EP2043068B1 - Device for monitoring a fire alarm and configuration method and fire alarm - Google Patents

Device for monitoring a fire alarm and configuration method and fire alarm Download PDF

Info

Publication number
EP2043068B1
EP2043068B1 EP07117565A EP07117565A EP2043068B1 EP 2043068 B1 EP2043068 B1 EP 2043068B1 EP 07117565 A EP07117565 A EP 07117565A EP 07117565 A EP07117565 A EP 07117565A EP 2043068 B1 EP2043068 B1 EP 2043068B1
Authority
EP
European Patent Office
Prior art keywords
fire alarm
fire
detector
objects
fire detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07117565A
Other languages
German (de)
French (fr)
Other versions
EP2043068A1 (en
Inventor
Karlheinz Schreyer
Michael Tomaschek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Building Technologies HVAC Products GmbH
Siemens Building Technology Fire and Security Products GmbH and Co OHG
Original Assignee
Siemens Building Technologies HVAC Products GmbH
Siemens Building Technology Fire and Security Products GmbH and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38698825&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2043068(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP08103731A priority Critical patent/EP2043069B1/en
Priority to AT08103731T priority patent/ATE459949T1/en
Priority to AT07117565T priority patent/ATE457507T1/en
Priority to DE502007003029T priority patent/DE502007003029D1/en
Priority to EP07117565A priority patent/EP2043068B1/en
Application filed by Siemens Building Technologies HVAC Products GmbH, Siemens Building Technology Fire and Security Products GmbH and Co OHG filed Critical Siemens Building Technologies HVAC Products GmbH
Priority to DE502007002823T priority patent/DE502007002823D1/en
Publication of EP2043068A1 publication Critical patent/EP2043068A1/en
Publication of EP2043068B1 publication Critical patent/EP2043068B1/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/18Prevention or correction of operating errors
    • G08B29/183Single detectors using dual technologies
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the invention relates to a responsive to smoke, a fire gas or air heating fire detector with a sensitive for objects in the vicinity of the fire detector sensor.
  • Such fire detectors usually have a measuring chamber for smoke or combustion gases.
  • a sensor measures the absorption or scattering of smoke particles from light from a light source emitting light.
  • optoacoustic methods are known in which the change in sound is measured by fire gases heated by a laser.
  • Fire detectors often measure the air heating caused by a fire as an alternative or in addition to a temperature sensor.
  • combustion gases can be determined by means of a sensitive semiconductor structure.
  • the fire detector In the fire detector, a safe and precise detection of a fire is possible. In the case of a scattered light detector, interference from ambient light is minimized by a darkened measuring chamber. This allows a cost-effective design and provides great reliability. On the other hand, such a measuring chamber inevitably has the disadvantage that the smoke or the combustion gas can penetrate only delayed and the density in the interior of the measuring chamber at best asymptotically reaches the value of the external concentration. As a result, the detection of a fire is more or less delayed. In addition, ambient dust can quickly contaminate the measuring chamber. The fire detector must then be cleaned or replaced frequently. A solution for this can be suitable filters. at so-called forced-ventilated fire alarms, the fire detector is supplied via pipelines coming from a monitoring room air.
  • Fire detectors or the pipes of a forced-ventilation fire detector, must be placed expertly in the room so that the fire can be detected safely and in good time.
  • Fire detectors are typically attached to a pedestal that is high in the room, often on the ceiling.
  • changes in space can affect fire detection. Examples of such changes are the division of space through a partition and moving a tall cabinet.
  • such changes can not be detected by the fire detector, not even by those fire detectors that detect smoke outside of their housing and perceive objects, as the relevant objects are not necessarily placed in the measuring range of their sensor. This requires regular and costly maintenance.
  • An object of the invention is to reliably, selectively and simply evaluate the influence of changes in space on such a fire detector.
  • a core of the invention is that in a properly oriented fire detector, the sensor for objects laterally the fire detector is sensitive to the vertical within any circular section of 150 °, preferably within any sector of 110 °. These circular sections of the horizontal plane extend in every direction from the fire detector. The sensor should thus detect objects in or near the horizontal plane around the fire detector. It is also conceivable that the fire detector does not monitor the entire horizon, but omits gaps in which small and distant objects disappear. In this case, no monitoring gap may be greater than such a circular section. It has been shown according to the invention that monitoring by detection of objects that are located laterally of the fire detector and, depending on the type of fire detector and application, size and proximity, is reliable, selective and easy. Only such items can place the fire detector in the shadow of the airflow from the fire, and the fire alarm can easily distinguish it from harmless objects. False alarms are largely avoided.
  • a suitable sensor for a fire characteristic at the same time also forms the sensor for objects.
  • a special sensor for example an ultrasonic sensor, is required.
  • this sensor for objects on the side of the fire detector on at least one level is more sensitive than below at even distance to the fire alarm. Furthermore, it is advantageous that the sensor above the depth angle of 20 °, measured from the horizontal plane, is sensitive, advantageously even at the height of the fire detector. If the sensitivity of the sensor near the ground and outside of the measuring area of the fire detector is low, filtering out local, irrelevant objects requires less computing power.
  • the fire detector comprises at least one transmitter for emitting electromagnetic, acoustic or other radiation in the sensitivity range of the sensor. This allows a more accurate and less environmentally dependent measurement.
  • the fire detector comprises a deflection means for radiation in the sensitivity range of the sensor.
  • the deflection means is designed to deflect such radiation from a location in the fire detector to objects laterally of the fire detector, or vice versa, in a fire detector which is oriented as intended.
  • the fire detector has at this location one or more transmitters, one or more sensors, or a combination of both.
  • the deflection means may be, for example, an optical unit such as a lens or a mirror.
  • the invention also relates to a device for monitoring a fire detector, which has at least one responsive to smoke, a fire gas or air heating fire detector with a sensitive for objects laterally of the intended fire detector sensor, and is equipped with a data memory and with an evaluation unit for the sensor signal ,
  • the data memory and the evaluation unit are integrated, for example, in a freestanding fire detector or partially or entirely in other units of a fire detection system, such as in a fire alarm system, added.
  • the inventive device is based on the recognition that a reliable, selective and easy monitoring of a fire detector based on position, size and proximity of the objects in its environment is possible.
  • the evaluation unit is designed to determine from the sensor signal a value for the flow shield of the fire detector by objects and to trigger a warning message if the determined value approaches a stored expected value for a flow shield.
  • This value is advantageously determined as a function of the horizontal angle over which the sensor senses the objects, and preferably the stored expected value corresponds to an angle of at least 20 °.
  • the flow shield is evaluated separately by the size and solid angle of the objects laterally of the fire detector. The evaluation unit triggers a warning message if these values exceed the empirical values stored at the same time.
  • the evaluation unit is designed to determine from the sensor signal a value for the surface of objects facing the fire detector and to trigger a warning message if the determined value approaches a stored expected value for the surface of a partition wall.
  • the value is determined from the size of the sensor signal.
  • the fire detector is then equipped with a corresponding radiation source, the intensity of the reflections, for example, is decisive, since this one Conclusion on the solid angle of the object allows, and thus on its ability to shield the fire detector of air currents from a fire.
  • the passive ambient light detection which can only take place reliably with good information about the room lighting at any time or in certain time frames.
  • a transmitter of the fire detector emits radiation pulses in the horizontal plane.
  • the evaluation unit then integrates a function of the received sensor signal over time. In this case, preferably within a received reflection pulse later arriving radiation, as well as radiation from a weak transmission or unsensible reception angle, heavier weighted.
  • the value is determined by checking whether it is consistent with permanently present objects. For example, it must remain reasonably stable over a period of time, possibly within a stored inaccuracy of measurement. For example, where it is to be expected that, for example, craftsmen often hang large bundles of cables from the ceiling, a series of measurements can even be carried out over several hours or, depending on local regulations and standards, up to several weeks.
  • the value is determined on the basis of a determination of the value for the distance of the fire detector to objects.
  • the distance results, for example, by a radiation transit time measurement.
  • infrared radiation or other light this requires a special photodiode and complex electronics for the detection of relative distances of one tenth of a centimeter.
  • the photodiode must have a time resolution well below a nanosecond.
  • Another possibility is the distance measurement by means of the Phase shift of the reflection of an amplitude-modulated light.
  • the fire detector comprises a plurality of sensors sensitive to objects in complementary directions, or multiple transmitters of electromagnetic, acoustic or other radiation in the sensitivity range of the sensor which irradiate objects in complementary directions. From the number and type of sensors that receive a signal, conclusions about the flow shield of the fire detector can be closed by objects. Namely, a direct, albeit inaccurate value for the viewing angle of the object is determined from the perspective of the fire detector. It is conceivable according to the invention that several transmitters are also actuated one after the other in order to determine the direction and distance of the objects by comparison.
  • the warning message is different from a fire alarm, so that measures to compensate for the changes in the room are taken without unnecessary excitement.
  • the invention also relates to a configuration method in which at least one fire detector responding to smoke, a fire gas or air heating is expertly placed with a sensor sensitive to objects on the side of the fire detector, and in which a data memory and an evaluation unit for the sensor signal are operated.
  • a smoke, combustion gas or hot air oven is operated and the response time of the fire detector is determined and evaluated. Due to the determined and rated response times, an expected value for a flow shield of the fire detector is determined by objects. This expectation becomes finally stored in a data storage to an evaluation of such to be configured fire detectors.
  • FIG. 1 To the fire gas detector housing around ten horizontally aligned sensor diodes 2 are arranged, each with adjacent LEDs 3. It was subsequently installed a 190 centimeters wide and 45 centimeters high billboard 4 to 15 centimeters from the fire gas detector.
  • the arrows indicate how the fire gases originating from a fire 5 ascend, at the same time cooling down, and then flow away laterally under the fire gas detector 1 because of the billboard 4. Only after a long diffusion process can the fire gas detector 1 detect it.
  • FIG. 2 shows a smoke detector 11 according to the invention in cross section.
  • Its housing consists of a base plate 112, equipped with fastening means, not shown, for mounting on a pedestal, and from a transparent to infrared radiation cover 113.
  • a circuit board 114 with including a photodiode with integrated lens 16 and a LED 13A mounted.
  • the smoke detector 11 can perceive smoke particles near its housing by means of infrared radiation.
  • a second LED 13B and a second photodiode 12 are located on the circuit board 114.
  • the fire detector 1 regularly evaluates any objects in its vicinity.
  • both LEDs 13A and 13B are briefly actuated, that is, pulsed, for example.
  • a guard ring 17 mounted around the second photodiode 12 prevents its infrared radiation from being directly received therethrough. Instead, a portion of this radiation is deflected by a reflective coating for them 18 on a cone-like thickening of the lid 113 to the side of the fire detector 1, there possibly reflected by objects and received via the coating 18 in the second photodiode 12.
  • On the circuit board and a microprocessor and a data memory are applied, which are not shown.
  • a running on the microprocessor program forms an evaluation unit for the sensor signal.
  • the FIG. 3 shows an actuation pulse 131 to the transmitter of a fire detector according to the invention and the resulting sensor signal 121 over time.
  • the actuation voltage is several orders of magnitude higher than the resulting sensor signal voltage.
  • the structure of the fire detector corresponds to that of the fire detector 11 in FIG. 2 , Its photodiode 12 and electronics have a very high capacity for time resolution. Its LEDs 13A and 13B simultaneously transmit a pulse of infrared radiation for the purpose of distance measurement, the reflections of which are received by the photodiode 12. From the unitary shape of the sensor signal 121 can be concluded on a single object within the monitored area.
  • the Evaluation unit determines the time delay 141 of the received reflections and calculates therefrom the shortest distance to the object.
  • the LEDs 13A and 13B each send one pulse of infrared radiation behind each other. Since in each case the emission intensity of the coating 18 is different direction-dependent, and the deflection factor of reflections through the coating 18 to the photodiode 12 as well, the evaluation unit can calculate from a comparison of the resulting, not shown sensor signals of the photodiode 12, in which angles to the plane of symmetry of Fire detector the reflections from the object at any time at the photodiode 12 arrive. Thus, rudimentary information about the direction and solid angle of the article is obtained, which later enables compensating the directional emission intensity of the LEDs 13A and 13B from the coating 18.
  • the polynomial winding is preferably predominantly second order (c> a, b, d, ...) in order to account for the intensity loss due to the different signal path length.
  • the polynomial winding also contains additional knowledge based components based on experience (b, d,...
  • the evaluation unit compensates for the direction-dependent influence of the coating 18 at which angles the reflections arrive at the different surface parts of the object at all times.
  • FIG. 4 shows a further smoke detector 21 according to the invention, which alternately aligned in each case in different directions transmitter 23A, 23B, 23C and sensor 22A, 22B, 22C.
  • transmitter 23A, 23B, 23C and sensor 22A, 22B, 22C There is ever such a transmitter or sensor recorded in all wall sections shown, although not all are shown.
  • Each probe 22A, 22B, 22C is aligned approximately horizontally with three differently spaced regions 24CA, 24CB, 24CC of overlap each with a narrow emitter 23A, 23B, 23C.
  • Each sensor can receive light from three transmitters. They are close to smoke and are sensitive to objects up to several meters away. Thanks to these alignments, a rough detection of the distance from objects to the fire detector without transit time measurement of the radiation is possible.
  • the transmitters 23A, 23B, 23C are operated alternately, and the combination of the actuated transmitter 23A, 23B, 23C and the signal-loaded probe 22A, 22B, 22C reveals the overlapping region of their orientations originating from the reflections.

Abstract

The device has a sensor (2) for sensing an object of a fire alarm (1), and a data storage and an evaluation unit for storing and evaluating a sensor signal. The fire alarm is activated by smoke, fire gas or heated air. The evaluation unit is formed to determine a value from the sensor signal for current shield of the fire alarm and for triggering an alarm when the determined value approaches a stored expected value. The value is determined depending on a horizontal angle over which the sensor senses the object. An independent claim is also included for a configuration process for monitoring a fire alarm.

Description

Die Erfindung betrifft einen auf Rauch, einem Brandgas oder einer Lufterhitzung ansprechenden Brandmelder mit einem für Gegenstände in der Umgebung des Brandmelders empfindlichen Fühler.The invention relates to a responsive to smoke, a fire gas or air heating fire detector with a sensitive for objects in the vicinity of the fire detector sensor.

Solche Brandmelder weisen üblicherweise eine Messkammer für Rauch oder Brandgase auf. Darin misst ein Fühler die Absorption oder die Streuung an Rauchpartikel von Licht einer das Licht aussendenden Lichtquelle. Ebenso sind optoakustische Verfahren bekannt, bei denen die Schalländerung von durch einen Laser erhitzten Brandgasen gemessen wird. Oft messen Brandmelder alternativ oder ergänzend mit einem Temperatursensor die durch einen Brand verursachte Lufterhitzung. Auch können Brandgase mittels einer dazu sensiblen Halbleiterstruktur ermittelt werden.Such fire detectors usually have a measuring chamber for smoke or combustion gases. In it, a sensor measures the absorption or scattering of smoke particles from light from a light source emitting light. Likewise, optoacoustic methods are known in which the change in sound is measured by fire gases heated by a laser. Fire detectors often measure the air heating caused by a fire as an alternative or in addition to a temperature sensor. Also, combustion gases can be determined by means of a sensitive semiconductor structure.

Im Brandmelder ist eine sichere und präzise Detektierung eines Brandes möglich. Bei einem Streulichtmelder werden durch eine abgedunkelte Messkammer Störeinflüsse durch Umgebungslicht in minimiert. Dies erlaubt eine kostengünstige Bauweise und erbringt eine große Zuverlässigkeit. Andererseits hat eine derartige Messkammer zwangsläufig den Nachteil, dass der Rauch oder das Brandgas nur verzögert eindringen kann und die Dichte im Inneren der Messkammer bestenfalls asymptotisch den Wert der äußeren Konzentration erreicht. Dadurch erfolgt die Detektierung eines Brandes mehr oder weniger verzögert. Zusätzlich kann Umgebungsstaub die Messkammer rasch verschmutzen. Der Brandmelder muss dann häufig gereinigt oder ausgetauscht werden. Eine Lösung dafür können geeignete Filter darstellen. Bei sogenannten zwangsbelüfteten Brandmeldern wird dem Brandmelder über Rohrleitungen die aus einem Überwachungsraum stammende Luft zugeführt.In the fire detector, a safe and precise detection of a fire is possible. In the case of a scattered light detector, interference from ambient light is minimized by a darkened measuring chamber. This allows a cost-effective design and provides great reliability. On the other hand, such a measuring chamber inevitably has the disadvantage that the smoke or the combustion gas can penetrate only delayed and the density in the interior of the measuring chamber at best asymptotically reaches the value of the external concentration. As a result, the detection of a fire is more or less delayed. In addition, ambient dust can quickly contaminate the measuring chamber. The fire detector must then be cleaned or replaced frequently. A solution for this can be suitable filters. at so-called forced-ventilated fire alarms, the fire detector is supplied via pipelines coming from a monitoring room air.

Sonstige bekannte Brandmelder detektieren Rauch außerhalb von ihrem Gehäuse und können dabei insbesondere auch Gegenstände in ihrer Umgebung wahrnehmen. Beispielsweise ist in der Europäischen Patentanmeldung EP 1783712 A1 die Absorption von selbst erzeugter und an Gegenständen zum Brandmelder zurück reflektierter infraroter Strahlung durch Rauchpartikel unterhalb vom Brandmelder beschrieben worden. Um den Störeinfluss von sich in dem Strahlengang bewegenden Objekten, die infrarote Strahlung absorbieren oder reflektieren, festzustellen, wird mittels desselben Fühlers auch die Distanz zu den reflektierenden Gegenständen gemessen. Diese Distanzmessung kann beispielsweise gemäß dem in der Europäischen Patentanmeldung EP 1391860 A1 offenbarten Prinzip erfolgen. Darin ist ein seitlich vom Brandmelder montierter Reflektor, der sich in Deckennähe befindet, beschrieben. Der Brandmelder erzeugt eine modulierte infrarote Strahlung, welche durch Rauchpartikel im Strahlengang zwischen Brandmelder und Reflektor zumindest teilweise absorbiert wird. Zur Unterscheidung von sich im Strahlengang befindlichen Gegenständen bestimmt der Brandmelder über die Phasenverschiebung der reflektierten Strahlung deren Distanz.Other known fire detect smoke outside of their housing and can in particular also perceive objects in their environment. For example, in the European patent application EP 1783712 A1 the absorption of self-generated and reflected back to objects to the fire detector infrared radiation has been described by smoke particles below the fire detector. In order to detect the interference of objects moving in the beam path which absorb or reflect infrared radiation, the distance to the reflecting objects is also measured by means of the same sensor. This distance measurement can, for example, according to that in the European patent application EP 1391860 A1 disclosed principle. It describes a reflector mounted on the side of the fire detector near the ceiling. The fire detector generates a modulated infrared radiation, which is at least partially absorbed by smoke particles in the beam path between fire detector and reflector. To distinguish objects located in the beam path, the fire detector determines its distance via the phase shift of the reflected radiation.

Brandmelder, beziehungsweise die Rohrleitungen eines zwangsbelüfteten Brandmelders, müssen fachkundig im Raum platziert sein, damit der Brand sicher und rechtzeitig detektiert wird. Brandmelder werden typischerweise an einem Sockel befestigt, welcher sich hoch im Raum, oft an der Decke, befindet. Seit langem ist es ein anerkannter Nachteil, dass Veränderungen im Raum die Branddetektierung beeinträchtigen können. Beispiele derartiger Veränderungen sind die Aufteilung des Raumes durch eine Trennwand und das Verschieben eines hohen Schranks. In der Regel können solche Veränderungen durch den Brandmelder nicht detektiert werden, auch nicht durch diejenigen Brandmelder die außerhalb von ihrem Gehäuse Rauch detektieren und Gegenstände wahrnehmen, da die relevanten Gegenstände nicht unbedingt im Messbereich ihres Fühlers platziert werden. Dadurch ist eine regelmäßige und kostspielige Wartung notwendig. Zwar schlägt die Europäische Patentanmeldung EP 1191496 A1 bei einem Brandmelder einen zusätzlichen Ultraschallsender und einen zusätzlichen Ultraschallsensor vor, um festzustellen, "ob sich ein Fremdkörper in einem Bereich um den Rauchmelder befindet, der möglicherweise eine Beeinflussung der Strömungsverhältnisse für die Branderkennung bedeutet. Dies kann als Warnung von der Zentrale ausgegeben werden". Es wird jedoch weder offenbart, in welchem Bereich um den Rauchmelder der Fremdkörper gesucht, noch mit welchem Vorrichtungsaufbau er erfasst, noch nach welchen Kriterien sein Einfluss auf die Branddetektierung beurteilt werden soll. Die Ausführungsbeispiele in der Europäischen Patentanmeldung EP 1191496 A1 zeigen dazu unbrauchbare Messgebiete, unmittelbar unter dem Brandmelder und konzentriert in einer vertikalen Ebene. Kein Algorithmus für die Auswertung wird beschrieben, um in diesem Sinne behindernde vom nicht behindernden Fremdkörper zu unterscheiden.Fire detectors, or the pipes of a forced-ventilation fire detector, must be placed expertly in the room so that the fire can be detected safely and in good time. Fire detectors are typically attached to a pedestal that is high in the room, often on the ceiling. For a long time it has been a recognized disadvantage that changes in space can affect fire detection. Examples of such changes are the division of space through a partition and moving a tall cabinet. As a rule, such changes can not be detected by the fire detector, not even by those fire detectors that detect smoke outside of their housing and perceive objects, as the relevant objects are not necessarily placed in the measuring range of their sensor. This requires regular and costly maintenance. Although proposes the European patent application EP 1191496 A1 In the case of a fire detector, provide an additional ultrasonic transmitter and an additional ultrasonic sensor to determine "if there is a foreign object in an area around the smoke detector that might affect the flow conditions for fire detection." This can be output as a warning from the control panel. However, it is not disclosed in which area around the smoke detector the foreign object is sought, nor with which device structure it is detected, nor according to which criteria its influence on the fire detection is to be assessed. The embodiments in the European patent application EP 1191496 A1 show useless measuring areas, immediately below the fire detector and concentrated in a vertical plane. No algorithm for the evaluation is described to distinguish in this sense obstructive from non-interfering foreign body.

Eine Aufgabe der Erfindung ist es, zuverlässig, selektiv und einfach den Einfluss von Veränderungen im Raum auf einem solchen Brandmelder zu bewerten.An object of the invention is to reliably, selectively and simply evaluate the influence of changes in space on such a fire detector.

Die Aufgabe wird erfindungsgemäß jeweils durch die Gegenstände der unabhängigen Patentansprüche gelöst. Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.The object is achieved in each case by the subject matters of the independent claims. Further developments of the invention are specified in the subclaims.

Ein Kern der Erfindung ist, dass in einem bestimmungsgemäß ausgerichteten Brandmelder der Fühler für Gegenstände seitlich des Brandmelders innerhalb jedes beliebigen Kreisausschnitts von 150° um die Vertikale empfindlich ist, bevorzugt innerhalb jedes beliebigen Kreisausschnitts von 110°. Diese Kreisausschnitte der Horizontalebene strecken sich in jeder Richtung vom Brandmelder aus. Der Fühler soll somit Gegenstände in oder nah an der Horizontalebene um den Brandmelder herum wahrnehmen. Vorstellbar ist auch, dass der Brandmelder nicht den gesamten Horizont überwacht, sondern Lücken auslässt, in der kleine und entfernte Gegenstände verschwinden. Dabei darf keine Überwachungslücke größer sein als ein solcher Kreisausschnitt. Es hat sich nämlich erfindungsgemäß gezeigt, dass eine Überwachung durch Erkennung von Gegenständen, die sich seitlich des Brandmelders befinden und, je nach Brandmeldertyp und Anwendung, Größe und Nähe aufweisen, zuverlässig, selektiv und einfach ist. Nur solche Gegenstände können den Brandmelder in den Schatten der vom Brand stammenden Luftströmung stellen, und der Brandmelder kann sie leicht von harmlosen Gegenständen unterscheiden. Fehlalarme werden so weitgehend vermieden.A core of the invention is that in a properly oriented fire detector, the sensor for objects laterally the fire detector is sensitive to the vertical within any circular section of 150 °, preferably within any sector of 110 °. These circular sections of the horizontal plane extend in every direction from the fire detector. The sensor should thus detect objects in or near the horizontal plane around the fire detector. It is also conceivable that the fire detector does not monitor the entire horizon, but omits gaps in which small and distant objects disappear. In this case, no monitoring gap may be greater than such a circular section. It has been shown according to the invention that monitoring by detection of objects that are located laterally of the fire detector and, depending on the type of fire detector and application, size and proximity, is reliable, selective and easy. Only such items can place the fire detector in the shadow of the airflow from the fire, and the fire alarm can easily distinguish it from harmless objects. False alarms are largely avoided.

Bevorzugt bildet ein dazu geeigneter Fühler für eine Brandkenngröße zugleich auch den Fühler für Gegenstände. Unter Umständen ist aber ein spezieller Fühler, beispielsweise ein Ultraschallsensor, benötigt.Preferably, a suitable sensor for a fire characteristic at the same time also forms the sensor for objects. Under certain circumstances, however, a special sensor, for example an ultrasonic sensor, is required.

In einer vorteilhaften Ausführungsform ist dieser Fühler für Gegenstände seitlich des Brandmelders auf zumindest einer Höhe empfindlicher als darunter auf selber Distanz zum Brandmelder. Des Weiteren ist es vorteilhaft, dass der Fühler oberhalb des Tiefenwinkels von 20°, gemessen von der Horizontalebene, empfindlich ist, vorteilhaft sogar auf Höhe des Brandmelders. Ist die Empfindlichkeit des Fühlers in Bodennähe und außerhalb vom Messgebiet des Brandmelders gering, so benötigt das Ausfiltrieren von dortigen, irrelevanten Gegenständen weniger Rechenleistung.In an advantageous embodiment, this sensor for objects on the side of the fire detector on at least one level is more sensitive than below at even distance to the fire alarm. Furthermore, it is advantageous that the sensor above the depth angle of 20 °, measured from the horizontal plane, is sensitive, advantageously even at the height of the fire detector. If the sensitivity of the sensor near the ground and outside of the measuring area of the fire detector is low, filtering out local, irrelevant objects requires less computing power.

In einer weiteren vorteilhaften Ausführungsform umfasst der Brandmelder zumindest einen Sender zum Aussenden einer elektromagnetischen, akustischen oder sonstigen Strahlung im Empfindlichkeitsbereich des Fühlers. Dies erlaubt eine genauere und weniger umgebungsabhängige Messung.In a further advantageous embodiment, the fire detector comprises at least one transmitter for emitting electromagnetic, acoustic or other radiation in the sensitivity range of the sensor. This allows a more accurate and less environmentally dependent measurement.

In einer nächsten vorteilhaften Ausführungsform umfasst der Brandmelder ein Ablenkmittel für Strahlung im Empfindlichkeitsbereich des Fühlers. Das Ablenkmittel ist ausgebildet, um in einem bestimmungsgemäß ausgerichteten Brandmelder solche Strahlung von einem Ort im Brandmelder zu Gegenständen seitlich des Brandmelders, oder umgekehrt, abzulenken. Der Brandmelder weist an diesem Ort einen oder mehrere Sender, einen oder mehrere Fühler, oder eine Kombination von beiden auf. Das Ablenkmittel kann zum Beispiel eine optische Einheit, wie eine Linse oder ein Spiegel, sein. Mittels eines Ablenkmittels mit einem Antrieb könnte ein Fühler für Rauch unterhalb des Brandmelders zumindest zeitweise auch als Fühler für Gegenstände seitlich davon verwendet werden.In a next advantageous embodiment, the fire detector comprises a deflection means for radiation in the sensitivity range of the sensor. The deflection means is designed to deflect such radiation from a location in the fire detector to objects laterally of the fire detector, or vice versa, in a fire detector which is oriented as intended. The fire detector has at this location one or more transmitters, one or more sensors, or a combination of both. The deflection means may be, for example, an optical unit such as a lens or a mirror. By means of a deflection means with a drive, a sensor for smoke below the fire detector could at least temporarily also be used as a sensor for objects laterally thereof.

Die Erfindung betrifft auch eine Vorrichtung zur Überwachung eines Brandmelders, die wenigstens einen auf Rauch, einem Brandgas oder einer Lufterhitzung ansprechenden Brandmelder mit einem für Gegenstände seitlich des bestimmungsgemäß ausgerichteten Brandmelders empfindlichen Fühler aufweist, und ausgestattet ist mit einem Datenspeicher und mit einer Auswerteeinheit für das Fühlersignal. Der Datenspeicher und die Auswerteeinheit sind beispielsweise in einem freistehenden Brandmelder integriert oder teilweise oder gänzlich in sonstigen Einheiten eines Brandmeldesystems, wie in einer Brandmeldezentrale, aufgenommen. Die Verarbeitung des Fühlersignals in einem System belastet zwar das Kommunikationsnetz mit zusätzlichem Datenverkehr, ermöglicht es jedoch freie Ressourcen zu nutzen.The invention also relates to a device for monitoring a fire detector, which has at least one responsive to smoke, a fire gas or air heating fire detector with a sensitive for objects laterally of the intended fire detector sensor, and is equipped with a data memory and with an evaluation unit for the sensor signal , The data memory and the evaluation unit are integrated, for example, in a freestanding fire detector or partially or entirely in other units of a fire detection system, such as in a fire alarm system, added. Although the processing of the sensor signal in a system loads the same Communication network with additional traffic, but allows free resources to use.

Auch die erfinderische Vorrichtung beruht auf die Erkenntnis, dass eine zuverlässige, selektive und einfache Überwachung eines Brandmelders anhand von Position, Größe und Nähe der Gegenstände in seiner Umgebung möglich ist. Die Auswerteeinheit ist ausgebildet, um aus dem Fühlersignal einen Wert für die Strömungsabschirmung des Brandmelders durch Gegenstände zu ermitteln und eine Warnmeldung auszulösen, falls der ermittelte Wert an einem gespeicherten Erwartungswert für eine Strömungsabschirmung herantritt. Vorteilhaft wird dieser Wert abhängig vom horizontalen Winkel ermittelt, über denen der Fühler die Gegenstände empfindet, und vorzugsweise entspricht der gespeicherte Erwartungswert einem Winkel von mindestens 20°. In einem weiteren Beispiel wird die Strömungsabschirmung separat durch Größe und Raumwinkel der Gegenstände seitlich des Brandmelders bewertet. Dabei löst die Auswerteeinheit eine Warnmeldung aus, falls diese Werte gleichzeitig gespeicherte Erfahrungswerte übertreffen. In einer ähnlichen Alternative ist die Auswerteeinheit ausgebildet, um aus dem Fühlersignal einen Wert für die dem Brandmelder zugewandte Oberfläche von Gegenständen zu ermitteln und eine Warnmeldung auszulösen, falls der ermittelte Wert an einem gespeicherten Erwartungswert für die Oberfläche einer Trennwand herantritt.The inventive device is based on the recognition that a reliable, selective and easy monitoring of a fire detector based on position, size and proximity of the objects in its environment is possible. The evaluation unit is designed to determine from the sensor signal a value for the flow shield of the fire detector by objects and to trigger a warning message if the determined value approaches a stored expected value for a flow shield. This value is advantageously determined as a function of the horizontal angle over which the sensor senses the objects, and preferably the stored expected value corresponds to an angle of at least 20 °. In another example, the flow shield is evaluated separately by the size and solid angle of the objects laterally of the fire detector. The evaluation unit triggers a warning message if these values exceed the empirical values stored at the same time. In a similar alternative, the evaluation unit is designed to determine from the sensor signal a value for the surface of objects facing the fire detector and to trigger a warning message if the determined value approaches a stored expected value for the surface of a partition wall.

In einer vorteilhaften Ausführung der Erfindung wird der Wert aus der Größe des Fühlersignals ermittelt. Dabei ist vorzugsweise der Empfindlichkeitsbereich des Fühlers so zu wählen, dass bei gleichen übrigen Umständen alle zu erwartenden Gegenstandmaterialien eine etwa gleiche Fühlersignalgröße erzeugen. Ist dann der Brandmelder mit einer entsprechenden Strahlungsquelle ausgestattet, so ist beispielsweise die Intensität der Reflektionen maßgebend, da diese einen Rückschluss auf den Raumwinkel des Gegenstands ermöglicht, und somit auf seiner Eignung, den Brandmelder von Luftströmungen aus einem Brandherd abzuschirmen. Eine weitere Möglichkeit stellt die passive Umgebungslichtdetektierung dar, welche jedoch nur zuverlässig mit guten Informationen über die Raumbeleuchtung zu jeder Zeit oder in gewissen Zeitrahmen stattfinden kann. In einer weiteren Alternative sendet ein Sender des Brandmelders in der Horizontalebene Strahlungspulse aus. Die Auswerteeinheit integriert dann eine Funktion des empfangenen Fühlersignals über die Zeit. Dabei wird vorzugsweise innerhalb von einem empfangenen Reflexionspuls später eintreffende Strahlung, sowie Strahlung aus einem schwachen Sende- oder unsensibeln Empfangswinkel, schwerer gewichtet.In an advantageous embodiment of the invention, the value is determined from the size of the sensor signal. In this case, it is preferable to select the sensitivity range of the probe such that all other expected object materials produce an approximately identical sensor signal magnitude for the same other circumstances. If the fire detector is then equipped with a corresponding radiation source, the intensity of the reflections, for example, is decisive, since this one Conclusion on the solid angle of the object allows, and thus on its ability to shield the fire detector of air currents from a fire. Another possibility is the passive ambient light detection, which can only take place reliably with good information about the room lighting at any time or in certain time frames. In a further alternative, a transmitter of the fire detector emits radiation pulses in the horizontal plane. The evaluation unit then integrates a function of the received sensor signal over time. In this case, preferably within a received reflection pulse later arriving radiation, as well as radiation from a weak transmission or unsensible reception angle, heavier weighted.

In einer weiteren vorteilhaften Ausführungsform wird der Wert unter Prüfung, ob er mit dauerhaft anwesenden Gegenständen konsistent ist, ermittelt. Beispielsweise muss er während einer Zeitspanne, eventuell innerhalb einer gespeicherten Messungenauigkeit, einigermaßen stabil bleiben. Dort wo zu erwarten ist, dass zum Beispiel Handwerker öfters große Kabelbündel aus der Decke herunterhängen lassen, ist sogar eine Reihe von Messungen über mehrere Stunden oder, je nach lokalen Vorschriften und Normen, bis zu mehreren Wochen durchzuführen.In a further advantageous embodiment, the value is determined by checking whether it is consistent with permanently present objects. For example, it must remain reasonably stable over a period of time, possibly within a stored inaccuracy of measurement. For example, where it is to be expected that, for example, craftsmen often hang large bundles of cables from the ceiling, a series of measurements can even be carried out over several hours or, depending on local regulations and standards, up to several weeks.

In einer nächsten vorteilhaften Ausführungsform wird der Wert aufgrund einer Ermittlung des Wertes für die Distanz des Brandmelders zu Gegenständen ermittelt. Die Distanz ergibt sich zum Beispiel durch eine Strahlungslaufzeitmessung. Diese erfordert bei infraroter Strahlung oder sonstigem Licht für die Erfassung von Relativ-Distanzen von einem zehntel Zentimeter eine spezielle Photodiode und eine aufwendige Elektronik. Bei hoher Empfindlichkeit muss die Photodiode immerhin eine Zeitauflösung weit unter einer Nanosekunde haben. Eine weitere Möglichkeit stellt die Distanzmessung mittels der Phasenverschiebung der Reflektion eines amplitudemoduliertes Lichtes dar.In a next advantageous embodiment, the value is determined on the basis of a determination of the value for the distance of the fire detector to objects. The distance results, for example, by a radiation transit time measurement. In the case of infrared radiation or other light, this requires a special photodiode and complex electronics for the detection of relative distances of one tenth of a centimeter. At high sensitivity, the photodiode must have a time resolution well below a nanosecond. Another possibility is the distance measurement by means of the Phase shift of the reflection of an amplitude-modulated light.

In vorteilhaften Ausführungsformen umfasst der Brandmelder mehrere, für Gegenstände in einander ergänzenden Richtungen empfindlichen Fühler, beziehungsweise mehrere, Gegenstände in einander ergänzenden Richtungen bestrahlenden Sender von elektromagnetischen, akustischen oder sonstigen Strahlung im Empfindlichkeitsbereich des Fühlers. Aus der Anzahl und der Art der Fühler, die ein Signal empfangen, lassen sich Rückschlüsse über die Strömungsabschirmung des Brandmelders durch Gegenstände schließen. Es wird nämlich ein direkter, wenn auch ungenauer Wert für die Sichtwinkel des Gegenstandes aus der Perspektive des Brandmelders ermittelt. Es ist erfindungsgemäß vorstellbar, dass mehrere Sender auch nach einander betätigt werden, um durch Vergleich Richtung und Distanz der Gegenstände zu bestimmen.In advantageous embodiments, the fire detector comprises a plurality of sensors sensitive to objects in complementary directions, or multiple transmitters of electromagnetic, acoustic or other radiation in the sensitivity range of the sensor which irradiate objects in complementary directions. From the number and type of sensors that receive a signal, conclusions about the flow shield of the fire detector can be closed by objects. Namely, a direct, albeit inaccurate value for the viewing angle of the object is determined from the perspective of the fire detector. It is conceivable according to the invention that several transmitters are also actuated one after the other in order to determine the direction and distance of the objects by comparison.

Erfindungsgemäß ist die Warnmeldung von einer Brandmeldung unterschiedlich, damit Maßnahmen zur Kompensierung der Veränderungen im Raum ohne unnötige Aufregung ergriffen werden.According to the invention, the warning message is different from a fire alarm, so that measures to compensate for the changes in the room are taken without unnecessary excitement.

Die Erfindung betrifft auch ein Konfigurierungsverfahren, in dem wenigstens ein auf Rauch, einem Brandgas oder einer Lufterhitzung ansprechender Brandmelder mit einem für Gegenstände seitlich des Brandmelders empfindlichen Fühler fachkundig platziert wird, und in dem ein Datenspeicher und eine Auswerteeinheit für das Fühlersignal betrieben werden. Erfindungsgemäß wird jeweils ein Gegenstand mit unterschiedlicher Materialzusammensetzung, Größe oder Entfernung seitlich des Brandmelders platziert, ein Rauch-, Brandgas- oder Heizluftherd betrieben und die Ansprechzeit des Brandmelders darauf ermittelt und gewertet. Aufgrund der ermittelten und gewerteten Ansprechzeiten wird ein Erwartungswert für eine Strömungsabschirmung des Brandmelders durch Gegenstände festgelegt. Dieser Erwartungswert wird schließlich in einem Datenspeicher zu einer Auswerteeinheit von solchen zu konfigurierenden Brandmeldern gespeichert.The invention also relates to a configuration method in which at least one fire detector responding to smoke, a fire gas or air heating is expertly placed with a sensor sensitive to objects on the side of the fire detector, and in which a data memory and an evaluation unit for the sensor signal are operated. According to the invention, in each case an object with a different material composition, size or distance is placed laterally of the fire detector, a smoke, combustion gas or hot air oven is operated and the response time of the fire detector is determined and evaluated. Due to the determined and rated response times, an expected value for a flow shield of the fire detector is determined by objects. This expectation becomes finally stored in a data storage to an evaluation of such to be configured fire detectors.

Die Erfindung wird anhand von in den Figuren dargestellten Ausführungsbeispielen näher erläutert. Dabei zeigt

Figur 1
einen erfindungsgemäßen Brandgasmelder in einem Raum mit einem Brandherd und mit einem Gegenstand, welcher eine Strömungsabschirmung für die daraus entweichenden Brandgase bildet,
Figur 2
einen erfindungsgemäßen Rauchmelder im Querschnitt,
Figur 3
eine Betätigungspuls zum Sender eines erfindungsgemäßen Rauchmelders und das resultierende Fühlersignal über die Zeit, und
Figur 4
einen weiteren erfindungsgemäßen Rauchmelder im Querschnitt.
The invention will be explained in more detail with reference to exemplary embodiments illustrated in the figures. It shows
FIG. 1
a fire gas detector according to the invention in a room with a fire and with an object which forms a flow shield for the escaping combustion gases,
FIG. 2
a smoke detector according to the invention in cross section,
FIG. 3
an actuating pulse to the transmitter of a smoke detector according to the invention and the resulting sensor signal over time, and
FIG. 4
another smoke detector according to the invention in cross section.

Die Figur 1 zeigt einen erfindungsgemäßen Brandgasmelder 1. Um das Brandgasmeldergehäuse herum sind kreisförmig zehn horizontal ausgerichtete Sensordioden 2 angeordnet, jeweils mit benachbarten Leuchtdioden 3. Es wurde nachträglich eine 190 Zentimeter breite und 45 Zentimeter hohe Reklametafel 4 auf 15 Zentimeter vom Brandgasmelder installiert. Die Pfeile deuten an, wie die von einem Feuer 5 stammenden Brandgase aufsteigen, wobei sie gleichzeitig abkühlen, und dann wegen der Reklametafel 4 seitlich unter dem Brandgasmelder 1 hinwegströmen. Erst nach einem langen Diffusionsprozess kann der Brandgasmelder 1 sie detektieren.The FIG. 1 To the fire gas detector housing around ten horizontally aligned sensor diodes 2 are arranged, each with adjacent LEDs 3. It was subsequently installed a 190 centimeters wide and 45 centimeters high billboard 4 to 15 centimeters from the fire gas detector. The arrows indicate how the fire gases originating from a fire 5 ascend, at the same time cooling down, and then flow away laterally under the fire gas detector 1 because of the billboard 4. Only after a long diffusion process can the fire gas detector 1 detect it.

Die Figur 2 zeigt einen erfindungsgemäßen Rauchmelder 11 im Querschnitt. Sein Gehäuse besteht aus einer Grundplatte 112, ausgestattet mit nicht dargestellten Befestigungsmitteln für die Montage an einem Sockel, und aus einem für infrarote Strahlung transparente Deckel 113. Im Gehäuse ist eine Leiterplatte 114 mit unter anderem einer Photodiode mit integrierter Linse 16 und einer LED 13A montiert. Somit kann der Rauchmelder 11 mittels infraroter Strahlung Rauchpartikel nah unterhalb seines Gehäuses wahrnehmen.The FIG. 2 shows a smoke detector 11 according to the invention in cross section. Its housing consists of a base plate 112, equipped with fastening means, not shown, for mounting on a pedestal, and from a transparent to infrared radiation cover 113. In the housing, a circuit board 114 with including a photodiode with integrated lens 16 and a LED 13A mounted. Thus, the smoke detector 11 can perceive smoke particles near its housing by means of infrared radiation.

Es befinden sich zusätzlich auf der Leiterplatte 114 eine zweite LED 13B und eine zweite Photodiode 12. Abwechselnd zu der Rauchpartikelmessung bewertet der Brandmelder 1 regelmäßig die etwaigen Gegenstände in seiner Umgebung. Dazu werden beide LEDs 13A und 13B kurz betätigt, also zum Beispiel gepulst. Ein um die zweite Photodiode 12 herum montierter Schutzring 17 verhindert, dass deren infrarote Strahlung direkt durch sie empfangen wird. Stattdessen wird ein Teil dieser Strahlung durch eine für sie reflektierende Beschichtung 18 auf einem kegelartigen Verdickung des Deckels 113 zur Seite des Brandmelders 1 abgelenkt, dort etwaig durch Gegenstände reflektiert und über die Beschichtung 18 in der zweiten Photodiode 12 empfangen. Auf der Leiterplatte sind auch ein Mikroprozessor und ein Datenspeicher aufgebracht, welche nicht dargestellt sind. Ein auf dem Mikroprozessor laufendes Programm bildet eine Auswerteeinheit für das Fühlersignal.In addition, a second LED 13B and a second photodiode 12 are located on the circuit board 114. Alternately to the smoke particle measurement, the fire detector 1 regularly evaluates any objects in its vicinity. For this purpose, both LEDs 13A and 13B are briefly actuated, that is, pulsed, for example. A guard ring 17 mounted around the second photodiode 12 prevents its infrared radiation from being directly received therethrough. Instead, a portion of this radiation is deflected by a reflective coating for them 18 on a cone-like thickening of the lid 113 to the side of the fire detector 1, there possibly reflected by objects and received via the coating 18 in the second photodiode 12. On the circuit board and a microprocessor and a data memory are applied, which are not shown. A running on the microprocessor program forms an evaluation unit for the sensor signal.

Die Figur 3 zeigt eine Betätigungspuls 131 zum Sender eines erfindungsgemäßen Brandmelders und das resultierende Fühlersignal 121 über die Zeit. Die Betätigungsspannung ist um einige Größenordnungen höher als die resultierende Fühlersignalspannung. Der Aufbau des Brandmelders entspricht dem vom Brandmelder 11 in Figur 2. Seine Photodiode 12 und Elektronik weisen ein sehr hohes Vermögen zu Zeitauflösung aus. Seine LEDs 13A und 13B senden zwecks Distanzmessung gleichzeitig einen Puls infraroter Strahlung aus, dessen Reflektionen durch die Photodiode 12 empfangen werden. Aus der einheitlichen Gestalt des Fühlersignals 121 lässt sich auf einen einzigen Gegenstand innerhalb des überwachten Bereichs schließen. Die Auswerteeinheit bestimmt die zeitliche Verzögerung 141 der empfangenen Reflektionen und berechnet daraus die kürzeste Distanz zum Gegenstand.The FIG. 3 shows an actuation pulse 131 to the transmitter of a fire detector according to the invention and the resulting sensor signal 121 over time. The actuation voltage is several orders of magnitude higher than the resulting sensor signal voltage. The structure of the fire detector corresponds to that of the fire detector 11 in FIG. 2 , Its photodiode 12 and electronics have a very high capacity for time resolution. Its LEDs 13A and 13B simultaneously transmit a pulse of infrared radiation for the purpose of distance measurement, the reflections of which are received by the photodiode 12. From the unitary shape of the sensor signal 121 can be concluded on a single object within the monitored area. The Evaluation unit determines the time delay 141 of the received reflections and calculates therefrom the shortest distance to the object.

Danach senden die LEDs 13A und 13B hinter einander jeweils einen Puls infraroter Strahlung aus. Da jeweils die Ausstrahlungsintensität von der Beschichtung 18 unterschiedlich richtungsabhängig ist, und die Ablenkungsfaktor von Reflektionen durch die Beschichtung 18 zur Photodiode 12 ebenso, kann die Auswerteeinheit aus einem Vergleich der daraus entstandenen, nicht dargestellten Fühlersignale der Photodiode 12 berechnen, in welchen Winkeln zur Symmetrieebene des Brandmelders die Reflektionen vom Gegenstand zu jeder Zeit bei der Photodiode 12 eintreffen. Somit sind ansatzweise Informationen über die Richtung und Raumwinkel des Gegenstandes gewonnen, was später eine Kompensierung der richtungsabhängigen Ausstrahlungsintensität der LEDs 13A und 13B von der Beschichtung 18 aus ermöglicht.Thereafter, the LEDs 13A and 13B each send one pulse of infrared radiation behind each other. Since in each case the emission intensity of the coating 18 is different direction-dependent, and the deflection factor of reflections through the coating 18 to the photodiode 12 as well, the evaluation unit can calculate from a comparison of the resulting, not shown sensor signals of the photodiode 12, in which angles to the plane of symmetry of Fire detector the reflections from the object at any time at the photodiode 12 arrive. Thus, rudimentary information about the direction and solid angle of the article is obtained, which later enables compensating the directional emission intensity of the LEDs 13A and 13B from the coating 18.

Nun kann die Auswerteeinheit einen Wert für die Strömungsabschirmung des Brandmelders 11 durch den Gegenstand genau ermitteln, in dem er einen Puls des Fühlersignals 121 mit einer Polynomentwicklung der Zeit multipliziert, das Produkt über die Zeit integriert und den Integral durch die Distanz dividiert: Strömungsabschirmung = ∫Fühlersignal(t)*[a + b*t + c*t2 + d*t3 + ...]dt / Distanz. Die Polynomentwicklung ist vorzugsweise vorwiegend zweiter Ordnung (c > a, b, d, ...), um den Intensitätsverlust wegen der unterschiedlichen Signalweglänge zu berücksichtigen. Die Polynomentwicklung enthält aber auch auf Erfahrungswissen basierte Zusatzkomponenten (b, d, ... ≠ 0) um die richtungsabhängige Ausstrahlungsintensität der LEDs 13A und 13B über die reflektierende Beschichtung 18, sowie die nicht-uniforme Ablenkung durch die Beschichtung 18 zur Photodiode 12, zu kompensieren. Da ansatzweise bekannt ist, aus welchen Winkeln die Reflexionen an den verschiedenen Oberflächeteilen des Gegenstandes zu jeder Zeit eintreffen, gleicht somit die Auswerteeinheit den richtungsabhängigen Einfluss der Beschichtung 18 aus.Now the evaluation unit can accurately determine a value for the flow shield of the fire detector 11 through the object by multiplying a pulse of the sensor signal 121 by a polynomial winding of time, integrating the product over time and dividing the integral by the distance: flow shield = ∫ Sensor signal (t) * [a + b * t + c * t 2 + d * t 3 + ...] dt / distance. The polynomial winding is preferably predominantly second order (c> a, b, d, ...) in order to account for the intensity loss due to the different signal path length. However, the polynomial winding also contains additional knowledge based components based on experience (b, d,... 0) for the direction-dependent emission intensity of the LEDs 13A and 13B via the reflective coating 18 and for the non-uniform deflection through the coating 18 to the photodiode 12 compensate. Since it is well known from Thus, the evaluation unit compensates for the direction-dependent influence of the coating 18 at which angles the reflections arrive at the different surface parts of the object at all times.

Schließlich lässt sich sogar die dem Brandmelder zugewandte Oberfläche des Gegenstandes dadurch bewerten, dass die Multiplikation des Fühlersignals 121 mit einer Polynomentwicklung der Zeit hauptsächlich dritter Ordnung (d > a, b, c, ...), zeitlich integriert wird: Oberfläche = ∫Fühlersignal (t) * [a + b*t + C*t2 + d*t3 + ...]dt. Somit berücksichtigt die Auswerteeinheit durch eine extra Gewichtung von Reflektionen die erst spät eintreffen auch noch den Effekt, dass der Winkel der ihm zugewandten Oberfläche des Gegenstandes mit der Distanz steiler ist.Finally, even the surface of the object facing the fire detector can be evaluated in such a way that the multiplication of the sensor signal 121 with a polynomial winding of the time of mainly third order (d> a, b, c,...) Is integrated in time: surface = ∫ sensor signal (t) * [a + b * t + C * t 2 + d * t 3 + ...] dt. Thus, the evaluation unit takes into account by an extra weighting of reflections that arrive late and also the effect that the angle of its surface facing the object with the distance is steeper.

Die Figur 4 zeigt einen weiteren erfindungsgemäßen Rauchmelder 21, der abwechselnd jeweils in unterschiedliche Richtung ausgerichteten Sender 23A, 23B, 23C und Fühler 22A, 22B, 22C aufweist. Es ist je einen solchen Sender oder Fühler in allen dargestellten Wandabschnitten aufgenommen, obwohl nicht alle gezeigt sind. Jeder Fühler 22A, 22B, 22C ist ungefähr horizontal auf drei, unterschiedlich distanzierte Gebiete 24CA, 24CB, 24CC der Überlappung mit je einem engstrahlenden Sender 23A, 23B, 23C ausgerichtet. Jeder Fühler kann Licht von drei Sendern empfangen. Sie sind in der Nähe für Rauch und bis mehreren Metern weit weg für Gegenstände empfindlich. Dank diesen Ausrichtungen ist eine grobe Erfassung der Distanz von Gegenständen zum Brandmelder ohne Laufzeitmessung der Strahlung möglich. Dazu werden die Sender 23A, 23B, 23C abwechselnd betätigt, und die Kombination des betätigten Senders 23A, 23B, 23C und des signalbeanspruchten Fühlers 22A, 22B, 22C verrät aus welchem Überlappungsgebiet ihrer Ausrichtungen die Reflektionen stammen.The FIG. 4 shows a further smoke detector 21 according to the invention, which alternately aligned in each case in different directions transmitter 23A, 23B, 23C and sensor 22A, 22B, 22C. There is ever such a transmitter or sensor recorded in all wall sections shown, although not all are shown. Each probe 22A, 22B, 22C is aligned approximately horizontally with three differently spaced regions 24CA, 24CB, 24CC of overlap each with a narrow emitter 23A, 23B, 23C. Each sensor can receive light from three transmitters. They are close to smoke and are sensitive to objects up to several meters away. Thanks to these alignments, a rough detection of the distance from objects to the fire detector without transit time measurement of the radiation is possible. For this purpose, the transmitters 23A, 23B, 23C are operated alternately, and the combination of the actuated transmitter 23A, 23B, 23C and the signal-loaded probe 22A, 22B, 22C reveals the overlapping region of their orientations originating from the reflections.

Claims (7)

  1. Fire alarm (1, 11, 21) responding to smoke, a combustion gas or a heating of air, having a detector (2, 12, 22A, 22B, 22C) sensitive to objects in the vicinity of the fire alarm (1, 11, 21),
    characterised in that
    in the conventionally aligned fire alarm (1, 11, 21) the detector (2, 12, 22A, 22B, 22C) is sensitive to objects at the side of the fire alarm (1, 11, 21) within any sector of a circle of 150° about the vertical.
  2. Fire alarm according to claim 1,
    wherein the detector (2, 12, 22A, 22B, 22C) is more sensitive to objects at the side of the fire alarm (1, 11, 21) at at least one height than below it at the same distance from the fire alarm (1, 11, 21).
  3. Fire alarm according to one of the preceding claims,
    wherein the detector (2, 12, 22A, 22B, 22C) is sensitive to objects above the angle of depression of 20°, measured from the horizontal plane.
  4. Fire alarm according to one of the preceding claims,
    wherein the detector (2, 12, 22A, 22B, 22C) is sensitive to objects at the height of the fire alarm (1, 11, 21).
  5. Fire alarm according to one of the preceding claims,
    wherein the fire alarm (1, 11, 21) includes a transmitter (3, 13A, 13B, 23A, 23B, 23C) for transmitting electromagnetic, acoustic or other radiation in the range of sensitivity of the detector (2, 12, 22A, 22B, 22C).
  6. Fire alarm according to one of the preceding claims,
    wherein the fire alarm (11) includes deflection means (18) for radiation in the range of sensitivity of the detector (12), and wherein the deflection means (18) is designed to deflect such radiation in a conventionally aligned fire alarm (11) from one location in the fire alarm (11) to objects at the side of the fire alarm (11), or vice versa.
  7. Method having a fire alarm (1, 11, 21) responding to smoke, a combustion gas or a heating of air, wherein a detector (2, 12, 22A, 22B, 22C) sensitive to objects in the vicinity of the fire alarm (1, 11, 21) is used,
    characterised in that
    in the conventionally aligned fire alarm (1, 11, 21) the detector (2, 12, 22A, 22B, 22C) monitors objects at the side of the fire alarm (1, 11, 21) within any sector of a circle of 150° about the vertical.
EP07117565A 2007-09-28 2007-09-28 Device for monitoring a fire alarm and configuration method and fire alarm Active EP2043068B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT08103731T ATE459949T1 (en) 2007-09-28 2007-09-28 DEVICE FOR MONITORING A FIRE ALARM AND CONFIGURATION METHOD AND FIRE ALARM
AT07117565T ATE457507T1 (en) 2007-09-28 2007-09-28 DEVICE FOR MONITORING A FIRE ALARM AND CONFIGURATION METHOD AND FIRE ALARM
DE502007003029T DE502007003029D1 (en) 2007-09-28 2007-09-28 Device for monitoring a fire detector and configuration procedures and fire detectors
EP07117565A EP2043068B1 (en) 2007-09-28 2007-09-28 Device for monitoring a fire alarm and configuration method and fire alarm
EP08103731A EP2043069B1 (en) 2007-09-28 2007-09-28 Device for monitoring a fire alarm and configuration method and fire alarm
DE502007002823T DE502007002823D1 (en) 2007-09-28 2007-09-28 Device for monitoring a fire detector and configuration procedures and fire detectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07117565A EP2043068B1 (en) 2007-09-28 2007-09-28 Device for monitoring a fire alarm and configuration method and fire alarm

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP08103731A Division-Into EP2043069B1 (en) 2007-09-28 2007-09-28 Device for monitoring a fire alarm and configuration method and fire alarm
EP08103731A Division EP2043069B1 (en) 2007-09-28 2007-09-28 Device for monitoring a fire alarm and configuration method and fire alarm

Publications (2)

Publication Number Publication Date
EP2043068A1 EP2043068A1 (en) 2009-04-01
EP2043068B1 true EP2043068B1 (en) 2010-02-10

Family

ID=38698825

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07117565A Active EP2043068B1 (en) 2007-09-28 2007-09-28 Device for monitoring a fire alarm and configuration method and fire alarm
EP08103731A Revoked EP2043069B1 (en) 2007-09-28 2007-09-28 Device for monitoring a fire alarm and configuration method and fire alarm

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP08103731A Revoked EP2043069B1 (en) 2007-09-28 2007-09-28 Device for monitoring a fire alarm and configuration method and fire alarm

Country Status (3)

Country Link
EP (2) EP2043068B1 (en)
AT (2) ATE459949T1 (en)
DE (2) DE502007002823D1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014002931U1 (en) 2014-04-04 2014-05-06 Siemens Schweiz Ag Hazard detector with a projection unit based on a light emitting semiconductor for projecting user information away from the hazard detector
WO2018050461A1 (en) 2016-09-15 2018-03-22 Siemens Schweiz Ag Smoke detector, smoke detector system and method for monitoring a smoke detector

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009015335U1 (en) * 2009-11-09 2010-03-25 Job Lizenz Gmbh & Co. Kg alarm Devices
CN103366485B (en) * 2012-04-01 2016-05-18 西门子瑞士有限公司 There is fire case detector and the disorder detection method of obstacle detector
EP2765566A3 (en) * 2013-02-08 2014-11-05 SCHAKO Klima Luft Ferdinand Schad KG Smoke alarm
EP2879104B2 (en) 2013-11-27 2022-05-11 Siemens Schweiz AG Auxiliary device for a punctual danger alarm for the monitoring of the function of the danger alarm and use of a such device
DE102020206577A1 (en) 2020-05-26 2021-12-02 Siemens Schweiz Ag Monitoring device, in particular environment monitoring, for a fire alarm as well as fire alarm and additional device each with such a monitoring device
CN112614224B (en) * 2020-12-24 2022-12-20 万翼科技有限公司 BIM model-based online fire-fighting monitoring method and related product thereof
CN113299032B (en) * 2021-05-14 2022-04-22 浙江佑安高科消防系统有限公司 Linear light beam smoke detector capable of realizing real-scene simulation detection

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4319229A (en) * 1980-06-09 1982-03-09 Firecom, Inc. Alarm system having plural diverse detection means
US7891435B2 (en) * 1996-01-23 2011-02-22 En-Gauge, Inc. Remote inspection of emergency equipment stations
DE10066246A1 (en) * 2000-09-22 2005-10-06 Robert Bosch Gmbh Scattered light smoke
EP1391860A1 (en) 2002-08-19 2004-02-25 Siemens Building Technologies AG Linear smoke detector
DE10319688B4 (en) * 2003-05-02 2007-01-11 Airbus Deutschland Gmbh Device for the permanent monitoring of a smoke detector arranged in an aircraft
DE502005004043D1 (en) 2005-11-04 2008-06-19 Siemens Ag Combined stray light and extinction fire detector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014002931U1 (en) 2014-04-04 2014-05-06 Siemens Schweiz Ag Hazard detector with a projection unit based on a light emitting semiconductor for projecting user information away from the hazard detector
DE102014223111A1 (en) 2014-04-04 2015-10-08 Siemens Schweiz Ag Hazard detector with a projection unit based on a light emitting semiconductor for projecting user information away from the hazard detector
WO2018050461A1 (en) 2016-09-15 2018-03-22 Siemens Schweiz Ag Smoke detector, smoke detector system and method for monitoring a smoke detector

Also Published As

Publication number Publication date
DE502007002823D1 (en) 2010-03-25
EP2043069A1 (en) 2009-04-01
ATE459949T1 (en) 2010-03-15
EP2043069B1 (en) 2010-03-03
EP2043068A1 (en) 2009-04-01
DE502007003029D1 (en) 2010-04-15
ATE457507T1 (en) 2010-02-15

Similar Documents

Publication Publication Date Title
EP2043068B1 (en) Device for monitoring a fire alarm and configuration method and fire alarm
EP2252984B1 (en) Evaluation of a difference signal between output signals of two receiving devices in a sensor apparatus
EP2541273B1 (en) Detection and measuring of distance between objects
EP2348495B1 (en) Smoke alarm with ultrasound coverage monitoring
EP2093734B1 (en) Smoke alarm with timed evaluation of a backscattering signal, test method for functionality of a smoke alarm
EP1783712B1 (en) Combined scattered light and extinction fire alarm
DE102014108713B3 (en) Smoke and fire detectors
DE3831654C2 (en)
DE102012112987B3 (en) Optoelectronic sensor i.e. laser scanner, for detection and distance determination of static machine parts in monitored area, has evaluation unit determining object distance from signal by considering visibility measure and angle-dependence
EP2624228B1 (en) Fire alarm with human-machine interface and method for controlling the fire alarm
EP2320399B1 (en) Hazard alarm
CN109964259A (en) Detection based on high sensitivity optical fiber
CN109983515A (en) Detection based on high sensitivity optical fiber
DE10353837B4 (en) Testing device for fire detectors
DE102014009642B4 (en) Method for detecting physical quantities for the detection and characterization of gases, mists and smoke, in particular a device for measuring the particle concentration
US20210201645A1 (en) Chambered high sensitivity fiber optic smoke detection
EP0880118B1 (en) Optical smoke detector
DE102018000292A1 (en) Smoke detector and method for detecting soiling or covering a smoke detector
DE202012105044U1 (en) Opto-electronic sensor for the detection and distance determination of objects
DE1791060C3 (en) Electroacoustic system
WO2014180773A1 (en) Fire alarm
DE102014110460B3 (en) Optical smoke detector and method for optical smoke detection
EP0446385A1 (en) Ultrasonic surveillance system for intruder detection
EP2718917B1 (en) Smoke alarm and method for operating same
DE3007236A1 (en) Atmospheric emission supervision - by laser beam with intermediate reflectors preceding terminal reflector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502007002823

Country of ref document: DE

Date of ref document: 20100325

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: SIEMENS AKTIENGESELLSCHAFT

Free format text: SIEMENS BUILDING TECHNOLOGIES FIRE & SECURITY PRODUCTS GMBH & CO. OHG#RICHARD-STRAUSS-STRASSE 76#81679 MUENCHEN (DE) -TRANSFER TO- SIEMENS AKTIENGESELLSCHAFT#WITTELSBACHERPLATZ 2#80333 MUENCHEN (DE)

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100210

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100610

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100521

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100210

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100210

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100210

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100210

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100210

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100210

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100210

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100210

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100511

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100210

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100210

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100210

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100510

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100210

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100210

BERE Be: lapsed

Owner name: SIEMENS BUILDING TECHNOLOGIES FIRE & SECURITY PRO

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100930

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Effective date: 20110923

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007002823

Country of ref document: DE

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES FIRE & SECURITY PRODUCTS GMBH & CO.OHG, 80807 MUENCHEN, DE

Effective date: 20111108

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007002823

Country of ref document: DE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS BUILDING TECHNOLOGIES FIRE & SECURITY PRODUCTS GMBH & CO.OHG, 80807 MUENCHEN, DE

Effective date: 20111108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100928

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100210

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 457507

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS AKTIENGESELLSCHAFT, DE

Effective date: 20130226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20150220 AND 20150225

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 457507

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20150421

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502007002823

Country of ref document: DE

Owner name: SIEMENS SCHWEIZ AG, CH

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: SIEMENS SCHWEIZ AG, CH

Effective date: 20150916

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R055

Ref document number: 502007002823

Country of ref document: DE

PLCP Request for limitation filed

Free format text: ORIGINAL CODE: EPIDOSNLIM1

PLCQ Request for limitation of patent found admissible

Free format text: ORIGINAL CODE: 0009231

LIM1 Request for limitation found admissible

Free format text: SEQUENCE NO: 1; FILED AFTER OPPOSITION PERIOD

Filing date: 20180523

Effective date: 20180524

PLCO Limitation procedure: reply received to communication from examining division + time limit

Free format text: ORIGINAL CODE: EPIDOSNLIR3

PLCR Communication despatched that request for limitation of patent was allowed

Free format text: ORIGINAL CODE: 0009245

REG Reference to a national code

Ref country code: DE

Ref legal event code: R056

Ref document number: 502007002823

Country of ref document: DE

PLCN Payment of fee for limitation of patent

Free format text: ORIGINAL CODE: EPIDOSNRAL3

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PLBV Information modified related to decision on request for limitation of patent

Free format text: ORIGINAL CODE: 0009299LIMP

LIM5 Request for limitation withdrawn

Free format text: SEQUENCE NO: 1; FILED AFTER OPPOSITION PERIOD; CHANGE OF DECISION ON REQUEST FOR LIMITATION OF PATENT

Filing date: 20180523

Effective date: 20180524

REG Reference to a national code

Ref country code: DE

Ref legal event code: R039

Ref document number: 502007002823

Country of ref document: DE

Ref country code: DE

Ref legal event code: R008

Ref document number: 502007002823

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R040

Ref document number: 502007002823

Country of ref document: DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230814

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230918

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231009

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231120

Year of fee payment: 17

Ref country code: CH

Payment date: 20231206

Year of fee payment: 17