EP1781410B1 - Procede pour deplacer de petites quantites de liquide dans des microcanaux au moyen d'ondes acoustiques - Google Patents

Procede pour deplacer de petites quantites de liquide dans des microcanaux au moyen d'ondes acoustiques Download PDF

Info

Publication number
EP1781410B1
EP1781410B1 EP20050802009 EP05802009A EP1781410B1 EP 1781410 B1 EP1781410 B1 EP 1781410B1 EP 20050802009 EP20050802009 EP 20050802009 EP 05802009 A EP05802009 A EP 05802009A EP 1781410 B1 EP1781410 B1 EP 1781410B1
Authority
EP
European Patent Office
Prior art keywords
channel system
channel
sound
microchannel
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20050802009
Other languages
German (de)
English (en)
Other versions
EP1781410A1 (fr
Inventor
Christoph Gauer
Zeno Von Guttenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beckman Coulter Inc
Original Assignee
Beckman Coulter Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beckman Coulter Inc filed Critical Beckman Coulter Inc
Publication of EP1781410A1 publication Critical patent/EP1781410A1/fr
Application granted granted Critical
Publication of EP1781410B1 publication Critical patent/EP1781410B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B19/00Machines or pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B1/00 - F04B17/00
    • F04B19/006Micropumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F31/00Mixers with shaking, oscillating, or vibrating mechanisms
    • B01F31/80Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations
    • B01F31/85Mixing by means of high-frequency vibrations above one kHz, e.g. ultrasonic vibrations with a vibrating element inside the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F7/00Pumps displacing fluids by using inertia thereof, e.g. by generating vibrations therein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0433Moving fluids with specific forces or mechanical means specific forces vibrational forces
    • B01L2400/0436Moving fluids with specific forces or mechanical means specific forces vibrational forces acoustic forces, e.g. surface acoustic waves [SAW]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • B01L2400/088Passive control of flow resistance by specific surface properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0391Affecting flow by the addition of material or energy

Definitions

  • the invention relates to a method for moving small amounts of liquid in microchannels and a microchannel system for carrying out the method.
  • Miniaturized fluidic systems often consist of closed channels that can be made of plastics, semiconductor materials, or glass. Such closed channels are z. In MG Pollack and RB Fair, Applied Physics Letters, 2000, 77, 1725-1728 described.
  • Manufacturing processes are z. As wet-chemical etching or hot embossing of plastics to produce the channels in the substrates. Subsequently, the substrates structured in this way are closed with a lid. Typical channel dimensions are diameters in the range between 50 ⁇ m and a few mm and a length of the entire system of a few cm. For lab-on-the-chip applications in these channels z. B. biochemical reactions are performed. In general, dosers, mixers, reaction chambers and branches would have to be realized in such a system. To move the liquid pump-like systems are necessary.
  • Electrokinetic pumps require z. However, for example, voltages of several 100 volts, so are not suitable for portable devices. In the so-called lab-CDs, the liquids can only be moved in one direction, namely to the outside. Miniaturized peristaltic pumps are very expensive and therefore expensive.
  • a hydrophilic channel can be filled with a solution, but with a filled channel, no further movement or flow is possible, which would be mediated by the capillary force.
  • the object of the present invention is to provide a method and a system with which small quantities of liquid in microchannel systems can be moved in an easily controllable and programmable manner.
  • the procedure should be easy to carry out and the necessary Materials small, robust and lightweight, so that the process can also be realized with portable chip laboratories.
  • an amount of liquid is introduced into a channel system which comprises at least one region which corresponds topologically to a ring, so that a closed path of the liquid is possible.
  • acoustic waves are radiated into the liquid, which have at least one asymmetric component in the plane of the channel system, which defines the direction of movement of the liquid. Due to the momentum transfer of the sound waves to the liquid, a flow is generated in the liquid ("acoustic streaming"). Due to the movement of the liquid in a closed path, only a small amount of power is required, since no great hydrostatic pressure has to be built up on the closed path in order to generate a movement.
  • the asymmetric component imparts a direction of movement to the fluid, allowing it to move along the closed path.
  • the channel system may have different geometries as long as a topologically annular region is included which serves for the directional movement of the liquid on a closed path.
  • a topologically annular region is included which serves for the directional movement of the liquid on a closed path.
  • Especially simple is the use of a simple ring without branches.
  • the channel system is open at the top, z. B. as a groove in a substrate. Due to the movement mediation due "Acoustic Streaming" does not require an upper degree. The flow-induced movement can also take place in an open channel.
  • a channel system Insensitive to external influences is a channel system that is enclosed on all sides.
  • the filling of such a channel system is carried out either before a lid is applied to the channel-shaped channel system or through a corresponding filling opening to the z. B. a pipette can be applied.
  • a vent opening is provided at another point of the channel system, so that the air displaced by the introduced liquid can escape. Since the motion in the channel system is mediated by the sound-induced flow, a tight seal is not necessary, as is the case with other prior art methods that use hydrostatic pressure to move.
  • the channel system is simply provided in a substrate.
  • Advantageous is the use of a material that is penetrated by acoustic waves, for example, glass, non-elastic plastic or semiconductor materials. In this way it is ensured even when externally arranged sound generator, that the movement is mediated by the generated with the sound waves "acoustic streaming" and not by a sound wave induced movement of the substrate material itself.
  • the sound waves are generated according to the invention unit at least one interdigital transducer, as they are known from the high-frequency filter technology.
  • interdigital transducers mounted on piezoelectric materials can be used to excite acoustic waves by applying a frequency of 1 to a few hundred MHz. in particular surface acoustic waves, are used in the piezoelectric material.
  • the sound waves generated in this way can be coupled into the system, as well as in DE 103 25 313 B3 in the case of film-shaped capillary gaps is described.
  • the interdigital transducer is brought into direct contact with the liquid, is thus part of the microchannel system.
  • the sound wave which is generated with the interdigital transducer, transferred directly into the liquid.
  • a further advantageous embodiment provides that the channel-like channel system is covered with a film, preferably made of plastic, against which the interdigital transducer is pressed directly in order to allow direct transmission of the sound waves into the liquid.
  • the piezoelectric material usually a chip, can also be used directly as a termination of the channel system and thus represent a part of the channel system.
  • interdigital transducers can be provided at different points of the channel system.
  • a microchannel system according to the invention for moving small quantities of liquid has at least one channel, which constitutes a closed path. At least one interdigital transducer is arranged such that a sound wave can be coupled in directionally into the channel.
  • the inventive method is particularly advantageous to use when individual areas of the microchannel system are biologically, chemically, physically or otherwise functionalized.
  • the liquid can be passed by means of the method according to the invention in a microchannel system according to the invention, so that the entire liquid is safely in contact with the functionalization.
  • the liquid can be guided past correspondingly arranged measuring points.
  • FIG. 1a shows a longitudinal section through a microchannel system. Visible is the microchannel 3, the z. B. has a diameter in the range of 50 microns to a few mm. He is z. B. formed by wet chemical etching in a substrate 1, the z. B. made of glass, semiconductor materials or of a non-elastic plastic. In the channel, the liquid moves, which is exemplified by the crosses 5. The direction of movement is designated 19.
  • FIG. 1b shows a cross section in the direction A of FIG. 1a ,
  • the annular channel 3 has a filling opening 7, which is visible in this cross-sectional view.
  • a piezoelectric substrate 13 is arranged in the region of a corner, on which there is an interdigital transducer 11, which can be driven in a manner known per se and therefore not shown here with an alternating electric field.
  • a coupling medium for example water
  • Interdigital transducers known per se from surface acoustic wave filter technology, include comb-shaped metallic electrodes whose double finger spacing defines the wavelength of the surface acoustic wave and which are obtained by optical photolithography techniques, e.g. B. can be made in the range of 10 microns finger spacing.
  • Such interdigital transducers are provided on piezoelectric crystals to excite thereon surface acoustic waves in a conventional manner. Applying an alternating electric field of a few to a few 100 MHz in a conventional manner to the interdigitated finger electrodes of the interdigital transducer 11 causes the generation of surface acoustic waves, similar to DE 103 25 313 B3 described for the training of Sound waves 15, 17 lead.
  • the application of the alternating field can via corresponding electrical connections or z. B. by wireless irradiation.
  • FIG. 1a corresponds approximately to the line of sight B, the in FIG. 1b is specified.
  • FIG. 1a The position of the interdigital transducer 11 and the emission directions of the sound waves 15, 17 are also in FIG. 1a although indicated in the longitudinal section of the FIG. 1a would not be visible in itself.
  • FIGS. 1a and 1b The arrangement shown can be used as follows. Through the filling opening 7 liquid is introduced into the system. In this case, the capillary force can be utilized, which sucks the liquid through the channel 3 therethrough. Alternatively, the liquid through the filling opening 7 z. B. be introduced with a syringe or pipette. The displaced by the liquid from the channel 3 air exits through the vent opening 9. The channel is finally completely filled with liquid. After filling, the filling opening 7 and the vent opening 9 can be closed, which is not necessary.
  • the channel system Since the channel system is already filled before irradiation of the sound wave, only a very low pressure is necessary. In this respect, the electrical powers of less than 1 watt of the interdigital transducer 11 are sufficient to cause a movement of the liquid.
  • the arrangement of the interdigital transducer 11 in a corner of the channel system 3 ensures that only one sound component 15 acts in the direction of the channel 3, while the other sound wave generated by the interdigital transducer is emitted to the outside.
  • a unidirectional transducer design can be used that radiates in one direction only. Such a unidirectional transducer can be used anywhere in channel 3.
  • geometries can be realized in which the counter-jet 17 is not emitted to the outside, but is selectively absorbed or reflected.
  • the channel system may have different geometries, as long as only one closed track is possible.
  • Another embodiment shows z. B. FIG. 2 with a branch 4.
  • the interdigital transducer 11 is as for FIG. 1 described used to generate a movement in the direction 19.
  • Another interdigital transducer 12 can cause a movement along the branch 4 in the direction 20.
  • the channel system is open at the top.
  • FIG. 3 shows another embodiment of a micro channel system according to the invention in cross section.
  • the channel system 3 is closed by a plastic film 21, on which the piezoelectric material 13 is pressed with the interdigital transducer 11 applied thereto, so that the air gap between the transducer and the film is smaller than the sound wavelength (1 to several 100 microns) to reflections on Air gap to avoid.
  • the sound wave penetrates the plastic film and the energy transfer to the liquid takes place by acoustic streaming and not by the sound-induced movement of the film itself.
  • the piezoelectric material for generating the acoustic waves is used directly as a cover for the channel system.
  • FIG. 4 shows a schematic representation of an inventive microchannel system with a functionalized area 23.
  • This functionalized area can, for. B. have a physical, chemical, biological or other functionalization, which is provided for a reaction with the liquid in the channel system 3, 4.
  • a flow is generated either with the aid of the interdigital transducer 11 or the interdigital transducer 14 as described in the channel 3.
  • Create another alternating electric field to the interdigital transducer 12 causes a movement in the direction 20 through the branch 4.
  • the liquid is thus guided past the functionalized region 23.
  • the z. B. can be electrical or optical. 27 also indicates only schematically the electrical connection of this measuring device. If the liquid moves in the channel 3 z. B. by exciting a flow with the interdigital transducer 11 or with the interdigital transducer 14, the liquid is guided past this measuring point 25. The continuous flow ensures that all liquid flows past the measuring point.
  • the generation of sound waves in the liquid by means of surface acoustic waves, which are generated by an interdigital transducer on a piezoelectric material, is particularly advantageous for the method according to the invention, since the sound wave thus generated already has a large component in the direction of the channel.
  • the method according to the invention or the micro channel system according to the invention have the further advantage that they can be used not only for moving the liquid along the channel, but also for mixing the liquid.
  • the sound wave generating devices are operated with such low power that the energy is not sufficient for the flow of the entire system.
  • two transducers which have an opposite direction of radiation, such. B. the transducers 11 and 14 of FIG. 2 to be operated at the same time, so that a flow of the liquid is not possible and only one mixing takes place.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Dispersion Chemistry (AREA)
  • Micromachines (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Reciprocating Pumps (AREA)

Claims (22)

  1. Procédé pour déplacer de petites quantités de liquide dans des microcanaux, dans lequel :
    - une quantité de liquide est introduite dans un système de canaux (3, 4), qui comprend au moins une zone qui correspond topologiquement à un anneau de sorte qu'une voie fermée du liquide soit possible, et
    - on envoie dans le liquide des ondes acoustiques (15), qui ont, dans le plan du système de canaux (3, 4), au moins une composante asymétrique qui définit le sens de déplacement du liquide,
    caractérisé en ce que,
    pour produire les ondes acoustiques, on utilise au moins un transducteur interdigital (11) sur un matériau piézoélectrique (13).
  2. Procédé selon la revendication 1, dans lequel le système de canaux comprend un anneau (3).
  3. Procédé selon l'une quelconque des revendications 1 ou 2, dans lequel on utilise un système de canaux qui est ouvert vers le haut.
  4. Procédé selon l'une quelconque des revendications 1 ou 2, dans lequel on utilise un système de canaux (3, 4) qui est fermé de tous côtés, à l'exception d'une ouverture de remplissage (7) et d'une ouverture d'aération (9).
  5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le système de canaux employé (3, 4) est formé dans un substrat (1) en verre, en matériau synthétique non élastique ou en matériau semi-conducteur.
  6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le transducteur interdigital est en contact direct avec le liquide.
  7. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le système de canaux (3, 4) est recouvert d'une feuille, de préférence d'une feuille synthétique, contre laquelle est pressé le transducteur interdigital (11).
  8. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel le système de canaux est fermé en un point par le matériau piézoélectrique, sur lequel est appliqué le transducteur interdigital.
  9. Procédé selon l'une quelconque des revendications 1 à 8, dans lequel la fréquence des ondes acoustiques est choisie dans la plage entre un MHz et quelques 100 MHz.
  10. Procédé selon l'une quelconque des revendications 1 à 9, dans lequel on utilise plusieurs dispositifs générateurs de son (11, 12, 14) pour susciter différents mouvements.
  11. Système de microcanaux pour effectuer un procédé selon l'une quelconque des revendications 1 à 10 en vue de déplacer de petites quantités de liquide, avec
    - au moins un canal (3) qui représente une voie fermée, et
    - au moins un dispositif générateur de son (11, 14), qui est aménagé et/ou conçu de sorte qu'une onde acoustique (15) puisse être émise de manière dirigée dans le canal (3), le au moins un dispositif générateur de son comprenant un transducteur interdigital (11, 14).
  12. Système de microcanaux selon la revendication 11, dans lequel le système de canaux (3, 4) est fermé de tous côtés, à l'exception d'une ouverture de remplissage (7) et d'une ouverture d'aération (9).
  13. Système de microcanaux selon l'une quelconque des revendications 11 ou 12, dans lequel le système de canaux se présente sous la forme d'une rigole dans un substrat (1), qui est fermée par un couvercle (21).
  14. Système de microcanaux selon la revendication 13, dans lequel le couvercle (21) est constitué d'une feuille, de préférence d'une feuille synthétique, et le dispositif générateur de son (11) est appliqué directement sur le couvercle (21).
  15. Système de microcanaux selon la revendication 11, dans lequel le système de canaux est ouvert vers le haut.
  16. Système de microcanaux selon l'une quelconque des revendications 11 à 15, dans lequel le au moins un dispositif générateur de son est aménagé en dehors du système de canaux (3, 4).
  17. Système de microcanaux selon l'une quelconque des revendications 11 à 16, avec plusieurs dispositifs générateurs de son (11, 12, 14) qui sont aménagés de sorte qu'ils puissent envoyer des ondes acoustiques dans différentes directions dans le système de canaux (3, 4).
  18. Système de microcanaux selon l'une quelconque des revendications 11 à 17, dans lequel le système de canaux employé (3, 4) est formé dans un substrat (1) en verre, en matériau synthétique non élastique ou en matériau semi-conducteur.
  19. Système de microcanaux selon l'une quelconque des revendications 11 à 18, dans lequel il est prévu, à l'intérieur du système de canaux (3, 4), au moins une zone (23) à fonction biologique, chimique ou physique.
  20. Système de microcanaux selon l'une quelconque des revendications 11 à 19, dans lequel il est prévu, dans au moins une zone du système de canaux (3, 4), un dispositif de mesure (25) pour mesurer un paramètre physique, biologique ou chimique.
  21. Procédé selon l'une quelconque des revendications 1 à 10, dans lequel le liquide (5) passe devant au moins une zone (23) à fonction biologique, chimique ou physique à l'intérieur du système de canaux (3, 4).
  22. Procédé selon l'une quelconque des revendications 1 à 10 ou 21, dans lequel le liquide (5) passe devant au moins un point de mesure (25) pour mesurer un paramètre physique, biologique ou chimique.
EP20050802009 2004-10-21 2005-10-20 Procede pour deplacer de petites quantites de liquide dans des microcanaux au moyen d'ondes acoustiques Not-in-force EP1781410B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004051394A DE102004051394B4 (de) 2004-10-21 2004-10-21 Verfahren zur Bewegung von kleinen Flüssigkeitsmengen in Mikrokanälen und Mikrokanalsystem
PCT/EP2005/011320 WO2006045547A1 (fr) 2004-10-21 2005-10-20 Procede pour deplacer de petites quantites de liquide dans des microcanaux au moyen d'ondes acoustiques

Publications (2)

Publication Number Publication Date
EP1781410A1 EP1781410A1 (fr) 2007-05-09
EP1781410B1 true EP1781410B1 (fr) 2010-10-06

Family

ID=35520810

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050802009 Not-in-force EP1781410B1 (fr) 2004-10-21 2005-10-20 Procede pour deplacer de petites quantites de liquide dans des microcanaux au moyen d'ondes acoustiques

Country Status (6)

Country Link
US (1) US20080260582A1 (fr)
EP (1) EP1781410B1 (fr)
JP (1) JP2008517209A (fr)
AT (1) ATE483521T1 (fr)
DE (2) DE102004051394B4 (fr)
WO (1) WO2006045547A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142724B2 (ja) * 2005-10-28 2013-02-13 三洋電機株式会社 流体移送装置
JP5159197B2 (ja) * 2007-07-25 2013-03-06 キヤノン株式会社 液体制御装置
DE102009022492A1 (de) 2009-05-25 2010-12-02 Sensaction Ag Vorrichtung zur Bestimmung der Eigenschaften eines Mediums in Form einer Flüssigkeit oder eines weichen Materials
US9395050B2 (en) 2010-05-21 2016-07-19 Hewlett-Packard Development Company, L.P. Microfluidic systems and networks
US10132303B2 (en) 2010-05-21 2018-11-20 Hewlett-Packard Development Company, L.P. Generating fluid flow in a fluidic network
US8721061B2 (en) 2010-05-21 2014-05-13 Hewlett-Packard Development Company, L.P. Fluid ejection device with circulation pump
EP2571696B1 (fr) 2010-05-21 2019-08-07 Hewlett-Packard Development Company, L.P. Dispositif d'éjection de fluide comprenant une pompe de circulation
WO2011146069A1 (fr) 2010-05-21 2011-11-24 Hewlett-Packard Development Company, L.P. Dispositif d'éjection de fluide comprenant un système de recirculation
US9963739B2 (en) 2010-05-21 2018-05-08 Hewlett-Packard Development Company, L.P. Polymerase chain reaction systems
NL2005474C2 (nl) * 2010-10-07 2012-04-11 Stichting Wetsus Ct Excellence Sustainable Water Technology Hydrofone pomp, houder en werkwijze daarvoor.
DE102011001550A1 (de) 2011-03-25 2012-09-27 Friz Biochem Gesellschaft Für Bioanalytik Mbh Vorrichtung zum Fördern und Mischen von Mikromengen an Reagenzien und zur Durchführung chemischer Reaktionen

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4047493A (en) * 1992-04-02 1993-11-08 Abaxis, Inc. Analytical rotor with dye mixing chamber
US5639423A (en) * 1992-08-31 1997-06-17 The Regents Of The University Of Calfornia Microfabricated reactor
US6010316A (en) * 1996-01-16 2000-01-04 The Board Of Trustees Of The Leland Stanford Junior University Acoustic micropump
US6012902A (en) * 1997-09-25 2000-01-11 Caliper Technologies Corp. Micropump
US6601613B2 (en) * 1998-10-13 2003-08-05 Biomicro Systems, Inc. Fluid circuit components based upon passive fluid dynamics
US6210128B1 (en) * 1999-04-16 2001-04-03 The United States Of America As Represented By The Secretary Of The Navy Fluidic drive for miniature acoustic fluidic pumps and mixers
KR100865105B1 (ko) * 1999-06-28 2008-10-24 캘리포니아 인스티튜트 오브 테크놀로지 마이크로 가공된 탄성중합체 밸브 및 펌프 시스템
US6777245B2 (en) * 2000-06-09 2004-08-17 Advalytix Ag Process for manipulation of small quantities of matter
DE10062246C1 (de) * 2000-12-14 2002-05-29 Advalytix Ag Verfahren und Vorrichtung zur Manipulation kleiner Flüssigkeitsmengen
US6576459B2 (en) * 2001-03-23 2003-06-10 The Regents Of The University Of California Sample preparation and detection device for infectious agents
EP1493487A1 (fr) * 2001-06-28 2005-01-05 Agilent Technologies, Inc. Système microfluidique avec régulation du courant ESI résiduel
DE10136008B4 (de) * 2001-07-24 2005-03-31 Advalytix Ag Verfahren zur Analyse von Makromolekülen und Verfahren zur Herstellung einer Analysevorrichtung
DE10142789C1 (de) * 2001-08-31 2003-05-28 Advalytix Ag Bewegungselement für kleine Flüssigkeitsmengen
US20040109793A1 (en) * 2002-02-07 2004-06-10 Mcneely Michael R Three-dimensional microfluidics incorporating passive fluid control structures
US20040066703A1 (en) * 2002-10-03 2004-04-08 Protasis Corporation Fluid-handling apparatus and methods
US6811385B2 (en) * 2002-10-31 2004-11-02 Hewlett-Packard Development Company, L.P. Acoustic micro-pump
DE502004004027D1 (de) * 2003-02-27 2007-07-19 Advalytix Ag Verfahren und vorrichtung zur durchmischung kleiner flüssigkeitsmengen in mikrokavitäten
DE10325313B3 (de) * 2003-02-27 2004-07-29 Advalytix Ag Verfahren und Vorrichtung zur Erzeugung von Bewegung in einem dünnen Flüssigkeitsfilm
US20070264161A1 (en) * 2003-02-27 2007-11-15 Advalytix Ag Method and Device for Generating Movement in a Thin Liquid Film
JP3988658B2 (ja) * 2003-03-07 2007-10-10 コニカミノルタホールディングス株式会社 マイクロポンプの制御方法およびマイクロ流体システム

Also Published As

Publication number Publication date
DE102004051394A1 (de) 2006-04-27
ATE483521T1 (de) 2010-10-15
EP1781410A1 (fr) 2007-05-09
DE502005010349D1 (de) 2010-11-18
US20080260582A1 (en) 2008-10-23
WO2006045547A1 (fr) 2006-05-04
JP2008517209A (ja) 2008-05-22
DE102004051394B4 (de) 2006-08-17

Similar Documents

Publication Publication Date Title
EP1781410B1 (fr) Procede pour deplacer de petites quantites de liquide dans des microcanaux au moyen d'ondes acoustiques
EP1286774B1 (fr) Dispositif et procede permettant de manipuler de petites quantites de matiere
EP1377364B1 (fr) Dispositif et procede de melange servant a melanger intimement de faibles quantites de liquide
DE19947495C2 (de) Mikrofluidischer Mikrochip
DE10062246C1 (de) Verfahren und Vorrichtung zur Manipulation kleiner Flüssigkeitsmengen
DE10325307B3 (de) Verfahren und Vorrichtung zur Durchmischung kleiner Flüssigkeitsmengen in Mikrokavitäten
WO2004076046A1 (fr) Procede et dispositif pour melanger de petites quantites de liquide dans des microcavites
EP1979738B1 (fr) Dispositif de réalisation de flux de liquides et/ou de courants de particules, son procédé de fabrication et de fonctionnement et son utilisation
DE10120035B4 (de) Verfahren und Vorrichtung zur Manipulation kleiner Flüssigkeitsmengen auf Oberflächen
DE19821627A1 (de) Mikrostrukturierte Folien
EP1944080A1 (fr) Appareil et procédé pour mouvement d'un liquide dans une cavité
DE60302544T2 (de) Mikrofluidische bewegung
WO2002064821A2 (fr) Procede d'analyse de macromolecules
DE102018112258B4 (de) Akustofluidische bauelemente und verfahren zu ihrer herstellung
EP2552586B1 (fr) Composant d'un biocapteur et son procédé de fabrication
DE102016123455B4 (de) Vorrichtung zum Analysieren des Feinstaubpartikelgehalts eines Aerosols
EP2593231A1 (fr) Système microfluidique et procédé de fabrication d'un système microfluidique
DE10141148B4 (de) Mikrodispenser
DE10063268B4 (de) Vorrichtung und Verfahren zur Vermessung kleiner Flüssigkeitsmengen und/oder deren Bewegung
DE4304260A1 (de) Vorrichtung zum Herstellen einer Emulsion
DE102007013932A1 (de) Vorrichtung und Verfahren zum Mischen von mindestens zwei Flüssigkeiten und Verwendung der Vorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BECKMAN COULTER, INC.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BECKMAN COULTER, INC.

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005010349

Country of ref document: DE

Date of ref document: 20101118

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101006

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

BERE Be: lapsed

Owner name: BECKMAN COULTER, INC.

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110207

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110206

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110106

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110117

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

26N No opposition filed

Effective date: 20110707

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005010349

Country of ref document: DE

Effective date: 20110707

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 483521

Country of ref document: AT

Kind code of ref document: T

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110407

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101006

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20161025

Year of fee payment: 12

Ref country code: DE

Payment date: 20161027

Year of fee payment: 12

Ref country code: GB

Payment date: 20161027

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161024

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005010349

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171020

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171020

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171020