaCl2, 4 NH3) + 4 NH3 ⇆ (CaCl2, 8 NH3)

        (BaCl2) + 8 NH3 ⇆ (BaCl2, 8 NH3)

Thermochemical phenomena are as follows:

NH 3 (gas) ⇆ NH 3 (liquid)

(CaCl 2 , 4 NH 3 ) + 4 NH 3 ⇆ (CaCl 2 , 8 NH 3 )

(BaCl 2 ) + 8 NH 3 ⇆ (BaCl 2 , 8 NH 3 )

Le fonctionnement du dispositif comportant ces réactifs est représenté sur la figure 10 qui donne les courbes d'équilibre des phénomènes thermochimiques concernés. Des courbes analogues seraient obtenues par un dispositif similaire, dans lequel CaCl2, 4NH3 serait remplacé par SrCl2, NH3.The operation of the device comprising these reagents is represented on the figure 10 which gives the equilibrium curves of the thermochemical phenomena concerned. Analogous curves would be obtained by a similar device, in which CaCl 2 , 4NH 3 would be replaced by SrCl 2 , N H 3.

L'étape de production de froid est matérialisée par les positions 1 et 2 des dipôles D1 et D2. D1 est en phase de régénération grâce à l'introduction de chaleur disponible à la température Th de l'ordre de 70°C, pour provoquer la décomposition de (BaCl2, 8NH3) dans R1 avec libération de NH3 qui va se condenser dans C1 en libérant la chaleur dans le puits thermique constitué par l'ambiante à To=25°C. Concomitamment, D2 est en phase de production de froid, en prélevant de la chaleur sur le milieu à refroidir à une température Tf de l'ordre de -30°C.The cold production step is represented by the positions 1 and 2 of the dipoles D1 and D2. D1 is in the regeneration phase thanks to the introduction of heat available at the temperature Th of the order of 70 ° C, to cause the decomposition of (BaCl 2 , 8NH 3 ) in R1 with release of NH 3 which will condense in C1 by releasing the heat in the heat sink constituted by the ambient at To = 25 ° C. Concomitantly, D2 is in the cold production phase, by taking heat from the medium to be cooled to a temperature Tf of the order of -30 ° C.

L'étape de régénération deD2 est matérialisée par la position 3. L'apport de la chaleur disponible à la température Th de l'ordre de 70°C provoque la décomposition de (CaCl2, 8.NH3) en libérant NH3, qui est transféré dans R1 pour y provoquer la synthèse de BaCl2, 8NH3. A ce stade, les réacteurs R1 et R2 sont dans l'état requis pour un dispositif régénéré, et l'ouverture de la vanne 9 permet de mettre C1 et E2 dans l'état requis pour un régénération complète du dispositif.The step of regeneration of D2 is materialized by the position 3. The supply of available heat at the temperature Th of the order of 70 ° C causes the decomposition of (CaCl 2 , 8.NH 3 ) by releasing NH 3 , which is transferred to R1 to cause synthesis of BaCl 2 , 8NH 3 . At this stage, the reactors R1 and R2 are in the state required for a regenerated device, and the opening of the valve 9 makes it possible to put C1 and E2 in the state required for complete regeneration of the device.

Claims (7)

  1. A device for producing refrigeration to a temperature Tf of less than -20°C, from a heat source at a temperature Th of the order of the 60-80°C and a heat sink at room temperature To of the order of 10°C to 25°C, comprising a refrigerating dipole D2 and an auxiliary dipole D1, characterized in that:
    • the thermochemical phenomena in the dipole D2 are such that this dipole may produce refrigeration at Tf with a heat sink at room temperature To;
    • the thermochemical phenomena in the dipole D1 are such that this dipole may be regenerated from the heat source Th and a heat sink at temperature To;
    • D1 comprises an evaporator/condenser EC1 and a reactor R1 connected through a conduit allowing controlled passage of gas, and D2 comprises an evaporator/condenser EC2 and a reactor R2 connected through a conduit allowing controlled passage of gas;
    • EC1 contains a gas G1 and R1 contains a sorbent S1 capable of forming a reversible physico-chemical process with G1, and EC2 contains a gas G2 and R2 contains a sorbent S2 capable of forming a reversible physico-chemical process with G2;
    • the applied gases and sorbents are selected so that, at a given pressure, the equilibrium temperatures of the thermochemcal phenomena in the reactors and the evaporators/condensers are such that T(EC1) ≤ T(EC2) < T(R1) < T(R2);
    • the dipoles D1 and D2 are provided with means allowing their coupling with each other via a thermal route when G1 and G2 are different and via a massive route when G1 and G2 are identical;
    • the thermochemical phenomena in the evaporators/condensers are selected from the phase transition L/G of ammonia (NH3), the phase transition of methylamine (NH2CH3) and the phase transition of H2O;
    • the thermochemical phenomena in the reactors are selected from reversible chemical sorptions of NH3 by CaCl2, by SrCl2, or by BaCl2, or of NH2CH3 by CaCl2, the adsorption of water by zeolite or a silica gel, the adsorption of methanol or ammonia in active coal, and the adsorption of NH3 in a liquid solution of ammonia (NH3, H2O).
  2. The device according to claim 1, characterized in that each of the evaporators/condensers is formed with an assembly comprising an evaporator E and a condenser C connected through a conduit letting through the gas or liquid.
  3. The method for refrigerating to a temperature Tf of less than -20°C, from a heat source at a temperature Th of the order of 60-80°C and from a heat sink at room temperature To of the order of 10 to 25°C, characterized in that it consists of operating the device according to claim 1 from an initial state wherein the dipole D2 is in the regenerated state, and the dipole 1 is to be regenerated, both elements of a given dipole being isolated from each other, said method comprising a series of successive cycles formed by a refrigeration step and by a regeneration step:
    - at the beginning of the first step, which is the step for refrigerating to Tf, both elements of each of the dipoles are put into communication, which causes the spontaneous endothermic evaporation step in EC2 (refrigerating to Tf) which produces G2 as a gas, and the transfer of the released gas to R2 for its exothermic adsorption by S2 in R2, and in parallel heat at temperature Th is provided to the reactor R1, which causes desorption of the gas G1 by S1 in R1 and the condensation phase of G1 in EC1;
    - during a second step, which is the regeneration step of the device, heat at temperature Th is provided to the reactor R2 for achieving desorption of G2 by the sorbent S2 in R2, and either heat is transferred from D2 to D1 when G1 and G2 are different or gas when G1 and G2 are identical for achieving sorption of gas by S1 in R1.
  4. The method according to claim 3, characterized in that the coupling of the dipoles is carried out via a thermal route between the evaporator/condenser EC1 of the dipole D1 and the evaporator/condenser EC2 of the dipole D2, G1 and G2 are different, and the thermochemical phenomena are selected so that, in this coupling phase, T (EC1) < T (EC2) < T (R1) < T(R2).
  5. The method according to claim 4, characterized in that, during the second step, the evaporators/condensers EC1 and EC2 are put in thermal connection, and heat at temperature Th is simultaneously applied to the reactor R2 in order to cause endothermic desorption of G2 in R2 and exothermic condensation of G2 in R2, the heat released in EC2 being transferred to the reactor EC1, which causes endothermic evaporation of G1 in EC1 and concomitant exothermic absorption of G1 by S1 in R1.
  6. The method according to claim 3, characterized in that the dipoles D1 and D2 operate with the same gas G and are coupled, during the regeneration phase of the dipole D1, through a mass connection which allows passage of the gas between the reactor R1 of the dipole D1 and the reactor R2 of the dipole D2 on the one hand and between the evaporators/condensers EC1 and EC2 on the other hand, the thermochemical phenomena being selected so that T(EC1) = T (EC2) < T (R1) < T(R2).
  7. The method according to claim 6, characterized in that, at the beginning of the second step, communication between EC2 and R2 is stopped and R1 is put into communication with R2 and heat a temperature Th is simultaneously provided to the reactor R2, which causes endothermic desorption of G in R2, and by cooling the reactor R1, which causes absorption of the gas G in R1.
EP05814788.5A 2004-11-04 2005-11-04 Production of very low-temperature refrigeration in a thermochemical device. Active EP1809955B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0411766A FR2877426B1 (en) 2004-11-04 2004-11-04 COLD PRODUCTION AT VERY LOW TEMPERATURE IN A THERMOCHEMICAL DEVICE.
PCT/FR2005/002748 WO2006048558A1 (en) 2004-11-04 2005-11-04 Production of very low-temperature refrigeration in a thermochemical device

Publications (2)

Publication Number Publication Date
EP1809955A1 EP1809955A1 (en) 2007-07-25
EP1809955B1 true EP1809955B1 (en) 2017-08-16

Family

ID=34953523

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05814788.5A Active EP1809955B1 (en) 2004-11-04 2005-11-04 Production of very low-temperature refrigeration in a thermochemical device.

Country Status (6)

Country Link
US (1) US8327660B2 (en)
EP (1) EP1809955B1 (en)
JP (1) JP4889650B2 (en)
ES (1) ES2647901T3 (en)
FR (1) FR2877426B1 (en)
WO (1) WO2006048558A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009153245A2 (en) * 2008-06-19 2009-12-23 Sortech Ag Method for carrying out a heat transfer between alternately working adsorbers and device
CN101818967B (en) * 2010-05-20 2012-08-29 上海交通大学 Composite energy storage and supply device via thermochemical temperature swing adsorption combined cold-heat supply
GB201402059D0 (en) * 2014-02-06 2014-03-26 Univ Newcastle Energy Storage device
CN104110913B (en) * 2014-07-18 2016-04-13 上海交通大学 Low-grade exhaust heat drives efficient absorbent-thermal chemical reaction twin-stage thermode
CN104132476B (en) * 2014-07-18 2017-02-01 上海交通大学 Efficient moisture absorption-thermal chemical reaction single-stage thermode driven by low-grade heat energy
FR3034179B1 (en) * 2015-03-23 2018-11-02 Centre National De La Recherche Scientifique SOLAR DEVICE FOR AUTONOMOUS COLD PRODUCTION BY SOLID-GAS SORPTION.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3474338D1 (en) * 1983-07-08 1988-11-03 Matsushita Electric Ind Co Ltd Thermal system based on thermally coupled intermittent absorption heat pump cycles
FR2615602B1 (en) * 1987-05-22 1989-08-04 Faiveley Ets PROCESS FOR PRODUCING COLD BY SOLID-GAS REACTION AND DEVICE RELATING THERETO
US5174367A (en) * 1989-03-13 1992-12-29 Sanyo Electric Co., Ltd. Thermal utilization system using hydrogen absorbing alloys
FR2653541B1 (en) * 1989-10-24 1995-02-10 Elf Aquitaine DEVICES FOR PRODUCING COLD AND / OR HEAT BY SOLID-GAS REACTION MANAGED BY GRAVITATIONAL HEAT PIPES.
US5351493A (en) * 1991-12-10 1994-10-04 Sanyo Electric Co., Ltd. Thermally driven refrigeration system utilizing metal hydrides
FR2726282B1 (en) * 1994-10-28 1999-02-19 Elf Aquitaine REAGENT FOR THERMOCHEMICAL SYSTEMS AND THERMOCHEMICAL SYSTEM FOR USE WITH SUCH A REAGENT
FR2748093B1 (en) * 1996-04-25 1998-06-12 Elf Aquitaine THERMOCHEMICAL DEVICE TO PRODUCE COLD AND / OR HEAT
US8302425B2 (en) * 2004-05-11 2012-11-06 Cyclect Singapore Pte Ltd. Regenerative adsorption system with a spray nozzle for producing adsorbate vapor and condensing desorbed vapor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US8327660B2 (en) 2012-12-11
JP4889650B2 (en) 2012-03-07
FR2877426B1 (en) 2007-03-02
US20090094996A1 (en) 2009-04-16
EP1809955A1 (en) 2007-07-25
FR2877426A1 (en) 2006-05-05
WO2006048558A1 (en) 2006-05-11
JP2008519239A (en) 2008-06-05
ES2647901T3 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
EP1809955B1 (en) Production of very low-temperature refrigeration in a thermochemical device.
US4055962A (en) Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles
CA2007451C (en) Heat and/or cold generating device through solid/gas reaction
JPH06510595A (en) Dual temperature heat pump equipment and systems
EP0425368B1 (en) Devices for producing cold and/or heat by solid-gas reaction, managed by gravitational heat pipes
JP2020090943A (en) Solar power generation system
WO2020021039A1 (en) Photovoltaic cell with thermal management
EP1809956B1 (en) Production of very low-temperature refrigeration in a thermochemical device
Mazet et al. Feasibility of long‐distance transport of thermal energy using solid sorption processes
EP1432953B1 (en) Method for producing refigeration or heat using a sorption system
FR2726282A1 (en) REAGENT FOR THERMO-CHEMICAL SYSTEMS AND THERMO-CHEMICAL SYSTEM FOR USING SUCH A REAGENT
EP1306526A1 (en) Power generator using hydrogen storage alloy and medium/low temperature heat
EP1831616B1 (en) Producing cold by a thermochemical method for air-conditioning a building
JP6061462B2 (en) Chemical heat storage device
USRE30840E (en) Hydrogen-hydride absorption systems and methods for refrigeration and heat pump cycles
FR3004246A1 (en) THERMOCHEMICAL STORAGE SYSTEM HAVING IMPROVED STORAGE EFFICIENCY
JPS5943720B2 (en) Heat storage and heat extraction method
JPH06109388A (en) Chemical heat accumulating method and device
EP1556163A2 (en) Method for using a thermochemical transformer, and device comprising a chemical reactor and a thermochemical transformer
FR2730299A1 (en) DIPHASIC HEAT EXCHANGER WITH CONTROLLED TEMPERATURE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070516

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150319

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170323

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 919458

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005052560

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170816

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2647901

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 919458

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171116

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171117

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171216

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005052560

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

26N No opposition filed

Effective date: 20180517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171104

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20051104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231129

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231128

Year of fee payment: 19

Ref country code: FR

Payment date: 20231127

Year of fee payment: 19

Ref country code: DE

Payment date: 20231130

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240129

Year of fee payment: 19