EP0446385A1 - Ultrasonic surveillance system for intruder detection - Google Patents
Ultrasonic surveillance system for intruder detection Download PDFInfo
- Publication number
- EP0446385A1 EP0446385A1 EP90104681A EP90104681A EP0446385A1 EP 0446385 A1 EP0446385 A1 EP 0446385A1 EP 90104681 A EP90104681 A EP 90104681A EP 90104681 A EP90104681 A EP 90104681A EP 0446385 A1 EP0446385 A1 EP 0446385A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ultrasound
- monitoring system
- ultrasonic
- distance
- echo signals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims description 8
- 230000033001 locomotion Effects 0.000 claims abstract description 21
- 238000012545 processing Methods 0.000 claims abstract description 12
- 238000002604 ultrasonography Methods 0.000 claims description 25
- 238000012544 monitoring process Methods 0.000 claims description 20
- 238000011156 evaluation Methods 0.000 claims description 13
- 101000701440 Homo sapiens Stanniocalcin-1 Proteins 0.000 claims description 5
- 102100030511 Stanniocalcin-1 Human genes 0.000 claims description 5
- 230000005540 biological transmission Effects 0.000 claims description 5
- 101000701446 Homo sapiens Stanniocalcin-2 Proteins 0.000 claims description 4
- 102100030510 Stanniocalcin-2 Human genes 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 claims description 2
- 230000036962 time dependent Effects 0.000 claims description 2
- 230000011664 signaling Effects 0.000 abstract 1
- 238000002592 echocardiography Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 241000238631 Hexapoda Species 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000013209 evaluation strategy Methods 0.000 description 1
- 238000011990 functional testing Methods 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/16—Actuation by interference with mechanical vibrations in air or other fluid
- G08B13/1609—Actuation by interference with mechanical vibrations in air or other fluid using active vibration detection systems
- G08B13/1618—Actuation by interference with mechanical vibrations in air or other fluid using active vibration detection systems using ultrasonic detection means
- G08B13/1636—Actuation by interference with mechanical vibrations in air or other fluid using active vibration detection systems using ultrasonic detection means using pulse-type detection circuits
Definitions
- the invention relates to an ultrasound monitoring system for an intrusion detection system with at least one ultrasound motion detector and an evaluation device.
- the occurrence of Doppler frequencies is not evaluated, but rather a quantitative evaluation of the phase position of the reflected signal is carried out to determine a radial net path.
- An alarm is only triggered if the object has covered a predetermined distance in the direction of the sensor or ultrasonic detector to or from the sensor. This ensures that false alarms caused by air streaks and objects moving back and forth can be almost completely ruled out.
- a burglar alarm system of this type can, however, disadvantageously be outwitted by an intruder if he takes the so-called vocational step, i.e. two steps forward, one step back, or outsmarted by a very slow process. Likewise, no tangential directions of movement can be recognized.
- An ultrasound monitoring system in which short ultrasound pulse trains are emitted, brought improvements.
- the received echoes of the pulse are evaluated in order of run time. This gives you an ultrasound profile of the room.
- the distance of an object to the ultrasonic detector can be determined via the duration of the echoes. With simpler methods, only the amplitude of the echoes is evaluated as a function of the transit time, while with more complex methods the phase position is additionally evaluated.
- An intrusion detection system that works according to this system can detect radial movements, ie movements on the Detect detectors to or from the detector very well. It is possible to eliminate objects that are detected in the vicinity of the detector, so that the false alarm rates can be reduced.
- this known system reacts only very weakly to tangential directions of movement.
- the object of the invention is to develop an ultrasound monitoring system for an intruder alarm system in such a way that the above-mentioned disadvantages can be avoided and that reliable and reliable detection of an intruder is ensured, faults or manipulations being recognized and the false alarm rate being able to be reduced.
- an ultrasound monitoring system mentioned at the outset in that at least one ultrasound transmitter and at least two ultrasound receivers are aligned to a common monitoring area, that in a corresponding signal processing and evaluation device, using a microcomputer, the distance and direction of a moving one from the received echo signals by means of a microcomputer Object is determined and a movement track is formed therefrom, and that a criterion for an alarm is derived from the length and shape of the movement track.
- the distance from the transit time differences and the direction from the phase differences of the received and electronically processed echo signals are expediently determined.
- the ultrasound monitoring system has two microphones that receive the echo signals and feed them to a signal processing and evaluation device for further processing.
- a short pulse train of sinusoidal signals is expediently emitted by the ultrasound transmitter and the returning echoes are electronically processed and digitized at short intervals and then further processed in an evaluation computer.
- the next pulse train is transmitted. This time interval depends on the depth of the interstitial space.
- the received signals pass through an adjustable amplifier, mixer and integrator for electronic processing.
- the integrators for example, four measured values are available for each time period, the time of which is determined as a function of the desired spatial resolution, from which the amplitude and phase position of the received signal for both microphones and receivers are calculated in the microcomputer. If, for example, there is an object in the plane of symmetry in front of the two microphones, the echoes in both microphones are the same in terms of amplitude and phase. For objects outside the plane of symmetry, there are small differences in the transit time of the echoes to the microphones, which can be measured as different phase positions. The direction is calculated from the phase difference of the echoes and the distance of an object is calculated from the transit time. In this way, false alarms caused by objects moving back and forth are avoided, since essentially stationary objects are recognized as such and can be eliminated.
- the sensitivity of the amplifier of the echo signals is controlled in a time-dependent manner.
- An attempt at sabotage by covering the system, i.e. of the transmitter and / or the receiver is recognized as well as the failure of the transmitter / receiver because the echo profiles disappear and a fault is therefore recognized and displayed.
- a transmitter S1 transmits at certain time intervals, e.g. every 60 msec., short pulse trains from sinusoidal signals.
- the echo signals reflected by the monitoring area ÜB are received with two ultrasound receivers E1, E2 (microphones).
- An object OB located in the monitoring area ÜB is in the direction of ⁇ ⁇ .
- Distance e is determined, as will be explained in the following.
- a signal processing and evaluation device SAE can be provided, as indicated in the block diagram according to FIG.
- the transmission pulses IP are sent by the transmitter S1 in the monitoring area ÜB.
- the clock is generated and the transmission pulses are controlled in a clock generation and control device TS, which is acted upon by the microcomputer ⁇ R.
- the transmit pulses are amplified beforehand by the amplifier V3.
- the received signals or echo signals ES reach the signal processing and evaluation device SAE via two receivers E1 and E2 and downstream amplifiers V1 and V2.
- the received signals are amplified with a preamplifier V1 and V2 and then with a downstream controllable amplifier STC1 and STC2.
- the transmission pulse train IP (1), the reception signal ES (2) and various control and processed reception signals are shown.
- the controlled amplifiers STC1, STC2 are controlled by the clock generation and control device TS.
- the control signal required for this is designated by (3) and shown in the diagram in Fig. 3 under (3). That from the controllable amplifier STC1 received echo is denoted by (4), shown in Fig.3 under (4), reaches the respective associated mixing stages, for example from the receiver E1 to the mixing stages M1 and M2.
- These mixing stages M1 to M4 are also controlled by the clock generation and control device TS.
- the control signals are designated (8) and (10) and are shown in the time diagram according to FIG.
- the echo signals obtained from the respective mixers M1 and M2 are designated (9) and (11), are integrated in associated integrators I1 and I2, which are also controlled (7) by the clock generation and control logic TS, and on sample / hold Facilities SH1, SH2 given.
- the integrated reception echoes (12) and (13) are digitized and processed in the microcomputer ⁇ R.
- the signals from the output of the sample / hold device SH1, SH2 go to an analog-to-digital converter with multiplexer ADC / MUX.
- the clock generation and control device TS controls (5) both the sample / hold device SH1 to SH4 and the analog / digital converter (6).
- the corresponding control signals (5), (6) are also shown in the time diagram.
- the time diagram according to FIG. 4 represents a section A of the diagram according to FIG. 3.
- the electronically processed echo signals and signals evaluated in the microcomputer enable an intruder (object) to be detected by distance and direction and thus to record its movement track, so that an alarm condition can be derived from the length and shape of the movement track, which leads to the alarm being given (AL) .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Burglar Alarm Systems (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
Description
Die Erfindung bezieht sich auf ein Ultraschall-Überwachungssystem für eine Einbruchmeldeanlage mit mindestens einem Ultraschall-Bewegungsmelder und einer Auswerteeinrichtung.The invention relates to an ultrasound monitoring system for an intrusion detection system with at least one ultrasound motion detector and an evaluation device.
Zum Schutz von Räumen gegen unerlaubtes Eindringen von Personen werden u.a. auch häufig Bewegungsmelder nach dem Ultraschallprinzip eingesetzt. Dabei tritt das Problem auf, daß Störquellen, beispielsweise Insekten im Nahbereich, Luftschlieren, sich hin und her bewegende Gegenstände (Vorhänge, Blumenblätter) und auch Fremdgeräusche (aufquietschende Bremsen), zu Fehlalarmen führen. Zur Vermeidung bzw. Reduzierung derartiger Fehlalarme hat man bestimmte Auswertestrategien entwickelt, die aber in vielen Fällen dem Eindringling eine gewisse Erfolgsstrategie ermöglichen, z.B. wenn er mit dem sogenannten Pilgerschritt versucht, die Anlage zu überlisten. Ein weiteres Problem stellt die Funktionsprüfung derartiger Ultraschallbewegungsmelder dar, da ein Ausfall des Senders oder Empfängers aufgrund eines technischen Defekts oder beispielsweise durch ein gezieltes Abdecken des Erfassungsbereichs nicht immer erkannt wird.To protect rooms against unauthorized intrusion of people, i.a. motion detectors are also often used according to the ultrasound principle. The problem arises that sources of interference, for example insects in the vicinity, air streaks, objects moving back and forth (curtains, petals) and also external noises (squealing brakes) lead to false alarms. To avoid or reduce such false alarms, certain evaluation strategies have been developed, which in many cases enable the intruder to have a certain success strategy, e.g. when he tries to outwit the facility with the so-called pilgrim step. Another problem is the functional test of such ultrasonic motion detectors, since a failure of the transmitter or receiver due to a technical defect or, for example, by specifically covering the detection area, is not always recognized.
Es sind verschiedene Ultraschall-Bewegungsmelder bekannt. Eine Vielzahl der derzeitig eingesetzten Ultraschallmelder arbeitet nach dem Dopplerprinzip. Bei diesem Verfahren wird ein Ultraschall-Dauerton mit fester Frequenz ausgestrahlt. Die Frequenz der reflektierten Signale werden ausgewertet. Treffen die Ultraschallwellen auf ein bewegtes Objekt, werden im reflektierten Signal neben der Sendefrequenz noch Signalanteile mit einer um die Dopplerfrequenz verschobenen Frequenz beobachtet. Die Frequenzverschiebung ist dabei proportional der Radialgeschwindigkeit des bewegten Objekts. Diese Tatsache wird zur Ableitung einer Alarmbedingung herangezogen. Dieses Verfahren hat jedoch den Nachteil, daß Luftschlieren und sich hin und her bewegende Objekte zu häufigen Fehlalarmen führen.Various ultrasonic motion detectors are known. A large number of the ultrasonic detectors currently in use work according to the Doppler principle. In this method, an ultrasonic continuous tone is emitted at a fixed frequency. The frequency of the reflected signals are evaluated. If the ultrasound waves strike a moving object, in addition to the transmission frequency, signal components with a frequency shifted by the Doppler frequency are observed in the reflected signal. The frequency shift is proportional to the radial speed of the moving object. This fact is used to derive an alarm condition. This However, this method has the disadvantage that air streaks and objects moving back and forth lead to frequent false alarms.
In einem anderen Verfahren wird nicht das Auftreten von Dopplerfrequenzen ausgewertet, sondern es wird eine quantitative Auswertung der Phasenlage des reflektierten Signals zur Ermittlung eines radialen Nettoweges durchgeführt. Ein Alarm wird dabei nur ausgelöst, wenn das Objekt eine vorgegebene Strecke in Richtung auf den Sensor bzw. Ultraschallmelder zu oder vom Sensor weg zurückgelegt hat. Damit wird erreicht, daß Fehlalarme durch Luftschlieren und sich hin und her bewegende Objekte nahezu ausgeschlossen werden können. In nachteiliger Weise kann jedoch eine derartige Einbruchmeldeanlage von einem Eindringling überlistet werden, wenn er den sogenannten Pilgerschritt, d.h. zwei Schritte vor, einen zurück, oder durch sehr langsames Vorgehen überlistet. Ebenso können keine tangentialen Bewegungsrichtungen erkannt werden.In another method, the occurrence of Doppler frequencies is not evaluated, but rather a quantitative evaluation of the phase position of the reflected signal is carried out to determine a radial net path. An alarm is only triggered if the object has covered a predetermined distance in the direction of the sensor or ultrasonic detector to or from the sensor. This ensures that false alarms caused by air streaks and objects moving back and forth can be almost completely ruled out. A burglar alarm system of this type can, however, disadvantageously be outwitted by an intruder if he takes the so-called pilgrim step, i.e. two steps forward, one step back, or outsmarted by a very slow process. Likewise, no tangential directions of movement can be recognized.
Einbruchmeldeanlagen, die nach den obengenannten Prinzipien arbeiten, haben folgende Nachteile. Es können Unempfindlichkeitsstellen bei großen Festzielen auftreten. Das Abdecken des Ultraschallmelders kann nicht sicher erkannt werden, ebenso wie der Ausfall des Senders bzw. Empfängers. Ferner werden Insekten im Nahbereich der Melder als Eindringlinge detektiert, so daß das Überwachungssystem viele Fehlalarme abgibt.Burglar alarm systems that operate according to the above principles have the following disadvantages. Insensitivity spots can occur with large fixed targets. Covering the ultrasound detector cannot be reliably detected, as can the failure of the transmitter or receiver. Furthermore, insects in the vicinity of the detectors are detected as intruders, so that the monitoring system emits many false alarms.
Verbesserungen brachte ein Ultraschall-Überwachungssystem, bei dem kurze Ultraschallpulszüge ausgesendet werden. Die empfangenen Echos des Impulses werden nach Laufzeit geordnet ausgewertet. Hierdurch erhält man ein Ultraschallprofil des Raumes. Über die Laufzeit der Echos kann man die Entfernung eines Objekts zum Ultraschallmelder bestimmen. Bei einfacheren Verfahren wird lediglich die Amplitude der Echos in Abhängigkeit von der Laufzeit bewertet, während bei aufwendigeren Verfahren zusätzlich noch die Phasenlage ausgewertet wird. Eine Einbruchmeldeanlage, die nach diesem System arbeitet, kann radiale Bewegungen, d.h. Bewegungen auf den Melder zu oder vom Melder weg sehr gut detektieren. Dabei ist es möglich, Objekte, die im Nahbereich des Melders erkannt werden, zu eliminieren, so daß die Fehlalarmraten reduziert werden können. Dieses bekannte Sytem reagiert jedoch nur sehr schwach auf tangentiale Bewegungsrichtungen.An ultrasound monitoring system, in which short ultrasound pulse trains are emitted, brought improvements. The received echoes of the pulse are evaluated in order of run time. This gives you an ultrasound profile of the room. The distance of an object to the ultrasonic detector can be determined via the duration of the echoes. With simpler methods, only the amplitude of the echoes is evaluated as a function of the transit time, while with more complex methods the phase position is additionally evaluated. An intrusion detection system that works according to this system can detect radial movements, ie movements on the Detect detectors to or from the detector very well. It is possible to eliminate objects that are detected in the vicinity of the detector, so that the false alarm rates can be reduced. However, this known system reacts only very weakly to tangential directions of movement.
Aufgabe der Erfindung ist es, ein Ultraschall-Überwachungssystem für eine Einbruchmeldeanlage so weiterzubilden, daß die obengenannten Nachteile vermieden werden können, und daß ein sicheres und zuverlässiges Detektieren eines Eindringlings gewährleistet ist, wobei Störungen oder Manipulationen erkannt werden und die Fehlalarmrate verringert werden kann.The object of the invention is to develop an ultrasound monitoring system for an intruder alarm system in such a way that the above-mentioned disadvantages can be avoided and that reliable and reliable detection of an intruder is ensured, faults or manipulations being recognized and the false alarm rate being able to be reduced.
Diese Aufgabe wird bei einem eingangs genannten Ultraschall-Überwachungssystem dadurch gelöst, daß zumindest ein Ultraschallsender und zumindest zwei Ultraschallempfänger auf einen gemeinsamen Überwachungsbereich ausgerichtet sind, daß in einer zugehörigen Signalaufbereitungs- und Auswerteeinrichtung aus den empfangenen Echosignalen mittels eines Mikrorechners die Entfernung und Richtung eines sich bewegenden Objekts ermittelt und daraus eine Bewegungsspur gebildet wird, und daß aus der Länge und Form der Bewegungsspur ein Kriterium für eine Alarmgabe abgeleitet wird. Dabei wird zweckmäßigerweise die Entfernung aus den Laufzeitunterschieden und die Richtung aus den Phasendifferenzen der empfangenen und elektronisch aufbereiteten Echosignalen ermittelt.This object is achieved in an ultrasound monitoring system mentioned at the outset in that at least one ultrasound transmitter and at least two ultrasound receivers are aligned to a common monitoring area, that in a corresponding signal processing and evaluation device, using a microcomputer, the distance and direction of a moving one from the received echo signals by means of a microcomputer Object is determined and a movement track is formed therefrom, and that a criterion for an alarm is derived from the length and shape of the movement track. The distance from the transit time differences and the direction from the phase differences of the received and electronically processed echo signals are expediently determined.
Das erfindungsgemäße Ultraschall-Überwachungssystem weist neben einem Ultraschallsender zwei Mikrofone auf, die die Echosignale empfangen und zur weiteren Verarbeitung einer Signalaufbereitungs- und Auswerteeinrichtung zuführen. Zweckmäßigerweise wird vom Ultraschallsender ein kurzer Impulszug von sinusförmigen Signalen ausgesandt und die zurückkommenden Echos werden elektronisch aufbereitet und in kurzen Zeitabständen digitalisiert und dann in einem Auswerterechner weiterverarbeitet. Wenn die vom Ende des Erfassungsbereichs kommenden Echos eingetroffen sind, wird der nächste Sendepulszug ausgesandt. Dabei ist dieser Zeitabstand von der Tiefe des Überwachungsraumes abhängig.In addition to an ultrasound transmitter, the ultrasound monitoring system according to the invention has two microphones that receive the echo signals and feed them to a signal processing and evaluation device for further processing. A short pulse train of sinusoidal signals is expediently emitted by the ultrasound transmitter and the returning echoes are electronically processed and digitized at short intervals and then further processed in an evaluation computer. When the echoes coming from the end of the detection range have arrived, the next pulse train is transmitted. This time interval depends on the depth of the interstitial space.
Zur elektronischen Aufbereitung durchlaufen die Empfangssignale einen regelbaren Verstärker, Mischstufen und Integrierer. Am Ausgang der Integrierer stehen für jeden Zeitabschnitt, dessen Zeit in Abhängigkeit von der gewünschten Ortsauflösung bestimmt wird, beispielsweise vier Meßwerte zur Verfügung, aus denen im Mikrorechner Amplitude und Phasenlage des Empfangssignals für beide Mikrofone bzw. Empfänger berechnet werden. Befindet sich beispielsweise ein Objekt in der Symmetrieebene vor den beiden Mikrofonen, so sind die Echos in beiden Mikrofonen bezüglich Amplitude und Phase gleich. Bei Objekten außerhalb der Symmetrieebene treten kleine Laufzeitunterschiede der Echos zu den Mikrofonen auf, die sich als unterschiedliche Phasenlagen messen lassen. Aus der Phasendifferenz der Echos wird die Richtung und aus der Laufzeit wird die Entfernung eines Objekts berechnet. Auf diese Weise werden Fehlalarme durch sich hin und her bewegende Objekte vermieden, da im wesentlichen ortsfeste Objekte als solche erkannt werden und eliminiert werden können.The received signals pass through an adjustable amplifier, mixer and integrator for electronic processing. At the output of the integrators, for example, four measured values are available for each time period, the time of which is determined as a function of the desired spatial resolution, from which the amplitude and phase position of the received signal for both microphones and receivers are calculated in the microcomputer. If, for example, there is an object in the plane of symmetry in front of the two microphones, the echoes in both microphones are the same in terms of amplitude and phase. For objects outside the plane of symmetry, there are small differences in the transit time of the echoes to the microphones, which can be measured as different phase positions. The direction is calculated from the phase difference of the echoes and the distance of an object is calculated from the transit time. In this way, false alarms caused by objects moving back and forth are avoided, since essentially stationary objects are recognized as such and can be eliminated.
Bei einer Querbewegung relativ zum Melder, d.h. bei einer tangentialen Bewegungsrichtung eines Eindringlings, ändert sich die Phasenlage in den beiden Mikrofonen, so daß auch diese Bewegungen detektiert werden.With a transverse movement relative to the detector, i.e. with a tangential direction of movement of an intruder, the phase position changes in the two microphones, so that these movements are also detected.
Um ein sicheres Detektieren eines Objekts in größerer Entfernung sicherzustellen, wird der Verstärker der Echosignale in seiner Empfindlichkeit zeitabhängig gesteuert. Ein Sabotageversuch durch Abdecken des Systems, d.h. des Senders oder/und der Empfänger, wird ebenso erkannt wie der Ausfall des Senders/Empfängers, weil die Echoprofile verschwinden und daher eine Störung erkannt und angezeigt wird.In order to ensure reliable detection of an object at a greater distance, the sensitivity of the amplifier of the echo signals is controlled in a time-dependent manner. An attempt at sabotage by covering the system, i.e. of the transmitter and / or the receiver is recognized as well as the failure of the transmitter / receiver because the echo profiles disappear and a fault is therefore recognized and displayed.
Das erfindungsgemäße Ultraschall-Überwachungssystem wird anhand der Zeichnungen kurz erläutert. Dabei zeigen
- Fig. 1 eine prinzipielle Darstellung von Sender und Empfängern,
- Fig. 2 ein Blockschaltbild für eine mögliche Signalaufbereitungs- und Auswerteeinrichtung, und
- Fig. 3 und 4 entsprechende Zeitdiagramme.
- 1 is a schematic representation of the transmitter and receiver,
- Fig. 2 is a block diagram for a possible signal processing and evaluation device, and
- 3 and 4 corresponding timing diagrams.
Wie in Fig.1 angedeutet, sendet ein Sender S1 in bestimmten Zeitabständen, z.B. alle 60 msec., kurze Pulszüge von sinusförmigen Signalen aus. Die vom Überwachungsbereich ÜB reflektierten Echosignale werden bei diesem Ausführungsbeispiel mit zwei Ultraschallempfängern E1, E2 (Mikrofonen) empfangen. Ein im Überwachungsbereich ÜB befindliches Objekt OB wird dabei nach Richtung α µ. Entfernung e ermittelt, wie im folgenden noch erläutert wird.As indicated in Fig. 1, a transmitter S1 transmits at certain time intervals, e.g. every 60 msec., short pulse trains from sinusoidal signals. In this exemplary embodiment, the echo signals reflected by the monitoring area ÜB are received with two ultrasound receivers E1, E2 (microphones). An object OB located in the monitoring area ÜB is in the direction of α µ. Distance e is determined, as will be explained in the following.
Für die Bearbeitung und Auswertung der empfangenen Echosignale kann eine Signalaufbereitungs- und Auswerteeinrichtung SAE vorgesehen werden, wie sie im Blockschaltbild gemäß der Fig.2 angedeutet ist. Die Sendeimpulse IP werden vom Sender S1 in den Überwachungsbereich ÜB gesendet. Dabei erfolgt die Takterzeugung und die Steuerung der Sendeimpulse in einer Takterzeugungs- und Steuereinrichtung TS, die vom Mikrorechner µR beaufschlagt ist. Die Sendeimpulse werden dabei vorher noch vom Verstärker V3 verstärkt. Die Empfangssignale bzw. Echosignale ES gelangen über zwei Empfänger E1 und E2 und nachgeschalteten Verstärkern V1 und V2 in die Signalaufbereitungs- und Auswerteeinrichtung SAE. Die Empfangssignale werden jeweils mit einem Vorverstärker V1 und V2 und dann mit einem nachgeordneten regelbaren Verstärker STC1 und STC2 verstärkt. In den Zeitdiagrammen nach Fig .3 und 4 sind der Sendeimpulszug IP (1), das Empfangssignal ES (2) und verschiedene Steuer- und bearbeitete Empfangssignale dargestellt. Die Steuerung der geregelten Verstärker STC1, STC2, erfolgt von der Takterzeugungs- und Steuereinrichtung TS. Das hierfür nötige Steuersignal ist mit (3) bezeichnet und im Diagramm in Fig.3 unter (3) dargestellt. Das aus dem regelbaren Verstärker STC1 erhaltene Empfangsecho ist mit (4) bezeichnet, in Fig.3 unter (4) dargestellt, gelangt an die jeweils zugehörigen Mischstufen, z.B. vom Empfänger E1 an die Mischstufen M1 und M2. Diese Mischstufen M1 bis M4 sind ebenfalls von der Takterzeugungs- und Steuereinrichtung TS gesteuert. Die Steuersignale sind mit (8) und (10) bezeichnet und im Zeitdiagramm gemäß Fig.4 dargestellt. Die von den jeweiligen Mischern M1 und M2 erhaltenen Echosignale mit (9) und (11) bezeichnet, werden in zugehörigen Integrierern I1 und I2, die ebenfalls von der Takterzeugungs- und Steuerlogik TS gesteuert (7) sind, integriert und auf Sample/Hold-Einrichtungen SH1, SH2 gegeben. Die integrierten Empfangsechos (12) und (13) werden digitalisiert und im Mikrorechner µR verarbeitet. Dazu gelangen die Signale vom Ausgang der Sample/Hold-Einrichtung SH1, SH2 an einen Analog-Digital-Wandler mit Multiplexer ADC/MUX. Die Takterzeugungsund Steuereinrichtung TS steuert (5) sowohl die Sample/Hold-Einrichtung SH1 bis SH4 als auch den Analog/Digital-Wandler (6). Die entsprechenden Steuersignale (5), (6) sind ebenfalls im Zeitdiagramm gezeigt. Dabei stellt das Zeitdiagramm gemäß Fig. 4 einen Ausschnitt A des Diagramms nach Fig.3 dar.For the processing and evaluation of the received echo signals, a signal processing and evaluation device SAE can be provided, as indicated in the block diagram according to FIG. The transmission pulses IP are sent by the transmitter S1 in the monitoring area ÜB. The clock is generated and the transmission pulses are controlled in a clock generation and control device TS, which is acted upon by the microcomputer μR. The transmit pulses are amplified beforehand by the amplifier V3. The received signals or echo signals ES reach the signal processing and evaluation device SAE via two receivers E1 and E2 and downstream amplifiers V1 and V2. The received signals are amplified with a preamplifier V1 and V2 and then with a downstream controllable amplifier STC1 and STC2. 3 and 4, the transmission pulse train IP (1), the reception signal ES (2) and various control and processed reception signals are shown. The controlled amplifiers STC1, STC2 are controlled by the clock generation and control device TS. The control signal required for this is designated by (3) and shown in the diagram in Fig. 3 under (3). That from the controllable amplifier STC1 received echo is denoted by (4), shown in Fig.3 under (4), reaches the respective associated mixing stages, for example from the receiver E1 to the mixing stages M1 and M2. These mixing stages M1 to M4 are also controlled by the clock generation and control device TS. The control signals are designated (8) and (10) and are shown in the time diagram according to FIG. The echo signals obtained from the respective mixers M1 and M2 are designated (9) and (11), are integrated in associated integrators I1 and I2, which are also controlled (7) by the clock generation and control logic TS, and on sample / hold Facilities SH1, SH2 given. The integrated reception echoes (12) and (13) are digitized and processed in the microcomputer µR. For this purpose, the signals from the output of the sample / hold device SH1, SH2 go to an analog-to-digital converter with multiplexer ADC / MUX. The clock generation and control device TS controls (5) both the sample / hold device SH1 to SH4 and the analog / digital converter (6). The corresponding control signals (5), (6) are also shown in the time diagram. The time diagram according to FIG. 4 represents a section A of the diagram according to FIG. 3.
Die elektronisch aufbereiteten Echosignale und im Mikrorechner ausgewerteten Signale erlauben, einen Eindringling (Objekt) nach Entfernung und Richtung zu detektieren und somit seine Bewegungsspur aufzuzeichnen, so daß aus der Länge und Form der Bewegungsspur eine Alarmbedingung abgeleitet werden kann, die zur Alarmgabe (AL) führt.The electronically processed echo signals and signals evaluated in the microcomputer enable an intruder (object) to be detected by distance and direction and thus to record its movement track, so that an alarm condition can be derived from the length and shape of the movement track, which leads to the alarm being given (AL) .
Claims (8)
dadurch gekennzeichnet, daß zumindest ein Ultraschallsender (S1) und zumindest zwei Ultraschallempfänger (E1,E2) auf einen gemeinsamen Überwachungsbereich (ÜE) ausgerichtet sind,
daß in einer zugehörigen Signalaufbereitungs- und Auswerteeinrichtung (SAE) aus den empfangenen Echosignalen (ES) mittels eines Mikrorechners (µR) die Entfernung (e) und Richtung (α) eines sich bewegenden Objekts (OB) ermittelt und daraus eine Bewegungsspur gebildet wird,
und daß aus der Länge und Form der Bewegungsspur ein Kriterium für eine Alarmgabe (AL) abgeleitet wird.Ultrasound monitoring system for an intrusion detection system with at least one ultrasound motion detector and an evaluation device,
characterized in that at least one ultrasound transmitter (S1) and at least two ultrasound receivers (E1, E2) are aimed at a common monitoring area (ÜE),
that the distance (e) and direction (α) of a moving object (OB) are determined from the received echo signals (ES) by means of a microcomputer (µR) in an associated signal processing and evaluation device (SAE) and a movement track is formed therefrom,
and that a criterion for an alarm (AL) is derived from the length and shape of the movement track.
dadurch gekennzeichnet, daß die Entfernung (e) aus den Laufzeitunterschieden und die Richtung (α) aus den Phasendifferenzen der aufbereiteten Echosignale ermittelt werden.Ultrasonic monitoring system according to claim 1,
characterized in that the distance (e) from the transit time differences and the direction (α) from the phase differences of the processed echo signals are determined.
dadurch gekennzeichnet, daß der Ultraschallsender (S1) in vorgebbaren Zeitabständen (ta) kurze Pulszüge (IP) von sinusförmigen Signalen aussendet, daß die Ultraschallempfänger (E1,E2) die Echosignale (ES) an die Signalaufbereitungs- und Auswerteeinrichtung (SAE) geben, und daß die aufbereiteten Signale innerhalb eines relativ kurzen Zeitabschnitts (ts) digitalisiert (ADC/MUX) und an den Mikrorechner (µR) zur Auswertung gegeben werden.Ultrasonic monitoring system according to claim 1 or 2,
characterized in that the ultrasound transmitter (S1) emits short pulse trains (IP) of sinusoidal signals at predeterminable time intervals (ta), that the ultrasound receivers (E1, E2) transmit the echo signals (ES) to the signal processing and evaluation device (SAE), and that the processed signals are digitized (ADC / MUX) within a relatively short period of time (ts) and sent to the microcomputer (µR) for evaluation.
dadurch gekennzeichnet, daß der vorgebbare Zeitabstand (ta) in Abhängigkeit von der Länge (Tiefe) des überwachten Raumes (ÜB) gebildet ist.Ultrasonic monitoring system according to claim 3,
characterized in that the predeterminable time interval (ta) is formed as a function of the length (depth) of the monitored space (ÜB).
dadurch gekennzeichnet, daß der kurze Zeitabschnitt (ts) in Abhängigkeit von der Ortsauflösung gebildet ist.Ultrasonic monitoring system according to claim 3,
characterized in that the short time period (ts) is formed as a function of the spatial resolution.
gehenden Ansprüche, dadurch gekennzeichnet, daß die Signalaufbereitungs- und Auswerteeinrichtung (SAE) jeweils von den Echosignalen (ES) beaufschlagte, regelbare Verstärker (STC1, STC2) jeweilige nachgeschaltete Mischstufen (M1 bis M4) mit nachgeordneten Integrierern (I1 bis I4) sowie Sample-andHold-Einrichtungen (SH1 bis SH4) und diesen nachgeschaltete einen A/D-Wandler mit Multiplexer (ADC/MUX) und einen Mikrorechner (µR) aufweist, der eine Takterzeugungs- und Steuereinrichtung (TS) beaufschlagt.Ultrasound monitoring system according to one of the previously
going claims, characterized in that the signal processing and evaluation device (SAE) each acted upon by the echo signals (ES), controllable amplifier (STC1, STC2) respective downstream mixer stages (M1 to M4) with downstream integrators (I1 to I4) and sample andHold devices (SH1 to SH4) and this is followed by an A / D converter with multiplexer (ADC / MUX) and a microcomputer (µR) which acts on a clock generation and control device (TS).
dadurch gekennzeichnet, daß der regelbare Verstärker (STC1,STC2) eine zeitabhängig steuerbare (3) Empfindlichkeitsstufe aufweist.Ultrasonic monitoring system according to claim 6,
characterized in that the controllable amplifier (STC1, STC2) has a time-dependent controllable (3) sensitivity stage.
gehenden Ansprüche, dadurch gekennzeichnet, daß die Ultraschallempfänger (E1,E2) in einem sehr geringen Abstand (a) zueinander angeordnet sind, wobei der Abstand (a) kleiner als oder gleich der halben Wellenlänge der Sendeimpulse (IP) ist.Ultrasound monitoring system according to one of the previously
going claims, characterized in that the ultrasonic receivers (E1, E2) are arranged at a very small distance (a) from one another, the distance (a) being less than or equal to half the wavelength of the transmission pulses (IP).
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK90104681.3T DK0446385T3 (en) | 1990-03-12 | 1990-03-12 | Ultrasonic monitoring system for a burglar alarm system |
ES90104681T ES2075857T3 (en) | 1990-03-12 | 1990-03-12 | ULTRASONIC CONTROL SYSTEM FOR AN ANTI-THEFT ALARM INSTALLATION. |
EP90104681A EP0446385B1 (en) | 1990-03-12 | 1990-03-12 | Ultrasonic surveillance system for intruder detection |
DE59009633T DE59009633D1 (en) | 1990-03-12 | 1990-03-12 | Ultrasound monitoring system for an intruder alarm system. |
AT90104681T ATE127603T1 (en) | 1990-03-12 | 1990-03-12 | ULTRASONIC MONITORING SYSTEM FOR A BURGLAR ALARM SYSTEM. |
GR950402525T GR3017397T3 (en) | 1990-03-12 | 1995-09-13 | Ultrasonic surveillance system for intruder detection. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP90104681A EP0446385B1 (en) | 1990-03-12 | 1990-03-12 | Ultrasonic surveillance system for intruder detection |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0446385A1 true EP0446385A1 (en) | 1991-09-18 |
EP0446385B1 EP0446385B1 (en) | 1995-09-06 |
Family
ID=8203743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90104681A Expired - Lifetime EP0446385B1 (en) | 1990-03-12 | 1990-03-12 | Ultrasonic surveillance system for intruder detection |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP0446385B1 (en) |
AT (1) | ATE127603T1 (en) |
DE (1) | DE59009633D1 (en) |
DK (1) | DK0446385T3 (en) |
ES (1) | ES2075857T3 (en) |
GR (1) | GR3017397T3 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4306719A1 (en) * | 1993-03-04 | 1993-09-16 | Kloch Heilmann Hermann | Self=learning alarm system for object monitoring - contains filtered image sensor and ultrasonic sensor used in combination |
DE4306425C1 (en) * | 1993-03-02 | 1994-05-19 | Zettler Gmbh | Movement detector for burglar alarm system - is combined with range measuring system for monitoring detector position, to prevent sabotage |
ITMO20120157A1 (en) * | 2012-06-18 | 2013-12-19 | Microlog S R L | SYSTEM AND METHOD FOR MONITORING PERSONAL FLOWS |
EP3043192A1 (en) * | 2015-01-08 | 2016-07-13 | Delphi International Operations Luxembourg S.à r.l. | Ultrasound monitoring device and method for determining the direction of movement and/or moving speed of an object |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101441496B (en) * | 2007-11-22 | 2010-12-08 | 英业达股份有限公司 | Portable computer and theft-proof method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1791060B2 (en) * | 1968-09-05 | 1975-01-02 | Alois Zettler Elektrotechnische Fabrik Gmbh, 8000 Muenchen | Electroacoustic system |
US4114146A (en) * | 1975-09-13 | 1978-09-12 | Matsushita Electric Works, Ltd. | Ultrasonic wave watching device of moving object detecting type |
US4197528A (en) * | 1977-04-22 | 1980-04-08 | Eurolec Group Limited | Movement-detecting processing circuit for an ultrasonic detection system |
DE3805439A1 (en) * | 1988-02-22 | 1989-09-07 | Dotronic Mikroprozessortechnik | Method for using ultrasound to monitor unauthorised entry into a room (space) |
-
1990
- 1990-03-12 ES ES90104681T patent/ES2075857T3/en not_active Expired - Lifetime
- 1990-03-12 AT AT90104681T patent/ATE127603T1/en not_active IP Right Cessation
- 1990-03-12 DK DK90104681.3T patent/DK0446385T3/en active
- 1990-03-12 EP EP90104681A patent/EP0446385B1/en not_active Expired - Lifetime
- 1990-03-12 DE DE59009633T patent/DE59009633D1/en not_active Expired - Fee Related
-
1995
- 1995-09-13 GR GR950402525T patent/GR3017397T3/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1791060B2 (en) * | 1968-09-05 | 1975-01-02 | Alois Zettler Elektrotechnische Fabrik Gmbh, 8000 Muenchen | Electroacoustic system |
US4114146A (en) * | 1975-09-13 | 1978-09-12 | Matsushita Electric Works, Ltd. | Ultrasonic wave watching device of moving object detecting type |
US4197528A (en) * | 1977-04-22 | 1980-04-08 | Eurolec Group Limited | Movement-detecting processing circuit for an ultrasonic detection system |
DE3805439A1 (en) * | 1988-02-22 | 1989-09-07 | Dotronic Mikroprozessortechnik | Method for using ultrasound to monitor unauthorised entry into a room (space) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4306425C1 (en) * | 1993-03-02 | 1994-05-19 | Zettler Gmbh | Movement detector for burglar alarm system - is combined with range measuring system for monitoring detector position, to prevent sabotage |
DE4306719A1 (en) * | 1993-03-04 | 1993-09-16 | Kloch Heilmann Hermann | Self=learning alarm system for object monitoring - contains filtered image sensor and ultrasonic sensor used in combination |
ITMO20120157A1 (en) * | 2012-06-18 | 2013-12-19 | Microlog S R L | SYSTEM AND METHOD FOR MONITORING PERSONAL FLOWS |
EP3043192A1 (en) * | 2015-01-08 | 2016-07-13 | Delphi International Operations Luxembourg S.à r.l. | Ultrasound monitoring device and method for determining the direction of movement and/or moving speed of an object |
WO2016110566A1 (en) * | 2015-01-08 | 2016-07-14 | Delphi International Operations Luxembourg S.À R.L. | Ultrasonic monitoring device and method for determining the movement direction and/or the movement speed of an object |
Also Published As
Publication number | Publication date |
---|---|
EP0446385B1 (en) | 1995-09-06 |
ATE127603T1 (en) | 1995-09-15 |
DE59009633D1 (en) | 1995-10-12 |
GR3017397T3 (en) | 1995-12-31 |
DK0446385T3 (en) | 1996-01-15 |
ES2075857T3 (en) | 1995-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0026385B1 (en) | Ultrasonic space surveillance system according to the pulse-echo method | |
DE69112811T2 (en) | SYSTEM AND METHOD FOR DETECTING BUBBLES IN A FLOWING FLUID. | |
EP0326623B1 (en) | Procedure for detecting the position of an obstacle | |
EP0337293B1 (en) | Level measurement device | |
EP0305780B1 (en) | Method and apparatus for error reduction in the measurement of the spatial movement of points to be measured by means of ultrasonic signals | |
EP2624228B1 (en) | Fire alarm with human-machine interface and method for controlling the fire alarm | |
EP1067397A1 (en) | Motion detector based on the Doppler principle | |
DE19924755A1 (en) | Distance detection device | |
EP0157117A1 (en) | Testing device for an intrusion-signalling apparatus | |
DE102006041529B4 (en) | Method for determining distance | |
DE19947023A1 (en) | Detecting light-scattering objects, e.g. for intruder alarm | |
WO2018050461A1 (en) | Smoke detector, smoke detector system and method for monitoring a smoke detector | |
DE3904914C2 (en) | ||
EP0446385B1 (en) | Ultrasonic surveillance system for intruder detection | |
EP0998222B1 (en) | Device and method for detecting emboli | |
WO2010000471A2 (en) | Ultrasound area surveillance device and method | |
DE2721254B2 (en) | Circuit arrangement for a motion detector | |
DE1791060C3 (en) | Electroacoustic system | |
DE4218041A1 (en) | Ultrasonic pulse echo detector e.g for collision prevention in driverless vehicle - has functional monitoring transducer which evaluates pulse emitted by working transducer and returns standard pulse to it for amplitude check | |
DE9312118U1 (en) | DUAL MOTION DETECTOR FOR DETECTING INTRUDERS | |
DE2255179C3 (en) | Ultrasonic detector | |
EP0434949B1 (en) | Room monitoring system | |
EP0158731B1 (en) | Microwave intrusion detection system | |
DE3622827A1 (en) | Ultrasound pulse-echo apparatus having combined echo and Doppler effect evaluation which operates in an alternating manner and/or in parallel | |
EP3992583B1 (en) | Magnetostrictive displacement sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19901205 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
17Q | First examination report despatched |
Effective date: 19940617 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
REF | Corresponds to: |
Ref document number: 127603 Country of ref document: AT Date of ref document: 19950915 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59009633 Country of ref document: DE Date of ref document: 19951012 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2075857 Country of ref document: ES Kind code of ref document: T3 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: GR Ref legal event code: FG4A Free format text: 3017397 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19951114 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19960220 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19960223 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 19960229 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 19960311 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Effective date: 19960312 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Effective date: 19960331 Ref country code: CH Effective date: 19960331 Ref country code: BE Effective date: 19960331 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 19960401 Year of fee payment: 7 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
BERE | Be: lapsed |
Owner name: SIEMENS A.G. Effective date: 19960331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19961001 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Effective date: 19961129 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19961001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19961203 |
|
EUG | Se: european patent has lapsed |
Ref document number: 90104681.3 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970312 Ref country code: GB Effective date: 19970312 Ref country code: AT Effective date: 19970312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19970930 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: MM2A Free format text: 3017397 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19970312 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 19990405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050312 |