EP1792154A1 - Verfahren zur korrektur eines gemessenen zylinderdruckes einer brennkraftmaschine - Google Patents

Verfahren zur korrektur eines gemessenen zylinderdruckes einer brennkraftmaschine

Info

Publication number
EP1792154A1
EP1792154A1 EP05769867A EP05769867A EP1792154A1 EP 1792154 A1 EP1792154 A1 EP 1792154A1 EP 05769867 A EP05769867 A EP 05769867A EP 05769867 A EP05769867 A EP 05769867A EP 1792154 A1 EP1792154 A1 EP 1792154A1
Authority
EP
European Patent Office
Prior art keywords
cylinder pressure
combustion chamber
internal combustion
combustion engine
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05769867A
Other languages
German (de)
English (en)
French (fr)
Inventor
Uwe Kassner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1792154A1 publication Critical patent/EP1792154A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/08Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/08Testing internal-combustion engines by monitoring pressure in cylinders

Definitions

  • the present invention relates to a method for correcting a measured cylinder pressure of an internal combustion engine.
  • Cylinder pressure transducers are known which, if possible, are integrated in an already existing component of the internal combustion engine. Typical embodiments are the integration of a suitable pressure transducer into a spark plug, a high-pressure injection valve or a glow plug. On the one hand, the front part of the component is already assigned to the main purpose of the component and offers no installation space for the pressure transducer, on the other hand, the pressure transducers are often provided with integrated electronic circuits which can not be exposed to the high temperatures near the combustion chamber. The cylinder pressure is then transmitted via suitable channels in the component from the combustion chamber to the pressure converter.
  • the problem underlying the present invention is therefore to be able to measure the temporal pressure curve more accurately even without combustion-flush placement of the pressure transducer and to suppress disturbance components resulting from pipe vibrations.
  • a method for correcting a measured cylinder pressure of an internal combustion engine in which a cylinder pressure sensor is connected to a combustion chamber via a duct, wherein a vibration frequency of a gas oscillation caused in the duct during a power stroke is determined and the measured values of ZylinderdruckaufNeille ⁇ is be filtered by means of a band-stop filter with the previously determined Schwingungsfre ⁇ frequency.
  • the gas oscillation is a so-called pipe vibration and manifests itself, from the viewpoint of the cylinder pressure transducer, as pressure oscillation over time, which is superimposed on the actual pressure curve in the combustion chamber.
  • the bandstop filter is preferably a digital filter.
  • the oscillation frequency is the resonance frequency or natural frequency of the gas column in the gas channel from the combustion chamber to the cylinder pressure transducer.
  • the oscillation frequency can be determined from a gas temperature in the combustion chamber, which is calculated from measured pressure values.
  • the temperature of the gas is determined from the combustion chamber pressure by means of a suitable, known per se Model calculated.
  • the oscillation frequency can be determined by a spectral analysis of the pressure profile in the combustion chamber.
  • the pipe vibration has a considerably higher frequency than the fundamental vibration of the pressure curve, which has the frequency of the crankshaft speed.
  • the pipe vibration has a frequency in the kHz range. Since the fundamental oscillation is known from the crankshaft speed, harmonics (the spark oscillation) can be easily identified.
  • a first method step the cylinder pressure profile is measured and stored for a complete working cycle.
  • the pressure trace is then stored as a time series in a memory, e.g. a programmable logic controller before.
  • the gas temperature is determined and from this the pipe vibration frequency is calculated.
  • the gas temperature is calculated using an isentropic equation for an (ideal or real) gas.
  • the band-stop filter is implemented as a program of the programmable controller, in which case, in particular, a blocking frequency and a damping factor are determined as parameters of the filter.
  • the cylinder pressure profile is filtered with the band-stop filter.
  • the time series is thereby subjected to the filter, whereby the filtered values can be written back to the same memory cells.
  • Fig. 2 pressure curve in a combustion chamber with superimposed pipe vibration.
  • An internal combustion engine 1 according to FIG. 1 of a motor vehicle which as such is not shown in detail, comprises a piston, t.-2, which can be reciprocated in a cylinder 3.
  • Conventional internal combustion engines 1 comprise a plurality of pistons 2 and cylinders 3. Subsequently, only one cylinder is shown in order to clarify the terms used.
  • the internal combustion engine 1 will comprise a plurality of cylinders.
  • the cylinder 3 comprises a combustion chamber 4 which is delimited inter alia by the piston 2, an inlet valve 5 and an outlet valve 6. With the inlet valve 5 is an intake pipe 7 and the outlet valve 6 is an exhaust pipe 8 is coupled.
  • an injection valve 9 and a spark plug 10 protrude into the combustion chamber 4 (in a gasoline engine with direct gasoline injection).
  • a diesel engine only one or more injection valves 9 will be present, in a gasoline engine only one or more Spark plugs 10 to be available.
  • Fuel can be injected into the combustion chamber 4 via the injection valve 9. With the spark plug 10, the fuel in the combustion chamber 4 ignited the was ⁇ .
  • a rotatable throttle valve 11 is housed, via which the intake pipe 7 air can be supplied. Upstream or downstream of the throttle valve 11, an air mass sensor 15 is arranged. The amount of supplied air is dependent on the angular position of the throttle valve 11.
  • a lambda probe 13 for measuring the ⁇ value of the fuel combustion in the combustion chamber 4 is arranged in a gasoline engine. Downstream of the lambda probe 13, a catalyst 12 is housed, which serves the further chemical conversion of pollutants contained in the exhaust gases.
  • the piston 2 is connected via a connecting rod 14 shown schematically with a Kurbelwel ⁇ le of the internal combustion engine, not shown here.
  • the piston 2 is set in motion by the combustion of the fuel / air mixture in the combustion chamber 4 during a power stroke, this movement is converted by means of the connecting rod 14 and the crankshaft in a known manner in a rotational movement.
  • a control unit 18 is acted upon by input signals 19, which represent operating variables of the internal combustion engine 1 measured by means of sensors. For example, that is
  • Control unit 18 with the air mass sensor 15, the Lambda sensor 13, a tachometer, an air temperature sensor and the like connected. Furthermore, the control unit 18 is connected to an accelerator pedal sensor which generates a signal which indicates the position of an accelerator pedal actuatable by a driver and thus the requested torque.
  • the control unit 18 generates output signals 20 with which the behavior of the internal combustion engine 1 can be influenced via actuators or actuators. For example, the control unit 18 with the injection valve 9, the Spark plug 10 and the throttle valve 11 and the like ver ⁇ connected and generates the signals required for their control.
  • control unit 18 is provided to control or regulate the operating variables of the internal combustion engine 1.
  • the fuel mass injected from the injection valve 9 into the combustion chamber 4 is controlled or regulated by the control unit 18, in particular with regard to low fuel consumption and / or low pollutant development.
  • the control unit 18 is provided with a microprocessor which is stored in a storage medium such.
  • a read-only memory (ROM) has stored a program that controls the aforementioned method steps.
  • a cylinder pressure sensor 16 is angeord ⁇ net, which is connected to an electrical supply line 17 with the Steuerge ⁇ device 18. Between Zylinderdruckaufsacrificing 16 and combustion chamber 4, a channel 21 of length 1 is arranged.
  • the installation position of the cylinder pressure transducer 16 is shown here only schematically, this can vary depending on the available space and other requirements.
  • the course of the cylinder pressure provided by the cylinder pressure sensor 16 and variables derived therefrom are used as input signal for various control functions.
  • Output signals of the control are, for example, control signals for measuring the fuel and controlling the ignition of the mixture.
  • the cylin derdruckaufêt 16 provides a signal according to FIG. 2, the actual pressure curve pipe vibrations are superimposed by the Ka ⁇ 21. Shown in FIG.
  • the method is based on a modeling of the Pfeifenschwin ⁇ supply, so that a suitable filtering of the measured Zy ⁇ cylinder pressure curve can be done before the actual thermodynamic features are calculated from the cylinder pressure.
  • the basic idea is to suppress the singular frequency of the Pfeifen ⁇ oscillation with a filter that blocks this frequency (so-called band-stop characteristic). With a numerical method, a digital filter, this is possible for the measured pressure curve after complete detection of the work cycle.
  • An embodiment is the storage of the once determined filter coefficients in the controller for the different frequencies of the pipe vibration or the calculation of the respective coefficients in dependence on the operating point of the internal combustion engine.
  • the frequency f can be determined.
  • Main variable variable This parameter can be determined once during calibration of the control and stored in maps. Another possibility is the calculation via a suitable thermodynamic model.
  • one possible embodiment is the spectral analysis of the cylinder pressure signal.
  • the pipe vibration can thus be determined in frequency depending on the operating point.
  • the spectral analysis can be done offline during calibration for various engine operating points or online for each duty cycle. Then the suitable filter can again be selected in order to sufficiently suppress this frequency.
  • a particular advantage of initially complete storage of a working cycle is the possibility of compensating for the undesired phase shift of the cylinder pressure signal by passing through the filter twice (zero-phase filtering). The important relationships between the crank angle and cylinder pressure curve are thus not distorted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
EP05769867A 2004-09-09 2005-07-11 Verfahren zur korrektur eines gemessenen zylinderdruckes einer brennkraftmaschine Withdrawn EP1792154A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004044339A DE102004044339A1 (de) 2004-09-09 2004-09-09 Verfahren zur Korrektur eines gemessenen Zylinderdruckes einer Brennkraftmaschine
PCT/EP2005/053309 WO2006027285A1 (de) 2004-09-09 2005-07-11 Verfahren zur korrektur eines gemessenen zylinderdruckes einer brennkraftmaschine

Publications (1)

Publication Number Publication Date
EP1792154A1 true EP1792154A1 (de) 2007-06-06

Family

ID=35266979

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05769867A Withdrawn EP1792154A1 (de) 2004-09-09 2005-07-11 Verfahren zur korrektur eines gemessenen zylinderdruckes einer brennkraftmaschine

Country Status (7)

Country Link
US (1) US7543484B2 (zh)
EP (1) EP1792154A1 (zh)
JP (1) JP2008512600A (zh)
KR (1) KR20070057170A (zh)
CN (1) CN101014845B (zh)
DE (1) DE102004044339A1 (zh)
WO (1) WO2006027285A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7726281B2 (en) * 2006-05-11 2010-06-01 Gm Global Technology Operations, Inc. Cylinder pressure sensor diagnostic system and method
DE102007050302A1 (de) * 2007-10-22 2009-04-23 Robert Bosch Gmbh Verfahren und Vorrichtung zum Ermitteln eines Zylinderdruckmerkmals
US8561592B2 (en) * 2009-06-08 2013-10-22 GM Global Technology Operations LLC Method and system for generating an in-cylinder pressure sensor signal
US8510016B2 (en) * 2009-10-30 2013-08-13 GM Global Technology Operations LLC Method and system for controlling an engine using in-cylinder pressure sensor signals
DE102011089370A1 (de) * 2011-12-21 2013-06-27 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Kaltstart-Emissions-Steuerung einer Brennkraftmaschine
FR3030739B1 (fr) 2014-12-18 2019-05-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Capteur de pression dynamique a fonctionnement ameliore
CN104964790B (zh) * 2015-06-12 2017-12-12 广东电网有限责任公司电力科学研究院 采用引压管测量燃烧室中动态压力的修正方法
TW201736814A (zh) * 2016-04-12 2017-10-16 原相科技股份有限公司 壓力測量方法以及壓力測量裝置
DE102017209386B4 (de) 2017-06-02 2024-05-08 Vitesco Technologies GmbH Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4227403A (en) * 1979-01-29 1980-10-14 Creative Tool Company Cylinder pressure monitoring system
US4382377A (en) * 1980-05-16 1983-05-10 Siemens Aktiengesellschaft Pressure sensor for an internal combustion engine
JPS6165127A (ja) 1984-09-07 1986-04-03 Hitachi Ltd 圧力信号の処理装置
JP2612365B2 (ja) 1990-04-27 1997-05-21 株式会社日立製作所 内燃機関のノツキング検出装置
JPH055665A (ja) 1991-02-08 1993-01-14 Mitsubishi Heavy Ind Ltd 筒内圧力センサ
US5373448A (en) * 1991-04-24 1994-12-13 Hitachi, Ltd. Knock detection device for an internal combustion engine
JPH10153465A (ja) 1996-11-25 1998-06-09 Hitachi Ltd 空気流量測定装置の測定誤差補正方法および測定誤差補正装置
DE19742006A1 (de) * 1997-09-24 1999-03-25 En Umwelt Beratung E V I Verfahren zur Korrektur eines sich infolge von Gassäulenschwingungen ändernden Innendruckverlaufssignals im Arbeitsraum einer Kolbenmaschine, insbesondere des Verbrennungsdruckverlaufs einer Verbrennungskraftmaschine der Kolbenbauart
DE19749817B4 (de) * 1997-11-11 2008-03-20 Robert Bosch Gmbh Vorrichtung und Verfahren zur Ermittlung des Spritzbeginns
DE19845232A1 (de) * 1998-10-01 2000-04-06 Bosch Gmbh Robert Verfahren und Vorrichtung zur Bewertung von Verbrennungsvorgängen an einer Brennkraftmaschine
JP4244683B2 (ja) 2002-06-24 2009-03-25 トヨタ自動車株式会社 内燃機関の燃料噴射装置
DE10347517B3 (de) * 2003-10-13 2005-06-02 Siemens Ag Verfahren und Vorrichtung zum Überwachen eines Impulsladeventils einer Brennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006027285A1 *

Also Published As

Publication number Publication date
CN101014845B (zh) 2010-05-05
US7543484B2 (en) 2009-06-09
JP2008512600A (ja) 2008-04-24
KR20070057170A (ko) 2007-06-04
WO2006027285A1 (de) 2006-03-16
US20080173070A1 (en) 2008-07-24
DE102004044339A1 (de) 2006-03-16
CN101014845A (zh) 2007-08-08

Similar Documents

Publication Publication Date Title
EP1792154A1 (de) Verfahren zur korrektur eines gemessenen zylinderdruckes einer brennkraftmaschine
DE102005009104B3 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE102011009114B4 (de) Adaptive Schätzung von Ansaugsauerstoff in einem Dieselmotor
EP1725757B1 (de) Verfahren und vorrichtung zum steuern des luftmengenstromes von verbrennungskraftmaschinen
DE112006003205B4 (de) Vorrichtung zum Steuern einer Brennkraftmaschine
DE102011109487B4 (de) Verfahren zum Schätzen und Steuern eines akustischen Geräuschs während der Verbrennung
DE102016219582B3 (de) Verfahren zur kombinierten Identifizierung einer Einlassventilhub-Phasendifferenz und einer Auslassventilhub-Phasendifferenz eines Verbrennungsmotors mit Hilfe von Linien gleicher Amplitude
EP3308007B1 (de) Luftfüllungsbestimmung, motorsteuergerät und verbrennungskraftmaschine
DE102006058539A1 (de) Selbstzündungsmotor mit auf Druck beruhender Verbrennungssteuerung
WO2006069853A1 (de) Verfahren zum betreiben einer brennkraftmaschine
EP1749149A1 (de) Verfahren zum erfassen eines zylinderindividuellen luft/kraftstoff-verhältnisses bei einer brennkraftmaschine
DE3918772A1 (de) Motor-regelgeraet
EP1774161B1 (de) Verfahren und vorrichtung zum steuern einer brennkraftmaschine
DE102017209386B4 (de) Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb
DE102006061659B4 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE102005004441B3 (de) Vorrichtung und Verfahren zum Ermitteln einer Stellgröße eines Reglers einer Brennkraftmaschine
DE102005021528B3 (de) Verfahren und Vorrichtung zur Ermittlung des Verhältnisses zwischen der in einem Zylinder einer Brennkraftmaschine verbrannten Kraftstoffmasse und der in dem Zylinder eingesetzten Kraftstoffmasse
DE102009045792A1 (de) Verfahren und Steuergerät zum Abgleichen von Abgassondensignalen beim Betrieb eines Verbrennungsmotors mit variabler Spülrate
DE102004051837B4 (de) Verfahren und Vorrichtungen zum Steuern und zum Diagnostizieren eines Abgasturboladers
DE102019213092A1 (de) Verfahren zur Diagnostik von Verbrennungsaussetzern einer Verbrennungskraftmaschine
DE10358988B3 (de) Vorrichtung zum Steuern einer Brennkraftmaschine
DE102004062408A1 (de) Verfahren und Vorrichtung zum Ermitteln einer Sauerstoffspeicherkapazität des Abgaskatalysators einer Brennkraftmaschine und Verfahren und Vorrichtung zum Ermitteln einer Dynamik-Zeitdauer für Abgassonden einer Brennkraftmaschine
DE10133555A1 (de) Verfahren zum zylinderindividuellen Abgleich der Einspritzmenge bei Brennkraftmaschinen
DE102006035096B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102006002718B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070410

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20110118

RBV Designated contracting states (corrected)

Designated state(s): FR GB IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20110315

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110531