EP1778974A1 - Triebstrang einer windkraftanlage - Google Patents

Triebstrang einer windkraftanlage

Info

Publication number
EP1778974A1
EP1778974A1 EP05762970A EP05762970A EP1778974A1 EP 1778974 A1 EP1778974 A1 EP 1778974A1 EP 05762970 A EP05762970 A EP 05762970A EP 05762970 A EP05762970 A EP 05762970A EP 1778974 A1 EP1778974 A1 EP 1778974A1
Authority
EP
European Patent Office
Prior art keywords
drive
rotor
torque
auxiliary drive
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05762970A
Other languages
German (de)
English (en)
French (fr)
Inventor
Gerald Hehenberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMSC Windtec GmbH
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1778974A1 publication Critical patent/EP1778974A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • F03D9/255Wind motors characterised by the driven apparatus the apparatus being an electrical generator connected to electrical distribution networks; Arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • F03D15/10Transmission of mechanical power using gearing not limited to rotary motion, e.g. with oscillating or reciprocating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/024Adjusting aerodynamic properties of the blades of individual blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0276Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling rotor speed, e.g. variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/10Purpose of the control system
    • F05B2270/101Purpose of the control system to control rotational speed (n)
    • F05B2270/1014Purpose of the control system to control rotational speed (n) to keep rotational speed constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/724Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/19Gearing
    • Y10T74/1987Rotary bodies

Definitions

  • the invention relates to a drive train of a wind turbine with a rotor as a drive for a transmission, wherein on a rotor hub of the rotor rotatable about its longitudinal axis rotor blades are mounted, connected to the transmission and to a power supply alternator and with a variable speed auxiliary drive for the Transmission.
  • the invention further relates to a method for controlling the speed or the torque in a drive train of a wind power plant, in which an alternator is driven by a transmission, which in turn is driven by a rotor shaft of a wind power plant and an auxiliary drive.
  • the auxiliary drive in turn is in the prior art eben ⁇ if connected to the generator shaft, via a Um ⁇ richter and another generator or motor, which is coupled directly to the drive shaft of the alternator.
  • the invention is therefore based on the object to provide a Triebs ⁇ strand with the features of the preamble of claim 1, which manages with less effort for the speed and torque control of the drive train and reduces the burden on the entire system. This object is achieved with a drive train having the features of claim 1.
  • the path is taken by individual control of the position of the rotor blades or of parts of the rotor blades, i. their pitch ("pitch") to the direction of rotation of the rotor or to the wind direction to achieve a homogenization of the Dreh ⁇ number of the drive train or the drive torque in conjunction with the auxiliary drive and to reduce the burden on the entire system.
  • auxiliary drive with the individual position control of the rotor blades further leads to the fact that the auxiliary drive can be made smaller in terms of its rated power.
  • the auxiliary drive for example, a 4-pole three-phase machine, even in the field weakening range (eg -2000 / min "" 1 ) is possible, whereas the auxiliary drive in generative operation is designed for a speed range up to, for example, + 1500 rpm.
  • the larger speed spread of the auxiliary drive makes a smaller nominal power of the auxiliary drive possible, since the necessary power of the auxiliary drive is proportional to the rated power of the system and to the speed range (slip).
  • the auxiliary drive may additionally be used in accordance with the invention to dampen driveline oscillations caused by the internal driveline dynamics.
  • a measuring device for detecting the rotational speed or arranged the torque on the output shaft of the transmission or on the drive shaft of the rotary current generator, a measuring device for detecting the rotational speed or arranged the torque.
  • the vibrations detected in this case can be used for a correspondingly coordinated drive of the auxiliary drive, whereby the drive train vibrations can be attenuated as a whole.
  • a measuring device for detecting the rotational speed or the torque to be arranged in the connection region of the auxiliary drive to the transmission and / or to the rotor shaft, since drive vibrations can also be detected well at this point.
  • the auxiliary drive is an asynchronous machine, which is connected via a converter to the power grid.
  • the required power in the case of a motor-driven drive is therefore taken directly from the power grid or reduces the power fed into the grid by the three-phase generator. Any resulting regenerative power is fed via the inverter into the power grid.
  • the auxiliary drive can also be a hydrostatic or hydrodynamic drive or torque converter.
  • the three-phase generator is a synchronous generator.
  • FIG. 1 shows a circuit diagram of a drive train of a wind power plant according to the invention
  • FIG. 2 shows schematically an embodiment of the drive train with a planetary gear
  • FIG. 3 shows the course of the torque over time without the rotor blade adjustment and driveline damping according to the invention
  • FIG the course of the torque over time with the invention
  • a rotor 1 with rotor blades 2 drives a gear, preferably a planetary gear 4, via a rotor shaft 3.
  • a gear preferably a planetary gear 4
  • On the planetary gear 4 are a Dreh ⁇ current machine, in the illustrated embodiment synchronous machine 5 via a main shaft 6 and an auxiliary drive, for example in the form of a Asynchronous machine 7, connected via an auxiliary shaft 8.
  • the synchronous machine 5 is coupled directly to the grid via a line 9, whereas the asynchronous machine 7 is connected via an inverter 10 and a line filter 11 to the line 9 or the power network 12.
  • a transformer 13 and a main switch 14 can be switched between the line 9 and the power network 12.
  • Controlled the entire system of a control unit 15.
  • This control unit receives the following data: Via lines 16 and 17, the speed of the drive shaft 6 of the synchronous machine 5 and the auxiliary shaft 8 of the asynchronous machine 7. Via a line 18, the current of the asynchronous machine. Via a line 19, the DC link voltage of the inverter 10. Via a line 20 the line-side current. Via a line 21, the line-side voltage of the synchronous machine. Via a line 22, the line-side current and a line 23, the network-side voltage.
  • the control unit 15 calculates the corresponding setting values for the control of the individual components of the drive train.
  • the drives are controlled via a line 24 with which each rotor blade 2 individually adjusted, i. can be twisted about its longitudinal axis.
  • Via another line 25 the excitation of the synchronous machine 5 is controlled.
  • Via two lines 26 and 27 of the asynchronous machine side and the network-side part of the inverter 10 are controlled.
  • the main switch 14 is turned on and off.
  • the synchronous machine 5 Since the synchronous machine 5 is directly network-coupled, its speed is constant. At 50 Hz mains frequency, therefore, the speed of the synchronous machine is 3000 rpm "1 / p. Depending on the pole pair number p, the rotational speed can therefore be 3000 min -1 , 1500 min -1 , 1000 min -1 and so on. Since the wind turbine is to be operated with a variable speed of the rotor 1, the auxiliary drive 7 is used for speed compensation between the rotor and synchronous machine. As an auxiliary drive fed via the inverter 10 asynchronous machine (squirrel cage) is used. The converter is designed as a voltage source converter in which the switching elements are eg IGBTs.
  • a field-oriented control of the asynchronous machine 7 allows an accurate and combindy ⁇ namic adjustment of the torque.
  • the network-side part of the inverter 10 is also designed as an inverter, so that a Power flow in both directions is possible, ie the Asynchron ⁇ machine 7 can be used both as a generator and as a motor.
  • the coupling of the inverter 10 to the network 12 requires a line filter (sine wave filter) to limit the switching-frequency harmonic currents of the inverter 10 to the permissible level.
  • the speed of the synchronous machine 5 is constant.
  • the auxiliary drive 7 supplies the differential rotational speed and differential power between the rotor 1 and the synchronous machine 5. With small rotor powers or rotor speeds, the auxiliary drive 7 operates by motor, with larger outputs or rotational speeds as a generator.
  • the two manipulated variables for power control of the wind turbine are the pitch angle of the rotor blades 2 ("pitch") and the torque or the rotational speed of the auxiliary drive 7.
  • the torque of the auxiliary drive 7 is proportional to the torque of the synchronous machine 5 or propor ⁇ tional to the torque of the rotor 1.
  • the setting of a certain torque on the auxiliary drive therefore corresponds to a Drehmomentein ⁇ position on the synchronous machine fifth
  • the blade angle of the rotor blades 2 is kept constant on average and the torque adjusted in proportion to the square of the rotor speed.
  • the rotor 1 is always operated with the best possible aerodynamic efficiency.
  • the average torque of the synchronous machine is kept constant and controlled by means of the adjustment of the blade angle of the rotor blades 2, a constant speed or constant power, the setpoint for this purpose setpoint for all Rotor blades is the same.
  • the specified setpoint specifications for the blade angle and the torque of the rotor 1 of the control of the individual rotor blades can be overlaid with additional values which can be individually controlled or controlled for each rotor blade in order to improve the dynamic behavior and thereby reduce the load on the entire rotor Reduce plant.
  • additional influencing variables arise, for example, from the different wind speeds as a function of the height of the rotating rotor blades above the ground and interference effects that arise in the area of the mast of the wind turbine.
  • the grid connection behavior of the synchronous machine 5 corresponds to that of a conventional power plant with a synchronous machine.
  • the reactive power of the system can be set freely within the load limits by the excitation of the synchronous machine.
  • the speed ranges of the synchronous machine 5 and the Asynchron ⁇ machine 7 can be set, for example, in a 2000 KW system as follows:
  • n SM 12.92.n rotor - 0.1335.n ASM
  • the rated power of the auxiliary drive 7 has to amount to approximately only about 17% of the rated output of the system, so that the overall result is an extremely stable feed behavior of the wind turbine into the grid.
  • a drive train according to the invention is shown schematically, in which a three-stage gear 4 is used.
  • the first planetary stage 4a is designed conventionally, that is, the rotor shaft 3 is connected as a drive shaft with a planet carrier 30 and an output shaft 31 with a sun gear 32.
  • the output shaft 31 of the first gear stage 4a is at the same time the drive shaft of the second gear stage 4b, which in turn is connected to a planet carrier 33.
  • the output shaft 35 of the second gear stage 4b connected to a sun gear 34 is connected to the drive shaft 6 of the synchronous machine via a third gear stage 36.
  • the ring gear 38 of the second gear stage 4b is rotatable and is an ⁇ driven by the auxiliary drive 7 via a spur gear 39 and a gear 38.
  • the ring gear is provided for this purpose with an inner and an outer toothing.
  • FIG. 3 shows the torque curve without individual rotor blade control and without driveline steaming
  • FIG. 4 shows the torque curve with individual rotor blade control and with driveline steaming according to the invention. From the comparison of the two curves, it can be seen that the individual rotor blade control with the driveline vaporization causes a significant comparison of the torque, especially in the nominal load range, which leads to a corresponding reduction of the loads and thus also optimized design of the transmission, the three-phase machine and of the Auxiliary drive leads.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)
EP05762970A 2004-07-30 2005-08-01 Triebstrang einer windkraftanlage Withdrawn EP1778974A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0131904A AT504818A1 (de) 2004-07-30 2004-07-30 Triebstrang einer windkraftanlage
PCT/AT2005/000302 WO2006010190A1 (de) 2004-07-30 2005-08-01 Triebstrang einer windkraftanlage

Publications (1)

Publication Number Publication Date
EP1778974A1 true EP1778974A1 (de) 2007-05-02

Family

ID=35134119

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05762970A Withdrawn EP1778974A1 (de) 2004-07-30 2005-08-01 Triebstrang einer windkraftanlage

Country Status (10)

Country Link
US (2) US7560824B2 (ja)
EP (1) EP1778974A1 (ja)
JP (1) JP2008508456A (ja)
KR (1) KR20070047303A (ja)
CN (1) CN101031719B (ja)
AT (1) AT504818A1 (ja)
AU (1) AU2005266829B2 (ja)
BR (1) BRPI0512646A (ja)
CA (1) CA2575095C (ja)
WO (1) WO2006010190A1 (ja)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005019712A1 (de) 2005-04-28 2006-11-09 Bayer Healthcare Ag Dipyridyl-dihydropyrazolone und ihre Verwendung
JP4575272B2 (ja) * 2005-10-27 2010-11-04 株式会社日立製作所 分散型電源システム及び系統安定化方法
US7319307B2 (en) 2005-12-16 2008-01-15 General Electric Company Power balancing of multiple synchronized generators
DE102006001613B4 (de) * 2006-01-11 2008-01-31 Repower Systems Ag Verfahren zum Betreiben einer Windenergieanlage und Windenergieanlage
DE602007007764D1 (de) * 2006-05-22 2010-08-26 Vestas Wind Sys As Getriebesystem für eine windturbine
US8608441B2 (en) 2006-06-12 2013-12-17 Energyield Llc Rotatable blade apparatus with individually adjustable blades
DE102006050513A1 (de) 2006-10-26 2008-04-30 Bayer Healthcare Ag Substitiuierte Dihydropyrazolone und ihre Verwendung
AT504395B1 (de) * 2006-11-21 2009-05-15 Amsc Windtec Gmbh Ausgleichsgetriebe einer windkraftanlage und verfahren zum ändern oder umschalten des leistungsbereichs dieses ausgleichsgetriebes
KR100771118B1 (ko) 2006-11-29 2007-10-29 한국해양연구원 헬리컬 터빈 계측장치
GB0714777D0 (en) * 2007-07-30 2007-09-12 Orbital 2 Ltd Improvements in and relating to electrical power generation from fluid flow
DE102007058054A1 (de) * 2007-11-30 2009-06-04 Innovative Windpower Ag Verfahren zur Regelung der elektrischen Last einer Windenergieanlage
GB2455296A (en) * 2007-12-03 2009-06-10 Kelvin Inst Ltd Compensation system for a rotor
EP2107237A1 (en) * 2008-03-31 2009-10-07 AMSC Windtec GmbH Wind energy converter comprising a superposition gear
DE102008029839A1 (de) * 2008-06-25 2009-12-31 Kenersys Gmbh Verfahren zur Steuerung des Triebstranges einer Strömungskraftmaschine, insbesondere einer Windenergieanlage
US8030791B2 (en) 2008-07-31 2011-10-04 Rockwell Automation Technologies, Inc. Current source converter-based wind energy system
DE102008044900B4 (de) * 2008-08-29 2010-07-08 Winergy Ag Windkraftanlagengetriebe und Hilfsantrieb für ein Windkraftanlagengetriebe
AT507392A3 (de) * 2008-10-09 2011-11-15 Gerald Dipl Ing Hehenberger Verfahren zum betreiben eines differentialgetriebes für eine energiegewinnungsanlage
AT507395A3 (de) * 2008-10-09 2012-09-15 Hehenberger Gerald Differentialgetriebe für windkraftanlage
AT507393B1 (de) * 2008-10-09 2012-11-15 Gerald Dipl Ing Hehenberger Windkraftanlage
AT507394B1 (de) * 2008-10-09 2012-06-15 Gerald Dipl Ing Hehenberger Windkraftanlage
AT507396A3 (de) 2008-10-09 2011-12-15 Gerald Dipl Ing Hehenberger Energiegewinnungsanlage und verfahren zum betreiben dieser
DE102008037566A1 (de) * 2008-11-19 2010-05-27 Woodward Seg Gmbh & Co. Kg Vorrichtung zur Regelung einer doppelt gespeisten Asynchronmaschine
EP2224129B1 (en) * 2009-02-27 2016-09-21 Acciona Windpower S.a. Wind turbine control method to dampen vibrations
AU2010238788A1 (en) * 2009-04-20 2011-12-01 Gerald Hehenberger Electrical energy generating installation driven at variable rotational speeds, with a constant output frequency, especially a wind power installation
AT508182B1 (de) * 2009-04-20 2011-09-15 Hehenberger Gerald Dipl Ing Verfahren zum betreiben einer energiegewinnungsanlage, insbesondere windkraftanlage
AT508183B1 (de) * 2009-04-20 2011-06-15 Hehenberger Gerald Dipl Ing Verfahren zum betreiben einer windkraftanlage
AT508155B1 (de) * 2009-05-25 2010-11-15 Hehenberger Gerald Dipl Ing Energiegewinnungsanlage, insbesondere windkraftanlage
US20100314881A1 (en) * 2009-06-15 2010-12-16 Challenger Design Llc Auxiliary drive/brake system for a wind turbine
US8203229B2 (en) * 2009-06-15 2012-06-19 Challenger Design, LLC Auxiliary drive/brake system for a wind turbine
AT508411B1 (de) * 2009-07-02 2011-06-15 Hehenberger Gerald Dipl Ing Differenzialgetriebe für energiegewinnungsanlage und verfahren zum betreiben
DE102009028612A1 (de) 2009-08-18 2011-02-24 Zf Friedrichshafen Ag Windkraftanlage und Verfahren zur Betriebssteuerung einer Windkraftanlage
US8587160B2 (en) * 2009-09-04 2013-11-19 Rockwell Automation Technologies, Inc. Grid fault ride-through for current source converter-based wind energy conversion systems
JP5672301B2 (ja) * 2010-06-30 2015-02-18 株式会社日立製作所 風力発電システム及び風力発電システムの制御方法
AT510119B1 (de) * 2010-07-01 2015-06-15 Hehenberger Gerald Dipl Ing Differenzialgetriebe für eine windkraftanlage und verfahren zum betreiben dieses differenzialgetriebes
DK2405134T3 (da) * 2010-07-06 2013-05-27 Ge Energy Power Conversion Technology Ltd Drejningsmomentstyringsfremgangsmåde for generator
JP4749504B1 (ja) * 2010-10-14 2011-08-17 株式会社ビルメン鹿児島 風力発電装置の風車及び風力発電装置
US8319365B2 (en) 2010-12-17 2012-11-27 General Electric Company System and method to provide constant speed mechanical output in a machine
US9444379B2 (en) 2011-07-29 2016-09-13 National Sun Yat-Sen University Wind power excitation synchronous generation system having maximum power determining unit and control method thereof
TWI446138B (zh) * 2011-07-29 2014-07-21 Univ Nat Sun Yat Sen 風力發電之激磁式同步發電機系統的控制方法
AT511782A1 (de) * 2011-08-11 2013-02-15 Hehenberger Gerald Energiegewinnungsanlage, insbesondere windkraftanlage
US8816625B2 (en) 2011-10-27 2014-08-26 Rockwell Automation Technologies, Inc. Integrated regenerative AC drive with solid state precharging
GB2512536B (en) 2011-12-20 2018-05-30 Windflow Tech Limited Power generating system and hydraulic control system
WO2014040600A2 (en) * 2012-09-14 2014-03-20 Vestas Wind Systems A/S Power plant control during a low voltage or a high voltage event
TWI467143B (zh) * 2012-12-27 2015-01-01 Univ Chienkuo Technology Wind power generation vertical, horizontal axis blade dual measurement device
KR102029192B1 (ko) * 2013-01-24 2019-10-08 두산중공업 주식회사 풍력 발전용 가변속 동력 전달 장치 및 가변속 동력 전달 장치를 갖는 풍력 발전기
US9083274B2 (en) 2013-04-08 2015-07-14 Rockwell Automation Technologies, Inc. Power stage precharging and dynamic braking apparatus for multilevel inverter
AT514239B1 (de) * 2013-04-18 2015-02-15 Set Sustainable Energy Technologies Gmbh Antrieb und Verfahren zum Betreiben eines solchen Antriebs
US9041327B2 (en) 2013-06-12 2015-05-26 Rockwell Automation Technologies, Inc. Method and apparatus for overvoltage protection and reverse motor speed control for motor drive power loss events
GB201318721D0 (en) * 2013-10-23 2013-12-04 Romax Technology Ltd Medium speed super-position gearing for wind turbines
US9787210B2 (en) 2015-01-14 2017-10-10 Rockwell Automation Technologies, Inc. Precharging apparatus and power converter
JP2016163538A (ja) * 2015-02-26 2016-09-05 株式会社日立製作所 直流(dc)バスの利用率のためのインバータおよびその方法
CN106150908A (zh) * 2015-04-05 2016-11-23 严基铭 一种智能风力发电装置
US11025052B2 (en) 2018-01-22 2021-06-01 Rockwell Automation Technologies, Inc. SCR based AC precharge protection

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2376523A (en) * 1942-09-04 1945-05-22 Autogiro Co Of America Rotative winged aircraft
US3617020A (en) * 1970-04-27 1971-11-02 Boeing Co Vibration control system
DE2305042A1 (de) * 1973-02-02 1974-08-08 Max Baermann Bremseinrichtung fuer fahrzeuge
US4161658A (en) * 1978-06-15 1979-07-17 United Technologies Corporation Wind turbine generator having integrator tracking
US4160170A (en) * 1978-06-15 1979-07-03 United Technologies Corporation Wind turbine generator pitch control system
DE2922972C2 (de) * 1978-06-15 1986-11-13 United Technologies Corp., Hartford, Conn. Windturbinenregelsystem
US4239977A (en) * 1978-09-27 1980-12-16 Lisa Strutman Surge-accepting accumulator transmission for windmills and the like
US4297076A (en) * 1979-06-08 1981-10-27 Lockheed Corporation Wind turbine
US4298313A (en) * 1979-06-18 1981-11-03 Hohenemser Kurt H Horizontal axis wind generator having adaptive cyclic pitch control
SE419113B (sv) 1979-11-14 1981-07-13 Allmaenna Ingbyran Vindkraftverk for huvudsakligen mekanisk transmission av ett variabelt turbinvarvtal till ett synkront utgaende varvtal
US4329117A (en) * 1980-04-22 1982-05-11 United Technologies Corporation Wind turbine with drive train disturbance isolation
US4330743A (en) * 1980-07-17 1982-05-18 Sundstrand Corporation Electrical aircraft engine start and generating system
US4379678A (en) * 1980-10-07 1983-04-12 Textron, Inc. Individual blade control
US4339666A (en) * 1980-12-24 1982-07-13 United Technologies Corporation Blade pitch angle control for a wind turbine generator
US4495423A (en) * 1981-09-10 1985-01-22 Felt Products Mfg. Co. Wind energy conversion system
US4435647A (en) * 1982-04-02 1984-03-06 United Technologies Corporation Predicted motion wind turbine tower damping
US4533295A (en) * 1982-12-20 1985-08-06 United Technologies Corporation Pitch control system for variable pitch propeller
EP0120654B1 (en) * 1983-03-23 1988-06-08 The English Electric Company Limited Power generating equipment
US4565929A (en) * 1983-09-29 1986-01-21 The Boeing Company Wind powered system for generating electricity
US4557666A (en) * 1983-09-29 1985-12-10 The Boeing Company Wind turbine rotor
GB8421103D0 (en) * 1984-08-20 1984-09-26 English Electric Co Ltd Power generating equipment
JPH086605B2 (ja) * 1987-09-05 1996-01-29 ツァーンラートファブリーク、フリードリッヒスハーフェン、アクチエンゲゼルシャフト 内燃機関の過給機の機械式駆動装置
US4883973A (en) * 1988-08-01 1989-11-28 General Motors Corporation Automotive electrical system having a starter/generator induction machine
FR2636595B1 (fr) * 1988-09-16 1990-12-21 Aerospatiale Dispositif de commande individuelle du pas des pales de rotors de giravions, par verins lineaires tournants
GB2225616A (en) * 1988-11-30 1990-06-06 Wind Energy Group Limited Power generating system including gearing allowing constant generator torque
US5213470A (en) * 1991-08-16 1993-05-25 Robert E. Lundquist Wind turbine
JP3613801B2 (ja) * 1992-09-29 2005-01-26 マツダ株式会社 車両の振動低減装置
DE4447537B4 (de) * 1994-02-28 2006-04-20 Temic Automotive Electric Motors Gmbh Verfahren und System zur aktiven Schwingungsdämpfung
ES2130884B1 (es) * 1994-07-15 2000-02-16 Fichtel & Sachs Ag Dispositivo partido de volante
US5663600A (en) * 1995-03-03 1997-09-02 General Electric Company Variable speed wind turbine with radially oriented gear drive
FR2731661B1 (fr) * 1995-03-18 1999-06-25 Luk Getriebe Systeme Gmbh Procede de commande d'un systeme de transmission de couple et appareillage pour sa mise en oeuvre
FI963585A (fi) * 1996-09-11 1998-03-12 Abb Industry Oy Sähköjärjestelmä
DE19704517C2 (de) * 1997-02-06 2003-06-12 Zf Sachs Ag Drehschwingungsdämpfungsvorrichtung zum Dämpfen von Drehschwingungen in einem Antriebsstrang
JP3952584B2 (ja) * 1997-12-05 2007-08-01 東海ゴム工業株式会社 能動型防振装置
US6641365B2 (en) * 1998-02-20 2003-11-04 Abraham E. Karem Optimum speed tilt rotor
DE19913015B4 (de) * 1999-03-23 2009-06-04 Zf Sachs Ag Schwingungsdämpfungssystem
ES2228121T3 (es) * 1999-11-03 2005-04-01 Vestas Wind Systems A/S Procedimiento de control de la operacion de una turbina electrica y turbina electrica para usarse en dicho procedimiento.
DE19955586A1 (de) * 1999-11-18 2001-06-13 Siemens Ag Windkraftanlage
EP1126163A1 (en) * 2000-02-16 2001-08-22 Turbowinds N.V./S.A. Blade pitch angle control device for wind turbine
DE20020232U1 (de) * 2000-11-29 2002-01-17 Siemens Ag Windkraftanlage mit Hilfsenergieeinrichtung zur Verstellung von Rotorblättern in einem Fehlerfall
DE10141098A1 (de) * 2001-08-22 2003-03-06 Gen Electric Windkraftanlage
JP2003113769A (ja) * 2001-10-03 2003-04-18 Mitsubishi Heavy Ind Ltd ブレードピッチ角度制御装置および風力発電装置
KR100754790B1 (ko) * 2002-02-05 2007-09-04 신한국산업 (주) 풍력발전장치
DE10231948A1 (de) * 2002-07-15 2004-01-29 Ge Wind Energy Gmbh Windenergieanlage und Lageranordnung dafür
CN1273729C (zh) * 2002-11-13 2006-09-06 沈阳工业大学 兆瓦级风电机组变速、变距控制系统
CA2516477C (en) * 2003-02-18 2009-09-29 Forskningscenter Riso Method of controlling aerodynamic load of a wind turbine based on local blade flow measurement
DE10314757B3 (de) * 2003-03-31 2004-11-11 Voith Turbo Gmbh & Co. Kg Antriebsstrang zum Übertragen einer variablen Leistung
US7042110B2 (en) * 2003-05-07 2006-05-09 Clipper Windpower Technology, Inc. Variable speed distributed drive train wind turbine system
US7069802B2 (en) * 2003-05-31 2006-07-04 Clipper Windpower Technology, Inc. Distributed power train (DGD) with multiple power paths
GB0313345D0 (en) 2003-06-10 2003-07-16 Hicks R J Variable ratio gear
DE10361443B4 (de) * 2003-12-23 2005-11-10 Voith Turbo Gmbh & Co. Kg Regelung für eine Windkraftanlage mit hydrodynamischem Getriebe
WO2006134425A2 (en) * 2004-05-06 2006-12-21 Zf Friedrichshafen Ag Helicopter rotor control system with individual blade control
DE102004048754A1 (de) * 2004-10-05 2006-04-13 Voith Turbo Gmbh & Co. Kg Pod-Schiffsantrieb mit Getriebe
DE102005034899A1 (de) * 2005-07-26 2007-02-01 Repower Systems Ag Windenergieanlage mit Einzelpitcheinrichtungen
DE102005058531A1 (de) * 2005-12-08 2007-06-14 Zf Friedrichshafen Ag Torsionsschwingungsdämpfer
DE102006001613B4 (de) * 2006-01-11 2008-01-31 Repower Systems Ag Verfahren zum Betreiben einer Windenergieanlage und Windenergieanlage
JP4814644B2 (ja) * 2006-02-01 2011-11-16 富士重工業株式会社 風力発電装置
DE102006009987A1 (de) * 2006-03-03 2007-09-06 Zf Friedrichshafen Ag Hydrodynamische Kopplungsvorrichtung
US7352075B2 (en) * 2006-03-06 2008-04-01 General Electric Company Methods and apparatus for controlling rotational speed of a rotor
DE102006040929B4 (de) * 2006-08-31 2009-11-19 Nordex Energy Gmbh Verfahren zum Betrieb einer Windenergieanlage mit einem Synchrongenerator und einem Überlagerungsgetriebe
DE102006040930A1 (de) * 2006-08-31 2008-03-20 Nordex Energy Gmbh Verfahren zum Betrieb einer Windenergieanlage mit einem Synchrongenerator und einem Überlagerungsgetriebe
US7677075B2 (en) * 2006-09-29 2010-03-16 General Electric Company Methods and apparatus for evaluating sensors and/or for controlling operation of an apparatus that includes a sensor
EP1978246A1 (en) * 2007-04-04 2008-10-08 Siemens Aktiengesellschaft Method of reducing an unbalance in a wind turbine rotor and device for performing the method
DE102007019907B4 (de) * 2007-04-27 2009-04-30 Nordex Energy Gmbh Vorrichtung zur aktiven Dämpfung eines Triebstrangs bei einer Windenergieanlage
GB2449433B (en) 2007-05-21 2009-12-09 Clairair Ltd Optical gas sensor
EP2000667B1 (en) * 2007-06-04 2011-08-10 Siemens Aktiengesellschaft Method and device for controlling load reduction for a wind turbine rotor
DE102007026995C5 (de) * 2007-06-07 2017-03-30 Senvion Gmbh Drehzahlbestimmung
GB0711043D0 (en) 2007-06-08 2007-07-18 Orbital 2 Ltd Variable radio transmission
DE102007035570A1 (de) * 2007-07-26 2009-02-05 Universität Kassel Doppelt gespeister Asynchrongenerator und Verfahren zu dessen Betrieb
US7950901B2 (en) * 2007-08-13 2011-05-31 General Electric Company System and method for loads reduction in a horizontal-axis wind turbine using upwind information
EP2222955B1 (en) * 2007-10-29 2017-01-11 Vestas Wind Systems A/S Wind turbine blade and method for controlling the load on a blade
DE102008012957A1 (de) * 2008-03-06 2009-09-10 Repower Systems Ag Verfahren zum Betreiben einer Windenergieanlage und Windenergieanlage
US8261599B2 (en) * 2008-04-24 2012-09-11 Rbt, Lp Method and system for determining an imbalance of a wind turbine rotor
US20100117368A1 (en) * 2008-11-07 2010-05-13 Benito Pedro Drive train supporting structure for a wind turbine
US8008797B2 (en) * 2009-02-13 2011-08-30 Bernard Joseph Simon System for converting wind power to electrcial power with transmission
US7763989B2 (en) * 2009-07-07 2010-07-27 General Electric Company Method and apparatus for controlling the tip speed of a blade of a wind turbine
US7755210B2 (en) * 2009-12-04 2010-07-13 General Electric Company System and method for controlling wind turbine actuation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006010190A1 *

Also Published As

Publication number Publication date
CA2575095A1 (en) 2006-02-02
AU2005266829A1 (en) 2006-02-02
CA2575095C (en) 2011-01-18
US20080066569A1 (en) 2008-03-20
CN101031719B (zh) 2012-02-29
CN101031719A (zh) 2007-09-05
AT504818A1 (de) 2008-08-15
US20090302609A1 (en) 2009-12-10
US7560824B2 (en) 2009-07-14
WO2006010190A1 (de) 2006-02-02
JP2008508456A (ja) 2008-03-21
US7816798B2 (en) 2010-10-19
AU2005266829B2 (en) 2010-11-25
BRPI0512646A (pt) 2008-03-25
KR20070047303A (ko) 2007-05-04

Similar Documents

Publication Publication Date Title
EP1778974A1 (de) Triebstrang einer windkraftanlage
EP1668245B1 (de) Windenergieanlage mit einem blindleistungsmodul zur netzstützung und verfahren dazu
EP2449258B1 (de) Differenzialgetriebe für energiegewinnungsanlage und verfahren zum betreiben
AT507394B1 (de) Windkraftanlage
AT507643B1 (de) Drehantriebsmechanismus zum antreiben eines generators
EP1756423B1 (de) Energieerzeugungsanlage mit einem drehzahlgeregeltes Getriebe
AT514589B1 (de) Verfahren zum Betreiben eines Triebstranges und Triebstrang
DE102011087109B3 (de) Vorrichtung und Verfahren zur Gewinnung von Energie aus einer Fluidströmung
EP2859222B1 (de) Energiegewinnungsanlage, insbesondere windkraftanlage
EP2997285A1 (de) Verfahren und vorrichtung zum anfahren eines triebstranges
AT511720B1 (de) Energiegewinnungsanlage
EP2997284A1 (de) Verfahren zum betreiben eines triebstranges und triebstrang
AT507395A2 (de) Differentialgetriebe für windkraftanlage
DE102006040970B4 (de) Verfahren zum Betrieb einer Windenergieanlage
DE10117212A1 (de) Verfahren zum Betrieb einer Windenergieanlage
WO2010063052A2 (de) Energiegewinnungsanlage und verfahren zum betreiben dieser
AT510119B1 (de) Differenzialgetriebe für eine windkraftanlage und verfahren zum betreiben dieses differenzialgetriebes
AT514170B1 (de) Antriebsstrang einer Energiegewinnungsanlage und Verfahren zum Regeln
DE10023440C1 (de) Azimutantrieb für Windenergieanlagen
DE19920504A1 (de) Azimutantrieb für Windenergieanlagen
EP2345151A1 (de) Verfahren zum betreiben eines dlfferentialgetriebes für eine energiegewinnungsanlage
WO2020044323A1 (de) Windenergieanlage mit dämpfungseinrichtung für trudelbetrieb
EP2342455B1 (de) Windkraftanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070220

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070503

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AMSC WINDTEC GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HEHENBERGER, GERALD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120327