EP1783712B1 - Combined scattered light and extinction fire alarm - Google Patents

Combined scattered light and extinction fire alarm Download PDF

Info

Publication number
EP1783712B1
EP1783712B1 EP05110341A EP05110341A EP1783712B1 EP 1783712 B1 EP1783712 B1 EP 1783712B1 EP 05110341 A EP05110341 A EP 05110341A EP 05110341 A EP05110341 A EP 05110341A EP 1783712 B1 EP1783712 B1 EP 1783712B1
Authority
EP
European Patent Office
Prior art keywords
fire
light beams
sensor unit
fire detector
ceiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05110341A
Other languages
German (de)
French (fr)
Other versions
EP1783712A1 (en
Inventor
Kurt Müller
Peter Steiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP05110341A priority Critical patent/EP1783712B1/en
Application filed by Siemens AG filed Critical Siemens AG
Priority to AT05110341T priority patent/ATE394764T1/en
Priority to DE502005004043T priority patent/DE502005004043D1/en
Priority to ES05110341T priority patent/ES2306025T3/en
Priority to PCT/EP2006/068036 priority patent/WO2007051820A1/en
Priority to US12/089,789 priority patent/US7817049B2/en
Priority to CN2006800411178A priority patent/CN101300611B/en
Publication of EP1783712A1 publication Critical patent/EP1783712A1/en
Application granted granted Critical
Publication of EP1783712B1 publication Critical patent/EP1783712B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the invention relates to a method for detecting a fire with a comprehensive at least two sensor units a structurally limited space monitoring fire alarm, in which a first fire detection unit of the fire alarm a first fire characteristic is monitored by the scattered light method.
  • the US 2003/020617 A1 discloses a sensor for externally incident photons is combined in a detector with one or more other sensors for detecting gas, moisture, temperature, etc. The signals of the individual sensors are evaluated and it is concluded that there is a dangerous situation, no danger situation or a false alarm.
  • the US 2002/0153499 A1 discloses a scattered light smoke detector with a defined measurement volume outside of the scattered light smoke detector, wherein the defined measurement volume is a few centimeters below the scattered light smoke detector, wherein the scattered light smoke detector for setting the defined measurement volume two light receiver or imaging optics for a light receiver, and with a processor, wherein the processor for Evaluation of contours of the measurement object serves to distinguish between smoke and another object.
  • the US 2002/0080040 A1 proposes a scattered light smoke detector having means to distinguish between smoke and other debris in the scattering point. This distinction is made, for example, by the analysis of the passage of time the received signals performed. By means of an optical system, scattered signals can be determined from different scattering ranges, so as to achieve greater safety by means of location information in order to distinguish between smoke and object. By a photoreceiver array as a light receiver is a precise spatial resolution and differentiation possible. Another alternative is a tunable light source.
  • the scattered light smoke detector may also be combined with an ultrasonic sensor to detect an object.
  • the scattered light method can also be used outside a darkened measuring chamber in the room to be monitored.
  • insects that enter the measurement area or accidental masking, for example, must be safely removed from one Covering, for example, during cleaning can be reliably distinguished from a fire or smoke.
  • Most such disadvantages are trying to solve that the measurement or monitoring is limited to the immediate vicinity of the fire alarm.
  • a distance of 4 to 10 cm from the surface of the fire detector is generally considered typical.
  • the disadvantages can only be reduced to a limited extent.
  • Linear smoke detectors send a beam of light across the room to be monitored and trigger an alarm when the beam is attenuated by smoke (extinction). It is irrelevant whether transmitter and receiver are arranged in separate devices on opposite walls of the room or if they are combined in one unit. In one unit then a reflector on the opposite wall is necessary. Since the measuring distance is usually several meters, the sensitivity of linear detectors is generally greater than that of scattered light detectors. In addition, they can be positioned in high rooms at a height where smoke is expected. Of course, the influence or even a total interruption of the light beam in such arrangements is much more likely than is the case when the beam is effective only in the detector environment.
  • the object of the present invention is to provide a simple and efficient way to suggest the earliest possible detection of a fire.
  • a core of the invention is to be seen in that for the earliest possible detection of a fire, a fire detector with a first sensor unit for monitoring a first fire characteristic according to the scattered light method and a second sensor unit for monitoring a second fire characteristic according to the extinction method is used.
  • the first sensor unit consists of at least one light emitting transmitter unit and at least one receiving unit receiving the transmitted light.
  • the second sensor unit consists of at least two strongly bundled light emitting transmitting units and at least one receiving unit receiving the emitted light.
  • the signals of the two sensor units of the fire detector can be evaluated individually or in combination by a suitable evaluation unit such as a fuzzy processor.
  • the fire detector is generally mounted on the ceiling of the structurally limited space. The two sensor units can partially use the same components.
  • the at least two transmitting units emitting the highly concentrated light beams can be used jointly by both sensor units.
  • an IR laser diode, an IR diode, etc. can be used.
  • the receiving units can then forward the received signals to a dedicated evaluation unit of the fire alarm.
  • the highly collimated light beams emitted by the at least two transmitting units are directed from the ceiling towards the ground and may be inclined either parallel or slightly (outwardly). The angle of inclination is generally less than 10 degrees.
  • Smoke in the immediate vicinity of the fire detector is detected by the scattered light method and by the Extintechnischshabilit, further away from the ceiling smoke only by the Extintechnischshabilit because the scattered light is too weak.
  • the transmitting units are controlled shifted in time and therefore the light beams are transmitted temporally shifted.
  • a distance measurement provides information on whether a level change involves a partially reflecting object extending in the direction of the room height. It can then be assumed that between "normal" reflection location, location in the room where the monitoring of the second fire characteristic takes place according to the invention, and the fire detector in the room is an object interfering with the measurement. If this is the case, it can usually be concluded that it is impaired by living beings (persons, animals, etc.) or moving objects.
  • the distance measurement can, for example, with the help of in the EP 1391860 A1 revealed principle.
  • a major advantage of the method according to the invention is that a fire can be detected or detected much earlier. In this way, a fire alarm can be triggered earlier and thus risks for property damage and personal injury can be reduced to a minimum.
  • Another great advantage of this inventive fire alarm is that it can be integrated into the ceiling panel of a room and thus is flush with the ceiling.
  • Figure 1 shows a fire detector with two inventive sensor units 1, 2 and a cover plate AP.
  • cover plate AP which may consist of plastic, metal, wood, glass, etc.
  • windows or openings for the receiving units SLE and EE, as well as for the transmitting units SE are indicated.
  • This fire detector can be integrated into the ceiling of a room.
  • the cover AP of the fire detector can then be flush with the ceiling or slightly protruding.
  • the thick black lines indicate the respective measuring range.
  • the two sensor units 1, 2 are shown separated from each other, but according to the invention both sensor units 1, 2 should be integrated in a fire detector and at least the transmission units SE shared by the two sensor units 1, 2.
  • the first sensor unit 1 consists of two transmitting light emitting units SE and a scattered light receiving unit SLE.
  • the scattered light receiving unit SLE is aligned by means of two optics so that it detects only a near-detail cutout or measuring range of the beams.
  • the second sensor unit 2 consists of the same two transmission units SE and an extinction reception unit EE.
  • the extinction receiving unit EE detects smoke by the extinction method.
  • the extinction receiver EE with its optics forms an area at a greater distance from the ceiling, which covers all emitted light beams and lies outside the area monitored by the scattered light method.
  • the impact points of the transmission units SE on the floor or objects that are about 2 to 5 meters from the ceiling are depicted.
  • the reflection of the emitted light rays on the ground or at most on pieces of furniture such as tables, shelves, etc. is detected up to a ceiling height of for example 5 meters.
  • the reflected light is measured.
  • the emitted light rays penetrate each smoke layer at any height.
  • the received signals according to the scattered light method and the received signals according to the extinction method are combined (Neuro Fuzzy processor) that a very safe statement regarding the presence of a fire the one in connection with a rather uncertain statement of the other sensor system is enough to trigger a fire alarm.
  • a triggering of a fire alarm will generally occur much earlier than with point detectors that only operate according to the scattered light method.

Abstract

The method involves monitoring a fire characteristic in the proximity of the ceiling according to a scattered light procedure using a sensor unit (1) of a fire alarm. A sensor unit (2) of the fire alarm transmits beam of coherent light towards a base of a structurally limited area and monitors another fire characteristic in a free area between the ceiling and a base of the limited area according to extinction procedure. An independent claim is also included for a fire alarm for a ceiling suspension, for monitoring a structurally limited area and for detecting the fire.

Description

Die Erfindung betrifft ein Verfahren zur Detektion eines Brandes mit einem mindestens zwei Sensoreinheiten umfassenden einen baulich begrenzten Raum überwachenden Brandmelder, bei dem mit einer ersten Sensoreinheit des Brandmelders eine erste Brandkenngrösse nach dem Streulichtverfahren überwacht wird.The invention relates to a method for detecting a fire with a comprehensive at least two sensor units a structurally limited space monitoring fire alarm, in which a first fire detection unit of the fire alarm a first fire characteristic is monitored by the scattered light method.

Die US 2003/020617 A1 offenbart einen Sensor für von aussen einfallende Photonen ist in einem Detektor mit einen oder mehreren weiteren Sensoren zur Detektion von Gas, Feuchtigkeit, Temperatur etc. kombiniert. Die Signale der einzelnen Sensoren werden ausgewertet und dabei wird auf das Vorhandensein einer Gefahrensituation, keiner Gefahrensituation oder einem Fehlalarm geschlossen.The US 2003/020617 A1 discloses a sensor for externally incident photons is combined in a detector with one or more other sensors for detecting gas, moisture, temperature, etc. The signals of the individual sensors are evaluated and it is concluded that there is a dangerous situation, no danger situation or a false alarm.

Die US 2002/0153499 A1 offenbart einen Streulichtrauchmelder mit einem definierten Messvolumen ausserhalb des Streulichtrauchmelders, wobei sich das definierte Messvolumen wenige Zentimeter unterhalb des Streulichtrauchmelders befindet, wobei der Streulichtrauchmelder zur Einstellung des definierten Messvolumens zwei Lichtempfänger oder eine Abbildungsoptik für einen Lichtempfänger aufweist, und mit einem Prozessor, wobei der Prozessor zur Auswertung von Konturen des Messobjekts zur Unterscheidung zwischen Rauch und einem anderen Gegenstand dient.The US 2002/0153499 A1 discloses a scattered light smoke detector with a defined measurement volume outside of the scattered light smoke detector, wherein the defined measurement volume is a few centimeters below the scattered light smoke detector, wherein the scattered light smoke detector for setting the defined measurement volume two light receiver or imaging optics for a light receiver, and with a processor, wherein the processor for Evaluation of contours of the measurement object serves to distinguish between smoke and another object.

Die US 2002/0080040 A1 schlägt einen Streulichtrauchmelder vor, der Mittel aufweist, um zwischen Rauch und anderen Fremdkörpern im Streupunkt zu unterscheiden. Diese Unterscheidung wird beispielsweise durch die Analyse des Zeitverlaufs der empfangenen Signale durchgeführt. Durch eine Optik können Streusignale aus verschiedenen Streubereichen ermittelt werden, um so durch eine Ortsinformation eine grössere Sicherheit zur Unterscheidung zwischen Rauch und Gegenstand zu erreichen. Durch ein Fotoempfänger Array als Lichtempfänger ist eine genaue Ortsauflösung und Unterscheidung möglich. Eine weitere Alternative ist eine durchstimmbare Lichtquelle. Der Streulichtrauchmelder kann auch mit einem Ultraschallsensor kombiniert werden, um einen Gegenstand zu detektieren.The US 2002/0080040 A1 proposes a scattered light smoke detector having means to distinguish between smoke and other debris in the scattering point. This distinction is made, for example, by the analysis of the passage of time the received signals performed. By means of an optical system, scattered signals can be determined from different scattering ranges, so as to achieve greater safety by means of location information in order to distinguish between smoke and object. By a photoreceiver array as a light receiver is a precise spatial resolution and differentiation possible. Another alternative is a tunable light source. The scattered light smoke detector may also be combined with an ultrasonic sensor to detect an object.

Konventionelle Punktmelder wie zum Beispiel so genannte Streulichtmelder messen fast ausnahmslos in einer abgedunkelten Messkammer, dem so genannten Labyrinth. Damit werden Störeinflüsse durch Licht stark reduziert. Ausserdem werden der Ruhestrom der Empfängerdiode und das damit verbundene Rauschen minimiert. Andererseits hat das Labyrinth zwangsläufig den Nachteil, dass der Rauch nur verzögert eindringen kann und die Rauchdichte im Inneren des Labyrinths bestenfalls asymptotisch den Wert der äußeren Konzentration erreicht. Dadurch wird ein etwaiger Brand entsprechend spät detektiert.Conventional point detectors, such as so-called scattered light detectors, measure almost invariably in a darkened measuring chamber, the so-called labyrinth. This greatly reduces interference caused by light. In addition, the quiescent current of the receiver diode and the associated noise are minimized. On the other hand, the labyrinth inevitably has the disadvantage that the smoke can penetrate only delayed and the smoke density inside the labyrinth at best asymptotically reaches the value of the external concentration. As a result, any fire is detected correspondingly late.

In hohen Räumen nimmt die Rauchdichte im Allgemeinen zur Decke hin stark ab. Abhängig von der Brandenergie und der Raumhöhe kann die größte Konzentration weit von der Decke entfernt sein. Konventionelle Punktmelder können daher einen etwaigen Brand deshalb nur verzögert detektieren.In high rooms, the smoke density generally decreases greatly toward the ceiling. Depending on the energy of the fire and the height of the room, the maximum concentration may be far from the ceiling. Conventional point detectors can therefore only delay detection of a possible fire.

Das Streulichtverfahren kann auch außerhalb einer abgedunkelten Messkammer im zu überwachenden Raum angewendet werden. Jedoch gibt es bei einer solchen Anwendung deutlich mehr Störeinflüsse aus der Umgebung. So müssen beispielsweise Insekten, die in den Messbereich gelangen oder versehentliches Abdecken zum Beispiel bei der Reinigung sicher von einem Abdecken zum Beispiel bei der Reinigung sicher von einem Brand bzw. von Rauch unterschieden werden können. Meist werden derartige Nachteile dadurch versucht zu lösen, dass die Messung bzw. Überwachung auf die unmittelbare Nähe des Brandmelders begrenzt wird. Hier wird allgemein ein Abstand von 4 bis 10 cm von der Oberfläche des Brandmelders als typisch erachtet. Leider können damit die Nachteile nur beschränkt reduziert werden.The scattered light method can also be used outside a darkened measuring chamber in the room to be monitored. However, in such an application, there are significantly more environmental perturbations. For example, insects that enter the measurement area or accidental masking, for example, must be safely removed from one Covering, for example, during cleaning can be reliably distinguished from a fire or smoke. Most such disadvantages are trying to solve that the measurement or monitoring is limited to the immediate vicinity of the fire alarm. Here, a distance of 4 to 10 cm from the surface of the fire detector is generally considered typical. Unfortunately, the disadvantages can only be reduced to a limited extent.

Lineare Rauchmelder senden einen Lichtstrahl quer durch den zu überwachenden Raum und lösen einen Alarm aus, wenn der Strahl durch Rauch abgeschwächt (Extinktion) wird. Dabei ist es bedeutungslos, ob Sender und Empfänger in getrennten Geräten auf gegenüberliegenden Wänden des Raumes angeordnet sind oder ob sie in einer Einheit zusammengefasst sind. Bei einer Einheit ist dann ein Reflektor auf der gegenüberliegenden Wand notwendig. Da die Messstrecke in der Regel mehrere Meter beträgt, ist die Empfindlichkeit von Linearmeldern im Allgemeinen größer als diejenige von Streulichtmeldern. Zudem können sie in hohen Räumen in einer Höhe positioniert werden, in der noch Rauch zu erwarten ist. Naturgemäß ist die Beeinflussung oder gar eine totale Unterbrechung des Lichtstrahls bei solchen Anordnungen weitaus wahrscheinlicher als dies der Fall ist, wenn der Strahl nur in der Melderumgebung wirksam ist.Linear smoke detectors send a beam of light across the room to be monitored and trigger an alarm when the beam is attenuated by smoke (extinction). It is irrelevant whether transmitter and receiver are arranged in separate devices on opposite walls of the room or if they are combined in one unit. In one unit then a reflector on the opposite wall is necessary. Since the measuring distance is usually several meters, the sensitivity of linear detectors is generally greater than that of scattered light detectors. In addition, they can be positioned in high rooms at a height where smoke is expected. Of course, the influence or even a total interruption of the light beam in such arrangements is much more likely than is the case when the beam is effective only in the detector environment.

Die Aufgabe der vorliegenden Erfindung ist darin zu sehen, eine einfache und effiziente Möglichkeit zur möglichst frühzeitigen Detektion eines Brandes vorzuschlagen.The object of the present invention is to provide a simple and efficient way to suggest the earliest possible detection of a fire.

Die Aufgabe wird erfindungsgemäß jeweils durch die Gegenstände der unabhängigen Patentansprüche gelöst. Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.The object is achieved in each case by the subject matters of the independent claims. Further developments of the invention are specified in the subclaims.

Ein Kern der Erfindung ist darin zu sehen, dass für die möglichst frühzeitige Detektion eines Brandes ein Brandmelder mit einer ersten Sensoreinheit zum Überwachen einer ersten Brandkenngrösse gemäss dem Streulichtverfahren und einer zweiten Sensoreinheit zum Überwachen einer zweiten Brandkenngrösse gemäss dem Extinktionsverfahren verwendet wird. Die erste Sensoreinheit besteht erfindungsgemäss aus zumindest einer Licht aussendender Sendeeinheit und zumindest einer das ausgesandte Licht empfangende Empfangseinheit. Die zweite Sensoreinheit besteht aus zumindest zwei stark gebündeltes Licht aussendende Sendeeinheiten und zumindest einer das ausgesandte Licht empfangende Empfangseinheit. Die Signale der zwei Sensoreinheiten des Brandmelders können einzeln oder auch in Kombination durch eine geeignete Auswerteinheit wie zum Beispiel einen Fuzzy Prozessor ausgewertet werden. Der Brandmelder wird dabei im Allgemeinen an der Decke des baulich begrenzten Raumes montiert. Die beiden Sensoreinheiten können teilweise die gleichen Komponenten nutzen. Dies bedeutet, dass die mindestens zwei die stark gebündelten Lichtstrahlen aussendenden Sendeeinheiten gemeinsam von beiden Sensoreinheiten verwendet werden können. Für derartige Sendeeinheiten kann erfindungsgemäss eine IR-Laserdiode, eine IR-Diode etc. verwendet werden. Die Empfangseinheiten können die empfangenen Signale dann an eine dafür vorgesehene Auswerteinheit des Brandmelders weiterleiten. Die von den mindestens zwei Sendeeinheiten ausgesendeten stark gebündelten Lichtstrahlen sind von der Decke gegen den Boden gerichtet und können dabei entweder parallel oder leicht (nach außen) geneigt sein. Der Neigungswinkel beträgt im Allgemeinen weniger als 10 Grad. Rauch in unmittelbarer Umgebung des Brandmelders wird durch das Streulichtverfahren und durch das Extinktionsverfahren erfasst, weiter von der Decke entfernter Rauch nur noch durch das Extinktionsverfahren, da das gestreute Licht zu schwach ist. Um eine Zuordnung der Messsignale zu einem der ausgesendeten Lichtstrahlen zu erhalten, werden die Sendeeinheiten zeitlich verschoben angesteuert und werden daher die Lichtstrahlen zeitlich verschoben ausgesendet. Eine Distanzmessung gibt Aufschluss darüber ob bei einer Pegeländerung ein, in Richtung der Raumhöhe ausgedehntes, teilweise reflektierendes Objekt beteiligt ist. Es kann dann davon ausgegangen werden, dass zwischen "normalem" Reflexionsort, Ort im Raum an dem die Überwachung der zweiten Brandkenngrösse erfindungsgemäss stattfindet, und dem Brandmelder im Raum sich ein die Messung störendes Objekt befindet. Ist dies der Fall kann in der Regel auf eine Beeinträchtigung durch Lebewesen (Personen, Tiere etc.) oder bewegte Objekte geschlossen werden. Die Distanzmessung kann beispielsweise mit Hilfe des in der EP 1391860 A1 offenbarten Prinzips erfolgen. Mit diesem Prinzip lassen sich Relativ-Distanzen von einigen Zentimetern genügend schnell erfassen. Zur Überwachung der zweiten Brandkenngrösse werden die den einzelnen Sendeeinheiten zugeordneten Empfangssignale gegenseitig und unter Berücksichtigung des Sendezeitversatzes korreliert. Eine starke Korrelation bezüglich Zeitverlauf und Pegel bei gleichzeitigen typischen Verlauf charakterisiert Rauch bzw. einen Brand, da dieser im Abstand der beiden Sendestrahlen keine nennenswerte lokalen Konzentrationsunterschiede aufweist. Empfangssignale, die auf Grund veränderter Reflexion durch bewegte Objekte entstehen, können zusätzlich durch die zeitliche Abfolge der Signale diskriminiert werden. Grosse bzw. ausgedehnte Objekte werden mehrere Lichtstrahlen beeinflusst, wohingegen bei Objekte, die kleiner als die Strahlabstände sind (zum Beispiel Insekten), sich immer für alle empfangenen Signale eine zeitliche Verschiebung ergibt und so Fehlalarme vermieden werden können. Um das Risiko eines Fehlalarms weiter zu reduzieren, kann ein Alarm nur dann ausgelöst werden, wenn sowohl gemäss dem Streulichtverfahren als auch gemäss dem Extinktionsverfahren ein Brand detektiert wird.A core of the invention is to be seen in that for the earliest possible detection of a fire, a fire detector with a first sensor unit for monitoring a first fire characteristic according to the scattered light method and a second sensor unit for monitoring a second fire characteristic according to the extinction method is used. According to the invention, the first sensor unit consists of at least one light emitting transmitter unit and at least one receiving unit receiving the transmitted light. The second sensor unit consists of at least two strongly bundled light emitting transmitting units and at least one receiving unit receiving the emitted light. The signals of the two sensor units of the fire detector can be evaluated individually or in combination by a suitable evaluation unit such as a fuzzy processor. The fire detector is generally mounted on the ceiling of the structurally limited space. The two sensor units can partially use the same components. This means that the at least two transmitting units emitting the highly concentrated light beams can be used jointly by both sensor units. For such transmission units according to the invention, an IR laser diode, an IR diode, etc. can be used. The receiving units can then forward the received signals to a dedicated evaluation unit of the fire alarm. The highly collimated light beams emitted by the at least two transmitting units are directed from the ceiling towards the ground and may be inclined either parallel or slightly (outwardly). The angle of inclination is generally less than 10 degrees. Smoke in the immediate vicinity of the fire detector is detected by the scattered light method and by the Extinktionsverfahren, further away from the ceiling smoke only by the Extinktionsverfahren because the scattered light is too weak. To assign the measurement signals to a To receive the emitted light beams, the transmitting units are controlled shifted in time and therefore the light beams are transmitted temporally shifted. A distance measurement provides information on whether a level change involves a partially reflecting object extending in the direction of the room height. It can then be assumed that between "normal" reflection location, location in the room where the monitoring of the second fire characteristic takes place according to the invention, and the fire detector in the room is an object interfering with the measurement. If this is the case, it can usually be concluded that it is impaired by living beings (persons, animals, etc.) or moving objects. The distance measurement can, for example, with the help of in the EP 1391860 A1 revealed principle. With this principle, relative distances of a few centimeters can be detected quickly enough. In order to monitor the second fire characteristic, the received signals assigned to the individual transmission units are correlated mutually and taking into account the transmission time offset. A strong correlation with respect to time course and level with simultaneous typical course characterizes smoke or a fire, since this has no significant local concentration differences in the distance of the two transmitted beams. Receive signals, which arise due to changed reflection by moving objects, can additionally be discriminated by the temporal sequence of the signals. Large or extended objects are affected by multiple beams of light, whereas with objects smaller than beam distances (eg insects), there is always a temporal shift for all received signals and so false alarms can be avoided. In order to further reduce the risk of a false alarm, an alarm can only be triggered if a fire is detected both according to the scattered light method and according to the extinction method.

Ein großer Vorteil des erfindungsgemässen Verfahrens besteht darin, dass ein Brand deutlich früher detektiert bzw. erkannt werden kann. Damit kann dann auch früher Brand-Alarm ausgelöst werden und somit können Risiken für Sach- und Personenschäden auf ein Minimum reduziert werden.A major advantage of the method according to the invention is that a fire can be detected or detected much earlier. In this way, a fire alarm can be triggered earlier and thus risks for property damage and personal injury can be reduced to a minimum.

Ein weiterer großer Vorteil dieses erfindungsgemässen Brandmelders besteht darin, dass er in die Deckenverkleidung eines Raumes integriert sein kann und damit bündig mit der Decke ist.Another great advantage of this inventive fire alarm is that it can be integrated into the ceiling panel of a room and thus is flush with the ceiling.

Die Erfindung wird anhand eines in einer in Figur 1 dargestellten Ausführungsbeispiels näher erläutert.The invention will be explained in more detail with reference to an exemplary embodiment shown in FIG.

Figur 1 zeigt einen Brandmelder mit zwei erfindungsgemässen Sensoreinheiten 1, 2 und einer Abdeckplatte AP. Bei der dargestellten Abdeckplatte AP, die aus Kunststoff, Metall, Holz, Glas etc. bestehen kann, sind Fenster bzw. Öffnungen für die Empfangseinheiten SLE und EE, sowie für die Sendeeinheiten SE angedeutet. Dieser Brandmelder kann in die Decke eines Raumes integriert sein. Die Abdeckung AP des Brandmelders kann dann bündig mit der Decke sein oder geringfügig hervorstehend sein. Die dicken schwarzen Striche deuten den jeweiligen Messbereich an. Zur besseren Veranschaulichung sind die beiden Sensoreinheiten 1, 2 getrennt voneinander dargestellt, jedoch sollen erfindungsgemäss beide Sensoreinheiten 1, 2 in einem Brandmelder integriert sein und zumindest die Sendeeinheiten SE gemeinsam von den beiden Sensoreinheiten 1, 2 genutzt werden. Die erste Sensoreinheit 1 besteht aus zwei, Licht aussendende Sendeeinheiten SE und einer Streulichtempfangseinheit SLE. Die Streulichtempfangseinheit SLE ist mittels zweier Optiken so ausgerichtet, dass sie nur einen deckennahen Ausschnitt bzw. Messbereich der Strahlen erfasst.Figure 1 shows a fire detector with two inventive sensor units 1, 2 and a cover plate AP. In the illustrated cover plate AP, which may consist of plastic, metal, wood, glass, etc., windows or openings for the receiving units SLE and EE, as well as for the transmitting units SE are indicated. This fire detector can be integrated into the ceiling of a room. The cover AP of the fire detector can then be flush with the ceiling or slightly protruding. The thick black lines indicate the respective measuring range. For better illustration, the two sensor units 1, 2 are shown separated from each other, but according to the invention both sensor units 1, 2 should be integrated in a fire detector and at least the transmission units SE shared by the two sensor units 1, 2. The first sensor unit 1 consists of two transmitting light emitting units SE and a scattered light receiving unit SLE. The scattered light receiving unit SLE is aligned by means of two optics so that it detects only a near-detail cutout or measuring range of the beams.

Diese Ausschnitte haben dank der Strahlbündelung nur eine Ausdehnung in Richtung der Strahlachsen, was für die Unterscheidung zwischen störenden Objekten und Rauch bzw. einem Brand wichtig ist. Breitet sich Rauch in einem oder mehreren der abgebildeten Strahlabschnitte aus, so nimmt das Streulicht mit der für einen bestimmten Brandtyp charakteristischen Rauchdichte-Entwicklung zu. Die Zunahme der Rauchdichte-Entwicklung ist wegen der räumlichen Nähe zum Brandmelder im mittleren Verlauf korreliert. Gerät ein Objekt wie zum Beispiel ein Insekt, ein Putzgerät etc. in einem der Strahlenabschnitte, so wird dank dem extrem kleinen erfindungsgemässen Strahlenquerschnitt immer ein Signalsprung gemessen, der sich deutlich von einem durch Rauch erzeugten Signal unterscheidet. Die zweite Sensoreinheit 2 besteht aus den gleichen zwei Sendeeinheiten SE und einer Extinktionsempfangseinheit EE. Die Extinktionsempfangseinheit EE erfasst Rauch nach dem Extinktionsverfahren. Dazu bildet der Extinktionsempfänger EE mit seiner Optik einen Bereich in größerer Distanz von der Decke ab, der alle ausgesendeten Lichtstrahlen umfasst und außerhalb des mittels Streulichtverfahrens überwachten Bereichs liegt. Abgebildet werden die Auftreffpunkte der Sendeeinheiten SE auf dem Boden oder Objekten, die ca. 2 bis 5 Meter von der Decke entfernt sind. Damit wird die Reflexion der ausgesendeten Lichtstrahlen am Boden oder allenfalls an Möbelstücken wie Tische, Regale etc. bis zu einer Raumhöhe von beispielsweise 5 Meter erfasst.
In ungestörter Umgebung, d. h. wenn die ausgesendeten Lichtstrahlen ungehindert den Boden erreichen, wird das reflektierte Licht gemessen. Die ausgesendeten Lichtstrahlen durchdringen jede Rauchschicht in beliebiger Höhe. Das führt nicht nur zu einer sicheren sondern in der Regel auch zu einer frühen Erfassung von Rauch. Da der Reflexionsgrad und die Distanz nicht vorab bekannt sind, adaptiert der erfindungsgemässe Brandmelder auf die vorliegende Situation bei Inbetriebnahme und später auch im Betrieb. Selbstverständlich könnte auch nur ein ausgesendeter Lichtstrahl für das erfindungsgemässe Verfahren verwendet werden, jedoch muss dann mit deutlich mehr Störeinflüssen gerechnet werden.
Thanks to the bundling of rays, these sections have only an extension in the direction of the beam axes, which is important for distinguishing between interfering objects and smoke or a fire. If smoke propagates in one or more of the imaged beam sections, the scattered light increases with the smoke density development characteristic of a particular fire type. The increase in smoke density development is correlated in the mean course due to the proximity to the fire detector. Device an object such as an insect, a cleaning device, etc. in one of the beam sections, so thanks to the extremely small beam cross section according to the invention, a signal jump is always measured, which differs significantly from a signal generated by smoke. The second sensor unit 2 consists of the same two transmission units SE and an extinction reception unit EE. The extinction receiving unit EE detects smoke by the extinction method. For this purpose, the extinction receiver EE with its optics forms an area at a greater distance from the ceiling, which covers all emitted light beams and lies outside the area monitored by the scattered light method. The impact points of the transmission units SE on the floor or objects that are about 2 to 5 meters from the ceiling are depicted. Thus, the reflection of the emitted light rays on the ground or at most on pieces of furniture such as tables, shelves, etc. is detected up to a ceiling height of for example 5 meters.
In an undisturbed environment, ie when the emitted light beams reach the ground unhindered, the reflected light is measured. The emitted light rays penetrate each smoke layer at any height. This not only leads to a safe but also usually to an early detection of smoke. Since the reflectance and the distance are not known in advance, the inventive fire detector adapted to the present situation at startup and later in operation. Of course, only one emitted light beam could be used for the inventive method, but then must be reckoned with significantly more interference.

Damit Fehlalarme auf ein Minimum reduziert werden können, werden die folgenden Maßnahmen und Algorithmen für das erfindungsgemässe Verfahren verwendet:

  • Durch die starke Lichtstrahlenbündelung wird ein Unterbruch des Strahls sehr rasch und vollständig eintreten, selbst wenn zum Beispiel ein sich bewegendes Objekt sich nur sehr langsam verschiebt. Die Geschwindigkeit einer Abnahme des Pegels unterscheidet sich deshalb deutlich von derjenigen bei Rauchentstehung.
  • Eine Distanzmessung gibt Aufschluss darüber, ob bei einer Pegeländerung ein, in Richtung vom Boden zur Decke eines baulich begrenzten Raumes hin, zumindest teilweise reflektierendes Objekt beteiligt ist. Ist dies der Fall kann in der Regel auf eine Beeinträchtigung durch ein Lebewesen (Mensch, Tier etc.) oder einen sich bewegenden Gegenstand geschlossen werden. Werden gemäss dem erfindungsgemässen Verfahren mindestens zwei Sendeeinheiten SE verwendet, werden die den einzelnen Sendeeinheiten SE zugeordneten Empfangssignale gegenseitig und unter Berücksichtigung des Sendezeitversatzes korreliert. Eine starke Korrelation bezüglich Zeitverlauf und Pegel bei gleichzeitig typischem Verlauf charakterisiert Rauch, da dieser keine extrem großen lokalen Konzentrationsunterschiede aufweist. Empfangene Signale, die auf Grund einer veränderter Reflexion bei sich bewegenden Objekten (Lebewesen, ein sich bewegender Gegenstand) entstehen, können im Fall mehrerer Lichtstrahlen zusätzlich durch die zeitliche Abfolge der Empfangssignale diskriminiert werden. Bei ausgedehnten und großen Objekten können zwei Lichtstrahlen gleichzeitig beeinflusst werden. Für Objekte wie zum Beispiel Insekten etc., die kleiner sind als die Lichtstrahlenabstände, ergibt sich immer für alle Empfangssignale eine zeitliche Verschiebung.
In order to reduce false alarms to a minimum, the following measures and algorithms are used for the method according to the invention:
  • Due to the strong light beam bundling an interruption of the beam will occur very quickly and completely, even if, for example, a moving object shifts only very slowly. The speed of a decrease in the level therefore differs markedly from that of smoke generation.
  • A distance measurement provides information on whether a level change, in the direction from the floor to the ceiling of a structurally limited space, at least partially reflective object is involved. If this is the case can usually be closed to an impairment by a living being (human, animal, etc.) or a moving object. If at least two transmission units SE are used according to the method according to the invention, the reception signals assigned to the individual transmission units SE are correlated mutually and taking into account the transmission time offset. A strong correlation with time course and level at the same time characteristic characterizes smoke, since this does not have extremely large local concentration differences. Received signals that arise due to an altered reflection in moving objects (living beings, a moving object), in the case of multiple light beams additionally discriminated by the timing of the received signals become. For extended and large objects, two light beams can be influenced simultaneously. For objects such as insects, etc., which are smaller than the light beam distances, there is always a time shift for all received signals.

Im ungestörten Zustand, also wenn kein Lebewesen oder kein sich bewegender Gegenstand sich im baulich begrenzten Raum befinden, werden die Empfangssignale gemäss dem Streulichtverfahren und die Empfangssignale gemäss dem Extinktionsverfahren derart kombiniert (Neuro Fuzzy Prozessor), dass eine sehr sichere Aussage bezüglich des Vorliegens eines Brandes des einen in Verbindung einer eher unsicheren Aussage des anderen Sensorsystems genügt um einen Brand-Alarm auszulösen. Ein derartiges Auslösen eines Brand-Alarms wird im Allgemeinen deutlich früher geschehen als das bei Punktmeldern, die nur nach dem Streulichtverfahren arbeiten, der Fall ist.In the undisturbed state, so if no living thing or no moving object located in structurally limited space, the received signals according to the scattered light method and the received signals according to the extinction method are combined (Neuro Fuzzy processor) that a very safe statement regarding the presence of a fire the one in connection with a rather uncertain statement of the other sensor system is enough to trigger a fire alarm. Such a triggering of a fire alarm will generally occur much earlier than with point detectors that only operate according to the scattered light method.

Im Allgemeinen werden die empfangenen Signale von den Empfangseinheiten SLE und EE an eine Auswerteinheit wie zum Beispiel einen Fuzzy Prozessor zum Auswerten weitergeleitet. Deutet die Auswertung auf einen möglichen Brand hin, wird ein Alarm ausgelöst. Beispielhaft charakterisieren folgende Zustände der Eingangsvariablen des Fuzzy Prozessors einen Brand:

  • Die Extinktion hat brandverlaufsartig deutlich zugenommen, die Distanz vom Brandmelder zum Detektionspunkt ist jedoch unverändert.
  • Eine schwache Zunahme des Streulichts zeigt an, dass erster Rauch bis zur Decke aufgestiegen ist → Alarm wird ausgelöst.
In general, the received signals are forwarded by the receiving units SLE and EE to an evaluation unit, such as a fuzzy processor for evaluation. If the analysis indicates a possible fire, an alarm is triggered. By way of example, the following states of the input variables of the fuzzy processor characterize a fire:
  • The extinction has significantly increased in the course of fire, but the distance from the fire detector to the detection point is unchanged.
  • A slight increase in scattered light indicates that the first smoke has risen to the ceiling → alarm is triggered.

Es ist offensichtlich, dass es schwierig wird im Fall einer Beeinträchtigung durch bewegte Objekte gleichzeitig mittels Extinktion eine Rauchentwicklung zu messen. Die Signaländerungen als Folge der bewegten Objekte sind dominant. Die Branddetektion wird in diesem Zustand mehr auf die Überwachung gemäss dem Streulichtverfahren gestützt. Es ist akzeptabel, dass die Empfindlichkeit unter diesen Umständen etwas reduziert wird. Das offene Streulichtverfahren, also die Messung von Streulicht in einer Umgebung in der Nähe des Brandmelders ist einem klassischem Punktmelder bezüglich der Ansprechgeschwindigkeit überlegen, da der Rauch nicht erst in einen abgedunkelten Raum im Brandmelder eindringen muss.It is obvious that it becomes difficult in the case of being affected by moving objects at the same time to measure smoke by means of extinction. The signal changes as a consequence of the moving objects are dominant. The fire detection in this state is more based on the monitoring according to the scattered light method. It is acceptable that the sensitivity is somewhat reduced under these circumstances. The open scattered light method, ie the measurement of stray light in an environment near the fire detector is superior to a classic point detector with respect to the response speed, since the smoke does not first have to penetrate into a darkened room in the fire detector.

Claims (22)

  1. Method for detecting a fire by means of a ceiling-mounted fire detector that includes at least two sensor units (1, 2) and monitors a structurally limited space,
    characterised in that
    a first fire characteristic is monitored according to the scattered-light method by means of a first sensor unit (1) near the ceiling,
    a second fire characteristic is monitored according to the extinction method by means of at least one second sensor unit (2) of the fire detector emitting at least two intensely bundled light beams towards the floor of the structurally limited space and
    the at least two emitted light beams are either parallel or inclined at an angle less than 10 degrees.
  2. Method according to claim 1,
    characterised in that
    the second fire characteristic is monitored according to the extinction method by the second sensor unit (2) outside the zone monitored by means of the first sensor unit (1) according to the scattered-light method.
  3. Method according to claims 1 and 2,
    characterised in that
    at least two sending units (SE) each emitting an intensely bundled light beam and at least one receiving unit (SLE, EE) that receives the emitted intensely bundled light beams are used jointly for the first (1) and second (2) sensor unit.
  4. Method according to claims 1 to 3,
    characterised in that
    the second fire characteristic is monitored in the open space between the ceiling and floor of the structurally limited space.
  5. Method according to one of the preceding claims,
    characterised in that
    the at least two light beams emitted by the at least two sending units (SE) of the second sensor unit (2) are temporally displaced.
  6. Method according to one of the preceding claims,
    characterised in that
    for monitoring the second fire characteristic the distance between the second sensor unit (2) emitting the at least two light beams and an object at least partially reflecting the emitted light beams is measured.
  7. Method according to claim 6,
    characterised in that
    the object is either a living thing or a moving object.
  8. Method according to one of the preceding claims,
    characterised in that
    the reflected light of the emitted light beams is evaluated by the fire detector according to the extinction method.
  9. Method according to claim 8,
    characterised in that
    for monitoring the second fire characteristic the reflected light beams received by the second sensor unit (2) are assigned to the at least two emitted light beams and evaluated in terms of their temporal curve and/or level.
  10. Method according to claims 8 and 9,
    characterised in that
    the received reflected light beams are assigned taking the temporal displacement of the emitted light beams into account.
  11. Method according to claims 8 to 10,
    characterised in that
    a fire alarm will be triggered by the fire detector only if the temporal curve and/or level tally.
  12. Method according to claims 8 to 11,
    characterised in that
    a fire alarm will be triggered only if the distance from an object reflecting the at least two emitted light beams remains constant.
  13. Method according to claims 8 to 12,
    characterised in that
    a fire alarm will be triggered only if the first sensor unit (1) monitoring a first fire characteristic additionally detects a fire.
  14. Method according to one of the preceding claims,
    characterised in that
    laser light is used for the intensely bundled light beams.
  15. Method according to claim 1,
    characterised in that
    the at least two emitted light beams are inclined outward.
  16. Method according to claim 15,
    characterised in that
    the angle of inclination is less than 10 degrees.
  17. Fire detector for mounting on a ceiling, for monitoring a structurally limited space and for detecting a fire,
    - having a cover plate (AP) for covering the fire detector integrated in the ceiling of the structurally limited space,
    - having a first sensor unit (1) of the fire detector for monitoring a first fire characteristic according to the scattered-light method,
    having at least one second sensor unit (2) emitting at least two intensely bundled light beams towards the floor of the structurally limited space for monitoring a second fire characteristic according to the extinction method, with the at least two emitted light beams being either parallel or inclined at an angle less than 10 degrees.
  18. Fire detector according to claim 17,
    characterised in that
    at least two sending units (SE) for emitting at least two intensely bundled light beams are provided jointly for the first (1) and second (2) sensor unit.
  19. Fire detector according to claim 18,
    characterised in that
    an IR laser diode and/or IR diode are/is provided as the sending unit (SE).
  20. Fire detector according to claims 17 to 19,
    characterised in that
    one receiving unit (SLE, EE) is provided in each case for the first (1) and second (2) sensor unit for receiving the intensely bundled light beams emitted by the at least two sending units (SE).
  21. Fire detector according to claims 17 to 20,
    characterised in that
    an evaluation unit is provided for evaluating the light beams received by the at least one receiving unit (SLE, EE) and for triggering an alarm.
  22. Fire detector according to claim 21,
    characterised in that
    a fuzzy processor is provided as the evaluation unit.
EP05110341A 2005-11-04 2005-11-04 Combined scattered light and extinction fire alarm Not-in-force EP1783712B1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT05110341T ATE394764T1 (en) 2005-11-04 2005-11-04 COMBINED SCATTERED LIGHT AND EXTINCTION FIRE DETECTOR
DE502005004043T DE502005004043D1 (en) 2005-11-04 2005-11-04 Combined stray light and extinction fire detector
ES05110341T ES2306025T3 (en) 2005-11-04 2005-11-04 WARNING OF COMBINED FIRE DISPERSED AND EXTINGUISHING LIGHT.
EP05110341A EP1783712B1 (en) 2005-11-04 2005-11-04 Combined scattered light and extinction fire alarm
PCT/EP2006/068036 WO2007051820A1 (en) 2005-11-04 2006-11-02 Combined scattered light- and extinction-based fire detector
US12/089,789 US7817049B2 (en) 2005-11-04 2006-11-02 Combined scattered-light and extinction-based fire detector
CN2006800411178A CN101300611B (en) 2005-11-04 2006-11-02 Combined scattered light and extinction fire alarm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05110341A EP1783712B1 (en) 2005-11-04 2005-11-04 Combined scattered light and extinction fire alarm

Publications (2)

Publication Number Publication Date
EP1783712A1 EP1783712A1 (en) 2007-05-09
EP1783712B1 true EP1783712B1 (en) 2008-05-07

Family

ID=36297208

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05110341A Not-in-force EP1783712B1 (en) 2005-11-04 2005-11-04 Combined scattered light and extinction fire alarm

Country Status (7)

Country Link
US (1) US7817049B2 (en)
EP (1) EP1783712B1 (en)
CN (1) CN101300611B (en)
AT (1) ATE394764T1 (en)
DE (1) DE502005004043D1 (en)
ES (1) ES2306025T3 (en)
WO (1) WO2007051820A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019110336A1 (en) * 2019-04-18 2020-10-22 Jörg Flemming smoke detector

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004001699A1 (en) * 2004-01-13 2005-08-04 Robert Bosch Gmbh fire alarm
DE202006015553U1 (en) 2006-10-09 2006-12-14 Schako Klima Luft Ferdinand Schad Kg Zweigniederlassung Kolbingen Detecting device for smoke in room has transmitter for transmitting radiation and receiver that detects radiation whereby radiation transparent cover placed over transmitter or receiver is made up of an unbreakable material
EP2043068B1 (en) 2007-09-28 2010-02-10 Siemens Building Technologies Fire & Security Products GmbH & Co. oHG Device for monitoring a fire alarm and configuration method and fire alarm
EP2423895B1 (en) 2010-08-26 2017-03-08 Siemens Schweiz AG Light scattering smoke alarm with means of suppressing an acoustic warning if battery voltage is low
US8947243B2 (en) 2012-04-29 2015-02-03 Valor Fire Safety, Llc Smoke detector with external sampling volume and utilizing internally reflected light
US9140646B2 (en) 2012-04-29 2015-09-22 Valor Fire Safety, Llc Smoke detector with external sampling volume using two different wavelengths and ambient light detection for measurement correction
US8907802B2 (en) 2012-04-29 2014-12-09 Valor Fire Safety, Llc Smoke detector with external sampling volume and ambient light rejection
CA2927785C (en) 2013-10-30 2024-04-16 Valor Fire Safety, Llc Smoke detector with external sampling volume and ambient light rejection
US9652958B2 (en) 2014-06-19 2017-05-16 Carrier Corporation Chamber-less smoke sensor
DE102015004458B4 (en) 2014-06-26 2016-05-12 Elmos Semiconductor Aktiengesellschaft Apparatus and method for a classifying, smokeless air condition sensor for predicting a following operating condition
DE102014019773B4 (en) 2014-12-17 2023-12-07 Elmos Semiconductor Se Device and method for distinguishing between solid objects, cooking fumes and smoke using the display of a mobile telephone
DE102014019172B4 (en) 2014-12-17 2023-12-07 Elmos Semiconductor Se Device and method for distinguishing between solid objects, cooking fumes and smoke using a compensating optical measuring system
CN113327397B (en) * 2021-05-20 2022-03-01 浙江华消科技有限公司 Smoke detector labyrinth structure and smoke alarm

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH641584A5 (en) * 1979-02-26 1984-02-29 Cerberus Ag FIRE DETECTORS.
JPS61247918A (en) * 1985-04-26 1986-11-05 Hochiki Corp Output correcting device for analog sensor
JP2935549B2 (en) 1990-08-23 1999-08-16 能美防災株式会社 Fire detection method and device
CH683464A5 (en) * 1991-09-06 1994-03-15 Cerberus Ag Optical smoke detector with active surveillance.
US5502434A (en) * 1992-05-29 1996-03-26 Hockiki Kabushiki Kaisha Smoke sensor
CH684556A5 (en) * 1992-09-14 1994-10-14 Cerberus Ag Optical Smoke Detector.
DE59704302D1 (en) * 1997-06-16 2001-09-20 Siemens Building Tech Ag Optical smoke detector based on the extinction principle
US6111511A (en) * 1998-01-20 2000-08-29 Purdue Research Foundations Flame and smoke detector
ATE295595T1 (en) * 1999-11-19 2005-05-15 Siemens Building Tech Ag FIRE ALARM
DE10066246A1 (en) * 2000-09-22 2005-10-06 Robert Bosch Gmbh Scattered light smoke
DE10118913B4 (en) * 2001-04-19 2006-01-12 Robert Bosch Gmbh Scattered light smoke
US6967582B2 (en) * 2002-09-19 2005-11-22 Honeywell International Inc. Detector with ambient photon sensor and other sensors
CN2779384Y (en) * 2005-01-07 2006-05-10 上海捷耐瑞智能科技有限公司 Laser beam smoke detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019110336A1 (en) * 2019-04-18 2020-10-22 Jörg Flemming smoke detector

Also Published As

Publication number Publication date
ATE394764T1 (en) 2008-05-15
DE502005004043D1 (en) 2008-06-19
CN101300611A (en) 2008-11-05
US7817049B2 (en) 2010-10-19
ES2306025T3 (en) 2008-11-01
US20080211681A1 (en) 2008-09-04
CN101300611B (en) 2012-07-04
WO2007051820A1 (en) 2007-05-10
EP1783712A1 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
EP1783712B1 (en) Combined scattered light and extinction fire alarm
EP2252984B1 (en) Evaluation of a difference signal between output signals of two receiving devices in a sensor apparatus
EP2093734B1 (en) Smoke alarm with timed evaluation of a backscattering signal, test method for functionality of a smoke alarm
DE69636022T2 (en) Fire alarm system with distinction of smoke particles
DE3831654C2 (en)
CH683464A5 (en) Optical smoke detector with active surveillance.
EP2043068B1 (en) Device for monitoring a fire alarm and configuration method and fire alarm
EP2624228B1 (en) Fire alarm with human-machine interface and method for controlling the fire alarm
EP1061489B1 (en) Intrusion detector with a device for monitoring against tampering
WO1999045515A1 (en) Fire alarm box
EP2348495A1 (en) Smoke alarm with ultrasound coverage monitoring
DE102013003614B4 (en) Device for detecting smoke in a room and method for checking the functionality of such a device
EP1093100B1 (en) Passive infrared detector
EP2093731A1 (en) Linear optical smoke alarm with multiple part-beams
DE10353837B4 (en) Testing device for fire detectors
EP1087352A1 (en) Optical smoke detector
DE20320497U1 (en) Control device for an automatic door has a presence sensor to generate a triggering signal by using a measurement of distance
EP2690610A1 (en) Method and device for escape path control
EP0880118B1 (en) Optical smoke detector
WO2015097040A2 (en) Apparatus for transmitting energy using laser radiation
AU2018226504B2 (en) Chamberless smoke detector
EP1596349B1 (en) Method for sensing and reporting of condensation in smoke detectors
EP1777670B1 (en) Smoke detector
WO2014180773A1 (en) Fire alarm
EP2884033B1 (en) Fire protection circuit and assembly of the same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070605

17Q First examination report despatched

Effective date: 20070709

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005004043

Country of ref document: DE

Date of ref document: 20080619

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2306025

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081007

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

26N No opposition filed

Effective date: 20090210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080807

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081104

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080808

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20131011

Year of fee payment: 9

Ref country code: FR

Payment date: 20131119

Year of fee payment: 9

Ref country code: SE

Payment date: 20131107

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131128

Year of fee payment: 9

Ref country code: NL

Payment date: 20131105

Year of fee payment: 9

Ref country code: ES

Payment date: 20131220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140206

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150601

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 394764

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141105

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141104

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181106

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190118

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005004043

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191104