EP2093734B1 - Smoke alarm with timed evaluation of a backscattering signal, test method for functionality of a smoke alarm - Google Patents

Smoke alarm with timed evaluation of a backscattering signal, test method for functionality of a smoke alarm Download PDF

Info

Publication number
EP2093734B1
EP2093734B1 EP08101744A EP08101744A EP2093734B1 EP 2093734 B1 EP2093734 B1 EP 2093734B1 EP 08101744 A EP08101744 A EP 08101744A EP 08101744 A EP08101744 A EP 08101744A EP 2093734 B1 EP2093734 B1 EP 2093734B1
Authority
EP
European Patent Office
Prior art keywords
light
smoke
smoke detector
mounting surface
light receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08101744A
Other languages
German (de)
French (fr)
Other versions
EP2093734A1 (en
Inventor
Markus Dr. Loepfe
Georges A. Dr. Tenchio
Kurt Dr. Müller
Walter Vollenweider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DK08101744.4T priority Critical patent/DK2093734T3/en
Application filed by Siemens AG filed Critical Siemens AG
Priority to ES08101744T priority patent/ES2368358T3/en
Priority to AT08101744T priority patent/ATE515008T1/en
Priority to PL08101744T priority patent/PL2093734T3/en
Priority to EP08101744A priority patent/EP2093734B1/en
Priority to PCT/EP2009/051753 priority patent/WO2009103667A1/en
Priority to US12/735,845 priority patent/US8587442B2/en
Priority to CN2009801056425A priority patent/CN101952862B/en
Publication of EP2093734A1 publication Critical patent/EP2093734A1/en
Application granted granted Critical
Publication of EP2093734B1 publication Critical patent/EP2093734B1/en
Priority to HK11107223.1A priority patent/HK1153299A1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/12Checking intermittently signalling or alarm systems
    • G08B29/14Checking intermittently signalling or alarm systems checking the detection circuits
    • G08B29/145Checking intermittently signalling or alarm systems checking the detection circuits of fire detection circuits
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/20Calibration, including self-calibrating arrangements
    • G08B29/22Provisions facilitating manual calibration, e.g. input or output provisions for testing; Holding of intermittent values to permit measurement
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the present invention relates to the technical field of danger detection technology.
  • the present invention relates to a device for detecting smoke based on the principle of optical scattered light measurements.
  • the present invention further relates to a method for checking the operability of a scattered light smoke detector
  • Smoke detectors typically operate according to the scattered light method. It is exploited that clear air reflects virtually no light. However, if smoke particles are in the air, an illumination light emitted by a light source is at least partially scattered on the smoke particles. Part of this scattered light then falls on a light receiver, which is not directly illuminated by the illumination light. Without smoke particles in the air, the illumination light can not reach the photosensitive sensor.
  • Scattered smoke detectors can be divided into two categories.
  • the first category represents so-called closed smoke detectors, which have an optical chamber within a housing. In case of danger, smoke can penetrate into the optical chamber, which is then detected in the manner described above.
  • the second category are so-called open smoke detectors. These have no optical chamber. Rather, smoke located outside the open smoke detector serves as a scattering medium.
  • EP 1 688 898 A1 is known based on the scattered light smoke detector.
  • the smoke detector has a sensor housing with a light transmitter received therein, which is aligned with a lying outside the sensor housing smoke detection space. It is recorded in the sensor housing, a light receiver for detecting scattered light, which comes from the illuminated by the light emitter smoke detection room. The light receiver outputs a signal corresponding to the received light quantity.
  • the light emitter and the light receiver are inclined with respect to their respective optical axis and arranged obliquely to a printed circuit board in the sensor housing.
  • a smoke and fire detector which has a light source for illuminating a monitored area.
  • the light source is offset with respect to a lens arranged in the detector housing, so that no direct light can pass from the light source to the lens.
  • a deflection mirror is arranged, which deflects the detected by the lens optical image of the area to be monitored on a plate with photoelectric detectors.
  • the fire detector has a laser light source, which is set up to emit short laser pulses in a Oberwachungs Scheme.
  • the fire detector also has a light detector which is arranged next to the laser light source and which is set up to detect laser light scattered back by approximately 180 ° of smoke or other objects located in the monitoring area. Based on the time difference between emitted and received laser pulses, the position of a backscatter object can be determined within the surveillance area.
  • a scattered light smoke detector which has a light emitter and a light receiver. Light emitter and light receiver are so arranged within the scattered light smoke detector at an angle to each other, that their scattering point is outside the scattered light smoke detector outdoors. So this scattered light smoke detector is a so-called. Open smoke detector. A cover of transparent plastic, which is arranged between (a) light transmitter or light receiver and (b) scattering point, protects the scattered light smoke detector from moisture, aggressive gases and mechanical damage.
  • the scattered light smoke detector also has a processor with which the light signals detected by the light receiver can be analyzed with respect to their time behavior.
  • a smoke detector which comprises a housing and disposed within the housing has a light emitter and a light receiver. A detection range defined by the spatial arrangement of the light emitter and the light receiver is located outside the smoke detector.
  • the light transmitter is assigned a control receiver, which is set up to detect the radiation emitted by the light emitter. Furthermore, a control transmitter assigned to the light receiver is provided, so that the sensitivity of the light receiver can be checked.
  • the present invention has for its object to realize a smoke detector with a particularly compact design.
  • a method-related object of the present invention is to provide a reliable method for checking the operability of a smoke detector.
  • an apparatus for detecting smoke which is in the frame
  • the smoke detector comprises (a) a base member having a planar mounting surface, (b) a light emitter attached to the mounting surface and configured to emit an illumination light, (c) a light receiver mounted adjacent the light emitter on the mounting surface and which is arranged to receive a measurement light resulting from a backscatter of the illumination light on a measurement object located in a detection space, and (c) a data processing device which is coupled to an output of the light receiver and which is configured to evaluate temporal changes of one of the output of the light receiver output signal.
  • the light emitter and light receiver are flat on the mounting surface mounted, the detection space opposite arranged optoelectronic components.
  • the smoke detector described is based on the finding that the smoke detector can be realized by a planar arrangement of all optoelectronic components on a common mounting surface in a particularly flat design.
  • the detection space is located outside the actual smoke detector, so that it is the described smoke detector is an open smoke detector.
  • a reliable smoke detection with a simultaneously low susceptibility to misdetections which could be triggered, for example, by an insect penetrating into the detection space or by an object accidentally introduced into the detection space, can be achieved by careful evaluation of the time profile of the output signal. It is advantageous but not essential that the response of the light detector to the intensity of the incident measuring light is linear. This means that doubling the strength of the measuring light also doubles the level of the output signal.
  • a distinction between the detection of smoke and the detection of an object introduced into the detection space can also be made by an evaluation of signal fluctuations which follow an increase of the output signal.
  • a comparatively slow rise is typically followed by some modulations of the measurement light intensity, which are triggered by the formation of smoke fumes.
  • the measurement light intensity remains at least approximately constant after the introduction of an object, which, for example, a cleaning lady accidentally leaves in the detection space.
  • modulations in the output signal are at least a strong indication of the presence of smoke or smoke.
  • the described smoke detector Due to the above-mentioned flat design, it is possible to easily integrate the described smoke detector in the walls and in particular in the ceilings of monitored areas. Even in the case of surface mounting, the described smoke detector can be easily attached to walls and / or ceilings. The smoke detector only takes up a small amount of space. In addition, the smoke detector described can be installed discreetly, so that it is not perceived by people who are in the monitored by the smoke detector room, or at least not disturbing the interior design.
  • the smoke detector described can be made particularly cost-effective and is suitable as a low-cost mass product for monitoring private rooms.
  • the measurement of the scattered light takes place in the described smoke detector in scrubstreugeometrie of approximately 180 °, ie between 170 ° and 190 °.
  • the deviation of the scattering angle from an exact backscatter and thus from exactly 180 ° results from a simple geometric consideration of (a) the spacing between the light emitter and the light receiver and (b) the distance of the location of the backscatter from the light emitter or light receiver ,
  • the smoke detector described differs in particular by the used backscatter geometry of conventional smoke detectors, which have either a forward scatterer a scattering angle of about 60 ° or as a back scatterer a scattering angle of about 120 ° between the illumination light and scattered light.
  • the optoelectronic or photoelectronic components of the smoke detector can advantageously be semiconductor diodes applied in Surface Mount Technology.
  • the base element may be a printed circuit board or at least have a printed circuit board to which the semiconductor transmitting and semiconductor receiving diode are mounted in a known manner and electrically contacted.
  • the term light basically comprises electromagnetic waves in any spectral range. These include, for example, the ultraviolet, the visible and the infrared spectral range. Also longer wavy radiation such as microwaves represent light in the context of the present application.
  • the term light electromagnetic radiation in the near infrared spectral range meant in which light emitting diodes used as a light emitter have a particularly high light intensity.
  • the described smoke detector can be operated not only with nearly monochromatic light radiation but also with light radiation which comprises two or more discrete wavelengths and / or a wavelength continuum.
  • the data processing device is additionally set up to evaluate the strength of the output signal.
  • the strength of the output signal which directly reflects the strength of the received backscattered measurement light, additional information on the nature of the introduced into the detection space scattering object can be obtained.
  • the evaluation of the strength of the output signal it can namely be taken into account that the intensity of the measurement light scattered back by smoke particles typically is around Potencies is weaker than the measuring light scattered back from an object.
  • the information obtained from the strength of the output signal can also be combined with the information obtained from the time history of the strength of the output signal.
  • the light emitter and the light receiver are realized by a first reflection light barrier.
  • This has the advantage that commercially available reflection light barriers can be used.
  • a relative adjustment between the light emitter and the corresponding light receiver for adapting the emission direction of the light emitter to the receiving direction of the light receiver is not required due to the fixed relative arrangement of these optoelectronic components within a common component or at least within a common housing.
  • the smoke detector can therefore be constructed in an advantageous manner with a low installation cost.
  • the direction of the illumination light is perpendicular to the mounting surface.
  • direction in this context means the mean emission direction of the light emitter.
  • the light emitter can also have a radiation characteristic with diverging light beams which have a certain angular distribution about the central emission direction perpendicular to the mounting surface.
  • this of course also applies to the measuring light, which also extends on average perpendicular to the mounting surface.
  • the light emitter is arranged to emit a pulsed illumination light.
  • pulsed illumination light allows advantageously to operate the light emitter for a short time with a particularly high current, which is greater than the maximum current that just does not result in a continuous operation of the light emitter to a thermal destruction of the light emitter. Since the light emitter can cool down in the time between two successive light pulses, such a moderately inflated current does not lead to destruction of the light emitter. Since a high current leads in particular in light emitting diodes to an increased light emission, a higher sensitivity and thus a particularly high reliability of the described smoke detector can be achieved by the use of pulsed illumination light.
  • pulsed illuminating light may also be used in conjunction with a photoreceiver having a temporal resolution greater than the transit time of the light from the source via the diffusing smoke particle and back to the receiver.
  • a photoreceiver having a temporal resolution greater than the transit time of the light from the source via the diffusing smoke particle and back to the receiver.
  • the scattering volume in which smoke is usually detected, is very close to the smoke detector.
  • the scattering volume can have a spatial extent of less than approximately 5 cm.
  • the transit time of the measuring light for the outward and return path is typically in the range of at least a few picoseconds.
  • the pulse durations are typically in the range of 1 to 100 microseconds. Therefore, the spatial distribution of smoke within the scattering volume with light barriers in the lower price segment are currently not resolved.
  • inexpensive short-pulse LEDs with a pulse length of only nano- or even picoseconds and corresponding photodiodes will be developed in the near future. With these information about the spatial distribution of the light scatterers can then be obtained.
  • the described smoke detector preferably detects smoke particles which are closer than approximately 10-50 mm from the light emitter or the light receiver, more distant particles provide only a vanishing, non-resolvable contribution to the smoke detection signal. In doing so, solid objects that are closer than approximately 50 mm from the smoke detector are detected over a very high backscatter signal amplitude. More distant objects may possibly be recognized as such over the term or through the associated broadening of the pulse.
  • a distance of 30 cm corresponds to a round trip time or a pulse broadening of 2 ns.
  • the easiest way to eliminate the reflections from the floor over time is to install the described smoke detector on the ceiling of a room to be monitored. A ceiling height of 3 m results in a round trip time of 20 ns.
  • the light emitter and the light receiver each represent an outer boundary of the device for detecting smoke.
  • the smoke detector can be designed such that there is no further optionally optically transparent cover between the photoelectric components and the detection space, by which the photoelectric components are protected from contamination.
  • covers or dirt shields are in many applications, especially in the home but also not required.
  • the smoke detector additionally has (a) a further light transmitter which is attached to the mounting surface and which is arranged to emit a further illumination light, and (b) a further light receiver which is adjacent to the further light emitter on the mounting surface is attached and which is adapted to receive a further measuring light, which results from a backscattering of the further illumination light at a measurement object located in a further detection space.
  • the data processing device can also be set up to jointly evaluate the output signal and a further output signal of the further light receiver.
  • a common evaluation of the output from the light receiver and the other light receiver output signals Additional information about the type and possibly also the position of a scattering object can be obtained.
  • the described smoke detector can be operated, for example, in an asymmetrical operating mode in which both light receivers are active but only one of the two light transmitters. This means that only one of the two light emitters emits an illumination light. If, in this mode of operation, both light receivers show at least approximately the same signal, then obviously this is a far-end echo. This may be due to a reflection of the illumination light emitted by the active light emitter on a faraway object such as the floor of a monitored room.
  • the smoke will at least partially penetrate into the vicinity of the smoke detector, so that the two light receivers receive a very different measurement signal.
  • the light receiver which is assigned to the switched-on light transmitter, receive a measuring light of much higher intensity than the other light receiver. In this way, far away and generally strongly backscattering objects, which cause only a weak backscatter signal due to their long distance, can be reliably distinguished from a generally weakly backscattering smoke, which is located close to the smoke detector.
  • the further light emitter and the further light receiver can be designed or arranged in the same way as the light emitters and light receivers described above. This applies in particular to the combination of the further light emitter and the further light receiver in a further light barrier.
  • the middle directions of both the first illumination light and the second illumination light are oriented perpendicular to the mounting surface.
  • the illumination light beam and the further illumination light beam are parallel to one another.
  • the distance between the detection space and the further detection space essentially depends on the distance between the two light transmitters or between the two light receivers.
  • a method of checking the operability of a smoke detector of the type described above comprises (a) introducing a scattering reference object into the detection space, wherein the object is held in the same position for at least a predetermined time period, (b) evaluating temporal changes in the output signal output by the light receiver, and (c) Output of a test alarm message if the changes in time correspond to a given course.
  • the above-mentioned method for triggering a test function of the smoke detector described above is based on the finding that the entire smoke detector, including the optical system consisting of light transmitter, light receiver and an evaluation implemented in the data processing device, can be tested by simply introducing an objective object. It can be detected by a suitable signal processing different waveforms and thus, for example, smoke from a desired triggering of the test function are clearly distinguished. In the described triggering of the test function is thus not only tested only the functionality of an alarm device such as a siren or an optical alarm indicator.
  • the object is brought close to the smoke detector.
  • the object may be any solid or liquid object which has a high light scattering surface compared to smoke.
  • the item may also be the hand of an operator.
  • a test bar is suitable for bringing the object into the way. This is especially true when the smoke detector is mounted on the ceiling of a room to be monitored. Also, a conventional broom with a correspondingly long state is therefore well suited as an object for triggering the test function of the smoke detector.
  • the triggering time for the test function or the time during which the test object must be kept in the vicinity of the smoke detector can be precisely defined. If, however, an object is located in front of the smoke detector for a considerably longer time, this means that the view of the smoke detector is obstructed by a fixed object. This is a fault and can also be detected by the implemented in the data processing device signal processing software and reported accordingly.
  • the method additionally comprises moving the reference object according to a predetermined time pattern, wherein the predetermined course coincides at least qualitatively with the predetermined time pattern.
  • the triggering of the test function can additionally be coded, for example, by placing the test object in the vicinity of the smoke detector and removing it again two or three times within a defined time.
  • a suitable predefined coding also different test sequences can be triggered.
  • the coding can also serve to clear the tripping function for the test from other jamming functions, as in the detection room penetrating insects to distinguish.
  • FIG. 1 shows a smoke detector 100, which has a base plate 105.
  • the base plate is a printed circuit board 105 or a suitable circuit carrier for receiving electronic and optoelectronic components. All attached to the circuit board 105 components are contacted in a manner not shown by means of conductors or electrical wire connections in a suitable manner.
  • the smoke detector 100 comprises a first reflection light barrier 110 and a second reflection light barrier 120.
  • the first reflection light barrier 110 has a first light emitter 111 and immediately adjacent thereto arranged in a common housing a first light receiver 112.
  • the second reflection light barrier 120 has a second light transmitter 121 and immediately adjacent thereto arranged in a common housing a second light receiver 122.
  • the first light emitter 111 transmits a first illumination light 111a perpendicular to the plane of the printed circuit board 105.
  • the first illumination light 111a is at least partially backscattered by approximately 180 °, ie, between 170 ° and 190 °, in a first detection space 115 in which, for example, smoke is located.
  • the backscattered light reaches the first light receiver 112 as the first measuring light 112a.
  • the second light emitter 121 transmits a second illumination light 121a perpendicular to the plane of the printed circuit board 105.
  • the second illumination light 121a is at least partially backscattered by approximately 180 ° in a second detection space 125 in which, for example, smoke is located.
  • the backscattered light reaches the second light receiver 122 as the second measuring light 122a.
  • the smoke detector 100 also has a subtraction unit 136, which forms a difference signal from the output signals of the two light receivers 112 and 122. This difference signal is supplied to a data processing device 135 of the smoke detector 100.
  • a control device 130 is provided, which is coupled to the two light transmitters 111 and 121.
  • the two light transmitters 111 and 121 can be activated or switched on independently of each other.
  • All of the components 110, 120, 130, 135 and 136 of the smoke detector 100 are mounted on the circuit board 105 and electrically contacted in a suitable manner. As a result, the smoke detector 100 can be realized in a very flat design. The height of the smoke detector 100 is determined only by the thickness of the printed circuit board 105 and by the components 110, 120, 130, 135 and 136.
  • all components 110, 120, 130, 135 and 136 are so-called surface mount technology (SMD) components.
  • SMD surface mount technology
  • an overall height of only 2.1 mm can be achieved.
  • the total height results from the distance between the top of the circuit board 105 and the in FIG. 1 provided with the reference numeral 140 lower surface of the smoke detector.
  • the light-active surfaces of the light emitters 111, 121 and the light receivers 112, 122 coincide with the surface 140. This means that no further parts of the smoke detector 100 are located between these light-active surfaces and the respective detection space 115, 125.
  • covers or housing parts Such covers, which are often provided in known smoke detectors for the purpose of soil repellence, but are not required in many applications, especially in the home area.
  • light barriers which already have transparent protective layers for the light-active surfaces of the light emitters 111, 121 and the light receivers 112, 122, thereby providing at least some protection against soiling.
  • the described smoke detector 100 with two parallel reflection light barriers has the advantage that it has no optical elements such as lenses or mirrors.
  • the smoke detector can be produced in a particularly simple manner with inexpensive components. At the Assembly or installation of the smoke detector does not require any special mounting tolerances. All components required for the smoke detector are mass-produced, which are inexpensive to procure.
  • the data processing device 135 is set up such that the time profile of the output signal can be evaluated accurately.
  • the light receivers 112 and 122 have a linear response. This means that the height of the output signal is directly proportional to the respective incident light intensity.
  • FIG. 2 shows a cross-sectional view of a smoke detector 200 according to another embodiment of the invention.
  • the smoke detector 200 has a flat housing 202, in which there is a base plate 205 formed as a printed circuit board.
  • a base plate 205 formed as a printed circuit board.
  • On the circuit board 205 a plurality of electronic and optoelectronic components is mounted, which are each contacted in a suitable manner.
  • the most important optoelectronic component of the smoke detector 200 is a reflection light barrier 210, which comprises a light transmitter 211 and a first light receiver 212.
  • the reflection light barrier 210 has the same structure and is operated in the same way as the reflection light barrier 110 of FIG FIG. 1 illustrated smoke detector 100.
  • the smoke detector 200 also has a second light receiver 222, which is also attached to the printed circuit board 205 at a certain distance from the light barrier 210.
  • the smoke detector 200 can be operated in the asymmetrical operation mode described above.
  • the smoke detector 200 also has a data processing device 235, by means of which the time profile of the output signal can be analyzed or evaluated.
  • circuit board 205 On the circuit board 205, other electronic components are mounted in FIG. 2 Although shown but not specified. These components may be, for example, driver circuits for the light emitter 211, amplifier circuits for the two light receivers 212 and 222, hardware cast evaluation circuits such as a subtraction circuit, or any other circuits provided for the operation of the smoke detector 200.
  • a potting material 245 is further provided, which at least partially encloses the components attached to the circuit board.
  • the optoelectronic components 211, 212 and 222 are not completely enclosed.
  • the optically active surfaces of the light emitter 211, the first light receiver 212, and the second light receiver 222 at the corresponding locations constitute the outer boundary of the smoke detector 200.
  • there are no other parts such as light emitter and light receiver outside the photoelectric components Covers or housing parts.
  • the smoke detector can be designed such that between the optically active surfaces of the components 211, 212 and 222 and a in FIG. 2 not shown detection space no optical transparent cover, by which the components 211, 212 and 222 are protected from contamination.
  • FIG. 3 shows a flowchart which shows both the normal operation and the triggering of a test function in the Figures 1 and 2 illustrated smoke detector 100 and 200 illustrated.
  • the method illustrated in the flow chart begins with the connection of the smoke detector to a required for operation power supply, which may for example be a battery.
  • a required for operation power supply which may for example be a battery.
  • the beginning or the start of the method is identified by the reference numeral 350.
  • a first query 352 is carried out, with which it is checked whether a backscatter signal is ever received. If this is not the case, then the process begins again.
  • a backscatter signal is received, then the next step is followed by a query 360, in which it is determined whether the time profile of the detected backscatter signal has a slope which is greater than a predetermined reference slope. If so, then the method continues with a query 370. If the time change of the backscatter signal is less than the reference slope, then the method continues with a query 380.
  • the query 370 is checked whether the strength of the detected backscatter signal is greater than a maximum signal of a predetermined range for smoke backscatter signals. If this is not the case, then the current scattering medium is obviously not a solid object but rather smoke. In this case, the method restarts hoping that a slower slope will be detected at re-interrogation 360 and the method continues with query 380, described below. If the magnitude of the detected backscatter signal is greater than a maximum signal associated with smoke detection, then the method continues with a query 372.
  • the query 372 it is checked whether there are fluctuations in the backscatter signal. If fluctuations are detected, then it could possibly be a backscatter signal based on smoke detection. In this case, the procedure starts all over again. If no fluctuations in the backscatter signal are found in the query 372, then the method is continued with a query 374.
  • the query 374 it is checked whether the time duration of the detected backscatter signal coincides with a predetermined specification for triggering a test function of the smoke detector. If this is the case, then a corresponding test function is triggered. This is represented by the box marked with the reference numeral 375.
  • the method restarts all over again. Is that lying Duration of the detected backscatter signal above the specified specification for triggering the test function, then the cause of the detected backscatter signal can only be an object that was accidentally introduced into the detection space and leads to a time-constant backscatter. In this case, a fault message is issued by the smoke detector. This is in FIG. 3 shown with action 376.
  • the query 380 determines whether the amplitude or the strength of the backscatter signal is within a predetermined range, which is characteristic of a smoke backscatter. If this is not the case, then the method restarts in the hope that a larger slope will be detected on re-interrogation 360 and the method continues with query 370 described above. If it is determined at query 380 that the magnitude of the backscatter signal is within a predetermined range and typical for smoke backscatter, then the method continues with a query 382.
  • the query 382 determines whether the backscatter signal has fluctuations that are typical of smoke over time. If this is not the case, then the method restarts and continues with query 352 described above. However, if it is determined by query 382 that the backscatter signal has fluctuations typical of smoke detection, then an alarm message is issued by the smoke detector. This alarm message is in FIG. 3 designated by the reference numeral 383.
  • a first event is the triggering of a test function 375 with which the functionality of the smoke detector can be checked.
  • a second event is a fault message 376 which signals that an item is in the detection room.
  • the third event is the issuing of a smoke alarm 383.
  • the open optical smoke detector described has a light transmitter which optically illuminates smoke particles outside the smoke detector.
  • the light receiver of the smoke detector is designed to receive the light scattered back by the smoke particles. If now an object is supplied instead of the smoke particles, then this can also be detected by the backscattered light. Thus, for example, by holding the hand or other object, such as an extension bar, an alarm may be triggered. In the case of smoke detectors for home use, the triggering of an alarm can generally correspond to the required test function.

Abstract

The smoke alarm (100) has a light transmitter (111) attached to a mounting surface of a printed circuit board (105) and transmitting an illuminating light (111a). A light receiver (112) is attached to the mounting surface adjacent to the light transmitter, and receives a measurement light (112a), which results from back-scattering of the illumination light at a measurement object located in a detection space (115). A data processing device (135) is coupled to an output of the light receiver and evaluates temporal changes of an output signal provided by the light receiver. An independent claim is also included for a method for detecting a functional capability of a smoke alarm.

Description

Die vorliegende Erfindung betrifft das technische Gebiet der Gefahrmeldetechnik. Die vorliegende Erfindung betrifft insbesondere eine auf dem Prinzip optischer Streulichtmessungen beruhende Vorrichtung zum Detektieren von Rauch. Die vorliegende Erfindung betrifft ferner ein Verfahren zum Überprüfen der Funktionsfähigkeit eines StreulichtrauchmeldersThe present invention relates to the technical field of danger detection technology. In particular, the present invention relates to a device for detecting smoke based on the principle of optical scattered light measurements. The present invention further relates to a method for checking the operability of a scattered light smoke detector

Rauchmelder arbeiten typischerweise nach dem Streulichtverfahren. Dabei wird ausgenutzt, dass klare Luft praktisch kein Licht reflektiert. Befinden sich aber Rauchpartikel in der Luft, so wird ein von einer Lichtquelle ausgesandtes Beleuchtungslicht zumindest teilweise an den Rauchpartikeln gestreut. Ein Teil dieses Streulichts fällt dann auf einen Lichtempfänger, der nicht direkt vom Beleuchtungslicht beleuchtet wird. Ohne Rauchpartikel in der Luft kann das Beleuchtungslicht damit den lichtempfindlichen Sensor nicht erreichen.Smoke detectors typically operate according to the scattered light method. It is exploited that clear air reflects virtually no light. However, if smoke particles are in the air, an illumination light emitted by a light source is at least partially scattered on the smoke particles. Part of this scattered light then falls on a light receiver, which is not directly illuminated by the illumination light. Without smoke particles in the air, the illumination light can not reach the photosensitive sensor.

Streulichtrauchmelder können in zwei Kategorien eingeteilt werden. Die erste Kategorie stellen dabei sog. geschlossene Rauchmelder dar, welche innerhalb eines Gehäuses eine optische Kammer aufweisen. Im Gefahrenfall kann in die optische Kammer Rauch eindringen, welcher dann in der oben beschriebenen Art und Weise detektiert wird. Die zweite Kategorie stellen sog. offene Rauchmelder dar. Diese weisen keine optische Kammer auf. Vielmehr dient außerhalb des offenen Rauchmelders befindlicher Rauch als Streumedium.Scattered smoke detectors can be divided into two categories. The first category represents so-called closed smoke detectors, which have an optical chamber within a housing. In case of danger, smoke can penetrate into the optical chamber, which is then detected in the manner described above. The second category are so-called open smoke detectors. These have no optical chamber. Rather, smoke located outside the open smoke detector serves as a scattering medium.

Aus der europäischen Patentanmeldung EP 1 688 898 A1 ist ein auf dem Streulichtprinzip basierender Rauchmelder bekannt.From the European patent application EP 1 688 898 A1 is known based on the scattered light smoke detector.

Der Rauchmelder weist ein Sensorgehäuse mit einem darin aufgenommenen Lichtsender auf, der auf einen außerhalb des Sensorgehäuses liegenden Rauchdetektionsraum ausgerichtet ist. Es ist im Sensorgehäuse ein Lichtempfänger zur Detektion von Streulicht aufgenommen, welches von dem durch den Lichtsender beleuchteten Rauchdetektionsraum stammt. Der Lichtempfänger gibt ein zur empfangenen Lichtmenge korrespondierendes Signal aus. Der Lichtsender und der Lichtempfänger sind bezüglich ihrer jeweiligen optischen Achse schräg zueinander und schräg zu einer Leiterplatte im Sensorgehäuse angeordnet.The smoke detector has a sensor housing with a light transmitter received therein, which is aligned with a lying outside the sensor housing smoke detection space. It is recorded in the sensor housing, a light receiver for detecting scattered light, which comes from the illuminated by the light emitter smoke detection room. The light receiver outputs a signal corresponding to the received light quantity. The light emitter and the light receiver are inclined with respect to their respective optical axis and arranged obliquely to a printed circuit board in the sensor housing.

Aus der Veröffentlichung der GB 1 439 325 A ist ein Rauch- und Feuermelder bekannt, welcher eine Lichtquelle zum Beleuchten eines zu überwachenden Bereichs aufweist. Die Lichtquelle ist in Bezug auf eine im Meldergehäuse angeordnete Linse versetzt angeordnet, sodass kein direktes Licht von der Lichtquelle zur Linse gelangen kann. Im Gehäuse ist ein Umlenkspiegel angeordnet, welcher das durch die Linse erfasste optische Abbild des zu überwachenden Bereichs auf eine Platte mit photoelektrischen Detektoren umlenkt.From the publication of the GB 1 439 325 A a smoke and fire detector is known, which has a light source for illuminating a monitored area. The light source is offset with respect to a lens arranged in the detector housing, so that no direct light can pass from the light source to the lens. In the housing, a deflection mirror is arranged, which deflects the detected by the lens optical image of the area to be monitored on a plate with photoelectric detectors.

Aus der EP 0 472 039 A2 ist ein Feuermelder und ein Verfahren zum Detektieren von Feuer bekannt. Der Feuermelder weist eine Laserlichtquelle auf, welche eingerichtet ist kurze Laserpulse in einen Oberwachungsbereich auszusenden. Der Feuermelder weist ferner einen Lichtdetektor auf, welcher neben der Laserlichtquelle angeordnet ist und welcher eingerichtet ist, von im Überwachungsbereich befindlichen Rauch oder anderen Objekten um ca. 180° zurück gestreutes Laserlicht zu detektieren. Anhand der Zeitdifferenz zwischen ausgesandten und empfangenen Laserpulsen kann die Position eines Rückstreuobjekts innerhalb des Überwachungsbereichs bestimmt werden.From the EP 0 472 039 A2 is a fire detector and a method for detecting fire known. The fire detector has a laser light source, which is set up to emit short laser pulses in a Oberwachungsbereich. The fire detector also has a light detector which is arranged next to the laser light source and which is set up to detect laser light scattered back by approximately 180 ° of smoke or other objects located in the monitoring area. Based on the time difference between emitted and received laser pulses, the position of a backscatter object can be determined within the surveillance area.

Aus der EP 1 191 496 A1 ist ein Streulichtrauchmelder bekannt, welcher einen Lichtsender und einen Lichtempfänger aufweist. Lichtsender und Lichtempfänger sind derart innerhalb des Streulichtrauchmelders winklig zueinander angeordnet, dass deren Streupunkt außerhalb des Streulichtrauchmelders im Freien liegt. Damit ist dieser Streulichtrauchmelder ein sog. offener Rauchmelder. Eine Abdeckung aus transparentem Kunststoff, welche zwischen (a) Lichtsender bzw. Lichtempfänger und (b) Streupunkt angeordnet ist, schützt den Streulichtrauchmelder vor Feuchtigkeit, aggressiven Gasen und mechanischen Beschädigungen. Der Streulichtrauchmelder weist ferner einen Prozessor auf, mit dem die von dem Lichtempfänger detektierten Lichtsignale hinsichtlich ihres Zeitverhaltens analysiert werden können.From the EP 1 191 496 A1 a scattered light smoke detector is known, which has a light emitter and a light receiver. Light emitter and light receiver are so arranged within the scattered light smoke detector at an angle to each other, that their scattering point is outside the scattered light smoke detector outdoors. So this scattered light smoke detector is a so-called. Open smoke detector. A cover of transparent plastic, which is arranged between (a) light transmitter or light receiver and (b) scattering point, protects the scattered light smoke detector from moisture, aggressive gases and mechanical damage. The scattered light smoke detector also has a processor with which the light signals detected by the light receiver can be analyzed with respect to their time behavior.

Aus der EP 1 039 426 A2 ist ein Rauchmelder bekannt, welcher ein Gehäuse und innerhalb des Gehäuses angeordnet einen Lichtsender und einen Lichtempfänger aufweist. Ein durch die räumliche Anordnung von Lichtsender und Lichtempfänger definierter Erfassungsbereich befindet sich außerhalb des Rauchmelders. Um eine schleichende Verschmutzung des Rauchmelders erkennen zu können, ist dem Lichtsender ein Kontrollempfänger zugeordnet, welcher zur Erfassung der vom Lichtsender ausgehenden Strahlung eingerichtet ist. Ferner ist ein dem Lichtempfänger zugeordneter Kontrollsender vorgesehen, so dass die Empfindlichkeit des Lichtempfängers überprüft werden kann.From the EP 1 039 426 A2 a smoke detector is known which comprises a housing and disposed within the housing has a light emitter and a light receiver. A detection range defined by the spatial arrangement of the light emitter and the light receiver is located outside the smoke detector. In order to detect creeping contamination of the smoke detector, the light transmitter is assigned a control receiver, which is set up to detect the radiation emitted by the light emitter. Furthermore, a control transmitter assigned to the light receiver is provided, so that the sensitivity of the light receiver can be checked.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Rauchmelder mit einer besonders kompakten Bauform zu realisieren. Eine verfahrensbezogene Aufgabe der vorliegenden Erfindung besteht darin, ein zuverlässiges Verfahren zum Überprüfen der Funktionsfähigkeit eines Rauchmelders anzugeben.The present invention has for its object to realize a smoke detector with a particularly compact design. A method-related object of the present invention is to provide a reliable method for checking the operability of a smoke detector.

Diese Aufgaben werden gelöst durch die Gegenstände der unabhängigen Patentansprüche. Vorteilhafte Ausführungsformen der vorliegenden Erfindung sind in den abhängigen Ansprüchen beschrieben.These objects are achieved by the subject matters of the independent claims. Advantageous embodiments of the present invention are described in the dependent claims.

Gemäß einem ersten Aspekt der Erfindung wird eine Vorrichtung zum Detektieren von Rauch beschrieben, welche im Rahmen dieser Anmeldung auch kurz als Rauchmelder bezeichnet wird. Der Rauchmelder weist auf (a) ein Grundelement mit einer planen Montagefläche, (b) einen Lichtsender, welcher an der Montagefläche angebracht ist und welcher eingerichtet ist zum Aussenden eines Beleuchtungslichts, (c) einen Lichtempfänger, welcher neben dem Lichtsender an der Montagefläche angebracht ist und welcher eingerichtet ist zum Empfangen eines Messlichts, welches aus einer Rückstreuung des Beleuchtungslichts an einem in einem Detektionsraum befindlichen Messobjekt resultiert, und (c) eine Datenverarbeitungseinrichtung, welche mit einem Ausgang des Lichtempfängers gekoppelt ist und welche eingerichtet ist zum Auswerten von zeitlichen Änderungen eines von dem Lichtempfänger ausgegebenen Ausgangssignals. Der Lichtsender und Lichtempfänger sind plan auf der Montagefläche angebrachte, dem Detektionsraum gegenüberliegend angeordnete optoelektronische Komponenten.According to a first aspect of the invention, an apparatus for detecting smoke, which is in the frame This application is also referred to briefly as a smoke detector. The smoke detector comprises (a) a base member having a planar mounting surface, (b) a light emitter attached to the mounting surface and configured to emit an illumination light, (c) a light receiver mounted adjacent the light emitter on the mounting surface and which is arranged to receive a measurement light resulting from a backscatter of the illumination light on a measurement object located in a detection space, and (c) a data processing device which is coupled to an output of the light receiver and which is configured to evaluate temporal changes of one of the output of the light receiver output signal. The light emitter and light receiver are flat on the mounting surface mounted, the detection space opposite arranged optoelectronic components.

Dem beschriebenen Rauchmelder liegt die Erkenntnis zugrunde, dass der Rauchmelder durch eine plane Anordnung sämtlicher optoelektronischen Komponenten an einer gemeinsamen Montagefläche in einer besonders flachen Bauform realisiert werden kann. Der Detektionsraum befindet sich dabei außerhalb des eigentlichen Rauchmelders, so dass es sich bei dem beschriebenen Rauchmelder um einen offenen Rauchmelder handelt.The smoke detector described is based on the finding that the smoke detector can be realized by a planar arrangement of all optoelectronic components on a common mounting surface in a particularly flat design. The detection space is located outside the actual smoke detector, so that it is the described smoke detector is an open smoke detector.

Eine zuverlässige Rauchdetektion bei einer gleichzeitig geringen Anfälligkeit für Fehldetektionen, die beispielsweise durch ein in den Detektionsraum eindringendes Insekt oder durch einen versehentlich in den Detektionsraum eingebrachten Gegenstand ausgelöst werden könnten, kann durch eine sorgfältige Auswertung des zeitlichen Verlaufs des Ausgangssignals erreicht werden. Dabei ist es von Vorteil aber nicht unbedingt erforderlich, dass die Response des Lichtdetektors auf die Intensität des einfallenden Messlichts linear ist. Dies bedeutet, dass sich bei einer Verdopplung der Stärke des Messlichts auch der Pegel des Ausgangssignals verdoppelt.A reliable smoke detection with a simultaneously low susceptibility to misdetections, which could be triggered, for example, by an insect penetrating into the detection space or by an object accidentally introduced into the detection space, can be achieved by careful evaluation of the time profile of the output signal. It is advantageous but not essential that the response of the light detector to the intensity of the incident measuring light is linear. This means that doubling the strength of the measuring light also doubles the level of the output signal.

Da sich Rauch typischerweise nicht schlagartig innerhalb eines überwachten Raumes ausbreitet, kann aus einem langsamen Anstieg des Ausgangssignals auf das Eindringen von Rauch in den Detektionsraum geschlossen werden. Bei dem Einbringen eines gegenständlichen Objektes in den Detektionsraum erfolgt normalerweise ein sehr schneller Anstieg des Ausgangssignals.Since smoke typically does not propagate abruptly within a monitored space, it can be concluded from a slow increase in the output signal to the ingress of smoke into the detection space. When a subject object is introduced into the detection space, a very rapid rise of the output signal normally takes place.

Eine Unterscheidung zwischen der Detektion von Rauch und der Detektion eines in den Detektionsraum eingebrachten Gegenstandes kann auch durch eine Bewertung von Signalschwankungen erfolgen, die einem Anstieg des Ausgangssignals folgen. Bei der Detektion von Rauch folgen einem vergleichsweise langsamen Anstieg typischerweise einige Modulationen des Messlichtintensität, welche durch die Formierung von Rauchschwaden ausgelöst werden. Im Gegensatz dazu bleibt die Messlichtintensität nach dem Einbringen eines Gegenstandes, den beispielsweise eine Putzfrau versehentlich im Detektionsraum liegen lässt, zumindest annähernd konstant. Somit sind Modulationen im Ausgangssignal zumindest ein starker Hinweis auf das Vorhandensein von Rauch bzw. Rauchschwaden.A distinction between the detection of smoke and the detection of an object introduced into the detection space can also be made by an evaluation of signal fluctuations which follow an increase of the output signal. In the detection of smoke, a comparatively slow rise is typically followed by some modulations of the measurement light intensity, which are triggered by the formation of smoke fumes. In contrast, the measurement light intensity remains at least approximately constant after the introduction of an object, which, for example, a cleaning lady accidentally leaves in the detection space. Thus, modulations in the output signal are at least a strong indication of the presence of smoke or smoke.

Durch die oben genannte flache Bauform ist es möglich, den beschriebenen Rauchmelder ohne großen Aufwand in die Wände und insbesondere in die Decken von zu überwachenden Räumen zu integrieren. Auch im Falle einer Aufputzmontage lässt sich der beschriebenen Rauchmelder leicht an Wände und/oder Decken anbringen. Dabei nimmt der Rauchmelder lediglich einen geringen Platzbedarf ein. Außerdem kann der beschriebene Rauchmelder dezent angebracht werden, so dass er von Personen, die sich in dem von dem Rauchmelder überwachten Raum befinden, nicht oder zumindest nicht für die Raumgestaltung störend wahrgenommen wird.Due to the above-mentioned flat design, it is possible to easily integrate the described smoke detector in the walls and in particular in the ceilings of monitored areas. Even in the case of surface mounting, the described smoke detector can be easily attached to walls and / or ceilings. The smoke detector only takes up a small amount of space. In addition, the smoke detector described can be installed discreetly, so that it is not perceived by people who are in the monitored by the smoke detector room, or at least not disturbing the interior design.

Infolge der verwendeten Rückstreugeometrie sind auf vorteilhafte Weise optische Elemente wie Linsen oder Spiegel für den Lichtsender und/oder für den Lichtempfänger nicht erforderlich. Dadurch kann der beschriebene Rauchmelder besonders kostengünstig hergestellt werden und eignet sich als preiswertes Massenprodukt auch für die Überwachung von Privaträumen.As a result of the backscatter geometry used, optical elements such as lenses or mirrors for the light emitter and / or for the light receiver are advantageously not required. As a result, the smoke detector described can be made particularly cost-effective and is suitable as a low-cost mass product for monitoring private rooms.

Die Messung des Streulichts erfolgt bei dem beschrieben Rauchmelder in Rückstreugeometrie von annähernd 180°, also zwischen 170° und 190°. Die Abweichung des Streuwinkels von einer exakten Rückstreuung und damit von exakt 180° ergibt sich durch eine einfache geometrische Überlegung aus (a) der Beabstandung zwischen dem Lichtsender und dem Lichtempfänger und aus (b) dem Abstand des Ortes der Rückstreuung von dem Lichtsender bzw. Lichtempfänger.The measurement of the scattered light takes place in the described smoke detector in Rückstreugeometrie of approximately 180 °, ie between 170 ° and 190 °. The deviation of the scattering angle from an exact backscatter and thus from exactly 180 ° results from a simple geometric consideration of (a) the spacing between the light emitter and the light receiver and (b) the distance of the location of the backscatter from the light emitter or light receiver ,

Der beschriebene Rauchmelder unterscheidet sich insbesondere durch die verwendete Rückstreugeometrie von herkömmlichen Rauchmeldern, welche entweder als Vorwärtsstreuer einen Streuwinkel von ungefähr 60° oder als Rückwärtsstreuer einen Streuwinkel von ungefähr 120° zwischen Beleuchtungslicht und Streulicht aufweisen.The smoke detector described differs in particular by the used backscatter geometry of conventional smoke detectors, which have either a forward scatterer a scattering angle of about 60 ° or as a back scatterer a scattering angle of about 120 ° between the illumination light and scattered light.

Die opto- bzw. photoelektronischen Komponenten des Rauchmelders können auf vorteilhafte Weise in Surface Mount Technology aufgebrachte Halbleiterdioden sein. Das gleiche gilt auch für elektronische Komponenten wie beispielsweise für die Datenverarbeitungseinrichtung, welche ebenfalls direkt auf dem Grundelement angebracht sein kann. In diesem Fall kann das Grundelement eine Leiterplatte sein oder zumindest eine Leiterplatte aufweisen, an welcher die Halbleitersende- und Halbleiterempfangsdiode in bekannter Weise angebracht und elektrisch kontaktiert sind.The optoelectronic or photoelectronic components of the smoke detector can advantageously be semiconductor diodes applied in Surface Mount Technology. The same applies to electronic components such as for the data processing device, which may also be mounted directly on the base element. In this case, the base element may be a printed circuit board or at least have a printed circuit board to which the semiconductor transmitting and semiconductor receiving diode are mounted in a known manner and electrically contacted.

Es wird darauf hingewiesen, dass im Rahmen dieser Anmeldung der Begriff Licht grundsätzlich elektromagnetische Wellen in beliebigen Spektralbereichen umfasst. Dazu zählen beispielsweise der ultraviolette, der sichtbare und der infrarote Spektralbereich. Auch länger wellige Strahlung wie beispielweise Mikrowellen stellen Licht im Sinne der vorliegenden Anmeldung dar. Insbesondere ist mit dem Begriff Licht elektromagnetische Strahlung im nahen infraroten Spektralbereich gemeint, in welchem als Lichtsender verwendete Leuchtdioden eine besonders hohe Lichtstärke aufweisen. Der beschriebene Rauchmelder kann jedoch nicht nur mit nahezu monochromatischer Lichtstrahlung sondern auch mit Lichtstrahlung betrieben werden, welche zwei oder mehrere diskrete Wellenlängen und/oder ein Wellenlängenkontinuum umfasst.It should be noted that in the context of this application, the term light basically comprises electromagnetic waves in any spectral range. These include, for example, the ultraviolet, the visible and the infrared spectral range. Also longer wavy radiation such as microwaves represent light in the context of the present application. In particular, the term light electromagnetic radiation in the near infrared spectral range meant in which light emitting diodes used as a light emitter have a particularly high light intensity. However, the described smoke detector can be operated not only with nearly monochromatic light radiation but also with light radiation which comprises two or more discrete wavelengths and / or a wavelength continuum.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist die Datenverarbeitungseinrichtung zusätzlich eingerichtet zum Auswerten der Stärke des Ausgangssignals. Durch die Auswertung der Stärke des Ausgangssignals, welche direkt die Stärke des empfangenen zurück gestreuten Messlichts widerspiegelt, können zusätzliche Informationen über die Art des in den Detektionsraum eingebrachten Streuobjekts gewonnen werden. Bei der Auswertung der Stärke des Ausgangssignals kann nämlich berücksichtigt werden, dass die Intensität des durch Rauchpartikel zurück gestreutes Messlicht typischerweise um Potenzen schwächer ist als das von einem Gegenstand zurück gestreute Messlicht.According to a further exemplary embodiment of the invention, the data processing device is additionally set up to evaluate the strength of the output signal. By evaluating the strength of the output signal, which directly reflects the strength of the received backscattered measurement light, additional information on the nature of the introduced into the detection space scattering object can be obtained. In the evaluation of the strength of the output signal, it can namely be taken into account that the intensity of the measurement light scattered back by smoke particles typically is around Potencies is weaker than the measuring light scattered back from an object.

Selbstverständlich können die aus der Stärke des Ausgangssignals gewonnenen Informationen auch mit den Informationen kombiniert werden, die aus dem zeitlichen Verlauf der Stärke des Ausgangssignals gewonnen wurden.Of course, the information obtained from the strength of the output signal can also be combined with the information obtained from the time history of the strength of the output signal.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung sind der Lichtsender und der Lichtempfänger durch eine erste Reflektionslichtschranke realisiert. Dies hat den Vorteil, dass handelsübliche Reflektionslichtschranken verwendet werden können. Eine relative Justierung zwischen dem Lichtsender und dem entsprechenden Lichtempfänger zur Anpassung der Abstrahlrichtung des Lichtsenders an die Empfangsrichtung des Lichtempfängers ist infolge der festen relativen Anordnung dieser optoelektronischen Komponenten innerhalb eines gemeinsamen Bauelements oder zumindest innerhalb eines gemeinsamen Gehäuses nicht erforderlich. Der Rauchmelder kann deshalb auf vorteilhafte Weise mit einem geringen Montageaufwand aufgebaut werden.According to a further embodiment of the invention, the light emitter and the light receiver are realized by a first reflection light barrier. This has the advantage that commercially available reflection light barriers can be used. A relative adjustment between the light emitter and the corresponding light receiver for adapting the emission direction of the light emitter to the receiving direction of the light receiver is not required due to the fixed relative arrangement of these optoelectronic components within a common component or at least within a common housing. The smoke detector can therefore be constructed in an advantageous manner with a low installation cost.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung verläuft die Richtung des Beleuchtungslichts senkrecht zur Montagefläche. Unter dem Begriff Richtung ist in diesem Zusammenhang die mittlere Abstrahlrichtung des Lichtsenders gemeint. Dies bedeutet, dass der Lichtsender auch eine Abstrahlcharakteristik mit divergierenden Lichtstrahlen aufweisen kann, welche um die mittlere Abstrahlrichtung senkrecht zur Montagefläche eine gewisse Winkelverteilung aufweisen. Infolge der verwendeten Rückstreugeometrie gilt dies selbstverständlich auch für das Messlicht, welches ebenfalls im Mittel senkrecht zur Montagefläche verläuft.According to a further embodiment of the invention, the direction of the illumination light is perpendicular to the mounting surface. The term direction in this context means the mean emission direction of the light emitter. This means that the light emitter can also have a radiation characteristic with diverging light beams which have a certain angular distribution about the central emission direction perpendicular to the mounting surface. As a result of the backscatter geometry used, this of course also applies to the measuring light, which also extends on average perpendicular to the mounting surface.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung ist der Lichtsender zum Aussenden eines gepulsten Beleuchtungslichts eingerichtet.According to a further embodiment of the invention, the light emitter is arranged to emit a pulsed illumination light.

Die Verwendung von gepulstem Beleuchtungslicht erlaubt es auf vorteilhafte Weise den Lichtsender kurzzeitig mit einem besonders hohen Strom zu betreiben, welcher größer ist als der maximale Strom, der in einem durchgehenden Betrieb des Lichtsenders gerade nicht zu einer thermischen Zerstörung des Lichtsenders führt. Da sich der Lichtsender in der Zeit zwischen zwei aufeinanderfolgenden Lichtpulsen abkühlen kann, führt ein derart maßvoll überhöhter Strom nicht zu einer Zerstörung des Lichtsenders. Da ein hoher Strom insbesondere bei Leuchtdioden auch zu einer verstärkten Lichtemission führt, kann durch die Verwendung von gepulstem Beleuchtungslicht eine höhere Empfindlichkeit und damit eine besonders hohe Zuverlässigkeit des beschriebenen Rauchmelders erreicht werden.The use of pulsed illumination light allows advantageously to operate the light emitter for a short time with a particularly high current, which is greater than the maximum current that just does not result in a continuous operation of the light emitter to a thermal destruction of the light emitter. Since the light emitter can cool down in the time between two successive light pulses, such a moderately inflated current does not lead to destruction of the light emitter. Since a high current leads in particular in light emitting diodes to an increased light emission, a higher sensitivity and thus a particularly high reliability of the described smoke detector can be achieved by the use of pulsed illumination light.

Es wird darauf hingewiesen, dass auch gepulstes Beleuchtungslicht in Verbindung mit einem Lichtempfänger verwendet werden kann, welcher eine zeitliche Auflösung aufweist, die größer ist als die Laufzeit des Lichtes von der Quelle über das streuende Rauchpartikel und zurück zum Empfänger. Dadurch können zusätzliche Informationen über das Rückstreuverhalten und/oder die räumliche Lage der von dem beschriebenen Rauchmelder erfassten Messobjekte erhalten werden.It should be understood that pulsed illuminating light may also be used in conjunction with a photoreceiver having a temporal resolution greater than the transit time of the light from the source via the diffusing smoke particle and back to the receiver. As a result, additional information about the backscatter behavior and / or the spatial position of the measured objects detected by the described smoke detector can be obtained.

Bei dem beschriebenen Rauchmelder befindet sich das Streuvolumen, in welchem Rauch üblicherweise detektiert wird, sehr nahe am Rauchmelder. Das Streuvolumen kann dabei eine räumliche Ausdehnung von kleiner als ungefähr 5 cm aufweisen. Dann liegt die Laufzeit des Messlichts für den Hin- und den Rückweg typischerweise im Bereich von zumindest einigen Picosekunden.In the described smoke detector, the scattering volume, in which smoke is usually detected, is very close to the smoke detector. The scattering volume can have a spatial extent of less than approximately 5 cm. Then, the transit time of the measuring light for the outward and return path is typically in the range of at least a few picoseconds.

Bei zum Zeitpunkt der Anmeldung gängigen einfachen Reflektionslichtschranken liegen die Pulsdauern typischerweise im Bereich von 1 bis 100 Mikrosekunden. Daher kann die räumliche Verteilung von Rauch innerhalb des Streuvolumens mit Lichtschranken im unteren Preissegment derzeit eher nicht aufgelöst werden. Allerdings erscheint es in Anbetracht der rasanten Entwicklung im Bereich der Optoelektronik durchaus möglich, dass bereits in naher Zukunft preiswerte Kurzpulsleuchtdioden mit einer Pulslänge von lediglich Nano- oder sogar Picosekunden und entsprechende Photodioden entwickelt werden. Mit diesen können dann Informationen über die räumliche Verteilung der Lichtstreuer gewonnen werden.At the time of signing common simple reflection light barriers, the pulse durations are typically in the range of 1 to 100 microseconds. Therefore, the spatial distribution of smoke within the scattering volume with light barriers in the lower price segment are currently not resolved. However, in view of the rapid development in the field of optoelectronics, it seems quite possible that inexpensive short-pulse LEDs with a pulse length of only nano- or even picoseconds and corresponding photodiodes will be developed in the near future. With these information about the spatial distribution of the light scatterers can then be obtained.

Da mit dem beschriebenen Rauchmelder bevorzugt Rauchpartikel erfasst werden, die näher als ungefähr 10-50 mm von dem Lichtsender bzw. dem Lichtempfänger entfernt sind, liefern weiter entfernte Partikel lediglich einen verschwindenden, nicht auflösbaren Beitrag zum Rauchdetektierungssignal. Dabei werden feste Gegenstände, die näher als ungefähr 50 mm von dem Rauchmelder entfernt sind, über eine sehr starke Rückstreu-Signalamplitude festgestellt. Weiter entfernte Gegenstände können ggf. über die Laufzeit oder über die damit einher gehende Verbreiterung des Pulses als solche erkannt werden. Dabei entspricht ein Abstand von 30 cm einer Hin- und Rücklaufzeit bzw. einer Pulsverbreiterung von 2 ns. Am leichtesten können jedoch die Reflexe vom Boden über die Laufzeit eliminiert werden, sofern der beschriebene Rauchmelder an der Decke eines zu überwachenden Raumes montiert ist. Dabei ergibt eine Deckenhöhe von 3 m eine Hin- und Rücklaufzeit von 20 ns.Since the described smoke detector preferably detects smoke particles which are closer than approximately 10-50 mm from the light emitter or the light receiver, more distant particles provide only a vanishing, non-resolvable contribution to the smoke detection signal. In doing so, solid objects that are closer than approximately 50 mm from the smoke detector are detected over a very high backscatter signal amplitude. More distant objects may possibly be recognized as such over the term or through the associated broadening of the pulse. A distance of 30 cm corresponds to a round trip time or a pulse broadening of 2 ns. However, the easiest way to eliminate the reflections from the floor over time is to install the described smoke detector on the ceiling of a room to be monitored. A ceiling height of 3 m results in a round trip time of 20 ns.

Bei Verwendung von sehr kurzen Lichtpulsen ist es auch möglich, durch eine Messung der Zeitdifferenz t zwischen dem Aussenden eines Beleuchtungslichtpulses und dem zurück gestreuten und von dem Lichtempfänger detektierten Messlichtpuls zu bestimmen, wie weit das jeweilige Streuobjekt von dem Lichtsender bzw. dem Lichtempfänger entfernt ist.When using very short light pulses, it is also possible to determine how far the respective scattering object is from the light emitter or the light receiver by measuring the time difference t between the emission of an illumination light pulse and the backscattered and detected by the light receiver measuring light pulse.

Auch wenn die Verwendung von gepulstem Beleuchtungslicht viele Vorteile im Hinblick auf eine zuverlässige und fehlerfreie Rauchdetektion bietet, so wird an dieser Stelle ausdrücklich darauf hingewiesen, dass der oben beschriebene Rauchmelder selbstverständlich auch mit einem kontinuierlichen Beleuchtungslicht betrieben werden kann.Although the use of pulsed illumination light offers many advantages in terms of reliable and error-free smoke detection, it is expressly stated here pointed out that the above-described smoke detector can of course be operated with a continuous illumination light.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung stellen der Lichtsender und der Lichtempfänger jeweils eine äußere Begrenzung der Vorrichtung zum Detektieren von Rauch dar. Dies bedeutet, dass sich weder der Lichtsender noch der Lichtempfänger innerhalb eines Gehäuses des beschriebenen Rauchmelders befinden. Außerhalb der photoelektrischen Komponenten Lichtsender und Lichtempfänger befinden sich somit keine anderen Teile des beschriebenen Rauchmelders. Dies gilt auch für Abdeckungen oder Gehäuseteile. Damit kann der Rauchmelder derart ausgebildet sein, dass sich zwischen den photoelektrischen Komponenten und dem Detektionsraum keine weitere ggf. optisch transparente Abdeckung befindet, durch welche die photoelektrischen Komponenten vor Verschmutzung geschützt sind. Derartige Abdeckungen oder Schmutzschilder sind bei vielen Anwendungen insbesondere im Heimbereich jedoch auch gar nicht erforderlich.According to a further embodiment of the invention, the light emitter and the light receiver each represent an outer boundary of the device for detecting smoke. This means that neither the light emitter nor the light receiver are located within a housing of the smoke detector described. Outside the photoelectric components light emitter and light receiver are thus no other parts of the smoke detector described. This also applies to covers or housing parts. Thus, the smoke detector can be designed such that there is no further optionally optically transparent cover between the photoelectric components and the detection space, by which the photoelectric components are protected from contamination. Such covers or dirt shields are in many applications, especially in the home but also not required.

Gemäß einem weiteren Ausführungsbeispiel der Erfindung weist der Rauchmelder zusätzlich auf (a) einen weiteren Lichtsender, welcher an der Montagefläche angebracht ist und welcher eingerichtet ist zum Aussenden eines weiteren Beleuchtungslichts, und (b) einen weiteren Lichtempfänger, welcher neben dem weiteren Lichtsender an der Montagefläche angebracht ist und welcher eingerichtet ist zum Empfangen eines weiteren Messlichts, welches aus einer Rückstreuung des weiteren Beleuchtungslichts an einem in einem weiteren Detektionsraum befindlichen Messobjekt resultiert.According to a further exemplary embodiment of the invention, the smoke detector additionally has (a) a further light transmitter which is attached to the mounting surface and which is arranged to emit a further illumination light, and (b) a further light receiver which is adjacent to the further light emitter on the mounting surface is attached and which is adapted to receive a further measuring light, which results from a backscattering of the further illumination light at a measurement object located in a further detection space.

Die Datenverarbeitungseinrichtung kann dabei auch zum gemeinsamen Auswerten des Ausgangssignals und eines weiteren Ausgangssignals des weiteren Lichtempfängers eingerichtet sein. Durch eine gemeinsame Auswertung der von dem Lichtempfänger und dem weiteren Lichtempfänger ausgegebenen Ausgangssignale können zusätzliche Informationen über die Art und ggf. auch die Position eines Streuobjekts gewonnen werden.The data processing device can also be set up to jointly evaluate the output signal and a further output signal of the further light receiver. By a common evaluation of the output from the light receiver and the other light receiver output signals Additional information about the type and possibly also the position of a scattering object can be obtained.

Der beschriebene Rauchmelder kann beispielsweise in einem asymmetrischen Betriebsmodus betrieben werden, bei dem zwar beide Lichtempfänger aber lediglich einer der beiden Lichtsender aktiv sind. Dies bedeutet, dass lediglich einer der beiden Lichtsender ein Beleuchtungslicht aussendet. Wenn in diesem Betriebsmodus beide Lichtempfänger zumindest annähernd das gleiche Signal zeigen, dann handelt es sich offensichtlich um ein fernes Echo. Dieses kann durch eine Reflexion des von dem aktiven Lichtsender ausgesendeten Beleuchtungslichts an einem weit entfernten Gegenstand wie beispielsweise dem Fußboden eines überwachten Raumes stammen.The described smoke detector can be operated, for example, in an asymmetrical operating mode in which both light receivers are active but only one of the two light transmitters. This means that only one of the two light emitters emits an illumination light. If, in this mode of operation, both light receivers show at least approximately the same signal, then obviously this is a far-end echo. This may be due to a reflection of the illumination light emitted by the active light emitter on a faraway object such as the floor of a monitored room.

In einem Gefahrenfall, bei dem Rauch in den überwachten Raum eindringt oder entsteht, wird der Rauch zumindest teilweise auch in die nahe Umgebung des Rauchmelders eindringen, so dass die beiden Lichtempfänger ein stark unterschiedliches Messsignal empfangen. Dabei wird der Lichtempfänger, welcher dem eingeschalteten Lichtsender zugeordnet ist, ein deutlich intensitätsstärkeres Messlicht empfangen als der andere Lichtempfänger. Auf diese Weise können weit entfernte und grundsätzlich stark rückstreuende Gegenstände, welche aufgrund ihrer großen Entfernung lediglich ein schwaches Rückstreusignal bewirken, zuverlässig von einem grundsätzlich schwach rückstreuenden Rauch unterschieden werden, der sich nahe an dem Rauchmelder befindet.In a hazardous situation in which smoke penetrates into the monitored space or arises, the smoke will at least partially penetrate into the vicinity of the smoke detector, so that the two light receivers receive a very different measurement signal. In this case, the light receiver, which is assigned to the switched-on light transmitter, receive a measuring light of much higher intensity than the other light receiver. In this way, far away and generally strongly backscattering objects, which cause only a weak backscatter signal due to their long distance, can be reliably distinguished from a generally weakly backscattering smoke, which is located close to the smoke detector.

Es wird darauf hingewiesen, dass der weitere Lichtsender und der weitere Lichtempfänger in gleicher Weise ausgebildet oder angeordnet sein können wie die oben beschriebenen Lichtsender und Lichtempfänger. Dies gilt insbesondere für die Zusammenfassung des weiteren Lichtsenders und des weiteren Lichtempfängers in einer weiteren Lichtschranke.It should be noted that the further light emitter and the further light receiver can be designed or arranged in the same way as the light emitters and light receivers described above. This applies in particular to the combination of the further light emitter and the further light receiver in a further light barrier.

Bevorzugt sind die mittleren Richtungen sowohl des ersten Beleuchtungslichts als auch des zweiten Beleuchtungslichts senkrecht zu der Montagefläche orientiert. Dies bedeutet, dass der Beleuchtungslichtstrahl und der weitere Beleuchtungslichtstrahl parallel zueinander verlaufen. Dadurch hängt der Abstand zwischen dem Detektionsraum und dem weiteren Detektionsraum im Wesentlichen von dem Abstand zwischen den beiden Lichtsendern bzw. zwischen den beiden Lichtempfängern ab.Preferably, the middle directions of both the first illumination light and the second illumination light are oriented perpendicular to the mounting surface. This means that the illumination light beam and the further illumination light beam are parallel to one another. As a result, the distance between the detection space and the further detection space essentially depends on the distance between the two light transmitters or between the two light receivers.

Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren zum Überprüfen der Funktionsfähigkeit eines Rauchmelders des oben beschriebenen Typs angegeben. Das Verfahren weist auf (a) ein Einbringen eines streuenden Referenzgegenstandes in den Detektionsraum, wobei der Gegenstand zumindest für eine vorgegebenen Zeitraum in der gleichen Position gehalten wird, (b) ein Auswerten von zeitlichen Änderungen des von dem Lichtempfänger ausgegebenen Ausgangssignals und (c) ein Ausgeben einer Test-Alarmmeldung falls die zeitlichen Änderungen einem vorgegebenen Verlauf entsprechen.According to another aspect of the invention, there is provided a method of checking the operability of a smoke detector of the type described above. The method comprises (a) introducing a scattering reference object into the detection space, wherein the object is held in the same position for at least a predetermined time period, (b) evaluating temporal changes in the output signal output by the light receiver, and (c) Output of a test alarm message if the changes in time correspond to a given course.

Dem genannten Verfahren zum Auslösen einer Testfunktion des oben beschriebenen Rauchmelders liegt die Erkenntnis zugrunde, dass durch ein einfaches Heranführen eines gegenständlichen Objektes der gesamte Rauchmelder einschließlich des optischen Systems bestehend aus Lichtsender, Lichtempfänger und einer in der Datenverarbeitungseinrichtung implementierten Auswertung getestet werden kann. Dabei können durch eine geeignete Signalverarbeitung unterschiedliche Signalverläufe erkannt und somit beispielsweise Rauchschwaden von eine gewollten Auslösung der Testfunktion klar unterschieden werden. Bei dem beschrieben Auslösen der Testfunktion wird somit nicht nur lediglich die Funktionsfähigkeit eines Alarmgebers wie beispielsweise eine Sirene oder ein optische Alarmanzeigeeinrichtung getestet.The above-mentioned method for triggering a test function of the smoke detector described above is based on the finding that the entire smoke detector, including the optical system consisting of light transmitter, light receiver and an evaluation implemented in the data processing device, can be tested by simply introducing an objective object. It can be detected by a suitable signal processing different waveforms and thus, for example, smoke from a desired triggering of the test function are clearly distinguished. In the described triggering of the test function is thus not only tested only the functionality of an alarm device such as a siren or an optical alarm indicator.

Bevorzugt wird der Gegenstand nahe an den Rauchmelder herangeführt. Der Gegenstand kann jedes beliebige feste oder flüssige Objekt sein, welches eine im Vergleich zu Rauch stark Licht streuende Oberfläche aufweist. Der Gegenstand kann auch die Hand einer Bedienperson sein.Preferably, the object is brought close to the smoke detector. The object may be any solid or liquid object which has a high light scattering surface compared to smoke. The item may also be the hand of an operator.

Zum Heranführen des Gegenstandes eignet sich beispielsweise eine Teststange. Dies gilt insbesondere dann, wenn der Rauchmelder an der Decke eines zu überwachenden Raumes angebracht ist. Auch ein herkömmlicher Besen mit einer entsprechend langen Stande ist demzufolge als Gegenstand zum Auslösen der Testfunktion des Rauchmelders gut geeignet.For example, a test bar is suitable for bringing the object into the way. This is especially true when the smoke detector is mounted on the ceiling of a room to be monitored. Also, a conventional broom with a correspondingly long state is therefore well suited as an object for triggering the test function of the smoke detector.

Die Auslösezeit für die Testfunktion bzw. die Zeit während welcher der Testgegenstand in der Nähe des Rauchmelders gehalten werden muss, kann genau definiert sein. Befindet sich dann jedoch ein Gegenstand während einer wesentlich längeren Zeit vor dem Rauchmelder, dann bedeutet dies, dass die Sicht des Rauchmelders durch einen fixen Gegenstand versperrt wird. Dies ist ein Störungsfall und kann ebenfalls durch die in der Datenverarbeitungseinrichtung implementierte Signalverarbeitungssoftware detektiert und entsprechend gemeldet werden.The triggering time for the test function or the time during which the test object must be kept in the vicinity of the smoke detector can be precisely defined. If, however, an object is located in front of the smoke detector for a considerably longer time, this means that the view of the smoke detector is obstructed by a fixed object. This is a fault and can also be detected by the implemented in the data processing device signal processing software and reported accordingly.

Gemäß einem Ausführungsbeispiel der Erfindung weist das Verfahren zusätzlich auf ein Bewegen des Referenzgegenstandes nach einem vorgegeben zeitlichen Muster, wobei der vorgegebene Verlauf mit dem vorgegebenen zeitlichen Muster zumindest qualitativ übereinstimmt.According to an exemplary embodiment of the invention, the method additionally comprises moving the reference object according to a predetermined time pattern, wherein the predetermined course coincides at least qualitatively with the predetermined time pattern.

Dies bedeutet, dass das Auslösen der Testfunktion zusätzlich codiert werden kann, indem zum Beispiel der Testgegenstand innerhalb einer definierten Zeit zwei oder dreimal in die Nähe der Rauchmelders gebracht und wieder entfernt wird. Durch eine geeignete vorab definierte Codierung können auch verschiedene Testsequenzen ausgelöst werden. Die Codierung kann auch dazu dienen, die Auslösefunktion für den Test klar von anderen Störfunktionen, wie zum Beispiel in den Detektionsraum eindringenden Insekten, zu unterscheiden.This means that the triggering of the test function can additionally be coded, for example, by placing the test object in the vicinity of the smoke detector and removing it again two or three times within a defined time. By a suitable predefined coding also different test sequences can be triggered. The coding can also serve to clear the tripping function for the test from other jamming functions, as in the detection room penetrating insects to distinguish.

Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der folgenden beispielhaften Beschreibung derzeit bevorzugter Ausführungsformen. Die einzelnen Figuren der Zeichnung dieser Anmeldung sind lediglich als schematisch und als nicht maßstabsgetreu anzusehen.

Figur 1
zeigt in einer schematischen Querschnittsdarstellung einen Rauchmelder mit zwei Reflexionslichtschranken, die an einer gemeinsamen Leiterplatte angebracht sind.
Figur 2
zeigt eine Querschnittsdarstellung eines Rauchmel- ders, welcher einen Lichtsender und zwei Lichtempfän- ger aufweist, die als SMD Bauelemente an einer elekt- ronischen Leiterplatte angebracht sind.
Figur 3
zeigt ein Flussdiagramm, welches sowohl den normalen Betrieb als auch das Auslösen einer Testfunktion des in Figur 1 dargestellten Rauchmelders illustriert.
Further advantages and features of the present invention will become apparent from the following exemplary description of presently preferred embodiments. The individual figures of the drawing of this application are merely to be regarded as schematic and not to scale.
FIG. 1
shows a schematic cross-sectional view of a smoke detector with two reflection light barriers, which are mounted on a common circuit board.
FIG. 2
shows a cross-sectional view of a smoke detector, which has a light emitter and two light receivers, which are mounted as SMD components on an electronic circuit board.
FIG. 3
FIG. 3 shows a flowchart which illustrates both the normal operation and the triggering of a test function of the in FIG. 1 Illustrated illustrated smoke detector.

An dieser Stelle bleibt anzumerken, dass sich in der Zeichnung die Bezugszeichen von gleichen oder von einander entsprechenden Komponenten lediglich in ihrer ersten Ziffer unterscheiden.It should be noted at this point that in the drawing the reference numbers of identical or corresponding components differ only in their first digit.

Figur 1 zeigt einen Rauchmelder 100, welcher eine Grundplatte 105 aufweist. Gemäß dem hier dargestellten Ausführungsbeispiel ist die Grundplatte eine Leiterplatte 105 oder ein geeigneter Schaltungsträger zum Aufnehmen von elektronischen und optoelektronischen Bauelementen. Sämtliche an der Leiterplatte 105 angebrachten Bauelemente sind in nicht dargestellter Weise mittels Leiterbahnen oder elektrischen Drahtverbindungen in geeigneter Weise kontaktiert. FIG. 1 shows a smoke detector 100, which has a base plate 105. According to the embodiment shown here, the base plate is a printed circuit board 105 or a suitable circuit carrier for receiving electronic and optoelectronic components. All attached to the circuit board 105 components are contacted in a manner not shown by means of conductors or electrical wire connections in a suitable manner.

Der Rauchmelder 100 umfasst eine erste Reflektionslichtschranke 110 und eine zweite Reflektionslichtschranke 120. Die erste Reflektionslichtschranke 110 weist einen ersten Lichtsender 111 und unmittelbar daneben in einem gemeinsamen Gehäuse angeordnet einen ersten Lichtempfänger 112 auf. Die zweite Reflektionslichtschranke 120 weist einen zweiten Lichtsender 121 und unmittelbar daneben in einem gemeinsamen Gehäuse angeordnet einen zweiten Lichtempfänger 122 auf.The smoke detector 100 comprises a first reflection light barrier 110 and a second reflection light barrier 120. The first reflection light barrier 110 has a first light emitter 111 and immediately adjacent thereto arranged in a common housing a first light receiver 112. The second reflection light barrier 120 has a second light transmitter 121 and immediately adjacent thereto arranged in a common housing a second light receiver 122.

Der erste Lichtsender 111 sendet senkrecht zu der Ebene der Leiterplatte 105 ein erstes Beleuchtungslicht 111a aus. Das erste Beleuchtungslicht 111a wird in einem ersten Detektionsraum 115, in dem sich beispielsweise Rauch befindet, zumindest teilweise um annähernd 180°, also zwischen 170° und 190°, zurückgestreut. Das zurück gestreute Licht erreicht als erstes Messlicht 112a den ersten Lichtempfänger 112.The first light emitter 111 transmits a first illumination light 111a perpendicular to the plane of the printed circuit board 105. The first illumination light 111a is at least partially backscattered by approximately 180 °, ie, between 170 ° and 190 °, in a first detection space 115 in which, for example, smoke is located. The backscattered light reaches the first light receiver 112 as the first measuring light 112a.

In entsprechender Weise sendet der zweite Lichtsender 121 senkrecht zu der Ebene der Leiterplatte 105 ein zweites Beleuchtungslicht 121a aus. Das zweite Beleuchtungslicht 121a wird in einem zweiten Detektionsraum 125, in dem sich beispielsweise Rauch befindet, zumindest teilweise um annähernd 180° zurückgestreut. Das zurück gestreute Licht erreicht als zweites Messlicht 122a den zweiten Lichtempfänger 122.In a corresponding manner, the second light emitter 121 transmits a second illumination light 121a perpendicular to the plane of the printed circuit board 105. The second illumination light 121a is at least partially backscattered by approximately 180 ° in a second detection space 125 in which, for example, smoke is located. The backscattered light reaches the second light receiver 122 as the second measuring light 122a.

Der Rauchmelder 100 weist ferner eine Subtraktionseinheit 136 auf, welche aus den Ausgangssignalen der beiden Lichtempfänger 112 und 122 ein Differenzsignal bildet. Dieses Differenzsignal wird einer Datenverarbeitungseinrichtung 135 des Rauchmelders 100 zugeführt.The smoke detector 100 also has a subtraction unit 136, which forms a difference signal from the output signals of the two light receivers 112 and 122. This difference signal is supplied to a data processing device 135 of the smoke detector 100.

Ferner ist eine Steuereinrichtung 130 vorgesehen, welche mit den beiden Lichtsendern 111 und 121 gekoppelt ist. Dadurch können die beiden Lichtsender 111 und 121 unabhängig voneinander aktiviert bzw. eingeschaltet werden.Furthermore, a control device 130 is provided, which is coupled to the two light transmitters 111 and 121. As a result, the two light transmitters 111 and 121 can be activated or switched on independently of each other.

Sämtliche Komponenten 110, 120, 130, 135 und 136 des Rauchmelders 100 sind an der Leiterplatte 105 angebracht und in geeigneter Weise elektrisch kontaktiert. Dadurch kann der Rauchmelder 100 in einer sehr flachen Bauweise realisiert werden. Die Höhe des Rauchmelders 100 ist dabei lediglich durch die Dicke der Leiterplatte 105 und durch die Komponenten 110, 120, 130, 135 und 136 bestimmt.All of the components 110, 120, 130, 135 and 136 of the smoke detector 100 are mounted on the circuit board 105 and electrically contacted in a suitable manner. As a result, the smoke detector 100 can be realized in a very flat design. The height of the smoke detector 100 is determined only by the thickness of the printed circuit board 105 and by the components 110, 120, 130, 135 and 136.

Gemäß dem hier dargestellten Ausführungsbeispiel sind sämtliche Komponenten 110, 120, 130, 135 und 136 sog. Surface Mount Technology (SMD) Bauteile. Dadurch kann beispielsweise eine Gesamthöhe von lediglich 2,1 mm erreicht werden. Die Gesamthöhe ergibt sich dabei durch den Abstand zwischen der Oberseite der Leiterplatte 105 und der in Figur 1 mit dem Bezugszeichen 140 versehenen unteren Oberfläche des Rauchmelders.According to the exemplary embodiment illustrated here, all components 110, 120, 130, 135 and 136 are so-called surface mount technology (SMD) components. As a result, for example, an overall height of only 2.1 mm can be achieved. The total height results from the distance between the top of the circuit board 105 and the in FIG. 1 provided with the reference numeral 140 lower surface of the smoke detector.

Gemäß dem hier dargestellten Ausführungsbeispiel fallen die lichtaktiven Flächen der Lichtsender 111, 121 und der Lichtempfänger 112, 122 mit der Oberfläche 140 zusammen. Dies bedeutet, dass sich zwischen diesen lichtaktiven Flächen und dem jeweiligen Detektionsraum 115, 125 keine weiteren Teile des Rauchmelders 100 befinden. Dies gilt auch für Abdeckungen oder Gehäuseteile. Derartige Abdeckungen, welche bei bekannten Rauchmeldern häufig zur Zwecke einer Schmutzabweisung vorgesehen sind, sind jedoch bei vielen Anwendungen insbesondere im Heimbereich auch gar nicht erforderlich. Außerdem können auch Lichtschranken verwendet werden, welche für die lichtaktiven Flächen der Lichtsender 111, 121 und der Lichtempfänger 112, 122 bereits transparente Schutzschichten aufweisen, so dass dadurch zumindest ein gewisser Verschmutzungsschutz gegeben ist.According to the exemplary embodiment illustrated here, the light-active surfaces of the light emitters 111, 121 and the light receivers 112, 122 coincide with the surface 140. This means that no further parts of the smoke detector 100 are located between these light-active surfaces and the respective detection space 115, 125. This also applies to covers or housing parts. Such covers, which are often provided in known smoke detectors for the purpose of soil repellence, but are not required in many applications, especially in the home area. In addition, it is also possible to use light barriers which already have transparent protective layers for the light-active surfaces of the light emitters 111, 121 and the light receivers 112, 122, thereby providing at least some protection against soiling.

Der beschriebene Rauchmelder 100 mit zwei parallel ausgerichteten Reflexionslichtschranken hat den Vorteil, dass er keine optischen Elemente wie beispielsweise Linsen oder Spiegel aufweist. Dadurch kann der Rauchmelder auf besonders einfache Weise mit preiswerten Komponenten hergestellt werden. Beim Zusammenbau bzw. bei der Montage des Rauchmelders sind auch keine besonderen Montagetoleranzen zu beachten. Alle für den Rauchmelder erforderlichen Komponenten sind Massenware, welche preiswert zu beschaffen sind.The described smoke detector 100 with two parallel reflection light barriers has the advantage that it has no optical elements such as lenses or mirrors. As a result, the smoke detector can be produced in a particularly simple manner with inexpensive components. At the Assembly or installation of the smoke detector does not require any special mounting tolerances. All components required for the smoke detector are mass-produced, which are inexpensive to procure.

Gemäß dem hier dargestellten Ausführungsbeispiel ist die Datenverarbeitungseinrichtung 135 derart eingerichtet, dass der zeitliche Verlauf des Ausgangssignals genau ausgewertet werden kann. Um eine hohe Qualität der gesamten Auswertung zu erreichen, weisen die Lichtempfänger 112 und 122 eine lineare Response auf. Dies bedeutet, dass die Höhe des Ausgangssignals direkt proportional zu der jeweils einfallenden Lichtintensität ist.According to the exemplary embodiment illustrated here, the data processing device 135 is set up such that the time profile of the output signal can be evaluated accurately. In order to achieve a high quality of the entire evaluation, the light receivers 112 and 122 have a linear response. This means that the height of the output signal is directly proportional to the respective incident light intensity.

Da sich Rauch typischerweise nicht schlagartig innerhalb eines überwachten Raumes ausbreitet, kann aus einem langsamen Anstieg des Ausgangssignals auf das Eindringen von Rauch in den Detektionsraum geschlossen werden. Bei dem Einbringen eines gegenständlichen Objektes in den Detektionsraum erfolgt normalerweise ein sehr schneller Anstieg des Ausgangssignals.Since smoke typically does not propagate abruptly within a monitored space, it can be concluded from a slow increase in the output signal to the ingress of smoke into the detection space. When a subject object is introduced into the detection space, a very rapid rise of the output signal normally takes place.

Figur 2 zeigt eine Querschnittsdarstellung eines Rauchmelders 200 gemäß einem weiteren Ausführungsbeispiel der Erfindung. Der Rauchmelder 200 weist ein flaches Gehäuse 202 auf, in dem sich eine als Leiterplatte ausgebildete Grundplatte 205 befindet. An der Leiterplatte 205 ist eine Mehrzahl von elektronischen und optoelektronischen Bauteilen angebracht, die jeweils in geeigneter Weise kontaktiert sind. FIG. 2 shows a cross-sectional view of a smoke detector 200 according to another embodiment of the invention. The smoke detector 200 has a flat housing 202, in which there is a base plate 205 formed as a printed circuit board. On the circuit board 205 a plurality of electronic and optoelectronic components is mounted, which are each contacted in a suitable manner.

Das wichtigste optoelektronische Bauteil des Rauchmelders 200 ist eine Reflexionslichtschranke 210, welche einen Lichtsender 211 und einen ersten Lichtempfänger 212 umfasst. Die Reflexionslichtschranke 210 ist genauso aufgebaut und wird genauso betrieben wie die Reflexionslichtschranke 110 des in Figur 1 dargestellten Rauchmelders 100.The most important optoelectronic component of the smoke detector 200 is a reflection light barrier 210, which comprises a light transmitter 211 and a first light receiver 212. The reflection light barrier 210 has the same structure and is operated in the same way as the reflection light barrier 110 of FIG FIG. 1 illustrated smoke detector 100.

Der Rauchmelder 200 weist außerdem einen zweiten Lichtempfänger 222 auf, welcher in einem gewissen Abstand von der Lichtschranke 210 ebenfalls an der Leiterplatte 205 angebracht ist. Damit kann der Rauchmelder 200 in dem oben beschriebenen asymmetrischen Betriebsmodus betrieben werden. Außerdem weist der Rauchmelder 200 noch eine Datenverarbeitungseinrichtung 235 auf, mittels welcher der zeitliche Verlauf des Ausgangssignals analysiert bzw. ausgewertet werden kann.The smoke detector 200 also has a second light receiver 222, which is also attached to the printed circuit board 205 at a certain distance from the light barrier 210. Thus, the smoke detector 200 can be operated in the asymmetrical operation mode described above. In addition, the smoke detector 200 also has a data processing device 235, by means of which the time profile of the output signal can be analyzed or evaluated.

An der Leiterplatte 205 sind noch weitere elektronische Bauteile angebracht, die in Figur 2 zwar dargestellt aber nicht näher bezeichnet sind. Dies Bauteile können beispielsweise Treiberschaltungen für den Lichtsender 211, Verstärkerschaltungen für die beiden Lichtempfänger 212 und 222, in Hardware gegossene Auswerteschaltungen wie beispielsweise eine Subtraktionsschaltung oder beliebige andere Schaltungen sein, welche für den Betrieb des Rauchmelders 200 vorgesehen sind.On the circuit board 205, other electronic components are mounted in FIG. 2 Although shown but not specified. These components may be, for example, driver circuits for the light emitter 211, amplifier circuits for the two light receivers 212 and 222, hardware cast evaluation circuits such as a subtraction circuit, or any other circuits provided for the operation of the smoke detector 200.

Um eine hohe mechanische Festigkeit des Rauchmelders 200 und insbesondere der elektronischen und optoelektronischen Bauteile zu gewährleisten, ist ferner ein Vergussmaterial 245 vorgesehen, welches die an der Leiterplatte angebrachten Bauteile zumindest teilweise umschließt. Beim Einbringen des ursprünglich flüssigen Vergussmaterials 245 wurde darauf geachtet, dass die optoelektronischen Bauteile 211, 212 und 222 nicht vollständig umschlossen werden. Damit stellen bei dem Rauchmelder 200 die optisch aktiven Flächen des Lichtsenders 211, des ersten Lichtempfängers 212 und des zweiten Lichtempfängers 222 an den entsprechenden Stellen die äußere Begrenzung des Rauchmelders 200 dar. Außerhalb der photoelektrischen Komponenten Lichtsender und Lichtempfänger befinden sich somit keine anderen Teile wie beispielsweise Abdeckungen oder Gehäuseteile. Damit kann der Rauchmelder derart ausgebildet sein, dass sich zwischen den optisch aktiven Flächen der Bauelemente 211, 212 und 222 und einem in Figur 2 nicht dargestellten Detektionsraum keine optisch transparente Abdeckung befindet, durch welche die Bauelemente 211, 212 und 222 vor Verschmutzung geschützt sind.In order to ensure a high mechanical strength of the smoke detector 200 and in particular the electronic and optoelectronic components, a potting material 245 is further provided, which at least partially encloses the components attached to the circuit board. When introducing the originally liquid potting material 245 care was taken that the optoelectronic components 211, 212 and 222 are not completely enclosed. Thus, in the smoke detector 200, the optically active surfaces of the light emitter 211, the first light receiver 212, and the second light receiver 222 at the corresponding locations constitute the outer boundary of the smoke detector 200. Thus, there are no other parts such as light emitter and light receiver outside the photoelectric components Covers or housing parts. Thus, the smoke detector can be designed such that between the optically active surfaces of the components 211, 212 and 222 and a in FIG. 2 not shown detection space no optical transparent cover, by which the components 211, 212 and 222 are protected from contamination.

Figur 3 zeigt ein Flussdiagramm, welches sowohl den normalen Betrieb als auch das Auslösen einer Testfunktion der in den Figuren 1 und 2 dargestellten Rauchmelder 100 bzw. 200 illustriert. FIG. 3 shows a flowchart which shows both the normal operation and the triggering of a test function in the Figures 1 and 2 illustrated smoke detector 100 and 200 illustrated.

Das in dem Flussdiagramm dargestellte Verfahren beginnt mit dem Anschließen des Rauchmelders an eine zum Betrieb erforderliche Stromversorgung, welche beispielsweise eine Batterie sein kann. Der Beginn bzw. der Start des Verfahrens ist mit dem Bezugszeichen 350 gekennzeichnet.The method illustrated in the flow chart begins with the connection of the smoke detector to a required for operation power supply, which may for example be a battery. The beginning or the start of the method is identified by the reference numeral 350.

Unmittelbar nach dem Beginn des Verfahrens erfolgt eine erste Abfrage 352, mit der überprüft wird, ob überhaupt ein Rückstreusignal empfangen wird. Ist dies nicht der Fall, dann beginnt das Verfahren von neuem.Immediately after the beginning of the method, a first query 352 is carried out, with which it is checked whether a backscatter signal is ever received. If this is not the case, then the process begins again.

An dieser Stelle wird darauf hingewiesen, dass in dem in Figur 3 dargestellten Flussdiagramm die weiterführenden Flusslinien, die auf eine negative Antwort bzw. auf "Nein" folgen, mit einem an der entsprechenden Abfragebox eingezeichneten Kreis beginnen. Flusslinien, die auf eine positive Antwort bzw. mit "Ja" folgen, beginnen ohne einen entsprechenden Kreis.At this point it should be noted that in the in FIG. 3 The flow chart shown, the flow lines that follow a negative answer or to "no" begin with a marked on the corresponding query box circle. Flow lines that follow a positive answer or "yes" begin without a corresponding circle.

Wird bei der Abfrage 352 festgestellt, dass ein Rückstreusignal empfangen wird, dann folgt als nächster Schritt eine Abfrage 360, in der ermittelt wird, ob der zeitliche Verlauf des detektierten Rückstreusignals eine Steigung aufweist, die größer ist als eine vorgegebene Referenzsteigung. Ist dies der Fall, dann wird das Verfahren mit einer Abfrage 370 fortgesetzt. Ist die zeitliche Änderung des Rückstreusignals kleiner als die Referenzsteigung, dann wird das Verfahren mit einer Abfrage 380 fortgesetzt.If it is determined in the query 352 that a backscatter signal is received, then the next step is followed by a query 360, in which it is determined whether the time profile of the detected backscatter signal has a slope which is greater than a predetermined reference slope. If so, then the method continues with a query 370. If the time change of the backscatter signal is less than the reference slope, then the method continues with a query 380.

Im Folgenden wird der Teil des Flussdiagramms beschrieben, welcher mit der Abfrage 370 beginnt.The following describes the portion of the flowchart that begins with query 370.

Mit der Abfrage 370 wird überprüft, ob die Stärke des detektierten Rückstreusignals größer ist als ein maximales Signal eines vorgegebenen Bereichs für Rauch-Rückstreusignale. Ist dies nicht der Fall, dann handelt es sich bei dem aktuellen Streumedium offensichtlich nicht um einen festen Gegenstand sondern eher um Rauch. In diesem Fall beginnt das Verfahren von neuem in der Hoffnung, dass bei der erneuten Abfrage 360 eine langsamere Steigung festgestellt wird und das Verfahren mit der weiter unten beschriebenen Abfrage 380 fortgesetzt wird. Ist die Stärke des detektierten Rückstreusignals größer ist als ein maximales einer Rauchdetektion zugeordnetes Signal, dann wird das Verfahren mit einer Abfrage 372 fortgesetzt.With the query 370 is checked whether the strength of the detected backscatter signal is greater than a maximum signal of a predetermined range for smoke backscatter signals. If this is not the case, then the current scattering medium is obviously not a solid object but rather smoke. In this case, the method restarts hoping that a slower slope will be detected at re-interrogation 360 and the method continues with query 380, described below. If the magnitude of the detected backscatter signal is greater than a maximum signal associated with smoke detection, then the method continues with a query 372.

Mittels der Abfrage 372 wird überprüft, ob in dem Rückstreusignal Fluktuationen vorhanden sind. Werden Fluktuationen ermittelt, dann könnte es sich eventuell doch um ein auf einer Rauchdetektion basierendes Rückstreusignal handeln. In diesem Fall beginnt das Verfahren erneut von vorne. Werden in der Abfrage 372 keine Fluktuationen des Rückstreusignals festgestellt, dann wird das Verfahren mit einer Abfrage 374 fortgesetzt.By means of the query 372 it is checked whether there are fluctuations in the backscatter signal. If fluctuations are detected, then it could possibly be a backscatter signal based on smoke detection. In this case, the procedure starts all over again. If no fluctuations in the backscatter signal are found in the query 372, then the method is continued with a query 374.

In der Abfrage 374 wird überprüft, ob die zeitliche Dauer des detektierten Rückstreusignals mit einer vorgegebenen Spezifikation für das Auslösen einer Testfunktion des Rauchmelders übereinstimmt. Ist dies der Fall, dann wird eine entsprechende Testfunktion ausgelöst. Diese ist durch die mit dem Bezugszeichen 375 gekennzeichnete Box dargestellt.In the query 374 it is checked whether the time duration of the detected backscatter signal coincides with a predetermined specification for triggering a test function of the smoke detector. If this is the case, then a corresponding test function is triggered. This is represented by the box marked with the reference numeral 375.

Stellt sich im Rahmen der Abfrage 374 heraus, dass die zeitliche Dauer des detektierten Rückstreusignals unterhalb der vorgegebenen Spezifikation für das Auslösen der Testfunktion liegt, dann beginnt das Verfahren erneut von vorne. Liegt die zeitliche Dauer des detektierten Rückstreusignals oberhalb der vorgegebenen Spezifikation für das Auslösen der Testfunktion, dann kann die Ursache für das detektierte Rückstreusignal nur ein Gegenstand sein, der versehentlich in den Detektionsraum eingebracht wurde und der zu einer zeitlich konstanten Rückstreuung führt. In diesem Fall wird von dem Rauchmelder eine Störmeldung ausgegeben. Dies ist in Figur 3 mit der Aktion 376 dargestellt.If, in the context of query 374, it turns out that the time duration of the detected backscatter signal is below the specified specification for triggering the test function, then the method restarts all over again. Is that lying Duration of the detected backscatter signal above the specified specification for triggering the test function, then the cause of the detected backscatter signal can only be an object that was accidentally introduced into the detection space and leads to a time-constant backscatter. In this case, a fault message is issued by the smoke detector. This is in FIG. 3 shown with action 376.

Nachfolgend wird der Teil des Flussdiagramms beschrieben, welcher mit der Abfrage 380 beginnt. Mit der Abfrage 380 wird bestimmt, ob die Amplitude bzw. die Stärke des Rückstreusignals innerhalb eines vorgegebenen Bereichs liegt, welcher für eine Rauch-Rückstreuung charakteristisch ist. Ist dies nicht der Fall, dann beginnt das Verfahren von neuem in der Hoffnung, dass bei der erneuten Abfrage 360 eine größere Steigung festgestellt wird und das Verfahren mit der oben beschriebenen Abfrage 370 fortgesetzt wird. Wird bei der Abfrage 380 festgestellt, dass die Stärke des Rückstreusignals innerhalb eines vorgegebenen und für eine Rauch-Rückstreuung typischen Bereichs liegt, dann wird das Verfahren mit einer Abfrage 382 fortgesetzt.Next, the part of the flowchart which starts with the query 380 will be described. The query 380 determines whether the amplitude or the strength of the backscatter signal is within a predetermined range, which is characteristic of a smoke backscatter. If this is not the case, then the method restarts in the hope that a larger slope will be detected on re-interrogation 360 and the method continues with query 370 described above. If it is determined at query 380 that the magnitude of the backscatter signal is within a predetermined range and typical for smoke backscatter, then the method continues with a query 382.

Mit der Abfrage 382 wird ermittelt, ob das Rückstreusignal Fluktuationen aufweist, die hinsichtlich ihres zeitlichen Verhaltens für Rauchschwaden typisch sind. Ist dies nicht der Fall, dann beginnt das Verfahren von neuem und wird mit der oben beschriebenen Abfrage 352 fortgesetzt. Wird mit der Abfrage 382 jedoch festgestellt, dass das Rückstreusignal Fluktuationen aufweist, die für eine Rauchdetektion typisch sind, dann wird von dem Rauchmelder eine Alarmmeldung ausgegeben. Diese Alarmmeldung ist in Figur 3 mit dem Bezugszeichen 383 gekennzeichnet.The query 382 determines whether the backscatter signal has fluctuations that are typical of smoke over time. If this is not the case, then the method restarts and continues with query 352 described above. However, if it is determined by query 382 that the backscatter signal has fluctuations typical of smoke detection, then an alarm message is issued by the smoke detector. This alarm message is in FIG. 3 designated by the reference numeral 383.

Mit dem beschriebenen Verfahren können somit drei unterschiedliche Ereignisse ausgelöst werden, welche durch die beschriebene Vielzahl von Abfragen zuverlässig voneinander unterschieden werden können. Ein erstes Ereignis besteht in dem Auslösen einer Testfunktion 375, mit der die Funktionsfähigkeit des Rauchmelders überprüft werden kann. Ein zweites Ereignis ist eine Störmeldung 376, mit der signalisiert wird, dass sich ein Gegenstand in dem Detektionsraum befindet. Das dritte Ereignis ist das Ausgeben eines Rauchalarms 383.With the method described, three different events can thus be triggered, which depend reliably on each other due to the described plurality of queries can be distinguished. A first event is the triggering of a test function 375 with which the functionality of the smoke detector can be checked. A second event is a fault message 376 which signals that an item is in the detection room. The third event is the issuing of a smoke alarm 383.

Zusammenfassend bleibt festzustellen: Der beschriebene offene optische Rauchmelder besitzt einen Lichtsender, welcher Rauchpartikel außerhalb des Rauchmelders optisch anstrahlt. Der Lichtempfänger des Rauchmelders ist so beschaffen, dass er das durch die Rauchpartikel zurück gestreute Licht empfangen kann. Wird nun anstelle der Rauchpartikel ein Gegenstand zugeführt, dann kann auch dieser durch das zurück gestreute Licht detektiert werden. Somit kann zum Beispiel durch Hinhalten der Hand oder eines anderen Gegenstandes, zum Beispiel einer Verlängerungsstange, ein Alarm ausgelöst werden. Bei Rauchmeldern für den Heimbereich kann das Auslösen eines Alarmes in der Regel gleich der benötigten Testfunktion entsprechen.In summary, it remains to be stated: The open optical smoke detector described has a light transmitter which optically illuminates smoke particles outside the smoke detector. The light receiver of the smoke detector is designed to receive the light scattered back by the smoke particles. If now an object is supplied instead of the smoke particles, then this can also be detected by the backscattered light. Thus, for example, by holding the hand or other object, such as an extension bar, an alarm may be triggered. In the case of smoke detectors for home use, the triggering of an alarm can generally correspond to the required test function.

Der beschriebene offene Rauchmelder weist zum Beispiel folgende Vorteile auf:

  • Der Rauchmelder kann in einer miniaturisierten Bauform realisiert werden.
  • Die benötigte Anzahl insbesondere an optischen Bauteilen ist im Vergleich zu bekannten Rauchmeldern erheblich reduziert.
  • Mittels der Testfunktion werden genau die gleichen Bauteile überprüft, welche auch für die Rauchdetektion verwendet werden. Es wird also der komplette optische Pfad getestet. Bei bekannten Rauchmeldern mit der Möglichkeit einer Testauslösung über eine Taste konnte nur eine indirekte Prüfung durchgeführt werden (Strommessung des Senders, Test des Alarmbuzzers, Test der Batterien). Der optische Pfad selbst wird bei bekannten Streulichtrauchmeldern üblicherweise nicht überprüft.
  • Eine Sichtversperrung durch fixe Gegenstände kann zuverlässig erkannt werden. Dies ist auch ein entscheidender Vorteil gegenüber einem geschlossenen Rauchmelder mit Labyrinth bzw. mit einer optischen Kammer. Wird das Labyrinth bzw. die optische Kammer beispielsweise durch eine Staubschutzkappe, durch eine heruntergehängte Decke oder einen Schrank abgedeckt, dann ist der betreffende Rauchmelder nicht mehr funktionsfähig, ohne dass es von einer Überwachungsfunktion erkannt werden kann.
  • Ein Test des Rauchmelders kann auf einfache Weise beispielsweise durch eine Verlängerungsstange ausgelöst werden. Ein kleiner Testknopf muss nicht betätigt werden. Vielmehr genügt es, mit einer Stange, einem Besen oder einem Wischer in die Nähe des Detektionsraumes zu kommen. Der Gebrauch einer Leiter mit der entsprechenden Unfallgefahr entfällt.
  • Das optische System zur Rauchdetektion wird gleichzeitig als Auslöseeinrichtung für die Testfunktion und zur Überwachung der Sichtbehinderung eines offenen optischen Rauchmelders verwendet. Dadurch werden keine zusätzlichen Bauteile oder Vorrichtungen benötigt.
The open smoke detector described has the following advantages, for example:
  • The smoke detector can be realized in a miniaturized design.
  • The required number, in particular of optical components, is considerably reduced in comparison to known smoke detectors.
  • The test function checks exactly the same components that are used for smoke detection. So it will test the complete optical path. In known smoke detectors with the possibility of a test release via a button, only an indirect test could be performed (current measurement of the transmitter, test of the alarm buzzer, test of the batteries). The optical path itself is usually not checked in known scattered light smoke detectors.
  • A visual obstruction by fixed objects can be reliably detected. This is also a decisive advantage over a closed smoke detector with labyrinth or with an optical chamber. If the labyrinth or the optical chamber is covered, for example, by a dust cover, a suspended ceiling or a cabinet, then the relevant smoke detector is no longer functional without it being able to be detected by a monitoring function.
  • A test of the smoke detector can be triggered in a simple manner, for example by an extension rod. A small test button does not have to be pressed. Rather, it is sufficient to come with a rod, a broom or a wiper in the vicinity of the detection room. The use of a ladder with the corresponding accident risk is eliminated.
  • The optical smoke detection system is also used as a trigger for the test function and to monitor the visual obstruction of an open optical smoke detector. As a result, no additional components or devices are needed.

Es wird darauf hingewiesen, dass die hier beschriebenen Ausführungsformen lediglich eine beschränkte Auswahl an möglichen Ausführungsvarianten der Erfindung darstellen. So ist es möglich, die Merkmale einzelner Ausführungsformen in geeigneter Weise miteinander zu kombinieren, so dass für den Fachmann mit den hier expliziten Ausführungsvarianten eine Vielzahl von verschiedenen Ausführungsformen als offensichtlich offenbart anzusehen sind.It should be understood that the embodiments described herein are merely a limited selection of possible embodiments of the invention. Thus, it is possible to suitably combine the features of individual embodiments with one another, so that for the person skilled in the art with the variants of embodiment that are explicit here, a multiplicity of different embodiments are to be regarded as obviously disclosed.

Claims (9)

  1. Apparatus for detecting smoke, said apparatus featuring
    • a base element (105) with a flat mounting surface,
    • a light transmitter (111), which is attached to the mounting surface and is configured to transmit an illumination light (111a),
    • a light receiver (112), which is attached to the mounting surface adjacent to the light transmitter (111) and is configured to receive a measurement light (112a), which results from a backscattering of the illumination light (111a) at a measurement object present in a detection space (115) and
    • a data processing facility (135), which is coupled to an output of the light receiver (112) and is configured to evaluate temporal changes in an output signal output by the light receiver (112),
    characterised in that
    the light transmitter (111) and light receiver (112) are arranged flat on the mounting surface, the detection space (115) is located outside the apparatus and no further parts of the apparatus are located between the light transmitter (111) and the light receiver (112) on the one hand and the detection space (115) opposite on the other hand.
  2. Apparatus according to claim 1, wherein
    the data processing facility (135) is additionally configured to evaluate the strength of the output signal.
  3. Apparatus according to one of claims 1 to 2, wherein
    the light transmitter (111) and the light receiver (112) are implemented by a first reflection light barrier (110).
  4. Apparatus according to one of claims 1 to 3, wherein
    the direction of the illumination light (111a) runs perpendicular to the mounting surface.
  5. Apparatus according to one of claims 1 to 4, wherein
    the light transmitter is configured to transmit a pulsed illumination light (111a).
  6. Apparatus according to one of claims 1 to 5, wherein
    the light transmitter (111) and the light receiver (112) respectively represent an outer boundary of the apparatus (100) for detecting smoke.
  7. Apparatus according to one of claims 1 to 6, additionally featuring
    • a further light transmitter (121), which
    is attached to the mounting surface and is configured to transmit a further illumination light (121a),
    • a further light receiver (122), which
    is attached to the mounting surface adjacent to the further light transmitter (121) and is configured to receive a further measurement light (122a), which results from a backscattering of the further illumination light (121a) at a measurement object present in a further detection space (125) and
    • wherein the light transmitters (111, 121) and the light receivers (112, 122) are arranged flat on the mounting surface and no further parts of the apparatus are located between the light transmitters (111, 121) and the light receivers (112, 122) on the one hand and the detection space (115) opposite on the other hand.
  8. Apparatus according to one of claims 1 to 7,
    wherein the data processing facility (135) is configured to evaluate temporal changes in the output signal output by the light receiver (112), the apparatus being configured to output a test alarm message (375) and it being possible to output the test alarm message (375), if a scattering reference object introduced into the detection space (115) and held in the same position for at least a predetermined time period is moved according to a predetermined temporal pattern that corresponds at least qualitatively to a predetermined profile.
  9. Method for verifying the functional capability of an apparatus (100) for detecting smoke according to claim 8, the method featuring
    • the introduction of a scattering reference object into the detection space (115), the object being held in the same position at least for a predetermined time period,
    • an evaluation by the apparatus (100) of temporal changes in the output signal output by the light receiver (112,
    • movement of the reference object according to a predetermined temporal pattern, the predetermined profile corresponding at least qualitatively to the predetermined temporal pattern and
    • the outputting of a test alarm message (375) by the apparatus (100) if the temporal changes correspond to a predetermined profile.
EP08101744A 2008-02-19 2008-02-19 Smoke alarm with timed evaluation of a backscattering signal, test method for functionality of a smoke alarm Not-in-force EP2093734B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
ES08101744T ES2368358T3 (en) 2008-02-19 2008-02-19 SMOKE DETECTOR WITH EVALUATION IN THE TIME OF A REPRODUCTION SIGNAL, TEST METHOD FOR THE FUNCTIONING CAPACITY OF A SMOKE DETECTOR.
AT08101744T ATE515008T1 (en) 2008-02-19 2008-02-19 SMOKE DETECTOR WITH TIME EVALUATION OF A BACKSCATTER SIGNAL, TEST METHOD FOR THE FUNCTIONALITY OF A SMOKE DETECTOR
PL08101744T PL2093734T3 (en) 2008-02-19 2008-02-19 Smoke alarm with timed evaluation of a backscattering signal, test method for functionality of a smoke alarm
EP08101744A EP2093734B1 (en) 2008-02-19 2008-02-19 Smoke alarm with timed evaluation of a backscattering signal, test method for functionality of a smoke alarm
DK08101744.4T DK2093734T3 (en) 2008-02-19 2008-02-19 Smoke alarm with timely interpretation of a feedback signal, test method for operation of a smoke alarm
US12/735,845 US8587442B2 (en) 2008-02-19 2009-02-16 Smoke alarm with temporal evaluation of a backscatter signal, test method for the functional capability of a smoke alarm
PCT/EP2009/051753 WO2009103667A1 (en) 2008-02-19 2009-02-16 Smoke alarm with temporal evaluation of a backscatter signal, test method for the functional capability of a smoke alarm
CN2009801056425A CN101952862B (en) 2008-02-19 2009-02-16 Smoke alarm with temporal evaluation of a backscatter signal, test method for the functional capability of a smoke alarm
HK11107223.1A HK1153299A1 (en) 2008-02-19 2011-07-12 Smoke alarm with temporal evaluation of a backscatter signal, test method for the functional capability of a smoke alarm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08101744A EP2093734B1 (en) 2008-02-19 2008-02-19 Smoke alarm with timed evaluation of a backscattering signal, test method for functionality of a smoke alarm

Publications (2)

Publication Number Publication Date
EP2093734A1 EP2093734A1 (en) 2009-08-26
EP2093734B1 true EP2093734B1 (en) 2011-06-29

Family

ID=39590272

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08101744A Not-in-force EP2093734B1 (en) 2008-02-19 2008-02-19 Smoke alarm with timed evaluation of a backscattering signal, test method for functionality of a smoke alarm

Country Status (9)

Country Link
US (1) US8587442B2 (en)
EP (1) EP2093734B1 (en)
CN (1) CN101952862B (en)
AT (1) ATE515008T1 (en)
DK (1) DK2093734T3 (en)
ES (1) ES2368358T3 (en)
HK (1) HK1153299A1 (en)
PL (1) PL2093734T3 (en)
WO (1) WO2009103667A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8754775B2 (en) * 2009-03-20 2014-06-17 Nest Labs, Inc. Use of optical reflectance proximity detector for nuisance mitigation in smoke alarms
EP2423895B1 (en) 2010-08-26 2017-03-08 Siemens Schweiz AG Light scattering smoke alarm with means of suppressing an acoustic warning if battery voltage is low
CN102176272B (en) * 2011-02-15 2012-12-26 中国航空工业集团公司西安飞机设计研究所 Smoke detection system testing method used in aircraft cabin
DE102011108390B4 (en) * 2011-07-22 2019-07-11 PPP "KB Pribor" Ltd. Method of making an open type smoke detector
US8947243B2 (en) 2012-04-29 2015-02-03 Valor Fire Safety, Llc Smoke detector with external sampling volume and utilizing internally reflected light
US9140646B2 (en) 2012-04-29 2015-09-22 Valor Fire Safety, Llc Smoke detector with external sampling volume using two different wavelengths and ambient light detection for measurement correction
US8907802B2 (en) 2012-04-29 2014-12-09 Valor Fire Safety, Llc Smoke detector with external sampling volume and ambient light rejection
JP5901485B2 (en) * 2012-09-26 2016-04-13 能美防災株式会社 smoke detector
CA2927785C (en) 2013-10-30 2024-04-16 Valor Fire Safety, Llc Smoke detector with external sampling volume and ambient light rejection
EP2879104B2 (en) * 2013-11-27 2022-05-11 Siemens Schweiz AG Auxiliary device for a punctual danger alarm for the monitoring of the function of the danger alarm and use of a such device
US9652958B2 (en) 2014-06-19 2017-05-16 Carrier Corporation Chamber-less smoke sensor
DE102015004458B4 (en) 2014-06-26 2016-05-12 Elmos Semiconductor Aktiengesellschaft Apparatus and method for a classifying, smokeless air condition sensor for predicting a following operating condition
EP3029647B1 (en) 2014-12-04 2017-05-31 Siemens Schweiz AG Open scattered light smoke detector, particularly with a sidelooker LED
DE102014019773B4 (en) 2014-12-17 2023-12-07 Elmos Semiconductor Se Device and method for distinguishing between solid objects, cooking fumes and smoke using the display of a mobile telephone
DE102014019172B4 (en) 2014-12-17 2023-12-07 Elmos Semiconductor Se Device and method for distinguishing between solid objects, cooking fumes and smoke using a compensating optical measuring system
EP3091517B1 (en) * 2015-05-06 2017-06-28 Siemens Schweiz AG Open scattered-light smoke detector and testing device for such an open scattered-light smoke detector
US10002510B2 (en) * 2015-12-09 2018-06-19 Noah Lael Ryder System and methods for detecting, confirming, classifying, and monitoring a fire
DE102016208359B3 (en) * 2016-05-13 2017-09-07 Siemens Schweiz Ag Fire detector, in particular closed scattered light smoke detector, with a separate photodiode for detecting ambient light in order to accelerate depending on the issue of a possible fire alarm
DE102016208357A1 (en) 2016-05-13 2017-11-16 Siemens Schweiz Ag Fire detector, in particular open scattered light smoke detector, with a photodiode for detecting ambient light in order to accelerate depending on the optical signal path in the scattered light fire analysis
US10467874B2 (en) 2016-05-13 2019-11-05 Siemens Schweiz Ag Fire detector having a photodiode for sensing ambient light
DE102016208358B3 (en) * 2016-05-13 2017-07-06 Siemens Schweiz Ag Fire detector, in particular thermal detector, with a photodiode for detecting ambient light, in order to accelerate depending on the issue of a possible fire alarm
ES2823182T3 (en) 2016-07-19 2021-05-06 Autronica Fire & Security As System and method for verifying the operational integrity of a smoke detector
WO2018027104A1 (en) 2016-08-04 2018-02-08 Carrier Corporation Smoke detector
CN110136390A (en) * 2019-05-28 2019-08-16 赛特威尔电子股份有限公司 A kind of smog detection method, device, smoke alarm and storage medium
US11615683B2 (en) * 2020-04-01 2023-03-28 Carrier Corporation Surface mount back scatter photo-electric smoke detector
US10803714B1 (en) * 2020-05-19 2020-10-13 Rajeev Khera System and method for visualizing, tracking and maintaining social distancing
US20220397525A1 (en) * 2021-06-09 2022-12-15 Carrier Corporation Apparatus and method for verifying optical functionality in a chamberless smoke detector
US11657692B1 (en) 2021-10-28 2023-05-23 Honeywell International Inc. Smoke detector
US11551535B1 (en) 2021-10-28 2023-01-10 Honeywell International Inc. Operating a scanning smoke detector
US20230236109A1 (en) * 2022-01-24 2023-07-27 Excelitas Canada, Inc. Dual-Emitter Optic Block and Chamber for Smoke Detector

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1439325A (en) * 1972-05-06 1976-06-16 Kgm Electronics Ltd Alarm detectors
US3917956A (en) * 1974-03-08 1975-11-04 Pyrotector Inc Smoke detector
CH660244A5 (en) * 1983-01-11 1987-03-31 Cerberus Ag PHOTOELECTRIC SMOKE DETECTOR AND THEIR USE.
JP2935549B2 (en) 1990-08-23 1999-08-16 能美防災株式会社 Fire detection method and device
US5497144A (en) * 1993-07-07 1996-03-05 Cerberus Ag Testing and adjustment of scattered-light smoke detectors
US6151589A (en) * 1998-09-10 2000-11-21 International Business Machines Corporation Methods for performing large scale auctions and online negotiations
EP1039426A3 (en) 1999-03-22 2001-01-31 Schako Metallwarenfabrik Ferdinand Schad Kg Smoke sensing device
JP2001014570A (en) * 1999-04-28 2001-01-19 Nittan Co Ltd Fire sensor
ATE295595T1 (en) * 1999-11-19 2005-05-15 Siemens Building Tech Ag FIRE ALARM
DE10066246A1 (en) 2000-09-22 2005-10-06 Robert Bosch Gmbh Scattered light smoke
EP1688898A4 (en) * 2003-11-17 2010-03-03 Hochiki Co Smoke sensor using scattering light
CN100463006C (en) * 2003-11-17 2009-02-18 报知机股份有限公司 Smoke sensor using scattering light
DE102004001699A1 (en) 2004-01-13 2005-08-04 Robert Bosch Gmbh fire alarm
EP2093732A1 (en) * 2008-02-19 2009-08-26 Siemens Aktiengesellschaft Device and method for detecting smoke through joint evaluation of two optical backscattering signals

Also Published As

Publication number Publication date
PL2093734T3 (en) 2011-11-30
US20110057805A1 (en) 2011-03-10
ATE515008T1 (en) 2011-07-15
WO2009103667A1 (en) 2009-08-27
CN101952862A (en) 2011-01-19
US8587442B2 (en) 2013-11-19
CN101952862B (en) 2013-04-10
EP2093734A1 (en) 2009-08-26
ES2368358T3 (en) 2011-11-16
DK2093734T3 (en) 2011-10-10
HK1153299A1 (en) 2012-03-23

Similar Documents

Publication Publication Date Title
EP2093734B1 (en) Smoke alarm with timed evaluation of a backscattering signal, test method for functionality of a smoke alarm
EP2093733B1 (en) Smoke detection through two spectrally different light scattering measurements
EP2093732A1 (en) Device and method for detecting smoke through joint evaluation of two optical backscattering signals
EP1191496B2 (en) Light scattering smoke detector
EP2541273B1 (en) Detection and measuring of distance between objects
DE102005010657B4 (en) Object detecting device
EP2481152B1 (en) Optical sensor, in particular proximity switch
EP2257840A2 (en) Optical sensor and method for detecting objects
EP2479586A1 (en) Method for estimating the contamination of a front panel of an optical recording device and optical recording device
DE19951403B4 (en) Method for detecting smoke
DE202006021270U1 (en) detector
DE102004033944A1 (en) Operating condition examining device for e.g. optical sensor arrangement, has examination control unit with timer that is programmed such that characteristic reflection of light pulse for preset assembling position in vehicle is evaluated
EP2093731A1 (en) Linear optical smoke alarm with multiple part-beams
EP1039426A2 (en) Smoke sensing device
DE19908214B4 (en) Radiation-emitting device and method for detecting an object or a person in the interior of a vehicle
DE102016110514B4 (en) Device and method for monitoring a room area, in particular for securing a danger area of an automated system
DE102017125587A1 (en) Optical sensor for detection of objects in a detection area
DE19707418C2 (en) Optoelectronic device
DE19652441C2 (en) Optoelectronic device
DE102006011250A1 (en) Reflection light barrier for detection of objects in a surveillance area and method for their operation
EP1655623A1 (en) Optical sensor
EP1596349B1 (en) Method for sensing and reporting of condensation in smoke detectors
EP0951653A1 (en) Optoelectronic device
DE102017119283B4 (en) Sensor system
DE102007036632B4 (en) Optical sensor and method for detecting objects in a surveillance area

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20091207

17Q First examination report despatched

Effective date: 20100104

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008004023

Country of ref document: DE

Effective date: 20110818

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20110629

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2368358

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110930

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111031

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111029

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008004023

Country of ref document: DE

Effective date: 20120330

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20130218

Year of fee payment: 6

Ref country code: ES

Payment date: 20130307

Year of fee payment: 6

Ref country code: DK

Payment date: 20130218

Year of fee payment: 6

Ref country code: FI

Payment date: 20130213

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20130129

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080219

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20140228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150220 AND 20150225

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502008004023

Country of ref document: DE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

Effective date: 20150407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140219

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 515008

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20150421

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20151030

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140220

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20160202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170209

Year of fee payment: 10

Ref country code: FR

Payment date: 20170222

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20170209

Year of fee payment: 10

Ref country code: GB

Payment date: 20170213

Year of fee payment: 10

Ref country code: AT

Payment date: 20170105

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170224

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170502

Year of fee payment: 10

Ref country code: DE

Payment date: 20170419

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008004023

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 515008

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180219

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180219

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180219

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180219