EP0446385B1 - Ultrasonic surveillance system for intruder detection - Google Patents

Ultrasonic surveillance system for intruder detection Download PDF

Info

Publication number
EP0446385B1
EP0446385B1 EP90104681A EP90104681A EP0446385B1 EP 0446385 B1 EP0446385 B1 EP 0446385B1 EP 90104681 A EP90104681 A EP 90104681A EP 90104681 A EP90104681 A EP 90104681A EP 0446385 B1 EP0446385 B1 EP 0446385B1
Authority
EP
European Patent Office
Prior art keywords
ultrasonic
signals
echo signals
microcomputer
sae
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90104681A
Other languages
German (de)
French (fr)
Other versions
EP0446385A1 (en
Inventor
Bernhard Hering Dipl.-Phys Dr. Hering
Konrad Kraus
Harald Dipl.-Ing. Schermann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to ES90104681T priority Critical patent/ES2075857T3/en
Priority to AT90104681T priority patent/ATE127603T1/en
Priority to EP90104681A priority patent/EP0446385B1/en
Priority to DK90104681.3T priority patent/DK0446385T3/en
Priority to DE59009633T priority patent/DE59009633D1/en
Publication of EP0446385A1 publication Critical patent/EP0446385A1/en
Application granted granted Critical
Publication of EP0446385B1 publication Critical patent/EP0446385B1/en
Priority to GR950402525T priority patent/GR3017397T3/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/16Actuation by interference with mechanical vibrations in air or other fluid
    • G08B13/1609Actuation by interference with mechanical vibrations in air or other fluid using active vibration detection systems
    • G08B13/1618Actuation by interference with mechanical vibrations in air or other fluid using active vibration detection systems using ultrasonic detection means
    • G08B13/1636Actuation by interference with mechanical vibrations in air or other fluid using active vibration detection systems using ultrasonic detection means using pulse-type detection circuits

Definitions

  • the invention relates to an ultrasound monitoring system for an intrusion detection system according to the preamble of claim 1.
  • the occurrence of Doppler frequencies is not evaluated, but rather a quantitative evaluation of the phase position of the reflected signal is carried out to determine a radial net path.
  • An alarm is only triggered if the object has traveled a predetermined distance in the direction of the sensor or ultrasonic detector to or from the sensor. This ensures that false alarms due to air streaks and objects moving back and forth can be almost completely ruled out.
  • a burglar alarm system of this type can, however, disadvantageously be outwitted by an intruder if he takes the so-called vocational step, i.e. two steps forward, one step back, or outsmarted by a very slow process. Likewise, no tangential directions of movement can be recognized.
  • the object of the invention is to develop an ultrasound monitoring system for an intruder alarm system in such a way that the above-mentioned disadvantages can be avoided, and that reliable and reliable detection of an intruder is ensured, malfunctions or manipulations being recognized and the false alarm rate being able to be reduced.
  • the ultrasound monitoring system has two microphones which receive the echo signals and feed them to a signal processing and evaluation device for further processing.
  • a short pulse train of sinusoidal signals is emitted by the ultrasound transmitter and the returning echoes are invented electronically processed and digitized at short intervals and then further processed in an evaluation computer.
  • the next pulse train is transmitted. This time interval depends on the depth of the interstitial space.
  • the received signals pass through an adjustable amplifier, mixer and integrator for electronic processing.
  • the integrators for example, four measured values are available for each time period, the time of which is determined as a function of the desired spatial resolution, from which the amplitude and phase position of the received signal for both microphones and receivers are calculated in the microcomputer. If, for example, an object is in the plane of symmetry in front of the two microphones, the echoes in both microphones are the same with regard to amplitude and phase. For objects outside the plane of symmetry, there are small differences in the transit time of the echoes to the microphones, which can be measured as different phase positions. The direction is calculated from the phase difference of the echoes and the distance of an object is calculated from the transit time. In this way, false alarms caused by objects moving back and forth are avoided, since essentially stationary objects are recognized as such and can be eliminated.
  • the sensitivity of the amplifier of the echo signals is controlled as a function of time.
  • An attempt at sabotage by covering the system, i.e. of the transmitter and / or the receiver is recognized as well as the failure of the transmitter / receiver because the echo profiles disappear and therefore a fault is recognized and displayed.
  • a transmitter S1 transmits at certain time intervals, e.g. every 60 msec, short pulse trains from sinusoidal signals.
  • the echo signals reflected by the monitoring area ÜB are received with two ultrasound receivers E1, E2 (microphones).
  • An object OB located in the monitoring area ÜB is in the direction of ⁇ ⁇ .
  • Distance e is determined, as will be explained in the following.
  • a signal processing and evaluation device SAE can be provided, as indicated in the block diagram according to FIG.
  • the transmission pulses IP are sent by the transmitter S1 in the monitoring area ÜB.
  • the clock is generated and the transmission pulses are controlled in a clock generation and control device TS, which is acted upon by the microcomputer ⁇ R.
  • the transmit pulses are amplified beforehand by the amplifier V3.
  • the received signals or echo signals ES reach the signal processing and evaluation device SAE via two receivers E1 and E2 and downstream amplifiers V1 and V2.
  • the received signals are amplified with a preamplifier V1 and V2 and then with a downstream controllable amplifier STC1 and STC2.
  • the transmission pulse train IP (1), the reception signal ES (2) and various control and processed reception signals are shown.
  • the controlled amplifiers STC1, STC2 are controlled by the clock generation and control device TS.
  • the control signal required for this is denoted by (3) and shown in the diagram in Fig. 3 under (3).
  • That from the controllable amplifier STC1 received echo is denoted by (4), shown in Fig.3 under (4), reaches the respective associated mixing stages, for example from the receiver E1 to the mixing stages M1 and M2.
  • These mixing stages M1 to M4 are also controlled by the clock generation and control device TS.
  • the control signals are designated by (8) and (10) and shown in the time diagram according to FIG.
  • the echo signals obtained from the respective mixers M1 and M2 denoted by (9) and (11) are integrated in associated integrators I1 and I2, which are also controlled (7) by the clock generation and control logic TS, and are assigned to sample / hold Facilities SH1, SH2 given.
  • the integrated reception echoes (12) and (13) are digitized and processed in the microcomputer ⁇ R.
  • the signals from the output of the sample / hold device SH1, SH2 go to an analog-digital converter with multiplexer ADC / MUX.
  • the clock generation and control device TS controls (5) both the sample / hold device SH1 to SH4 and the analog / digital converter (6).
  • the corresponding control signals (5), (6) are also shown in the time diagram.
  • the time diagram according to FIG. 4 represents a section A of the diagram according to FIG. 3.
  • the electronically processed echo signals and signals evaluated in the microcomputer enable an intruder (object) to be detected by distance and direction and thus to record its movement track, so that an alarm condition can be derived from the length and shape of the movement track, which leads to the alarm being given (AL) .

Abstract

An ultrasonic motion detector exhibits at least one ultrasonic transmitter (S1) and at least two ultrasonic receivers (E1, E2) which are aligned towards a common surveillance area (ÜE). In an associated signal processing and evaluating device (SAE), the distance (e) and direction ( alpha ) of a moving object (OB) is determined by means of a microcomputer ( mu R) from the received echo signals (ES) and from this a motion track is formed, a criterion for alarm signalling (AL) being derived from the length and shape of the motion track. The distance (e) is determined from the transit-time differences and the direction ( alpha ) is determined from the phase differences between the processed echo signals. <IMAGE>

Description

Ultraschall-Überwachungssystem für eine EinbruchmeldeanlageUltrasound monitoring system for an intruder alarm system

Die Erfindung bezieht sich auf ein Ultraschall-Überwachungssystem für eine Einbruchmeldeanlage gemäß dem Oberbegriff des Anspruches 1.The invention relates to an ultrasound monitoring system for an intrusion detection system according to the preamble of claim 1.

Zum Schutz von Räumen gegen unerlaubtes Eindringen von Personen werden u.a. auch häufig Bewegungsmelder nach dem Ultraschallprinzip eingesetzt. Dabei tritt das Problem auf, daß Störquellen, beispielsweise Insekten im Nahbereich, Luftschlieren, sich hin und her bewegende Gegenstände (Vorhänge, Blumenblätter) und auch Fremdgeräusche (aufquietschende Bremsen), zu Fehlalarmen führen. Zur Vermeidung bzw. Reduzierung derartiger Fehlalarme hat man bestimmte Auswertestrategien entwickelt, die aber in vielen Fällen dem Eindringling eine gewisse Erfolgsstrategie ermöglichen, z.B. wenn er mit dem sogenannten Pilgerschritt versucht, die Anlage zu überlisten. Ein weiteres Problem stellt die Funktionsprüfung derartiger Ultraschallbewegungsmelder dar, da ein Ausfall des Senders oder Empfängers aufgrund eines technischen Defekts oder beispielsweise durch ein gezieltes Abdecken des Erfassungsbereichs nicht immer erkannt wird.To protect rooms against unauthorized intrusion of people, i.a. motion detectors are also often used according to the ultrasound principle. The problem arises that sources of interference, for example insects in the vicinity, air streaks, objects moving to and fro (curtains, petals) and also external noises (squeaking brakes) lead to false alarms. To avoid or reduce such false alarms, certain evaluation strategies have been developed, which in many cases enable the intruder to have a certain success strategy, e.g. when he tries to outwit the facility with the so-called pilgrim step. Another problem is the functional test of such ultrasonic motion detectors, since a failure of the transmitter or receiver due to a technical defect or, for example, by specifically covering the detection area is not always recognized.

Es sind verschiedene Ultraschall-Bewegungsmelder bekannt. Eine Vielzahl der derzeitig eingesetzten Ultraschallmelder arbeitet nach dem Dopplerprinzip. Bei diesem Verfahren wird ein Ultraschall-Dauerton mit fester Frequenz ausgestrahlt. Die Frequenz der reflektierten Signale werden ausgewertet. Treffen die Ultraschallwellen auf ein bewegtes Objekt, werden im reflektierten Signal neben der Sendefrequenz noch Signalanteile mit einer um die Dopplerfrequenz verschobenen Frequenz beobachtet. Die Frequenzverschiebung ist dabei proportional der Radialgeschwindigkeit des bewegten Objekts. Diese Tatsache wird zur Ableitung einer Alarmbedingungen herangezogen. Dieses Verfahren hat jedoch den Nachteil, daß Luftschlieren und sich hin und her bewegende Objekte zu häufigen Fehlalarmen führen.Various ultrasonic motion detectors are known. A large number of the ultrasonic detectors currently in use work according to the Doppler principle. In this method, an ultrasonic continuous tone is emitted at a fixed frequency. The frequency of the reflected signals are evaluated. If the ultrasonic waves hit a moving object, in addition to the transmission frequency, signal components with a frequency shifted by the Doppler frequency are observed in the reflected signal. The frequency shift is proportional the radial speed of the moving object. This fact is used to derive an alarm condition. However, this method has the disadvantage that streaks of air and moving objects cause frequent false alarms.

In einem anderen Verfahren wird nicht das Auftreten von Dopplerfrequenzen ausgewertet, sondern es wird eine quantitative Auswertung der Phasenlage des reflektierten Signals zur Ermittlung eines radialen Nettoweges durchgeführt. Ein Alarm wird dabei nur ausgelöst, wenn das Objekt eine vorgegebene Strecke in Richtung auf den Sensor bzw. Ultraschallmelder zu oder vom Sensor weg zurückgelegt hat. Damit wird erreicht, daß Fehlalarme durch Luftschlieren und sich hin und her bewegende Objekte nahezu ausgeschlossen werden können. In nachteiliger Weise kann jedoch eine derartige Einbruchmeldeanlage von einem Eindringling überlistet werden, wenn er den sogenannten Pilgerschritt, d.h. zwei Schritte vor, einen zurück, oder durch sehr langsames Vorgehen überlistet. Ebenso können keine tangentialen Bewegungsrichtungen erkannt werden.In another method, the occurrence of Doppler frequencies is not evaluated, but rather a quantitative evaluation of the phase position of the reflected signal is carried out to determine a radial net path. An alarm is only triggered if the object has traveled a predetermined distance in the direction of the sensor or ultrasonic detector to or from the sensor. This ensures that false alarms due to air streaks and objects moving back and forth can be almost completely ruled out. A burglar alarm system of this type can, however, disadvantageously be outwitted by an intruder if he takes the so-called pilgrim step, i.e. two steps forward, one step back, or outsmarted by a very slow process. Likewise, no tangential directions of movement can be recognized.

Einbruchmeldeanlagen, die nach den obengenannten Prinzipien arbeiten, haben folgende Nachteile. Es können Unempfindlichkeitsstellen bei großen Festzielen auftreten. Das Abdecken des Ultraschallmelders kann nicht sicher erkannt werden, ebenso wie der Ausfall des Senders bzw. Empfängers. Ferner werden Insekten im Nahbereich der Melder als Eindringlinge detektiert, so daß das Überwachungssystem viele Fehlalarme abgibt.Burglar alarm systems that operate according to the above principles have the following disadvantages. Insensitivity spots can occur with large fixed targets. Covering the ultrasound detector cannot be detected with certainty, as can failure of the transmitter or receiver. Furthermore, insects in the vicinity of the detectors are detected as intruders, so that the monitoring system emits many false alarms.

Verbesserungen brachte ein Ultraschall-Überwachungssystem, bei dem kurze Ultraschallpulszüge ausgesendet werden. die empfangenen Echos des Impulses werden nach Laufzeit geordnet ausgewertet. Hierdurch erhält man ein Ultraschallprofil des Raumes. Über die Laufzeit der Echos kann man die Entfernung eines Objekts zum Ultraschallmelder bestimmen. Ein derartiges Ultraschall-Detektionsystem ist beispielsweise in der US-A-4 197 528 beschrieben. Bei einfacheren Verfahren wird lediglich die Amplitude der Echos in Abhängigkeit von der Laufzeit bewertet, während bei aufwendigeren Verfahren zusätzlich noch die Phasenlage ausgewertet wird. So ist beispielsweise aus der US-A- 4 114 146 eine Ultraschall-Überwachungseinrichtung zum Detektieren von sich bewegenden Objekten bekannt, bei der aus den reflektierten Signalen vom stationären Objekt und den reflektierten Signalen vom sich bewegenden Objekt aus der Phasendifferenz die Anwesenheit und die Bewegungsrichtung ermittelt wird. Eine Einbruchmeldeanlage, die nach diesem System arbeitet, kann radiale Bewegungen, d.h. Bewegungen auf den Melder zu oder vom Melder weg sehr gut detektieren. Dabei ist es möglich, Objekte, die im Nahbereich des Melders erkannt werden, zu eliminieren, so daß die Fehlalarmraten reduziert werden können. Dieses bekannte System reagiert jedoch nur sehr schwach auf tangentiale Bewegungsrichtungen.An ultrasound monitoring system, in which short ultrasound pulse trains are emitted, brought improvements. the received echoes of the pulse are evaluated in order of run time. This gives you an ultrasound profile of the room. You can see the distance over the duration of the echoes determine an object for the ultrasonic detector. Such an ultrasound detection system is described for example in US-A-4 197 528. In the case of simpler methods, only the amplitude of the echoes is evaluated as a function of the transit time, while in the more complex method the phase position is additionally evaluated. For example, an ultrasound monitoring device for detecting moving objects is known from US Pat. No. 4,114,146, in which the presence and the direction of movement are determined from the phase difference from the reflected signals from the stationary object and the reflected signals from the moving object becomes. An intruder alarm system that works according to this system can very well detect radial movements, ie movements towards or away from the detector. It is possible to eliminate objects that are detected in the vicinity of the detector, so that the false alarm rates can be reduced. However, this known system reacts only very weakly to tangential directions of movement.

Aufgabe der Erfindung ist es, ein Ultraschall-Überwachungssystem für eine Einbruchmeldeanlage so weiterzubilden, daß die obengenannten Nachteile vermieden werden können, und daß ein sicheres und zuverlässiges Detektieren eines Eindringlings gewährleistet ist, wobei Störungen oder Manipulationen erkannt werden und die Fehlalarmrate verringert werden kann.The object of the invention is to develop an ultrasound monitoring system for an intruder alarm system in such a way that the above-mentioned disadvantages can be avoided, and that reliable and reliable detection of an intruder is ensured, malfunctions or manipulations being recognized and the false alarm rate being able to be reduced.

Diese Aufgabe wird bei einem eingangs genannten Ultraschall-Überwachungssystem mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved in an ultrasound monitoring system mentioned at the outset with the features of claim 1.

Das Ultraschall-Überwachungssystem weist neben einem Ultraschallsender zwei Mikrofone auf, die die Echosignale empfangen und zur weiteren Verarbeitung einer Signalaufbereitungs- und Auswerteeinrichtung zuführen. Dabei wird vom Ultraschallsender ein kurzer Impulszug von sinusförmigen Signalen ausgesandt und die zurückkommenden Echos werden erfindungsgemäß elektronisch aufbereitet und in kurzen Zeitabständen digitalisiert und dann in einem Auswerterechner weiterverarbeitet. Wenn die vom Ende des Erfassungsbereichs kommenden Echos eingetroffen sind, wird der nächste Sendepulszug ausgesandt. Dabei ist dieser Zeitabstand von der Tiefe des Überwachungsraumes abhängig.In addition to an ultrasound transmitter, the ultrasound monitoring system has two microphones which receive the echo signals and feed them to a signal processing and evaluation device for further processing. A short pulse train of sinusoidal signals is emitted by the ultrasound transmitter and the returning echoes are invented electronically processed and digitized at short intervals and then further processed in an evaluation computer. When the echoes coming from the end of the detection range have arrived, the next pulse train is transmitted. This time interval depends on the depth of the interstitial space.

Zur elektronischen Aufbereitung durchlaufen die Empfangssignale einen regelbaren Verstärker, Mischstufen und Integrierer. Am Ausgang der Integrierer stehen für jeden Zeitabschnitt, dessen Zeit in Abhängigkeit von der gewünschten Ortsauflösung bestimmt wird, beispielsweise vier Meßwerte zur Verfügung, aus denen im Mikrorechner Amplitude und Phasenlage des Empfangssignals für beide Mikrofone bzw. Empfänger berechnet werden. Befindet sich beispielsweise ein Objekt in der Symmetrieebene vor den beiden Mikrofonen, so sind die Echos in beiden Mikrofonen bezüglich Amplitude und Phase gleich. Bei Objekten außerhalb der Symmetrieebene treten kleine Laufzeitunterschiede der Echos zu den Mikrofonen auf, die sich als unterschiedliche Phasenlagen messen lassen. Aus der Phasendifferenz der Echos wird die Richtung und aus der Laufzeit wird die Entfernung eines Objekts berechnet. Auf diese Weise werden Fehlalarme durch sich hin und her bewegende Objekte vermieden, da im wesentlichen ortsfeste Objekte als solche erkannt werden und eliminiert werden können.The received signals pass through an adjustable amplifier, mixer and integrator for electronic processing. At the output of the integrators, for example, four measured values are available for each time period, the time of which is determined as a function of the desired spatial resolution, from which the amplitude and phase position of the received signal for both microphones and receivers are calculated in the microcomputer. If, for example, an object is in the plane of symmetry in front of the two microphones, the echoes in both microphones are the same with regard to amplitude and phase. For objects outside the plane of symmetry, there are small differences in the transit time of the echoes to the microphones, which can be measured as different phase positions. The direction is calculated from the phase difference of the echoes and the distance of an object is calculated from the transit time. In this way, false alarms caused by objects moving back and forth are avoided, since essentially stationary objects are recognized as such and can be eliminated.

Bei einer Querbewegung relativ zum Melder, d.h. bei einer tangentialen Bewegungsrichtung eines Eindringlings, ändert sich die Phasenlage in den beiden Mikrofonen, so daß auch diese Bewegungen detektiert werden.With a transverse movement relative to the detector, i.e. with a tangential direction of movement of an intruder, the phase position changes in the two microphones, so that these movements are also detected.

Um ein sicheres Detektieren eines Objekts in größerer Entfernung sicherzustellen, wird der Verstärker der Echosignale in seiner Empfindlichkeit zeitabhängig gesteuert. Ein Sabotageversuch durch Abdecken des Systems, d.h. des Senders oder/und der Empfänger, wird ebenso erkannt wie der Ausfall des Senders/Empfängers, weil die Echoprofile verschwinden und daher eine Störung erkannt und angezeigt wird.In order to ensure reliable detection of an object at a greater distance, the sensitivity of the amplifier of the echo signals is controlled as a function of time. An attempt at sabotage by covering the system, i.e. of the transmitter and / or the receiver is recognized as well as the failure of the transmitter / receiver because the echo profiles disappear and therefore a fault is recognized and displayed.

Das erfindungsgemäße Ultraschall-Überwachungssystem wird anhand der Zeichnungen kurz erläutert. Dabei zeigen

  • Fig. 1 eine prinzipielle Darstellung von Sender und Empfängern,
  • Fig. 2 ein Blockschaltbild für eine mögliche Signalaufbereitungs- und Auswerteeinrichtung, und
  • Fig. 3 und 4 entsprechende Zeitdiagramme.
The ultrasound monitoring system according to the invention is briefly explained with reference to the drawings. Show
  • 1 is a schematic representation of the transmitter and receiver,
  • Fig. 2 is a block diagram for a possible signal processing and evaluation device, and
  • 3 and 4 corresponding timing diagrams.

Wie in Fig.1 angedeutet, sendet ein Sender S1 in bestimmten Zeitabständen, z.B. alle 60 msec., kurze Pulszüge von sinusförmigen Signalen aus. Die vom Überwachungsbereich ÜB reflektierten Echosignale werden bei diesem Ausführungsbeispiel mit zwei Ultraschallempfängern E1, E2 (Mikrofonen) empfangen. Ein im Überwachungsbereich ÜB befindliches Objekt OB wird dabei nach Richtung α µ. Entfernung e ermittelt, wie im folgenden noch erläutert wird.As indicated in Fig. 1, a transmitter S1 transmits at certain time intervals, e.g. every 60 msec, short pulse trains from sinusoidal signals. In this exemplary embodiment, the echo signals reflected by the monitoring area ÜB are received with two ultrasound receivers E1, E2 (microphones). An object OB located in the monitoring area ÜB is in the direction of α µ. Distance e is determined, as will be explained in the following.

Für die Bearbeitung und Auswertung der empfangenen Echosignale kann eine Signalaufbereitungs- und Auswerteeinrichtung SAE vorgesehen werden, wie sie im Blockschaltbild gemäß der Fig.2 angedeutet ist. Die Sendeimpulse IP werden vom Sender S1 in den Überwachungsbereich ÜB gesendet. Dabei erfolgt die Takterzeugung und die Steuerung der Sendeimpulse in einer Takterzeugungs- und Steuereinrichtung TS, die vom Mikrorechner µR beaufschlagt ist. Die Sendeimpulse werden dabei vorher noch vom Verstärker V3 verstärkt. Die Empfangssignale bzw. Echosignale ES gelangen über zwei Empfänger E1 und E2 und nachgeschalteten Verstärkern V1 und V2 in die Signalaufbereitungs- und Auswerteeinrichtung SAE. Die Empfangssignale werden jeweils mit einem Vorverstärker V1 und V2 und dann mit einem nachgeordneten regelbaren Verstärker STC1 und STC2 verstärkt. In den Zeitdiagrammen nach Fig .3 und 4 sind der Sendeimpulszug IP (1), das Empfangssignal ES (2) und verschiedene Steuer- und bearbeitete Empfangssignale dargestellt. Die Steuerung der geregelten Verstärker STC1, STC2, erfolgt von der Takterzeugungs- und Steuereinrichtung TS. Das hierfür nötige Steuersignal ist mit (3) bezeichnet und im Diagramm in Fig.3 unter (3) dargestellt. Das aus dem regelbaren Verstärker STC1 erhaltene Empfangsecho ist mit (4) bezeichnet, in Fig.3 unter (4) dargestellt, gelangt an die jeweils zugehörigen Mischstufen, z.B. vom Empfänger E1 an die Mischstufen M1 und M2. Diese Mischstufen M1 bis M4 sind ebenfalls von der Takterzeugungs- und Steuereinrichtung TS gesteuert. Die Steuersignale sind mit (8) und (10) bezeichnet und im Zeitdiagramm gemäß Fig.4 dargestellt. Die von den jeweiligen Mischern M1 und M2 erhaltenen Echosignale mit (9) und (11) bezeichnet, werden in zugehörigen Integrierern I1 und I2, die ebenfalls von der Takterzeugungs- und Steuerlogik TS gesteuert (7) sind, integriert und auf Sample/Hold-Einrichtungen SH1, SH2 gegeben. Die integrierten Empfangsechos (12) und (13) werden digitalisiert und im Mikrorechner µR verarbeitet. Dazu gelangen die Signale vom Ausgang der Sample/Hold-Einrichtung SH1, SH2 an einen Analog-Digital-Wandler mit Multiplexer ADC/MUX. Die Takterzeugungsund Steuereinrichtung TS steuert (5) sowohl die Sample/Hold-Einrichtung SH1 bis SH4 als auch den Analog/Digital-Wandler (6). Die entsprechenden Steuersignale (5), (6) sind ebenfalls im Zeitdiagramm gezeigt. Dabei stellt das Zeitdiagramm gemäß Fig. 4 einen Ausschnitt A des Diagramms nach Fig.3 dar.For the processing and evaluation of the received echo signals, a signal processing and evaluation device SAE can be provided, as indicated in the block diagram according to FIG. The transmission pulses IP are sent by the transmitter S1 in the monitoring area ÜB. The clock is generated and the transmission pulses are controlled in a clock generation and control device TS, which is acted upon by the microcomputer μR. The transmit pulses are amplified beforehand by the amplifier V3. The received signals or echo signals ES reach the signal processing and evaluation device SAE via two receivers E1 and E2 and downstream amplifiers V1 and V2. The received signals are amplified with a preamplifier V1 and V2 and then with a downstream controllable amplifier STC1 and STC2. 3 and 4, the transmission pulse train IP (1), the reception signal ES (2) and various control and processed reception signals are shown. The controlled amplifiers STC1, STC2 are controlled by the clock generation and control device TS. The control signal required for this is denoted by (3) and shown in the diagram in Fig. 3 under (3). That from the controllable amplifier STC1 received echo is denoted by (4), shown in Fig.3 under (4), reaches the respective associated mixing stages, for example from the receiver E1 to the mixing stages M1 and M2. These mixing stages M1 to M4 are also controlled by the clock generation and control device TS. The control signals are designated by (8) and (10) and shown in the time diagram according to FIG. The echo signals obtained from the respective mixers M1 and M2 denoted by (9) and (11) are integrated in associated integrators I1 and I2, which are also controlled (7) by the clock generation and control logic TS, and are assigned to sample / hold Facilities SH1, SH2 given. The integrated reception echoes (12) and (13) are digitized and processed in the microcomputer µR. For this purpose, the signals from the output of the sample / hold device SH1, SH2 go to an analog-digital converter with multiplexer ADC / MUX. The clock generation and control device TS controls (5) both the sample / hold device SH1 to SH4 and the analog / digital converter (6). The corresponding control signals (5), (6) are also shown in the time diagram. The time diagram according to FIG. 4 represents a section A of the diagram according to FIG. 3.

Die elektronisch aufbereiteten Echosignale und im Mikrorechner ausgewerteten Signale erlauben, einen Eindringling (Objekt) nach Entfernung und Richtung zu detektieren und somit seine Bewegungsspur aufzuzeichnen, so daß aus der Länge und Form der Bewegungsspur eine Alarmbedingung abgeleitet werden kann, die zur Alarmgabe (AL) führt.The electronically processed echo signals and signals evaluated in the microcomputer enable an intruder (object) to be detected by distance and direction and thus to record its movement track, so that an alarm condition can be derived from the length and shape of the movement track, which leads to the alarm being given (AL) .

Claims (2)

  1. Ultrasonic surveillance system for an intrusion alarm installation, having at least one ultrasonic transmitter (S1) and at least one ultrasonic receiver (E1, E2) which is aligned with a surveillance region (ÜE), and having an associated signal conditioning and evaluating device (SAE) which, by means of a microcomputer (µR), determines from the received echo signals (ES) the range (e), from the propagation time differences, and the direction (α) of a moving object (OB), forms therefrom a movement track and derives from the length and shape of the movement track a criterion for the emission of an alarm (AL), the ultrasonic transmitter (S1) emitting short pulse trains (IP) of sine-wave signals at predeterminable time intervals (ta) and the ultrasonic receivers (E1, E2) transmitting the echo signals (ES) to the signal conditioning and evaluating device (SAE), the conditioned signals moreover being digitized and transmitted to the microcomputer (µR) for evaluation, characterized in that a second ultrasonic receiver (E2, E1) is aligned with the surveillance region (ÜE), the signal conditioning and evaluating device (SAE) in each case having amplifiers (STC1, STC2) to which the echo signals (ES) are applied, which amplifiers are controllable (e) as a function of time, having mixing stages (M1 to M4) connected downstream of each amplifier, with integrators (I1 to I4) and sample-and-hold devices (SH1 to SH4) arranged downstream and, connected downstream of these, an A/D converter with a multiplexer (ADC/MUX) and the microcomputer (µR) which acts on a clock generating and control device (TS), and in that the ultrasonic receivers (E1, E2) are arranged at a very small distance (a) from each other, the distance (a) being less than or equal to half the wavelength of the transmission pulses (IP).
  2. Ultrasonic surveillance system according to Claim 1, characterized in that the direction (α) is determined from the phase differences of the conditioned echo signals of the respective ultrasonic receivers, the conditioned signals being digitized (ADC/MUX) within a relatively short period of time (ts).
EP90104681A 1990-03-12 1990-03-12 Ultrasonic surveillance system for intruder detection Expired - Lifetime EP0446385B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES90104681T ES2075857T3 (en) 1990-03-12 1990-03-12 ULTRASONIC CONTROL SYSTEM FOR AN ANTI-THEFT ALARM INSTALLATION.
AT90104681T ATE127603T1 (en) 1990-03-12 1990-03-12 ULTRASONIC MONITORING SYSTEM FOR A BURGLAR ALARM SYSTEM.
EP90104681A EP0446385B1 (en) 1990-03-12 1990-03-12 Ultrasonic surveillance system for intruder detection
DK90104681.3T DK0446385T3 (en) 1990-03-12 1990-03-12 Ultrasonic monitoring system for a burglar alarm system
DE59009633T DE59009633D1 (en) 1990-03-12 1990-03-12 Ultrasound monitoring system for an intruder alarm system.
GR950402525T GR3017397T3 (en) 1990-03-12 1995-09-13 Ultrasonic surveillance system for intruder detection.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP90104681A EP0446385B1 (en) 1990-03-12 1990-03-12 Ultrasonic surveillance system for intruder detection

Publications (2)

Publication Number Publication Date
EP0446385A1 EP0446385A1 (en) 1991-09-18
EP0446385B1 true EP0446385B1 (en) 1995-09-06

Family

ID=8203743

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90104681A Expired - Lifetime EP0446385B1 (en) 1990-03-12 1990-03-12 Ultrasonic surveillance system for intruder detection

Country Status (6)

Country Link
EP (1) EP0446385B1 (en)
AT (1) ATE127603T1 (en)
DE (1) DE59009633D1 (en)
DK (1) DK0446385T3 (en)
ES (1) ES2075857T3 (en)
GR (1) GR3017397T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101441496B (en) * 2007-11-22 2010-12-08 英业达股份有限公司 Portable computer and theft-proof method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4306425C1 (en) * 1993-03-02 1994-05-19 Zettler Gmbh Movement detector for burglar alarm system - is combined with range measuring system for monitoring detector position, to prevent sabotage
DE4306719A1 (en) * 1993-03-04 1993-09-16 Kloch Heilmann Hermann Self=learning alarm system for object monitoring - contains filtered image sensor and ultrasonic sensor used in combination
ITMO20120157A1 (en) * 2012-06-18 2013-12-19 Microlog S R L SYSTEM AND METHOD FOR MONITORING PERSONAL FLOWS
EP3043192A1 (en) * 2015-01-08 2016-07-13 Delphi International Operations Luxembourg S.à r.l. Ultrasound monitoring device and method for determining the direction of movement and/or moving speed of an object

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1791060C3 (en) * 1968-09-05 1975-08-14 Alois Zettler Elektrotechnische Fabrik Gmbh, 8000 Muenchen Electroacoustic system
US4114146A (en) * 1975-09-13 1978-09-12 Matsushita Electric Works, Ltd. Ultrasonic wave watching device of moving object detecting type
GB1580406A (en) * 1977-04-22 1980-12-03 Eurolec Group Ltd Ultrasonic detection system
DE3805439A1 (en) * 1988-02-22 1989-09-07 Dotronic Mikroprozessortechnik Method for using ultrasound to monitor unauthorised entry into a room (space)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101441496B (en) * 2007-11-22 2010-12-08 英业达股份有限公司 Portable computer and theft-proof method thereof

Also Published As

Publication number Publication date
EP0446385A1 (en) 1991-09-18
GR3017397T3 (en) 1995-12-31
ATE127603T1 (en) 1995-09-15
DK0446385T3 (en) 1996-01-15
ES2075857T3 (en) 1995-10-16
DE59009633D1 (en) 1995-10-12

Similar Documents

Publication Publication Date Title
EP0026385B1 (en) Ultrasonic space surveillance system according to the pulse-echo method
EP0326623B1 (en) Procedure for detecting the position of an obstacle
EP0337293B1 (en) Level measurement device
DE60006143T2 (en) CONTROL OF THE TRANSMITTER OF AN ELECTRONIC GOODS SURVEILLANCE (EAS) BY TARGET DISTANCE
EP1067397B1 (en) Motion detector based on the Doppler principle
EP0305780B1 (en) Method and apparatus for error reduction in the measurement of the spatial movement of points to be measured by means of ultrasonic signals
DE102014108713B3 (en) Smoke and fire detectors
EP2624228B1 (en) Fire alarm with human-machine interface and method for controlling the fire alarm
EP1058126A2 (en) Distance detection device
EP2043068B1 (en) Device for monitoring a fire alarm and configuration method and fire alarm
EP0157117A1 (en) Testing device for an intrusion-signalling apparatus
DE102006041529B4 (en) Method for determining distance
WO2018050461A1 (en) Smoke detector, smoke detector system and method for monitoring a smoke detector
DE19947023A1 (en) Detecting light-scattering objects, e.g. for intruder alarm
EP0446385B1 (en) Ultrasonic surveillance system for intruder detection
DE3904914C2 (en)
DE4320039A1 (en) Method and device for determining the presence and/or for measuring the properties (characteristics) of solid or liquid materials in a space
WO2010000471A2 (en) Ultrasound area surveillance device and method
DE19802724A1 (en) Cross-correlating vehicular ultrasound radar-ranging system providing collision warning
DE2721254B2 (en) Circuit arrangement for a motion detector
DE1791060C3 (en) Electroacoustic system
DE2255179C3 (en) Ultrasonic detector
EP0434949B1 (en) Room monitoring system
EP0158731B1 (en) Microwave intrusion detection system
DE4324819C2 (en) Automatic security control cabin

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19940617

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

REF Corresponds to:

Ref document number: 127603

Country of ref document: AT

Date of ref document: 19950915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59009633

Country of ref document: DE

Date of ref document: 19951012

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2075857

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3017397

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951114

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960220

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19960223

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19960229

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960311

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19960312

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960331

Ref country code: CH

Effective date: 19960331

Ref country code: BE

Effective date: 19960331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19960401

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19960331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19961001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961129

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19961001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961203

EUG Se: european patent has lapsed

Ref document number: 90104681.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970312

Ref country code: GB

Effective date: 19970312

Ref country code: AT

Effective date: 19970312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970930

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3017397

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970312

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050312