EP1801247A1 - Verfahren zur Herstellung eines hochdichten Halbzeugs oder Bauteils - Google Patents

Verfahren zur Herstellung eines hochdichten Halbzeugs oder Bauteils Download PDF

Info

Publication number
EP1801247A1
EP1801247A1 EP06026181A EP06026181A EP1801247A1 EP 1801247 A1 EP1801247 A1 EP 1801247A1 EP 06026181 A EP06026181 A EP 06026181A EP 06026181 A EP06026181 A EP 06026181A EP 1801247 A1 EP1801247 A1 EP 1801247A1
Authority
EP
European Patent Office
Prior art keywords
temperature
powder
tungsten
density
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06026181A
Other languages
English (en)
French (fr)
Other versions
EP1801247B1 (de
Inventor
Wolfgang Spielmann
Gerhard Leichtfried
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metallwerk Plansee GmbH
Original Assignee
Metallwerk Plansee GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallwerk Plansee GmbH filed Critical Metallwerk Plansee GmbH
Publication of EP1801247A1 publication Critical patent/EP1801247A1/de
Application granted granted Critical
Publication of EP1801247B1 publication Critical patent/EP1801247B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0735Main electrodes for high-pressure discharge lamps characterised by the material of the electrode

Definitions

  • the invention relates to a method for producing a semifinished product or component from a material of the group molybdenum, molybdenum alloy, tungsten, tungsten alloy with an average relative density> 98.5% and a relative core density> 98.3%.
  • the refractory metals molybdenum, tungsten and their alloys are usually produced by powder metallurgy.
  • the starting material here are ore concentrates, which are chemically processed into intermediates and then reduced to metallic powder.
  • the reducing agent is hydrogen. Alloy elements can be added before, during or after the reduction.
  • Typical molybdenum alloys are TZM (Ti-Zr-C alloyed Mo), Mo-La 2 O 3 , Mo-Y 2 O 3 and Mo-Si-B.
  • AKS-W K-doped tungsten
  • W-ThO 2 W-La 2 O 3 , W-Ce 2 O 3 , WY 2 O 3 and AKS-W-ThO 2 are mentioned.
  • AKS-W and AKS-W-ThO 2 are used especially in lighting technology and here again mainly for filaments and electrodes.
  • the potassium additives present in the AKS-W which are in the form of bubbles, thereby stabilize the grain growth, whereby a stable structure is maintained even at very high operating temperatures and long times. This is especially true for the service life of electrodes for heavily loaded lamps, such as Metal halide and short arc lamps, where the surface temperature is up to 2,600 ° C, of essential importance.
  • the powder is compacted by die pressing or cold isostatic pressing. Large sized semi-finished product is preferably produced by cold isostatic pressing. For wire rods and small billets, both die pressing and cold isostatic pressing are used.
  • Fisher molybdenum powder with a typical Fisher particle size of 2 to 5 microns and tungsten powder having a typical Fisher particle size of 1.5 to 4.5 microns
  • fractional bulk densities in the range of 0.11 to 0.17 (molybdenum) and 0.13 to 0.22 (tungsten).
  • tungsten fractional bulk densities in the range of 0.11 to 0.17 (molybdenum) and 0.13 to 0.22 (tungsten).
  • tungsten Using a compacting pressure in the range of 200 to 500 MPa, fractional green densities are achieved in the range of 0.6 to 0.68 for both molybdenum and tungsten.
  • the green compacts are sintered.
  • the sintering process is carried out in such a way that the sintered body has a low porosity associated with a fine-grained microstructure.
  • Molybdenum and tungsten are usually sintered in hydrogen with a dew point ⁇ 0 ° C.
  • the usual sintering temperatures for molybdenum are 1,800 ° C to 2,200 ° C, for tungsten 2,100 ° C to 2,700 ° C. Usual sintering times are 1 to 24 hours. Since the sintering process is determined by grain boundary diffusion, sintering can be carried out at a lower temperature with a smaller particle size. However, the particle size also determines the pore size in the sintered semifinished product. Thus, the pore size can be reduced by a factor of 3 when the particle size of Fisher of the molybdenum powder used is reduced from 10 microns to 2.6 microns.
  • a disadvantage of fine-grained powder is the higher proportion of adsorbed gases, in particular oxygen. During the sintering process, this oxygen reacts with the hydrogen of the sintering gas to form water vapor. Due to the low gas permeability of the green compact, which is further reduced during the sintering process, the water vapor, in particular from the center of the sintered body, can not be removed sufficiently. This is especially the case when fine-grained powder having a particle size of Fisher ⁇ 4.5 ⁇ m is used.
  • a high water vapor content in the interior of the sintered body triggers a CVT (Chemical Vapor Transport) reaction.
  • This CVT reaction leads, through material transport through the gas phase, to a destruction of specific surface area and thus a reduction in the driving forces for sintering, in particular in the interior of the sintered body.
  • This process is exacerbated in molybdenum and tungsten alloys, where additives release an oxygen-containing species during sintering, resulting in increased water vapor formation, such as in AKS-W, Mo-La 2 O 3 or W-La 2 O 3 Case is.
  • Gas phase reactions therefore limit the dimension of the sintered body, especially in these alloys. With sintered bodies with larger dimensions or with the use of very fine-grained powder, the achievable sintering density, in particular in the center of the sintered body, is lower than in the case of small sintered bodies or when coarser powder is used.
  • thermomechanical treatment achieves the desired shape, reduction / elimination of porosity, and adjustment of the desired mechanical and microstructural properties. With increasing degree of deformation, the density increases up to the theoretical density and the grain size decreases. The reduction of the grain size depends strongly on the selected forming temperature and the intermediate annealing temperatures.
  • the use of fine-grained powders or, in the case of alloys containing a species which splits off oxygen or water vapor during the sintering process is limited in the size of the sintered body. If a product having larger dimensions is produced from this sintered body, then the possible degree of deformation for closing the porosity, in particular in the center of the sintered body, may not be sufficient.
  • AKS tungsten which is used as electrode material in lamps.
  • Anodes with a diameter of up to 55 mm are used especially for short arc lamps.
  • a life-determining property of such electrodes is their dimensional stability.
  • the deformation of the electrodes is triggered by thermally induced voltages. These thermally induced voltages can, for example, lead to elevations in the region of the electrode plateau. The arc is then concentrated on these bumps, resulting in localized overheating. This can lead to the melting of the electrode in this area.
  • the local overheating leads to an increased evaporation of the electrode material.
  • the vaporized electrode material settles on the lamp bulb and drastically reduces the light flux.
  • a feinkömiges electrode material has a longer life. This is due to the fact that with coarse-grained material, the damage concentrates on a few grain boundaries, whereby there is a self-reinforcing effect by a concentration of the arc.
  • the object of the invention is therefore to provide semi-finished products or components with a high density, especially in the center, connected to a fine-grained structure.
  • the object is achieved by a method having the features according to claim 1.
  • the method according to the invention it is possible to produce semi-finished products or components made of molybdenum, tungsten and their alloys with an average relative density> 98.5% and a relative core density> 98.3%.
  • average relative density is the average density relative to the specific To understand weight. Under Kem ashamed the expert understands the density in the center of a semifinished product or component. Since the core volume is not specified relative to the total volume, the core volume for the determination of the core density is defined as follows for the following data: The center-nearest 10% of the total area transverse to the deformation direction x extension in the direction of deformation.
  • the semifinished product or the component, in the deformed state preferably has a comm number> 100 grains / mm 2 transversely to its deformation direction.
  • the sintering takes place at a temperature of 0.55 to 0.92 x solidus temperature.
  • the sintering temperature is chosen so that a sintering density of 90% to 98.5% of the theoretical density, preferably a proportion of the closed pores based on the total porosity of> 0.8 is set. If the relative density exceeds 98.5%, the objective, namely the production of a component or semi-finished product with a count of> 100 grains / mm 2 , can not be achieved.
  • the hot isostatic pressing is carried out without using a jug and is carried out at a temperature of 0.40 to 0.65 x solidus temperature at a pressure of 50 to 300 MPa. If the temperature is below 0.4 x solidus temperature, the target, a mean relative density of> 98.5% and a relative core density of> 98.3% in the component or semi-finished product, can not be achieved. If the temperature is above 0.65 x solidus temperature, undesirable coarsening occurs due to normal or abnormal grain growth. If the pressure is below 50 MPa, the density target can not be achieved either. At pressures above 300 MPa, the inventive method can no longer be economically represented.
  • the hot isostatically pressed part is reshaped.
  • the degree of deformation ⁇ is 15 to 90%. If the degree of deformation ⁇ is less than 15%, the goal of a relative density> 98.3% can not be achieved. If the degree of deformation is more than 90%, again the process can not be economically represented, since dense products can also be produced without the hot isostatic pressing according to the invention.
  • the method according to the invention is particularly useful for the production of electrodes in the diameter range of 15 to 55 mm, which are used in discharge lamps. If the diameter is less than 15 mm, such electrodes can be produced more economically by means of conventional production methods. The upper limit of 55 mm results from the border wattage of such lamps.
  • the starting material for the electrodes is preferably formed by radial forging or rolling.
  • an AKS-W powder with a particle size of Fisher of 4.1 ⁇ m was used for the production of an AKS-W electrode.
  • the powder was compacted by cold isostatic pressing at a pressure of 200 MPa into a green compact.
  • the sintering was carried out at a temperature of 2,250 ° C in hydrogen.
  • the sintered rods thus produced had an average specific gravity, as determined by buoyancy, of 92.0%.
  • the proportion of closed porosity was> 95%, the measurement being carried out by means of mercury porosimetry.
  • the sintered bodies were hot isostatically compacted in the subsequent step at a temperature of 1750 ° C and a pressure of 195 MPa for 3 hours.
  • the relative mean density after the hot isostatic pressing process was 97.9%.
  • the rods were reshaped on a radial forging machine.
  • the degree of deformation ⁇ was 67%.
  • the average relative density of the bars after the forming process was 99.66% and the relative density was 99.63%.
  • the grain size was determined in the formed state and after annealing at 1,800 ° C / 4 hours. In the formed state, it was about 10,000 grains / mm 2 both in the center and in the edge region of the rods. In the annealed state, a very fine-grained microstructure was still found, with a mean number in the center of the rods of about 800 and in the border area of 850 grains / mm 2 .
  • the chemical analysis of the rods gave the following result: potassium 15 ⁇ g / g, silicon 6 ⁇ g / g, carbon ⁇ 5 ⁇ g / g, oxygen 7 ⁇ g / g.
  • Anodes for 2.5 kW short arc lamps for cinema projection were produced from the material produced according to the invention.
  • the determined average service life was 2,060 hours.
  • a material was also used which, after the sintering process, was not subjected to any subsequent densification by a hot isostatic pressing process, with otherwise identical production process. This resulted in an average service life of 1,710 hours.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Discharge Lamp (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung: eines Bauteiles oder Halbzeuges aus einem Werkstoff der Gruppe Molybdän, Molybdänlegieurung, Wolfram, Wolframlegierung mit einer mittleren relativen Dichte > 98,5 % und einer relativen Kerndichte > 98,3 % Das Verfahren umfasst Sintem auf eine relative Dichte D, mit 90 % < D < 98,5 % und einen geschlossenen Porenanteil bezogen auf die Gesamtporosität von > 0,8 sowie heißisostatisches Pressen bei einer Temperatur 0,40 bis 0,65 x Solidustemperatur und einem Druck von 50 bis 300 MPa. So hergestellte Bauteile, eingesetzt beispielsweise als Elektroden, weisen ein deutlich verbessertes Standzeitverhalten auf.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines Halbzeugs oder Bauteils aus einem Werkstoff der Gruppe Molybdän, Molybdänlegierung, Wolfram, Wolframlegierung mit einer mittleren relativen Dichte > 98,5% und einer relativen Kerndichte > 98,3%.
  • Die Refraktärmetalle Molybdän, Wolfram und deren Legierungen werden üblicherweise pulvermetallurgisch hergestellt. Das Ausgangsprodukt dabei sind Erzkonzentrate, die chemisch zu Zwischenprodukten verarbeitet und dann zu metallischem Pulver reduziert werden. Dabei ist das Reduktionsmittel Wasserstoff. Legierungselemente können vor, während oder nach der Reduktion beigemengt werden.
  • Typische Molybdänlegierungen sind TZM (Ti-Zr-C legiertes Mo), Mo-La2O3, Mo-Y2O3 und Mo-Si-B. Auf der Wolframseite sind AKS-W (K - gedoptes Wolfram), W-ThO2, W-La2O3, W-Ce2O3, W-Y2O3 und AKS-W-ThO2 zu nennen. AKS-W und AKS-W-ThO2 werden speziell in der Lichttechnik eingesetzt und hier wiederum vor allem für Filamente und Elektroden. Die sich im AKS-W befindlichen Kaliumzusätze, die in Form von Bläschen vorliegen, stabilisieren dabei das Kornwachstum, wodurch auch bei sehr hohen Einsatztemperaturen und langen Zeiten ein stabiles Gefüge erhalten bleibt Dies ist insbesondere für das Standzeitverhalten von Elektroden für hoch belastete Lampen, wie z.B. Metallhalogenid- und Kurzlichtbogenlampen, wo die Oberflächentemperatur bis zu 2.600°C beträgt, von essentieller Bedeutung.
  • Das Pulver wird durch Matrizenpressen oder kaltisostatisches Pressen verdichtet. Groß dimensioniertes Halbzeug wird dabei bevorzugt durch kaltisostatisches Pressen hergestellt. Bei Drahtstäben und kleinen Walzplatinen wird sowohl Matrizenpressen als auch kaltisostatisches Pressen angewandt. Bei Verwendung von Molybdänpulver mit einer typischen Teilchengröße nach Fisher von 2 bis 5 µm und Wolframpulver mit einer typischen Teilchengröße nach Fisher von 1,5 bis 4,5 µm erzielt man fraktionale Schüttdichten im Bereich von 0,11 bis 0,17 (Molybdän) und 0,13 bis 0,22 (Wolfram). Unter Anwendung eines Pressdruckes im Bereich von 200 bis 500 MPa werden fraktionale Gründichten sowohl bei Molybdän, als auch bei Wolfram, im Bereich von 0,6 bis 0,68 erzielt.
  • In einem nächsten Prozessschritt werden die Grünlinge gesintert. Der Sinterprozess wird dabei nach Möglichkeit so geführt, dass der gesinterte Körper eine geringe Porosität, verbunden mit-einem feinkörnigen Gefüge, aufweist. Molybdän und Wolfram werden üblicherweise in Wasserstoff mit einem Taupunkt < 0°C gesintert. Die üblichen Sintertemperaturen betragen bei Molybdän 1.800°C bis 2.200°C, bei Wolfram 2.100°C bis 2.700°C. Übliche Sinterzeiten sind 1 bis 24 Stunden. Da der Sinterprozess von Korngrenzendiffusion bestimmt ist, kann bei einer kleineren Teilchengröße bei tieferer Temperatur gesintert werden. Die Teilchengröße bestimmt jedoch auch die Porengröße im gesinterten Halbzeug. So kann die Porengröße um einen Faktor 3 reduziert werden, wenn die Teilchengröße nach Fisher des eingesetzten Molybdänpulvers von 10 µm auf 2,6 µm reduziert wird.
  • Nachteilig bei feinkörnigem Pulver ist jedoch der höhere Anteil an adsorbierten Gasen, insbesondere Sauerstoff. Während des Sinterprozesses reagiert nämlich dieser Sauerstoff mit dem Wasserstoff des Sintergases unter Bildung von Wasserdampf. Aufgrund der geringen Gaspermeabilität des Grünlings, die während des Sinterprozesses noch weiter reduziert wird, kann der Wasserdampf, insbesondere aus dem Zentrum des Sinterkörpers, nicht in ausreichendem Maße entfernt werden. Dies ist speziell dann der Fall, wenn feinkömiges Pulver mit einer Teilchengröße nach Fisher < 4,5 µm eingesetzt wird.
  • Ein hoher Wasserdampfgehalt im Inneren des Sinterkörpers löst eine CVT (Chemical Vapor Transport) Reaktion aus. Diese CVT-Reaktion führt durch Materialtransport über die Gasphase zu einer Vernichtung von spezifischer Oberfläche und damit einer Verringerung der treibenden Kräfte für das Sintern, im speziellen im Inneren des Sinterkörpers. Dieser Prozess verstärkt sich bei Molybdän- und Wolframlegierungen, wo Zusatzstoffe während des Sinterns eine Sauerstoff enthaltende Spezies abgeben, wodurch es verstärkt zu Wasserdampfbildung kommt, wie dies beispielsweise bei AKS-W, Mo-La2O3 oder W-La2O3 der Fall ist. Gasphasenreaktionen limitieren daher insbesondere bei diesen Legierungen die Dimension des gesinterten Körpers. Bei Sinterkörpem mit größeren Abmessungen bzw. bei Verwendung von sehr feinkörnigem Pulver ist die erzielbare Sinterdichte, im speziellen im Zentrum des Sinterkörpers geringer, als bei kleinen Sinterkörpern bzw. bei Verwendung von gröberem Pulver.
  • Anschließend an den Sinterprozess werden Molybdän, Wolfram und deren Legierungen üblicherweise einer thermomechanischen Behandlung unterzogen. Mit der thermomechanischen Behandlung erreicht man die gewünschte Form, eine Verringerung / Eliminierung der Porosität und die Einstellung der gewünschten mechanischen und mikrostrukturellen Eigenschaften. Mit zunehmendem Umformgrad steigt die Dichte bis hin zur theoretischen Dichte und sinkt die Korngröße. Die Reduktion der Korngröße hängt dabei stark von der gewählten Umformtemperatur und den Zwischenglühtemperaturen ab.
  • Wie bereits erwähnt, ist man bei Verwendung von feinkörnigen Pulvern bzw. bei Legierungen, die eine Spezies enthalten, die während des Sinterprozesses Sauerstoff oder Wasserdampf abspaltet, in der Größe des gesinterten Körpers limitiert. Ist nun aus diesem gesinterten Körper ein Produkt herzustellen, das größere Dimensionen aufweist, so kann der mögliche Umformgrad für ein Schließen der Porosität, im speziellen im Zentrum des Sinterkörpers, nicht ausreichen.
  • Dies ist beispielsweise bei AKS-Wolfram der Fall, das als Elektrodenmaterial in Lampen Verwendung findet. Speziell bei Kurzlichtbogenlampen werden Anoden bis zu 55 mm Durchmesser eingesetzt. Eine Lebensdauer bestimmende Eigenschaft solcher Elektroden ist deren Formstabilität. Die Verformung der Elektroden wird durch thermisch induzierte Spannungen ausgelöst. Diese thermisch induzierten Spannungen können beispielsweise zu Erhebungen im Bereich des Elektrodenplateaus führen. Auf diesen Erhebungen wird dann der Lichtbogen konzentriert, was zu einer lokalen Überhitzung führt. Dies kann bis zum Aufschmelzen der Elektrode in diesem Bereich führen.
  • Weiters führt die lokale Überhitzung zu einer verstärkten Verdampfung des Elektrodenmaterials. Das verdampfte Elektrodenmaterial schlägt sich am Lampenkolben nieder und reduziert damit drastisch den Lichtfluss.
  • Untersuchungen zeigten nun, dass Kriechphänomene für die Bildung der Erhebungen verantwortlich sind. Enthält nun der Werkstoff Poren, werden diese Kriechphänomene verstärkt, da die Poren als Leerstellenquellen und -senken fungieren. Zusätzlich reduzieren die Poren den Wärmeabfluss, was zu einer Verstärkung der lokalen Temperaturerhöhung führen kann.
  • Des Weiteren weist ein feinkömiges Elektrodenmaterial eine höhere Standzeit auf. Dies ist darauf zurückzuführen, dass sich bei grobkömigem Material die Schädigung auf wenige Komgrenzen konzentriert, wodurch es dort zu einem sich selbst verstärkenden Effekt durch eine Konzentration des Lichtbogens kommt.
  • Aufgabe der Erfindung ist es daher, Halbzeug oder Bauteile mit einer hohen Dichte, speziell auch im Zentrum, verbunden mit einem feinkörnigen Gefüge, bereitzustellen.
  • Die Aufgabe wird durch ein Verfahren mit den Merkmalen gemäß Anspruch 1 gelöst.
    Mit dem erfindungsgemäßen Verfahren ist es möglich, Halbzeug oder Bauteile aus Molybdän, Wolfram und deren Legierungen mit einer mittleren relativen Dichte > 98,5 % und einer relativen Kemdichte > 98,3 % herzustellen. Unter mittlerer relativer Dichte ist die mittlere Dichte bezogen auf das spezifische Gewicht zu verstehen. Unter Kemdichte versteht der Fachmann die Dichte im Zentrum eines Halbzeugs oder Bauteils. Da dabei das Kernvolumen bezogen auf das Gesamtvolumen nicht spezifiziert ist, wird für die folgenden Angaben das Kemvolumen für die Bestimmung der Kemdichte folgendermaßen definiert: Die zentrumsnächsten 10 % der Gesamtfläche quer zur Verformungsrichtung x Erstreckung in Verformungsrichtung.
    Das Halbzeug oder der Bauteil weist im umgeformten Zustand quer zu seiner Verformungsrichtung bevorzugt eine Komzahl > 100 Kömer / mm2 auf.
  • Bei dem erfindungsgemäßen Verfahren finden kommerzielle Molybdän- und Wolframpulver in einem Teilchengrößenbereich von 0,5 bis 10 µm nach Fisher Verwendung.
    Dem Pulver können vor, während oder nach dem Reduktionsprozess Legierungselemente zugesetzt werden. Das Pulver wird mit den üblichen Verdichtungsprozessen, wie beispielsweise Matrizenpressen oder kaltisostatisches Pressen, bei Pressdrücken von 100 bis 500 MPa kompaktiert.
  • Das Sintern erfolgt bei einer Temperatur von 0,55 bis 0,92 x Solidustemperatur. Die Sintertemperatur wird dabei so gewählt, dass eine Sinterdichte von 90 % bis 98,5 % der theoretischen Dichte, bei bevorzugt einem Anteil der geschlossenen Poren bezogen auf die Gesamtporosität von > 0,8 eingestellt wird. Liegt die relative Dichte über 98,5 %, kann die Zielsetzung, nämlich die Herstellung eines Bauteiles oder Halbzeugs mit einer Komzahl von > 100 Kömer / mm2, nicht erreicht werden.
  • Wenn der Anteil an geschlossener Porosität bezogen auf die Gesamtporosität > 0,8 beträgt, ist gewährleistet, dass die erforderlichen Eigenschaften im nachfolgenden Schritt, dem heißisostatischen Pressen, erzielt werden. Liegt der Wert unter 0,8, ist nach dem Sinterprozess ein Umformschritt mit 2% < ϕ < 60% erforderlich. ϕ ist definiert durch: ( Ausgansquerschnittsfläche - Querschnittsfläche nach dem Umformprozess ) / Ausgangsquerschnittsfläche × 100.
    Figure imgb0001
  • Dies gewährleistet ein Schließen der randnahen Poren.
  • Das heißisostatische Pressen wird ohne Verwendung einer Kanne durchgeführt und erfolgt bei einer Temperatur 0,40 bis 0,65 x Solidustemperatur bei einem Druck von 50 bis 300 MPa. Liegt die Temperatur unter 0,4 x Solidustemperatur kann das Ziel, eine mittlere relative Dichte von > 98,5 % und eine relative Kerndichte von > 98,3 % im Bauteil oder Halbzeug, nicht erreicht werden. Liegt die Temperatur über 0,65 x Solidustemperatur, kommt es zu einer unerwünschten Komvergröberung durch normales oder anormales Komwachstum. Liegt der Druck unter 50 MPa, kann das Dichteziel ebenfalls nicht erreicht werden. Bei Drücken über 300 MPa lässt sich das erfindungsgemäße Verfahren nicht mehr wirtschaftlich darstellen.
  • In einem nachfolgenden Schritt wird der heißisostatisch gepresste Teil umgeformt. Der Umformgrad ϕ beträgt dabei 15 bis 90%. Liegt der Umformgrad ϕ unter 15 % kann das Ziel einer relativen Kemdichte > 98,3 % nicht erreicht werden. Liegt der Umformgrad über 90 %, lässt sich wiederum das Verfahren nicht wirtschaftlich darstellen, da dichte Produkte auch ohne dem erfindungsgemäßen heißisostatischen Pressen hergestellt werden können.
  • Das erfindungsgemäße Verfahren bewährt sich besonders für die Herstellung von Elektroden im Durchmesserbereich von 15 bis 55 mm, die in Entladungslampen Verwendung finden. Liegt der Durchmesser unter 15 mm können derartige Elektroden mittels konventioneller Fertigungsverfahren wirtschaftlicher hergestellt werden. Die obere Grenze von 55 mm ergibt sich aus der Grenzwattage derartiger Lampen.
  • Das Vormaterial für die Elektroden wird bevorzugt durch Radialschmieden oder Walzen umgeformt. Versuche haben gezeigt, dass Elektroden, die mit dem erfindungsgemäßen Verfahren hergestellt worden sind, eine im Mittel um 20 % höhere Standzeit aufweisen, als Elektroden, die mit konventionellen Fertigungsmethoden hergestellt worden sind.
  • Im Folgenden wird die Erfindung durch ein Beispiel näher erläutert.
  • Beispiel:
  • Für die Herstellung einer AKS-W Elektrode wurde ein AKS-W Pulver mit einer Teilchengröße nach Fisher von 4,1 µm eingesetzt. Das Pulver wurde durch kaltisostatisches Pressen bei einem Pressdruck von 200 MPa zu einem Grünling kompaktiert. Die Sinterung erfolgte bei einer Temperatur von 2.250°C in Wasserstoff. Die so hergestellten Sinterstäbe wiesen eine durchschnittliche relative Dichte, mittels Auftriebsmethode bestimmt, von 92,0 % auf. Der Anteil an geschlossener Porosität betrug > 95 %, wobei die Messung mittels Quecksilberporosimetrie erfolgte. Die gesinterten Körper wurden im nachfolgenden Schritt bei einer Temperatur von 1.750°C und einem Druck von 195 MPa 3 Stunden heißisostatisch verdichtet. Die relative mittlere Dichte nach dem heißisostatischen Pressvorgang betrug 97,9 %. Anschließend wurden die Stäbe auf einer Radialschmiedemaschine umgeformt. Der Umformgrad ϕ betrug 67 %. Die mittlere relative Dichte der Stäbe betrug nach dem Umformprozess 99,66 %, die relative Kemdichte 99,63 %. Die Komgröße wurde im umgeformten Zustand und nach einer Glühung bei 1.800°C / 4 Stunden bestimmt. Im umgeformten Zustand betrug sie sowohl im Zentrum, als auch im Randbereich der Stäbe ca. 10.000 Kömer / mm2. Im geglühten Zustand konnte immer noch ein sehr feinkömiges Gefüge festgestellt werden, mit einer mittleren Komzahl im Zentrum der Stäbe von ca. 800 und im Randbereich von 850 Körnem / mm2.
    Die chemische Analyse der Stäbe erbrachte folgendes Resultat: Kalium 15 µg / g, Silizium 6 µg / g, Kohlenstoff < 5 µg / g, Sauerstoff 7 µg / g.
  • Aus dem erfindungsgemäß hergestellten Material wurden Anoden für 2,5 kW Kurzlichtbogenlampen für die Kinoprojektion hergestellt. Die ermittelte mittlere Standzeit betrug 2.060 Stunden. Vergleichsweise wurde auch ein Material eingesetzt, das nach dem Sinterprozess keiner nachfolgenden Verdichtung durch einen heißisostatischen Pressvorgang unterzogen wurde, bei ansonsten gleichem Herstellprozess. Damit konnte eine mittlere Standzeit von 1.710 Stunden erzielt werden.

Claims (9)

  1. Verfahren zur Herstellung eines Bauteiles oder Halbzeuges aus einem Werkstoff der Gruppe Molybdän, Molybdänlegierung, Wolfram, Wolframlegierung mit einer mittleren relativen Dichte > 98,5% und einer relativen Kemdichte > 98,3%,
    dadurch gekennzeichnet,
    dass die Herstellung zumindest folgende Verfahrensschritte umfasst:
    ■ Herstellung eines Pulvers mit einer Teilchengröße nach Fisher von 0,5 bis 10 µm;
    ■ Pressen des Pulvers bei einem Druck von 100 bis 500 MPa;
    ■ Sintern bei einer Temperatur 0,55 bis 0,92 x Solidustemperatur auf eine relative Dichte D, mit 90 % < D < 98,5 %;
    ■ Heißisostatisches Pressen ohne Verwendung einer Kanne bei einer Temperatur 0,40 bis 0,65 x Solidustemperatur und einem Druck von 50 bis 300 M Pa,
    ■ Umformen mit einem Umformgrad ϕ, mit 15 % < ϕ < 90 %.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Bauteil oder das Halbzeug im umgeformten Zustand eine mittlere Komzahl von > 100 Körner/mm2 aufweist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der gesinterte Körper vor dem heißisostatischen Pressen einer zusätzlichen Umformung unterzogen wird, mit 2% < ϕ < 60%.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der gesinterte Körper einem geschlossenen Porenanteil bezogen auf die Gesamtporosität von > 0,8 aufweist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Bauteil oder das Halbzeug aus K-gedoptem Wolfram (AKS-W) besteht und der K-Gehalt 5 bis 70 µg/g beträgt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Umformung durch Radialschmieden oder Walzen erfolgt und so ein Stab hergestellt wird.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Stab einen Durchmesser von 15 bis 55 mm aufweist.
  8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass aus dem Stab eine Lampenelektrode gefertigt wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Lampenelektrode in einer Kurzlichtbogenlampe verwendet wird.
EP06026181A 2005-12-23 2006-12-18 Verfahren zur Herstellung eines hochdichten Halbzeugs oder Bauteils Not-in-force EP1801247B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0088805U AT9340U1 (de) 2005-12-23 2005-12-23 Verfahren zur herstellung eines hochdichten halbzeugs oder bauteils

Publications (2)

Publication Number Publication Date
EP1801247A1 true EP1801247A1 (de) 2007-06-27
EP1801247B1 EP1801247B1 (de) 2008-03-12

Family

ID=37821000

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06026181A Not-in-force EP1801247B1 (de) 2005-12-23 2006-12-18 Verfahren zur Herstellung eines hochdichten Halbzeugs oder Bauteils

Country Status (6)

Country Link
US (1) US20070148031A1 (de)
EP (1) EP1801247B1 (de)
JP (1) JP5265867B2 (de)
CN (1) CN101007350B (de)
AT (2) AT9340U1 (de)
DE (1) DE502006000455D1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008077832A1 (de) * 2006-12-22 2008-07-03 Osram Gesellschaft mit beschränkter Haftung Quecksilber-hochdruckentladungslampe
WO2009039880A1 (de) * 2007-09-21 2009-04-02 Osram Gesellschaft mit beschränkter Haftung Gleichstromentladungslampe
WO2009109566A1 (de) * 2008-03-05 2009-09-11 Osram Gesellschaft mit beschränkter Haftung Wolframelektrode für hochdruckentladungslampen und hochdruckentladungslampe mit einer wolframelektrode
RU2461910C2 (ru) * 2007-09-21 2012-09-20 Осрам Аг Газоразрядная лампа постоянного тока

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090011266A1 (en) * 2007-07-02 2009-01-08 Georgia Tech Research Corporation Intermetallic Composite Formation and Fabrication from Nitride-Metal Reactions
US9992917B2 (en) 2014-03-10 2018-06-05 Vulcan GMS 3-D printing method for producing tungsten-based shielding parts
CN105478772B (zh) * 2014-09-15 2018-12-04 安泰科技股份有限公司 一种钼平面靶材的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582535B1 (en) * 1999-09-28 2003-06-24 Nikko Materials Company, Limited Tungsten target for sputtering and method for preparing thereof
AT6240U1 (de) * 2002-06-12 2003-06-25 Plansee Ag Elektrode für hochdruckentladungslampe
EP1435398A1 (de) * 2001-10-09 2004-07-07 Kabushiki Kaisha Toshiba Wolframdraht, kathodenheizer und glühfaden für lampe zur verwendung unter vibrationen

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3649224A (en) * 1968-04-18 1972-03-14 Sylvania Electric Prod Method of making nonsag filaments for electric lamps
US4066449A (en) * 1974-09-26 1978-01-03 Havel Charles J Method for processing and densifying metal powder
US4244738A (en) * 1978-03-24 1981-01-13 Samuel Storchheim Method of and apparatus for hot pressing particulates
JPS59205404A (ja) * 1983-05-06 1984-11-21 Daido Steel Co Ltd 粉末の固化方法
JPH0445234A (ja) * 1990-06-12 1992-02-14 Tokyo Tungsten Co Ltd タングステン棒材の製造方法
US5306569A (en) * 1990-06-15 1994-04-26 Hitachi Metals, Ltd. Titanium-tungsten target material and manufacturing method thereof
US6203753B1 (en) * 1996-05-13 2001-03-20 The Presmet Corporation Method for preparing high performance ferrous materials
DE19738574A1 (de) * 1997-09-04 1999-03-11 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Elektrode und Verfahren sowie Vorrichtung zur Herstellung derselben
JP4213831B2 (ja) * 1999-08-20 2009-01-21 株式会社ユメックス ショートアークランプ
WO2002020865A1 (fr) * 2000-09-07 2002-03-14 Kabushiki Kaisha Toshiba Cible de pulverisation au tungstene et son procede de fabrication
JP4659278B2 (ja) * 2001-06-18 2011-03-30 株式会社アライドマテリアル タングステン焼結体およびその製造方法並びにタングステン板材およびその製造方法
US20030211001A1 (en) * 2002-05-13 2003-11-13 Advanced Materials Products, Inc. Manufacture of near-net shape titanium alloy articles from metal powders by sintering at variable pressure
US20070172378A1 (en) * 2004-01-30 2007-07-26 Nippon Tungsten Co., Ltd. Tungsten based sintered compact and method for production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582535B1 (en) * 1999-09-28 2003-06-24 Nikko Materials Company, Limited Tungsten target for sputtering and method for preparing thereof
EP1435398A1 (de) * 2001-10-09 2004-07-07 Kabushiki Kaisha Toshiba Wolframdraht, kathodenheizer und glühfaden für lampe zur verwendung unter vibrationen
AT6240U1 (de) * 2002-06-12 2003-06-25 Plansee Ag Elektrode für hochdruckentladungslampe

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008077832A1 (de) * 2006-12-22 2008-07-03 Osram Gesellschaft mit beschränkter Haftung Quecksilber-hochdruckentladungslampe
US7973476B2 (en) 2006-12-22 2011-07-05 Osram Gesellschaft mit beschränkter Haftung High-pressure mercury discharge lamp
WO2009039880A1 (de) * 2007-09-21 2009-04-02 Osram Gesellschaft mit beschränkter Haftung Gleichstromentladungslampe
US8120256B2 (en) 2007-09-21 2012-02-21 Osram Ag Direct-current discharge lamp
RU2461910C2 (ru) * 2007-09-21 2012-09-20 Осрам Аг Газоразрядная лампа постоянного тока
WO2009109566A1 (de) * 2008-03-05 2009-09-11 Osram Gesellschaft mit beschränkter Haftung Wolframelektrode für hochdruckentladungslampen und hochdruckentladungslampe mit einer wolframelektrode

Also Published As

Publication number Publication date
JP5265867B2 (ja) 2013-08-14
JP2007169789A (ja) 2007-07-05
CN101007350A (zh) 2007-08-01
US20070148031A1 (en) 2007-06-28
AT9340U1 (de) 2007-08-15
CN101007350B (zh) 2012-07-04
ATE389040T1 (de) 2008-03-15
EP1801247B1 (de) 2008-03-12
DE502006000455D1 (de) 2008-04-24

Similar Documents

Publication Publication Date Title
EP1801247B1 (de) Verfahren zur Herstellung eines hochdichten Halbzeugs oder Bauteils
EP1802412B1 (de) Verfahren zur herstellung von ventilmetallpulvern
DE60021579T2 (de) Verfahren zur herstellung von feuerfestpulver mit niedrigen sauerstoffgehalt zur verwendung in der pulvermetallurgie
DE102008051784B4 (de) Verfahren zur Herstellung von Molybdän-Metallpulver, Molybdän-Metallpulver und dessen Verwendung
EP1718777B1 (de) Verfahren zur herstellung einer molybdän-legierung
WO2015061816A9 (de) Sputtering target und verfahren zur herstellung
EP2600996A2 (de) Verfahren zum pulvermetallurgischen herstellen eines cu-cr-werkstoffs
EP0183017B2 (de) Sinterverfahren für vorlegierte Wolframpulver
DE69122678T2 (de) Ausgangspulver zur Herstellung einer gesinterten Aluminiumlegierung, Verfahren zur Herstellung gesinterter Formkörper und gesinterte Aluminiumlegierung
DE102012217191A1 (de) Herstellen eines Refraktärmetall-Bauteils
WO2015027255A1 (de) Chrom-haltiges pulver oder pulvergranulat
KR100947392B1 (ko) 증가된 인장 강도 및 경도를 갖는 커패시터 등급 리드와이어
WO2018213858A2 (de) Kathodenwerkstoff
DE2049546B2 (de) Verfahren zur pulvermetallurgischen Herstellung eines dispersionsverfestigten Legierungskörpers
WO2017008092A1 (de) Metallfilter
EP1560799A2 (de) Keramik-metall- oder metall-keramik-komposite
DE102005045046A1 (de) Wolfram-Schrot
WO2017177244A1 (de) Anode für eine hochdruck-entladungslampe
WO2003107388A2 (de) Elektrode für hochdruckentladungslampe
JPS62133004A (ja) TiNi系合金線材の製造法
DE1258109B (de) Verfahren zur pulvermetallurgischen Herstellung von zur weiteren Verarbeitung bestimmten Koerpern
DE3322866A1 (de) Verfahren zum herstellen eines verbundwerkstoffes aus chrom und kupfer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006000455

Country of ref document: DE

Date of ref document: 20080424

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080623

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080818

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080712

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

26N No opposition filed

Effective date: 20081215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090102

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080612

BERE Be: lapsed

Owner name: PLANSEE METALL GMBH

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080913

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080613

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201211

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006000455

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701