EP1776525B1 - Moteur a piston rotatif hydrostatique - Google Patents

Moteur a piston rotatif hydrostatique Download PDF

Info

Publication number
EP1776525B1
EP1776525B1 EP05761659.1A EP05761659A EP1776525B1 EP 1776525 B1 EP1776525 B1 EP 1776525B1 EP 05761659 A EP05761659 A EP 05761659A EP 1776525 B1 EP1776525 B1 EP 1776525B1
Authority
EP
European Patent Office
Prior art keywords
shaft
hydrostatic
cylinder engine
rotary cylinder
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05761659.1A
Other languages
German (de)
English (en)
Other versions
EP1776525A1 (fr
Inventor
Siegfried A. Eisenmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EISENMANN, SIEGFRIED A.
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1776525A1 publication Critical patent/EP1776525A1/fr
Application granted granted Critical
Publication of EP1776525B1 publication Critical patent/EP1776525B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C2/00Rotary-piston engines
    • F03C2/22Rotary-piston engines of internal-axis type with equidirectional movement of co-operating members at the points of engagement, or with one of the co-operating members being stationary, the inner member having more teeth or tooth- equivalents than the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/103Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member one member having simultaneously a rotational movement about its own axis and an orbital movement
    • F04C2/105Details concerning timing or distribution valves

Definitions

  • the invention relates to a hydrostatic, low-speed rotary piston engine according to the preamble of the independent claims 1 and 2.
  • a hydrostatic rotary piston engine of this type is known from EP 1 074 740 B1 known.
  • An advantage of the disclosed there formation of a rotary piston engine is compared to previous solutions is that the bearings of the hydrostatically highly loaded part of the shaft are arranged immediately adjacent with small axial distance in the fixed housing, so a small amount of bending and tooth deformation on the shaft and, accordingly, a maximum Printing performance and thus to torque delivery can be achieved. Because of this bearing arrangement, there is no way to create a 1: 1 rotary connection between the acting as a rotor rotary piston and responsible for the commutation rotary valve, it has been proposed to synchronously drive the rotary valve via a gear transmission from the shaft.
  • this gear transmission is an eccentric internal gear, in which the disk-shaped rotary valve itself acts as an eccentric member of this transmission and thus performs an unavoidable orbital movement.
  • the invention has as its object to eliminate these deficiencies and at the same time reduce the caused by the orbital movement slightly increased friction at the rotary valve and the production costs.
  • the invention eliminates these disadvantages while retaining the above-mentioned advantages of such machines.
  • the hydrostatic, low-speed rotary piston engine comprises a power unit acting as an output with a centric fixed stator, a rotary piston as the rotor and a centrically mounted shaft.
  • the stator has an internal toothing with the number of teeth d.
  • the rotary piston has a part engaging in the internal toothing of the stator outer teeth with a number of teeth c and an internal toothing with a number of teeth b.
  • the shaft meshes with its external teeth with a number of teeth a partially the internal toothing of the rotary piston, wherein the rotary piston for performing an orbital movement is arranged and dimensioned eccentrically such that with working fluid ver and disposable tooth chambers between the inner teeth of the stator and the outer teeth of the rotary piston form.
  • An inlet and outlet part is used for supply and disposal of the power unit with the working fluid.
  • a disc-shaped rotary valve which according to the invention is mounted centrically running to the shaft and the stator, the control of the supply and disposal of the tooth chambers with the working fluid.
  • the rotary engine comprises a gear transmission, which is arranged between a shaft outer shaft of a shaft formed by a sun gear with a number of teeth w and an internal toothing of a fixed internal gear with a number of teeth z as a synchronous drive for the rotary valve.
  • the shaft is mounted on both sides of the power section immediately adjacent bearings arranged.
  • the gear transmission is arranged exclusively in the leakage oil region of the engine and is arranged by a planetary gear with at least one planet carrier, which is rotatably connected to the rotary valve and on which planet gears between the shaft outer teeth and the stationary inner ring gear are arranged, or preferably by an eccentric with an eccentric , which is rotatably connected to the rotary valve formed.
  • the inventive wobble gear requires a much smaller eccentricity, which according to the invention is independent of the eccentricity of the rotary piston in the power section, so that this wobble angle is substantially smaller than half of that wobble angle of the earlier construction.
  • this wobble angle is substantially smaller than half of that wobble angle of the earlier construction.
  • the eccentric When using a Exzentergetriebes the eccentric has an internal toothing with a number of teeth x and an external toothing with a number of teeth y and is disposed between the shaft outer teeth and the internal teeth of the fixed internal gear, the eccentric with its internal teeth with the shaft outer teeth of the shaft and with its external teeth with the Internal toothing of the fixed internal gear ring meshes.
  • the eccentric gear as a wobble gear and the eccentric disk-shaped eccentric are formed, wherein the disc-shaped eccentric is rotatably connected via a cup-shaped connecting part with the rotary valve via Mitauerverschwept in the speed ratio 1: 1.
  • the equation expression is a positive integer, preferably equal to 3. It must also be striven that in this area, the diameter of the shaft is sufficiently large, so that their torsional strength for a possibly connected holding brake for the maximum torque is still sufficient.
  • the eccentricity of the transmission is relatively large, so that the wobble angle is correspondingly large. However, then the speed of eccentricity would be quite small.
  • Ne Ne / Nw
  • the teeth of the internal teeth on the stator are formed by rollers in their precisely machined caverns in the stator by a transient hydrodynamic oil film are rotatably mounted.
  • the rollers must be designed with high hardness and best surface quality, as well as the necessary precise caverns in the stator.
  • the radial load of the teeth between the rotary piston and the stator is only a fraction of the ratios described above, so that the pressure of the engine can be increased considerably even without roles in the stator. Nevertheless, it is also in the machine according to the invention advantageous if the usual roles in the stator are maintained, which leads to further increased printing performance and excellent life. Measurements have shown that in the machine according to the invention the starting efficiency and also the mechanical-hydraulic efficiency can be increased by 3 to 5% through the transition to rollers in the stator. The start-up efficiency reaches values of more than 90%.
  • the output-side roller bearing When using the hydrostatic, low-speed high-torque motor according to the invention as a wheel motor, the output-side roller bearing requires a higher radial load capacity for additional reception of the wheel load. It should be located as close to the center of the wheel. Since, for example, in material handling equipment shock-like elevations of the static wheel load can occur, it is advantageous if this bearing is as close as possible to the wheel flange and is optionally arranged outside the leakage space of the rotary piston engine with a permanent rolling bearing grease directly in the housing part of the rotary piston engine.
  • the rotary piston engine according to the invention is due to the advantageous bearing arrangement and the powerful continuous shaft, inter alia, excellent as a wheel motor or winch drive for direct driving a wheel or a cable drum.
  • the shaft is preferably formed integrally with a wheel flange on which a wheel or a cable trench for direct drive can be mounted directly.
  • Fig. 1 shows a first embodiment of an inventive rotary piston engine with an eccentric gear in a longitudinal section
  • Fig. 2 a cross section through the rotor-stator system of the first embodiment along the section line DD of Fig. 1 shows.
  • the rotor-stator system of the power unit 1 of the rotary piston engine comprises a centric fixed stator 4 with an internal toothing 5, hereinafter referred to as first internal toothing 5, in which an eccentrically arranged for performing an orbit movement, acting as a rotor rotary piston 6 with a hereinafter as first external toothing 7 called external teeth at least partially engages.
  • a centrally mounted by means of two on both sides of the power unit 1 immediately adjacent bearings 10, 11 mounted shaft 2 has an external toothing 9 - the second external teeth 9 -, which in turn at least partially engages in an internal toothing 8 of the rotary piston 6, called the second internal toothing 8.
  • the forward direction of rotation of the rotor-stator system of the rotary piston engine is defined for the following explanations as the direction of rotation in which the rotary piston 6 in the direction of rotation 60 and the shaft 2 in the direction of rotation 61 in accordance Fig. 2 rotate. Accordingly lie in the Fig. 2 the expanding swallow cells between the first internal toothing 5 and the first external toothing 7 Always on the left and the compressing feed cells always to the right of an eccentric axis 62.
  • the rotary valve 3 has eleven circumferentially uniformly distributed, with the first annulus 56 in communication high-pressure window 21a.
  • a control plate 22 with control slots 21 has twelve uniformly distributed on the circumference pressure window 33 a, which are connected via feed bores 33 with the twelve toothed chambers between the first internal toothing 5 of the stator 4. Because of the circumferential distribution eleven to twelve of the high-pressure window 21a of the rotary valve 3 and the pressure window 33a of the control plate 22 is always only one half of the tooth chambers of the stator 4 under high pressure, and that with the correct phase position of the rotary valve 3 with the rotary piston 6 always those tooth chambers, in of the Fig. 2 lie to the left of the eccentric axis 62.
  • the separation axis of the rotary valve 3 in a high-pressure side and a low-pressure side as exactly as possible the same speed and direction of rotation as the rotor-stator system.
  • the rotary valve has the same direction of rotation and the same speed as the rotary piston 6 about its own axis.
  • the shaft 2 is mounted roller-mounted directly in the housing on the left and right of the rotor-stator system, so that the drive of the rotary valve 3 must take place via the shaft 2, which due to the system performs a different rotational speed than the rotary piston 6.
  • the shaft 2 runs three times as fast about its axis as the rotary piston 6 about its own axis. Accordingly, the rotary engine according to the invention requires a transmission between the shaft 2 and the rotary valve 3 with the same ratio to the slow. This can be done by means of an eccentric gear 30, as in the first embodiment Fig. 1 and Fig. 1.2 , or by means of a planetary gear 80, as in a second embodiment according to Fig. 1.1 shown, happened.
  • Fig. 1.1 shows the second embodiment of an inventive rotary piston engine with a planetary gear 80 in a partial longitudinal section along the section line CC of Fig. 2 ,
  • the planetary gear 80 includes a sun gear 13 on the shaft 2, the shaft outer teeth 14 meshing with planetary gears 90 which are mounted on a planetary carrier 91, which rotates 1: 1 with the rotary valve 3 is coupled.
  • the planet gears 90 mesh simultaneously with a fixed internal gear ring 92, which has twice the number of teeth as the sun gear 13 on the shaft 2. According to the laws of the planetary gear is then the translation of the shaft 2 to the rotary valve 3 exactly 3: 1 slow.
  • a simpler constructed eccentric gear 30 which includes a sun gear 13 on the shaft 2 with a shaft outer teeth 14 and a fixed inner ring gear 28, the inner teeth 17, hereinafter called fourth internal teeth 17, compared to the number of teeth of the shaft outer teeth 14 double the number of teeth.
  • a disk-shaped eccentric 26 which has an internal toothing 15 in the interior - the third internal toothing 15 - and outside an external toothing 16, referred to as the third external toothing 16, has.
  • this eccentric gear 30 is executed with tooth shapes that allow the number of teeth difference between the shaft outer toothing 14 and the third inner toothing 15 and the third outer toothing 16 and the fourth inner toothing 17 is equal to 1.
  • involute teeth such transmissions are usually not feasible, since in this case, take place tooth interference disorders. Also, they do not allow exact radial centering of the wheels against each other under these conditions. It should therefore be resorted to other tooth shapes.
  • a double cycloidal internal external toothing as described for example in German Pat DE 39 38 346 is known, to which reference is hereby made.
  • This eccentric gear 30 also has a reduction between the shaft 2 and the disc-shaped eccentric 26 of exactly 3: 1 slow.
  • the disc-shaped eccentric 26 is 1: 1 rotationally connected via a cup-shaped connecting part 27 rotatably connected to the rotary valve 3, wherein Mitauervertechnikept 31 and 32 allow the cup-shaped connecting part 27 together with the disc-shaped eccentric 26 a small wobbling movement corresponding to the eccentric movement of the disc-shaped eccentric 26th performs.
  • the backlash of the shaft outer teeth 14, the third internal teeth 15 of the eccentric 26, the third external teeth 16 of the eccentric 26, the fourth internal teeth 17 of the internal ring gear 28 and the Mit psychologyveriereonne 31 and 32 are designed to be somewhat larger than usual because of the wobbling motion.
  • an axial compensating piston 65 is provided in a known manner.
  • Fig. 3 shows a cross section through the rotor-stator system of another embodiment, in which rotatably mounted rollers 81 are used as the first internal toothing 5 in the stator 4.
  • These rollers 81 should always be trapped in their cavities 82 in the stator 4, ie the caverns 82 should extend in the direction of the shaft 2 beyond the roller radius, so that the rollers 81 do not move radially inward out of the caverns 82 can. This would lead to a blockage of the rotary engine.
  • the shape of the caverns 82 is clearly illustrated.
  • the housing parts which include a bearing flange 25, the stator 4 and the input and Auslassteil 70 must be centered against each other during assembly.
  • Fig. 3 and in Fig. 4 showing a view X on an SAE connection a partial section along the line A and a partial section along the line B of FIG Fig. 3
  • two out of the twelve screws are designed as fitting screws 93 which are to be used first during assembly of the motor.
  • Fig. 4 is also in partial section A of Fig. 3
  • the rotary piston engine should be designed very compact due to the specified by the international SAE standard hole patterns for mounting the engine so that dimensions and weight are optimized.
  • a flange screw connection for the high and low pressure connection 55 or 57 according to SAE standard is also shown here.
  • An application for the rotary piston engine according to the invention is the use as a wheel motor, as in its simplest form as a longitudinal section in Fig. 5 is shown.
  • Extremely advantageous in this embodiment of a wheel motor is the formation of a driven-side roller bearing 11 outside a leakage space 85 directly in the housing part 84 of the engine. Since such wheel motors do not require high speeds, a permanent rolling bearing fat filling is sufficient as lubrication, which is sealed by a NILOS ring 72 to the outside.
  • a wheel flange 40 can be made integral with the shaft 2, so that for large wheel loads, the shaft 2 is very robust auslagbar.
  • a wheel motor according to Fig. 5 is usually a right- and a left-handed version required.
  • the rotary valve can be offset during assembly by half a pitch, so that hereby with the same pressure connection and thus the same flow direction of the working fluid, the direction of rotation of the motor is reversible for the same physical operating conditions.
  • a hydrostatic wheel bearing usually requires a spring-loaded, automatically spring-loaded parking brake, which is independent of the hydraulic pressure, in order to prevent the parked vehicle from rolling away.
  • the Fig. 6 shows a possible realization of such a wheel motor in longitudinal section, in which on the side opposite the output a spring-loaded parking brake 42 is arranged in the form of a multi-disc brake.
  • the rotary piston engine according to the invention advantageously enables a continuous shaft 2 suitable for high torques with a large-dimensioned wool extension 41, so that the lamellae of the parking brake 42 directly via a hub 73 can transmit their braking torque to the shaft 2.
  • the shaft outer toothing 14 for the eccentric gear 30 is extended outwardly in manufacturing technology, on which the hub 73 can be wedged torque-effective torsionally effective.
  • This spring-loaded parking brake 42 is a wet-running multi-disc brake, which can be released with greatly reduced hydraulic pressure via the separate port 43.
  • a plate spring 74 is provided here.
  • the fixed fourth internal teeth 17 for the eccentric gear 30 is incorporated directly into the input and output part 70, for example by means of a gear-impact machine or by means of a broach. This results in the advantage that the shaft outer teeth 14 on the shaft 2 in diameter is larger, so that the shaft extension 41 receives a larger torque capacity.
  • Fig. 7 and in Fig. 8 is a hydraulic motor in longitudinal section or cross section according to the invention shown in which except the first power part 1 on a prolonged shaft end 44 of the shaft 2 a torsionally rigid coupled to the first power section 1 second, preferably narrower power section 46 is arranged with its own radial bearing 47, which can be operated separately via the ports 75 and 76 with working fluid, preferably from one and the same hydraulic pump.
  • FIG. 9 A proposal on the control of such a 2/3 stage motor with the first power section 1 and the second power section 46 is in Fig. 9 represented in the form of a hydraulic circuit diagram with exemplary performance data.
  • two separate 4/3-way valves 48 and 49 commercially available design can thus be driven at the same flow rate of a pump 83 up to three output speeds, as exemplified in Table 77.
  • the forward and reverse positions of the 4/3-way valves are indicated by the letters F and R, respectively.
  • F and R The forward and reverse positions of the 4/3-way valves.
  • a throttle valve serves as a brake valve 87, in particular when driving downhill of the vehicle.
  • a valve 86 the operating state of the drive from operation D to neutral N can be switched.
  • Fig. 10 is a further rotary engine according to the invention shown in longitudinal section, which of course also as a wheel motor according to Fig. 5 can be trained.
  • a hydraulically releasable spring-loaded working brake 50 designed as a disk brake, is arranged on a shaft extension 52.
  • This work brake 50 the braking force is applied by means of springs 78, for example, in a hydrostatically driven winch for car or ship cranes the task to keep the full allowable rope load, which corresponds to the maximum pressure and thus the highest torque of the engine in the balance , without support hydraulic pressure on the engine.
  • the load should be able to be sensitively manipulated up and down, so that the transition from the upward to the downward movement and vice versa, the pressure oil inflow on the rotary engine from primary to secondary must be switched. In this phase of change, the rotary engine has no torque because the pressure drops to zero.
  • the spring-loaded work brake 50 takes over the holding torque at this moment and must therefore be designed so large that it can take over the maximum torque of the rotary piston engine.
  • the size and number of springs 78 is to be sized accordingly, as well as the size and number of slats of the working brake 50th As can be seen from the Fig.
  • a connectable via a separate connection 51 to the high-pressure pump high-pressure piston 79 is provided which is able to release the working brake 50, provided that the applied pressure on the high-pressure piston 79 by overcoming the spring forces of the springs 78 is large enough.
  • this pressure must be between 8 and 12 bar, so that the load does not drop until the required support pressure is built up on the rotary piston engine.
  • Wet-running multi-disc brakes have a particular advantage because they can be connected to the oil cooling system of the entire system through the oil passage. In addition, they are largely free of abrasion, so that the oil contamination is low.
  • the disadvantage is that with oil-filled brake considerable, oil viscosity caused, loss-producing slip performance. According to Newton's law of shear stress in an oil gap, the slip power between two plates increases with the square of the relative velocity, and thus also between the running and stationary plates of a released brake. Assuming that when comparing the slip performance of a large brake according to Fig.
  • connection holes 58a are mounted on the circumference, so that the passage cross-section is relatively large.
  • the number of subsequent holes is very limited, because this must be based on the number of high-pressure windows 21a of the rotary valve 3.
  • the rotary valve 3 facing annular surface with the pressure windows 33a of the control plate 22 is relatively narrow (smaller diameter difference of the sealing webs). Accordingly, then the difference in the diameter of the mating ring surface between the rotary valve 3 and the axial balance piston 65 is smaller.
  • this relief groove 102 can really fulfill its separating function, it is connected to the leakage space 85 through the connection hole 103.
  • the relief groove 102 and its communication hole 103 may be attached both in the rotary valve 3 and in the axial balance piston 65.
  • FIGS. 12 and 14 For a better understanding of the commutation of the rotary valve 3 are in the FIGS. 12 and 14 the required pressure window 33 a of the control plate 22 for supplying the tooth chambers of the power unit 1 and the high and Low-pressure window 21a and 21b shown in the rotary valve 3.
  • the control mirror 104 of the control plate 22, Fig. 12 Has between the pressure windows 33a evenly dimensioned dummy window 105, which are only a few tenths of a millimeter deep for a better isotropy of the lubricating film between the control mirror 104 and the rotary valve. 3

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Hydraulic Motors (AREA)
  • Retarders (AREA)

Claims (27)

  1. Moteur lent à piston rotatif hydrostatique avec
    • une partie puissance (1) qui agit comme sortie qui comprend
    ° un stator fixe, centré (4), avec une première denture intérieure (5) avec le nombre de dents d,
    ° un piston rotatif (6) avec une première denture extérieure (7) avec un nombre de dents c qui s'engrène partiellement dans la première denture intérieure (5) et avec une seconde denture intérieure (8) avec un nombre de dents b et
    ° un arbre positionné centré (2) avec une seconde denture extérieure (9) avec un nombre de dents a qui s'engrène partiellement dans la seconde denture intérieure (8),
    le piston rotatif (6) étant dimensionné et placé excentré pour exécuter un mouvement d'orbite de telle manière que des compartiments à dents qui peuvent être alimentés en fluide de travail et vidés de fluide de travail se forment entre la première denture intérieure (5) et la première denture extérieure (7),
    • une partie d'entrée et de sortie (70) pour l'alimentation et l'évacuation de la partie puissance (1) avec le fluide de travail,
    • une vanne rotative en forme de disque (3) pour la commande de l'alimentation et de l'évacuation des compartiments à dents avec le fluide de travail,
    • un piston d'équilibrage axial (65) pour l'étanchéité contre les fuites sur la vanne rotative (3),
    • un engrenage entre une denture extérieure d'arbre (14) de l'arbre (2) qui est formée par une roue solaire (13) et une couronne dentée intérieure fixe (92) comme entraînement synchrone pour la vanne rotative (3) et
    • deux paliers à rouleaux (10, 11) placés des deux côtés de la partie puissance (1) directement voisins sur l'arbre (2),
    caractérisé en ce que
    • la vanne rotative (3) est positionnée centrée par rapport à l'arbre (2) et au stator (4),
    • l'engrenage est placé exclusivement dans la zone de l'huile de fuite du moteur à piston rotatif et
    • l'engrenage est configuré comme un engrenage planétaire (80) avec au moins un train épicycloïdal (91) qui est relié en étant résistant à la rotation à la vanne rotative (3) et sur lequel des roues planétaires (90) sont placées entre la denture extérieure de l'arbre (14) et la couronne dentée intérieure fixe (92).
  2. Moteur lent à piston rotatif hydrostatique avec
    • une partie puissance (1) qui agit comme sortie qui comprend
    ° un stator fixe, centré (4), avec une première denture intérieure (5) avec le nombre de dents d,
    ° un piston rotatif (6) avec une première denture extérieure (7) avec un nombre de dents c qui s'engrène partiellement dans la première denture intérieure (5) et une seconde denture intérieure (8) avec un nombre de dents b et
    ° un arbre positionné centré (2) avec une seconde denture extérieure (9) avec un nombre de dents a qui s'engrène partiellement dans la seconde denture intérieure (8),
    le piston rotatif (6) étant dimensionné et placé excentrique pour exécuter un mouvement d'orbite de telle manière que des compartiments à dents qui peuvent être alimentés en fluide de travail et vidés de fluide de travail se forment entre la première denture intérieure (5) et la première denture extérieure (7),
    • une partie d'entrée et de sortie (70) pour l'alimentation et l'évacuation de la partie puissance (1) avec le fluide de travail,
    • une vanne rotative en forme de disque (3) pour la commande de l'alimentation et de l'évacuation des compartiments à dents avec le fluide de travail,
    • un piston d'équilibrage axial (65) pour l'étanchéité contre les fuites sur la vanne rotative (3),
    • un engrenage entre une denture extérieure d'arbre (14) de l'arbre (2) qui est formée par une roue solaire (13) avec un nombre de dents w et une quatrième denture intérieure (17) d'une couronne dentée intérieure fixe (28) avec un nombre de dents z comme entraînement synchrone pour la vanne rotative (3) et
    • deux paliers à rouleaux (10, 11) placés des deux côtés de la partie puissance (1) directement voisins sur l'arbre (2),
    caractérisé en ce que
    • la vanne rotative (3) est positionnée centrée par rapport à l'arbre (2) et au stator (4),
    • l'engrenage est placé exclusivement dans la zone de l'huile de fuite du moteur
    et
    • l'engrenage est configuré comme un engrenage à excentrique (30) avec un
    excentrique (26) qui est relié résistant à la rotation avec la vanne rotative (3), l'excentrique (26) présentant
    • une troisième denture intérieure (15) avec un nombre de dents x et une troisième denture extérieure (16) avec un nombre de dents y,
    • est placé entre la denture extérieure de l'arbre (14) et la quatrième denture intérieure (17) et
    • s'engrène avec sa troisième denture intérieure (15) avec la denture extérieure de l'arbre (14) de l'arbre (2) et avec sa troisième denture extérieure (16) avec la quatrième denture intérieure (17) de la couronne dentée intérieure fixe (28).
  3. Moteur lent à piston rotatif hydrostatique selon la revendication 2, caractérisé en ce que
    • l'engrenage à excentrique (30) est configuré comme un engrenage oscillant et
    • l'excentrique est configuré comme un excentrique en forme de disque (26) qui est relié en étant résistant à la torsion à la vanne rotative (3) dans un rapport de vitesse 1:1 par des dentures d'entraîneurs (31, 32) par l'intermédiaire d'une pièce de connexion en forme de pot (27).
  4. Moteur lent à piston rotatif hydrostatique selon la revendication 2, caractérisé en ce que
    les nombres de dents (a, b, c, d) de la partie puissance (1) et les nombres de dents (w, x, y, z) de l'engrenage à excentrique (30) remplissent l'équation b a d - c d - c = x w z - y z - y
    Figure imgb0007

    et que cette expression d'équation est un nombre entier positif.
  5. Moteur lent à piston rotatif hydrostatique selon la revendication 2, caractérisé en ce que
    le nombre entier positif est égal à 3.
  6. Moteur lent à piston rotatif hydrostatique selon la revendication 5, caractérisé en ce que
    l'engrenage à excentrique (30) est conçu de telle manière que le rapport entre le nombre de tours Ne de l'excentricité (20) de l'engrenage à excentrique (30) et le nombre de tours Nw de l'arbre (2) selon l'équation Ne Nw = - w y x z - w y
    Figure imgb0008

    se situe entre -3 et -9.
  7. Moteur lent à piston rotatif hydrostatique selon les revendications 4 à 6, caractérisé en ce que
    les nombres de dents (a, b, c, d) de la partie puissance (1) sont égaux à a=12, b=14, c=11 et d=12 et les nombres de dents (w, x, y, z) de l'engrenage à excentrique (30) sont égaux à w=12, x=13, y=23 et z=24.
  8. Moteur lent à piston rotatif hydrostatique selon les revendications 4 à 6, caractérisé en ce que
    les nombres de dents (a, b, c, d) de la partie puissance (1) sont égaux à 1=12, b=14, c=11 et d=12 et les nombres de dents (w, x, y, z) de l'engrenage à excentrique (30) sont égaux à w=9, x=10, y=17 et z=18.
  9. Moteur lent à piston rotatif hydrostatique selon l'une des revendications 2 à 8, caractérisé en ce que
    l'excentricité commune (20) de l'engrenage à excentrique (30) est 0,013 à 0,015 fois le diamètre du cercle primitif moyen de fentes de commande (21) dans une plaque de commande (22).
  10. Moteur lent à piston rotatif hydrostatique selon l'une des revendications 2 à 8, caractérisé en ce que
    l'excentricité commune (20) de l'engrenage à excentrique (30) est 0,015 à 0,022 fois le diamètre du cercle primitif moyen de fentes de commande (21) dans une plaque de commande (22).
  11. Moteur lent à piston rotatif hydrostatique selon l'une des revendications 2 à 10, caractérisé en ce que
    le nombre de dents des dentures d'entraîneurs (31, 32) entre l'excentrique (26) et la vanne de rotation (3) est le double du nombre de dents c de la première denture extérieure (7) du piston rotatif (6) de la partie puissance (1).
  12. Moteur lent à piston rotatif hydrostatique selon l'une des revendications 1 à 11, caractérisé en ce que
    la première denture intérieure (5) du stator (4) est formée par des rouleaux (81) positionnés rotatifs.
  13. Moteur lent à piston rotatif hydrostatique selon l'une des revendications 1 à 12, caractérisé en ce
    qu'un frein de stationnement chargé par ressort (42) est placé sur un prolongement d'arbre (41) de l'arbre (2) sur le côté de l'arbre (2) qui est opposé au côté sortie de l'arbre (2), frein qui peut être débloqué hydrauliquement par un branchement séparé (43).
  14. Moteur lent à piston rotatif hydrostatique selon l'une des revendications 1 à 12, caractérisé en ce
    qu'un frein de stationnement chargé par ressort (42) est placé sur un prolongement d'arbre (41) de l'arbre (2) sur le côté de l'arbre (2) qui est opposé au côté sortie de l'arbre (2), frein qui peut être débloqué par la pression de travail du moteur à piston rotatif par l'intermédiaire d'un branchement séparé (51).
  15. Moteur lent à piston rotatif hydrostatique selon l'une des revendications 1 à 12, caractérisé en ce
    qu'une seconde partie puissance (46) est placée sur une extrémité prolongée d'arbre (44) de l'arbre (2) sur le côté de l'arbre (2) qui est opposé au côté sortie de l'arbre (2), partie qui est couplée rigide en rotation avec la première partie puissance (1) et qui présente en particulier un palier radial propre (47) pour l'extrémité prolongée d'arbre (44).
  16. Moteur lent à piston rotatif hydrostatique selon la revendication 15, caractérisé en ce que
    le volume d'absorption spécifique de la seconde partie puissance (46) est réalisé beaucoup plus petit que celui de la première partie puissance (1).
  17. Moteur lent à piston rotatif hydrostatique selon la revendication 15 ou 16, caractérisé en ce que
    la première partie puissance (1) et la seconde partie puissance (46) sont commutables par deux vannes séparées à 4/3 voies (48) et (49).
  18. Moteur lent à piston rotatif hydrostatique selon la revendication 17, caractérisé en ce que
    la partie puissance (1, 46) commutée respectivement sur circulation peut être commutée sur le côté divergent aussi bien que sur le côté convergent du système d'absorption ou de refoulement avec une pression d'alimentation.
  19. Moteur lent à piston rotatif hydrostatique selon l'une des revendications 1 à 18, caractérisé en ce
    qu'une bride de roue (40) est placée résistante à la rotation sur le côté sortie de l'arbre (2) pour l'entraînement direct d'une roue qui peut être placée sur la bride de roue (40).
  20. Moteur lent à piston rotatif hydrostatique selon la revendication 19, caractérisé en ce que
    la palier à rouleaux côté sortie (11) des deux paliers à rouleaux (10, 11) placés des deux côtés de la partie puissance (1) directement voisins sur l'arbre (2) est placé à l'extérieur de la chambre de fuite (85) du moteur à piston rotatif avec un remplissage continu de graisse pour palier à rouleaux directement dans la partie du bâti (84) du moteur à piston rotatif.
  21. Moteur lent à piston rotatif hydrostatique selon la revendication 19 ou 20, caractérisé en ce
    que la bride de roue (40) est réalisée en une pièce avec l'arbre (2).
  22. Moteur lent à piston rotatif hydrostatique selon l'une des revendications 1 à 12, caractérisé en ce
    qu'une rainure de décharge axiale périphérique (102) est prévue sur une surface de glissement axiale (110) entre la vanne rotative (3) et le piston d'équilibrage axial (65), rainure qui se trouve entre un premier espace annulaire (56) entourant la vanne rotative (3) et reliée à un raccord haute pression (55) et des rainures annulaires (108, 109) d'un second espace annulaire (58) relié à un branchement basse pression (57).
  23. Moteur lent à piston rotatif hydrostatique selon la revendication 22, caractérisé en ce que
    la rainure de décharge axiale (102) est en relation avec la chambre de fuite (85) du moteur à piston rotatif par une forure de liaison (103).
  24. Moteur lent à piston rotatif hydrostatique selon la revendication 23, caractérisé en ce que
    la rainure de décharge axiale (102) et sa forure de liaison (103) sont placées dans la vanne de rotation (3).
  25. Moteur lent à piston rotatif hydrostatique selon la revendication 23, caractérisé en ce que
    la rainure de décharge axiale (102) et sa forure de liaison (103) sont placées dans le piston d'équilibrage axial (65).
  26. Moteur de roue lent hydrostatique,
    caractérisé par
    un moteur à piston rotatif hydrostatique selon l'une des revendications 19 à 21, une roue qui peut être entraînée directement par le moteur à piston rotatif hydrostatique étant placée sur la bride de roue (40).
  27. Entraînement de treuil lent hydrostatique,
    caractérisé par
    un moteur à piston rotatif hydrostatique selon l'une des revendications 19 à 21, un tambour à câbles qui peut être entraîné directement par le moteur à piston rotatif hydrostatique étant placé sur la bride de roue (40).
EP05761659.1A 2004-07-22 2005-07-12 Moteur a piston rotatif hydrostatique Not-in-force EP1776525B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01239/04A CH701073B1 (de) 2004-07-22 2004-07-22 Hydrostatischer Kreiskolbenmotor.
PCT/EP2005/007543 WO2006010471A1 (fr) 2004-07-22 2005-07-12 Moteur a piston rotatif hydrostatique

Publications (2)

Publication Number Publication Date
EP1776525A1 EP1776525A1 (fr) 2007-04-25
EP1776525B1 true EP1776525B1 (fr) 2013-08-28

Family

ID=34972717

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05761659.1A Not-in-force EP1776525B1 (fr) 2004-07-22 2005-07-12 Moteur a piston rotatif hydrostatique

Country Status (4)

Country Link
US (1) US7832996B2 (fr)
EP (1) EP1776525B1 (fr)
CH (1) CH701073B1 (fr)
WO (1) WO2006010471A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014006761U1 (de) 2014-08-22 2015-11-24 Siegfried Eisenmann Hydrostatische Kreiskolbenmaschine nach dem Orbitprinzip

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8616528B2 (en) * 2009-01-15 2013-12-31 Parker Hannifin Corporation Integrated hydraulic motor and winch
WO2011161117A2 (fr) 2010-06-23 2011-12-29 Eisenmann Siegfried A Machine hydrostatique à piston rotatif à volume variable en continu
WO2012031970A1 (fr) 2010-09-06 2012-03-15 Eisenmann Siegfried A Entraînement hydrostatique pour un véhicule automobile
EP2607683A2 (fr) 2011-12-22 2013-06-26 Böhm+Wiedemann AG Moteur hydrostatique à pistons rotatifs
DE102011122027B3 (de) * 2011-12-22 2013-04-11 Böhm + Wiedemann Feinmechanik AG Hydrostatischer Kreiskolbenmotor
EP2607691A1 (fr) 2011-12-22 2013-06-26 Siegfried A. Eisenmann Eolienne avec une pompe hydraulique
JP5860695B2 (ja) * 2011-12-28 2016-02-16 Kyb株式会社 電動オイルポンプ
JP5767996B2 (ja) * 2012-03-29 2015-08-26 カヤバ工業株式会社 流体圧駆動ユニット
JP5934543B2 (ja) * 2012-03-29 2016-06-15 Kyb株式会社 流体圧駆動ユニット
CN102828895B (zh) * 2012-09-07 2015-10-21 镇江大力液压马达股份有限公司 径向支撑轴阀配流摆线液压马达
CN103016336B (zh) * 2012-12-12 2015-01-07 北京动力机械研究所 一种基于行星摆线转子泵的永磁同步电动计量泵
JP6133234B2 (ja) * 2013-07-08 2017-05-24 本田技研工業株式会社 オイルポンプの取り付け構造
DE102013111098B3 (de) 2013-10-08 2014-11-13 4-QM hydraulics GmbH Strömungsmaschine
GB2525704B (en) * 2014-02-14 2016-04-27 Pattakos Manousos Disk rotary valve having opposed acting fronts
DE102015217045A1 (de) 2015-09-07 2017-03-09 Volkswagen Aktiengesellschaft Nutzfahrzeuglenkung
CN106438189A (zh) * 2016-07-09 2017-02-22 镇江大力液压马达股份有限公司 一种超微型摆线液压马达
EP3441613B1 (fr) 2017-08-07 2022-01-05 Siegfried A. Eisenmann Machine hydrostatique à pistons rotatifs et à engrenage
CN109657353B (zh) * 2018-12-19 2022-11-18 重庆跃进机械厂有限公司 一种齿轮泵卸荷槽形状的确定方法
DE202019001218U1 (de) 2019-03-13 2019-04-16 Siegfried Alexander Eisenmann Drehventilantrieb für Zahnrad-Kreiskolbenmotoren

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3549284A (en) * 1969-02-18 1970-12-22 George V Woodling Self-timing means for rotary valve in fluid pressure device
US3853435A (en) * 1972-11-03 1974-12-10 Kayaba Industry Co Ltd Gerotor device with gear drive for commutator valve
DE3402710A1 (de) * 1984-01-26 1985-08-08 Siegfried Dipl.-Ing. 7960 Aulendorf Eisenmann Hydraulische kreiskolbenmaschine
CH679062A5 (fr) * 1988-10-24 1991-12-13 Siegfried Eisenmann
EP0761968A1 (fr) * 1995-09-08 1997-03-12 Siegfried A. Dipl.-Ing. Eisenmann Soupape pour moteur à engrenage à denture intérieure avec palier hydrostatique
US5820504A (en) * 1996-05-09 1998-10-13 Hawk Corporation Trochoidal tooth gear assemblies for in-line mechanical power transmission, gear reduction and differential drive
EP1074740B1 (fr) * 1999-08-03 2001-12-19 Siegfried A. Dipl.-Ing. Eisenmann Machine hydrostatique à piston rotatif

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014006761U1 (de) 2014-08-22 2015-11-24 Siegfried Eisenmann Hydrostatische Kreiskolbenmaschine nach dem Orbitprinzip

Also Published As

Publication number Publication date
US7832996B2 (en) 2010-11-16
WO2006010471A1 (fr) 2006-02-02
EP1776525A1 (fr) 2007-04-25
CH701073B1 (de) 2010-11-30
US20080003124A1 (en) 2008-01-03

Similar Documents

Publication Publication Date Title
EP1776525B1 (fr) Moteur a piston rotatif hydrostatique
DE2300343C2 (de) Achsantrieb für Fahrzeuge
EP1855907B1 (fr) Unite de differentiel destinee a des vehicules comportant un mecanisme de commande active de la repartition de la motricite
DE102006021570A1 (de) Hydrostatische Kolbenmaschine mit drehbarer Steuerscheibe
EP0807030A1 (fr) Dispositif d'entrainement, en particulier des barbotins de vehicules chenilles
DE19903563A1 (de) Hydrostatische Motoreinheit
DE2409914C2 (fr)
DE4206101C2 (de) Hydromechanisches Antriebssystem
DE4206102C2 (de) Hydromechanisches Getriebe
DE10306850A1 (de) Hydraulisch betätigte Reibungskupplung
EP3441613B1 (fr) Machine hydrostatique à pistons rotatifs et à engrenage
DE102005021945B3 (de) Hydrostatische Sperrkupplung
DE4235710A1 (de) Hydromechanisches Antriebsaggregat
DE9111129U1 (de) Zweistufiges Planetengetriebe
DE3406543A1 (de) Verdraengermaschine, insbes. zykloiden-planetengetriebe mit integriertem, hydraulischem motor
DE10253384A1 (de) Differentialgetriebe
DE3402710A1 (de) Hydraulische kreiskolbenmaschine
DE102010020299B4 (de) Pumpe mit Reibkupplungs-Drehzahlregelung
EP0761968A1 (fr) Soupape pour moteur à engrenage à denture intérieure avec palier hydrostatique
EP1074740B1 (fr) Machine hydrostatique à piston rotatif
DE3307047A1 (de) Aggregat aus einem druckmittel-kolben-motor und einem umlaufradgetriebe
DE202014006761U1 (de) Hydrostatische Kreiskolbenmaschine nach dem Orbitprinzip
EP1764506A2 (fr) Pompe à engrenages internes
EP3245425B1 (fr) Convertisseur de couple hydraulique
DE3603773A1 (de) Zahnradmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070118

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

GBC Gb: translation of claims filed (gb section 78(7)/1977)
DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20080215

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EISENMANN, SIEGFRIED A.

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: EISENMANN, SIEGFRIED A.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005013943

Country of ref document: DE

Owner name: WILLIBALD, ARTUR, DE

Free format text: FORMER OWNER: EISENMANN, SIEGFRIED A., DIPL.-ING., 88326 AULENDORF, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005013943

Country of ref document: DE

Effective date: 20131024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005013943

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005013943

Country of ref document: DE

Effective date: 20140530

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150723

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150727

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160712

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005013943

Country of ref document: DE

Representative=s name: DAUB, THOMAS, DIPL.-ING., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005013943

Country of ref document: DE

Representative=s name: DAUB, THOMAS, DIPL.-ING., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005013943

Country of ref document: DE

Owner name: WILLIBALD, ARTUR, DE

Free format text: FORMER OWNER: EISENMANN, SIEGFRIED A., DIPL.-ING., 88326 AULENDORF, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220729

Year of fee payment: 18

Ref country code: DE

Payment date: 20220630

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005013943

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230712