EP1774237A1 - Wärmeübertrager, insbesondere kondensator - Google Patents

Wärmeübertrager, insbesondere kondensator

Info

Publication number
EP1774237A1
EP1774237A1 EP05770489A EP05770489A EP1774237A1 EP 1774237 A1 EP1774237 A1 EP 1774237A1 EP 05770489 A EP05770489 A EP 05770489A EP 05770489 A EP05770489 A EP 05770489A EP 1774237 A1 EP1774237 A1 EP 1774237A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
tube
exchanger according
cover
indicates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05770489A
Other languages
English (en)
French (fr)
Inventor
Herbert Damsohn
Conrad Pfender
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1774237A1 publication Critical patent/EP1774237A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0316Assemblies of conduits in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/067Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • F28F9/0226Header boxes formed by sealing end plates into covers with resilient gaskets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/162Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by using bonding or sealing substances, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0043Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for fuel cells
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials
    • F28F2275/025Fastening; Joining by using bonding materials; by embedding elements in particular materials by using adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a heat exchanger, in particular a Konden ⁇ capacitor according to the preamble of claim 1.
  • moist process exhaust air is produced, which is cooled down, producing condensate, inter alia, water and methanol.
  • the cooled process air and the condensate are fed back into the process.
  • the cooling is preferably carried out by ambient air.
  • the process air is corrosive due to the constituents contained in it and is under a relatively low pressure.
  • Conventional heat exchangers in particular for motor vehicles, are generally designed for higher pressures and a greater pressure drop on the cooling air side, ie also with higher fan powers. Accordingly, the joining technique is complex, ie, aluminum or stainless steel systems are used whose components such as pipes, ribs, tubesheets, De ⁇ ckel and manifolds are soldered or welded together.
  • the known systems are too expensive or unsuitable for the abovementioned media and process conditions: conventional stainless steel coolers are usually designed for higher pressures, plastic coolers are not sufficiently powerful owing to their poor heat conductivity, and aluminum coolers are not sufficient, even with corrosion-inhibiting coatings Corro sion resistant.
  • the heat exchanger should have good condensate drainage properties.
  • the collecting boxes including tubesheet are made of plastic and the tubes made of stainless steel - both materials are corrosion resistant.
  • Low wall thicknesses and the formation of the heat transfer surfaces as primary surfaces lead despite a possibly low thermal conductivity of the materials to a low power density.
  • a sufficient compressive strength of the flat tubes is given, which have a low cooling air side pressure drop as an advantage.
  • the joining technique of the components of the heat exchanger according to the invention is adapted to the low requirements (with regard to pressure resistance and tightness).
  • the tube ends of the flat tubes are tightly and firmly received in openings of the plastic tube bottom.
  • the compressive strength of the flat tubes which are inherently unstable, can be enhanced by beads or nubs or widening of the tube ends.
  • beading as inside or outside cusps as well as continuous or non-continuous longitudinal beads are possible.
  • gaps are left for thede Kunststoff ⁇ leadership between the flat tubes, in which no conventional ribs are arranged - thus resulting in a low pressure drop on the air side and a low fan power. Nevertheless, a good cooling effect is achieved due to the long gap between the flat tubes.
  • the collecting boxes are made of two parts, namely a lid and a tube sheet joined and sealed together.
  • sealing zones There are two sealing zones, namely on the one hand between the lid and the tubesheet and on the other hand between the tubes and the tubesheet.
  • a sealant namely a bonding sealant, preferably a two-component silicone or a potting compound, as is commonly used for electronic assemblies.
  • the pipe ends are inserted into corresponding openings of the tube sheet, with a certain pipe protrusion towards the lid. Then the bottom is poured out with the liquid sealant and the lid is put on. Lid and Rohr ⁇ soil are bonded by the curing sealant in a circumferential joining area, are thus firmly and tightly connected.
  • Cover and tube sheet are advantageously made of a polyamide (PA) or polyoxymethylene (POM) as molded parts, ie inexpensive to produce.
  • liquid seal ie the two-component silicone adhesive
  • solid, elastomeric seal at least in the circumferential joining region between the bottom and the cover
  • the lid rests on the seal with a circumferential flange and is mechanically connected to the tubesheet by externally acting clips or clips, which may result in a manufacturing and assembly aid
  • one advantage of a liquid seal is that an "adhesive bond" can also be produced “wet-on-wet".
  • a so-called diffuser plate which is preferably designed as a multi-hole diaphragm in plastic used in the inlet-side collecting container, for. B. positioned and fixed by a simple clip connection. Due to the large number of pinhole diaphragms, it is possible under some circumstances to achieve a flow velocity which is more uniform over the tubes.
  • the condensate can be in the vertically an ⁇ ordered, smooth on the inside, partly with L Lucasssi- - A -
  • FIG. 1b shows the condenser according to FIG. 1 in a plan view with removed cover
  • Fig. 2 shows a detail X of Fig. 1
  • Fig. 3 is a flat tube of the capacitor
  • FIG 4 shows a cross section through a further flat tube formation with internal beads.
  • Fig. 1 shows a capacitor 1, as it z. B. for the condensation of moist process air of a fuel cell process, for example in a DMFC ("direct methanol fuel cell"), in particular for motor vehicles can find use.
  • the moist process exhaust air has a relatively low pressure, contains, inter alia, water and methanol in vapor
  • the condenser has an upper intake-side header 2 and a lower drain-side header 3, each with an inlet 4 and an outlet 5.
  • the upper header 2 is composed of a cover 6 and a tube plate 7 -
  • the lower collection box 3 in an analogous manner from a De ⁇ 8 and a tube sheet bottom plate 9.
  • the capacitor 1 is a primary surface heat exchanger.
  • the gaps 13 form smooth cooling air channels.
  • a diffuser plate 14 is arranged, above the tube ends 11 and parallel to the tube plate 7.
  • the diffuser plate 14 has a plurality of pinhole 15, ie calibrated Openings on.
  • the diffuser plate 15 is fixedly arranged in the lid 6, z. B. fixed by a clip connection, not shown.
  • Fig. 1a shows the condenser 1 in a half-section and in a half-side view, in particular the diffuser plate 14 with the Lochblen ⁇ the 15 in the cover 6 can be seen.
  • the diffuser plate 14 thus extends over the entire flow cross section of the process gases entering through the inlet connection 4, so that they can only reach the flat tubes 10 through the apertured apertures 15. Between the perforated plate 14 and the upper edge of the flat tube ends 11 there is a sufficient Eisen ⁇ space 16, which allows a delay of accelerated by the pinhole 15 th flow of process gases, combined with a Druckan ⁇ rose.
  • the direction of flow of the cooling air through the condenser 1 is indicated by an arrow L.
  • FIG. 1b shows a plan view of the tube plate 7 with the flat tube ends 11, which extend over the entire depth of the tube plate 7. This results in relatively long smooth surfaces in the direction of flow of the cooling air.
  • FIG. 2 shows a detail X of FIG. 1, ie an edge region of the tube bottom 7 with four flat tubes 10 and their flat tube ends 11, which are widened relative to the tubes 10.
  • the tubesheet 7 blackened is a plastic injection molded part, for. B., made of a polyamide (PA). It has tube openings 17 into which the widened tube ends 11 are inserted in such a way that they project inwards relative to the tubesheet 7, ie have a tube projection Ü.
  • the edge region of the bottom 7 has a circumferential groove 18, whose outer side 18a is pulled up to the height of the pipe protrusion Ü.
  • the collection box 2 (and analogously also the collection box 3) is composed of the lid 6 and the bottom 7.
  • the tube 7 is covered ("flooded") with a liquid or pasty sealant 19 after the tubes 10 have been inserted with their tube ends 11.
  • a liquid sealant may be a two-component adhesive (silicone) is present in liquid form at the beginning of its processing and later hardens to an elastic mass.
  • This sealing compound 19 then fills the Gaps between the flat tube ends 11 and the circumferential groove 18 from.
  • the lid 6, which has a flange 20 adapted to the channel 18 with a rib 20a is then placed in the sealing compound 19 and on the tubesheet 7.
  • the circumferential rib 20a immersed in the liquid sealant 19 and forms with this an enlarged sealing or setting surface, so that a mechanically fixed and tight connection between tube sheet 7 and cover 6 er ⁇ is.
  • the tubes 10 or their tube ends 11 are sufficiently sealed by the aus ⁇ hardening sealing compound 19 with respect to the tube plate 7 and mechanically supported due to the adhesive effect of the sealing compound 19. In principle, therefore, no mechanical widening of the tube ends 11 with respect to the tube openings is required 17 to be made, although this may be advantageous to increase the sealing and holding action.
  • Fig. 3 shows a single flat tube 10, the tube ends 11, 12 are widened in the longitudinal and transverse directions, which also shows in particular from the sectional view.
  • the expansion of the flat tubes 10 takes place for the purpose of providing increased stability to the flat tubes, which are relatively unstable to internal pressure, in particular in the case of extreme depth, as here, d. H. in the field of pipe / floor connections.
  • the cross section of the flat tube 10 is composed of two smooth, straight longitudinal sides 10a, 10b and in the region of the flat tube ends 11 of two smooth longitudinal sides 11a, 11b together and two semicircular arches 11c, 11d. Because of this simple oval shape, two straight lines and two semicircles, the corresponding tube openings in the tubesheet can be easily produced.
  • Fig. 4 shows a further embodiment of a flat tube 21, which in the longitudinal direction and mutually parallel, inwardly directed longitudinal beads 22 has.
  • the flat tube 21 is significantly improved by these inner beads 22 in terms of its stability and receives a higher rigidity.
  • modified forms of the beads 22 in number and shape, ie, for example, not continuously possible.
  • the beads 22 may also be directed outwards or replaced by round or elongated knobs.
  • a support effect to the outside ie be achieved from flat tube to flat tube. Otherwise, the inner surfaces of the flat tubes are essentially smooth, so that the condensate can drain off well.
  • Fig. 5 shows a further embodiment of a flat tube 23, which is composed of two half-shells, the front side are tight and optionally firmly connected.
  • the connecting seams 24, 25 are preferably producible by welding, soldering, adhesive bonding and / or by folding. The otherwise difficult under certain circumstances to be sealed contour of the surfaces or edges to be joined is compensated by a liquid-pasty Ab ⁇ sealing compound or at least tolerable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft einen Wärmeübertrager, insbesondere Kondensator (1) für ein erstes dampf- und/oder gasförmiges Fluid mit einem zulaufseitigen und einem ablaufseitigen Sammelkasten (2, 3) und die beiden Sammelkästen (2, 3) verbindenden Rohren, die von dem ersten Fluid durchströmbar und von einem zweiten gasförmigen Fluid, insbesondere Luft umströmbar sind und Rohrenden aufweisen. Es wird vorgeschlagen, dass die Rohre als Flachrohre (10) ausgebildet und aus einem korrosionsbeständigen Werkstoff hoher Wärmeleitfähigkeit, insbesondere Edelstahl hergestellt sind, dass die Sammelkästen (2, 3) aus einem korrosionsbeständigen Material, insbesondere Kunststoff hergestellt sind und einen Deckel und einen Rohrboden aufweisen, und dass die Rohrenden (11, 12) im Rohrboden (7, 9) fest und dicht gehalten sind.

Description

Wärmeübertrager, insbesondere Kondensator
Die Erfindung betrifft einen Wärmeübertrager, insbesondere einen Konden¬ sator nach dem Oberbegriff des Patentanspruches 1.
In Brennstoffzellensystemen fällt feuchte Prozessabluft an, die abgekühlt wird, wobei Kondensat, unter anderem Wasser und Methanol anfällt. Die abgekühlte Prozessluft sowie das Kondensat werden in den Prozess zurück¬ geführt. Die Kühlung erfolgt vorzugsweise durch Umgebungsluft. Die Pro- zessluft ist aufgrund der in ihr enthaltenen Bestandteile korrosiv und steht unter einem relativ niedrigen Druck.
Herkömmliche Wärmeübertrager, insbesondere für Kraftfahrzeuge sind im Allgemeinen für höhere Drücke und einen größeren Druckabfall auf der Kühl- luftseite, d. h. auch mit höheren Lüfterleistungen ausgelegt. Entsprechend ist auch die Fügetechnik aufwendig, d. h. es werden Aluminium- oder Edel¬ stahlsysteme eingesetzt, deren Bauteile wie Rohre, Rippen, Rohrböden, De¬ ckel und Sammelkästen miteinander verlötet oder verschweißt werden. Für die o. g. Medien und Prozessbedingungen sind die bekannten Systeme zu aufwendig oder nicht geeignet: übliche Edelstahlkühler sind meistens für hö¬ here Drücke ausgelegt, Kunststoffkühler sind wegen ihrer schlechten Wär¬ meleitfähigkeit nicht genügend leistungsstark, und Aluminiumkühler sind - auch mit korrosionshemmenden Beschichtungen - nicht hinreichend korro¬ sionsbeständig. Es ist daher Aufgabe der vorliegenden Erfindung, einen Wärmeübertrager, insbesondere Kondensator der eingangs genannten Art zu schaffen, der ei¬ nerseits korrosionsbeständig gegenüber einem ersten abzukühlenden Medi¬ um und andererseits für niedrige Drücke und hohe Kühlleistung bei geringen Herstellkosten ausgelegt ist. Insbesondere soll der Wärmeübertrager gute Kondensatablaufeigenschaften aufweisen.
Diese Aufgabe wird durch die Merkmale des Patentanspruches 1 gelöst. Werkstoffe und Fügetechnik für den erfindungsgemäßen Wärmeübertrager sind im Hinblick auf ihre Funktion gewählt: die Sammelkästen einschließlich Rohrboden sind aus Kunststoff und die Rohre aus Edelstahl hergestellt - beide Werkstoffe sind korrosionsbeständig. Geringe Wanddicken sowie die Ausbildung der Wärmeübertragungsflächen als Primärflächen führen trotz einer unter Umständen geringen Wärmeleitfähigkeit der Werkstoffe zu einer günstigen Leistungsdichte. Gleichzeitig ist eine hinreichende Druckfestigkeit der Flachrohre gegeben, die einen geringen kühlluftseitigen Druckabfall als Vorteil aufweisen. Die Fügetechnik der Bauteile des erfindungsgemäßen Wärmeübertragers ist an die geringen Anforderungen (hinsichtlich Druckfes¬ tigkeit und Dichtheit) angepasst. Die Rohrenden der Flachrohre werden in Öffnungen des Kunststoffrohrbodens dicht und fest aufgenommen.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen. Vorteilhafterweise kann die Druckfestigkeit der Flachrohre, die an sich instabil sind, durch Sicken oder Noppen oder Aufweitung der Rohrenden verstärkt werden. Dabei sind Sicken als Innen- oder Außensi- cken sowie durchgehende oder nicht durchgehende Längssicken möglich. Vorteilhaft ist ferner, dass zwischen den Flachrohren Spalte für die Kühlluft¬ führung belassen sind, in welchen keine herkömmlichen Rippen angeordnet sind - damit ergibt sich ein geringer Druckabfall auf der Luftseite und eine geringe Ventilatorleistung. Dennoch wird eine gute Kühlwirkung aufgrund der langen Spalte zwischen den Flachrohren erzielt. Es ist ferner von Vorteil, wenn die Sammelkästen aus zwei Teilen, nämlich einem Deckel und einem Rohrboden gefügt und dicht miteinander verbunden sind. Dabei gibt es zwei Dichtzonen, nämlich einerseits zwischen dem Deckel und dem Rohrboden und andererseits zwischen den Rohren und dem Rohrboden. Vorteilhafter- weise kann die Abdichtung beider Dichtzonen durch ein Dichtmittel, nämlich eine verklebende Dichtmasse, vorzugsweise ein Zweikomponenten-Silikon oder eine Vergussmasse, wie sie üblicherweise für Elektronikbaugruppen verwendet wird, erfolgen. Dazu werden die Rohrenden in entsprechende Öffnungen des Rohrbodens eingesteckt, und zwar mit einem gewissen Rohrüberstand in Richtung Deckel. Daraufhin wird der Boden mit der flüssi¬ gen Dichtmasse ausgegossen und der Deckel aufgesetzt. Deckel und Rohr¬ boden werden durch die aushärtende Dichtmasse in einem umlaufenden Fügebereich verklebt, sind somit fest und dicht miteinander verbunden. Die Rohrenden sind umfangseitig von der aushärtenden, jedoch elastisch blei¬ benden Dichtmasse umgeben, sodass eine hinreichende Abdichtung der Rohre gegenüber dem Rohrboden gewährleistet und eine Leckage der ag¬ gressiven Prozessluft in die Umgebung verhindert ist. Deckel und Rohrboden sind vorteilhafterweise aus einem Polyamid (PA) oder Polyoxymethylen (POM) als Spritzteile, d. h. preisgünstig herstellbar. Alternativ kann es auch von Vorteil sein, die „flüssige" Dichtung, d. h. den Zweikomponenten- Silikonkleber durch eine feste, elastomere Dichtung, zumindest im umlau¬ fenden Fügebereich zwischen Boden und Deckel zu ersetzen. Bei dieser Alternative wird eine umlaufende elastomere Dichtung in den Randbereich des Bodens eingelegt; der Deckel liegt mit einem umlaufenden Flansch auf der Dichtung auf und wird durch außen angreifende Klammern oder Clips mechanisch mit dem Rohrboden verbunden, wodurch sich unter Umständen eine Fertigungs- und Montagehilfe ergibt. Auch eine solche De¬ ckel/Bodenverbindung würde den gegebenen Prozessbedingungen genü- gen. Ein Vorteil einer flüssigen Dichtung ist unter Umständen, dass hiermit auch „nass-in-nass" eine Klebeverbindung darstellbar ist.
Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist im zulaufs- seitigen Sammelbehälter eine so genannte Diffusorplatte, die vorzugsweise als Mehrlochblende in Kunststoff ausgebildet ist, eingesetzt, z. B. durch eine einfache Clipsverbindung positioniert und fixiert. Durch die Vielzahl von Lochblenden ist unter Umständen eine über die Rohre gleichmäßigere Strö¬ mungsgeschwindigkeit erzielbar. Das Kondensat kann in den senkrecht an¬ geordneten, auf der Innenseite glatt ausgebildeten, teilweise mit Längssi- - A -
cken ausgestatteten Flachrohren sehr gut ablaufen, sodass sich eine weitere Verbesserung der Kondensationsbedingungen ergibt.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im Folgenden näher beschrieben. Es zeigen
Fig. 1 eine luftgekühlten Kondensator im Längsschnitt,
Fig. 1a den Kondensator gemäß Fig. 1 in einer halben Seitenansicht und im Halbschnitt, Fig. 1b den Kondensator gemäß Fig. 1 in einer Draufsicht mit abge¬ nommenen Deckel,
Fig. 2 eine Einzelheit X aus Fig. 1 , Fig. 3 ein Flachrohr des Kondensators und
Fig. 4 einen Querschnitt durch eine weitere Flachrohrausbildung mit Innensicken.
Fig. 1 zeigt einen Kondensator 1 , wie er z. B. für die Kondensation von feuchter Prozessluft eines Brennstoffzellenprozesses, beispielsweise in einer DMFC („Direct Methanol Fuel Cell"), insbesondere für Kraftfahrzeuge Ver- wendung finden kann. Die feuchte Prozessabluft weist einen relativ niedrigen Druck auf, enthält u. a. Wasser und Methanol in dampfförmiger Phase und ist insofern korrosiv. Der Kondensator weist einen oberen, zulaufseitigen Sammelkasten 2 sowie einen unteren ablaufseitigen Sammelkasten 3 auf, jeweils mit einem Eintrittsstutzen 4 bzw. einem Austrittsstutzen 5. Der obere Sammelkasten 2 ist aus einem Deckel 6 und einem Rohrboden 7 zusam¬ mengesetzt - der untere Sammelkasten 3 in analoger Weise aus einem De¬ ckel 8 und einem Rohrboden 9. Zwischen den beiden Sammelkästen 2, 3 sind parallel zueinander verlaufende Flachrohre 10 angeordnet, die mit ihren Rohrenden 11 , 12 in den Rohrböden 7, 9 dicht aufgenommen sind. Zwi- sehen den einzelnen Flachrohren 10 sind Spalte 13 belassen, in welchen keine herkömmlichen Rippen angeordnet sind - insofern ist der Kondensator 1 ein Primärflächenwärmeübertrager. Die Spalte 13 bilden glatte Kühlluft¬ kanäle. Im oberen Sammelkasten 2 ist eine Diffusorplatte 14 angeordnet, und zwar oberhalb der Rohrenden 11 und parallel zum Rohrboden 7. Die Diffusorplatte 14 weist eine Vielzahl von Lochblenden 15, d. h. kalibrierten Öffnungen auf. Die Diffusorplatte 15 ist fest im Deckel 6 angeordnet, z. B. durch eine nicht dargestellte Clipsverbindung fixiert.
Fig. 1a zeigt den Kondensator 1 in einem Halbschnitt und in einer halben Seitenansicht, wobei insbesondere die Diffusorplatte 14 mit den Lochblen¬ den 15 im Deckel 6 erkennbar ist. Die Diffusorplatte 14 erstreckt sich somit über den gesamten Strömungsquerschnitt der durch den Eintrittsstutzen 4 eintretenden Prozessgase, sodass diese nur durch die Lochblenden 15 in die Flachrohre 10 gelangen können. Zwischen der Lochplatte 14 und der Oberkante der Flachrohrenden 11 befindet sich ein hinreichender Zwischen¬ raum 16, der eine Verzögerung der durch die Lochblenden 15 beschleunig¬ ten Strömung der Prozessgase ermöglicht, verbunden mit einem Druckan¬ stieg. Die Strömungsrichtung der Kühlluft durch den Kondensator 1 ist durch einen Pfeil L gekennzeichnet.
Fig. 1b zeigt eine Draufsicht auf den Rohrboden 7 mit den Flachrohrenden 11 , die sich über die gesamte Tiefe des Rohrbodens 7 erstrecken. Es erge¬ ben sich somit relativ lange glatte Flächen in Strömungsrichtung der Kühlluft.
Fig. 2 zeigt eine Einzelheit X aus Fig. 1 , d. h. einen Randbereich des Rohr¬ bodens 7 mit vier Flachrohren 10 und deren Flachrohrenden 11 , die gegen¬ über den Rohren 10 aufgeweitet sind. Der Rohrboden 7 (geschwärzt) ist als Kunststoffspritzteil, z. B., aus einem Polyamid (PA) hergestellt. Er weist Rohröffnungen 17 auf, in welche die aufgeweiteten Rohrenden 11 derart eingesetzt sind, dass sie gegenüber dem Rohrboden 7 nach innen überste¬ hen, d. h. einen Rohrüberstand Ü aufweisen. Der Randbereich des Bodens 7 weist eine umlaufende Rinne 18 auf, deren Außenseite 18a auf die Höhe des Rohrüberstandes Ü hochgezogen ist. Wie bereits erwähnt, ist der Sam¬ melkasten 2 (und analog auch der Sammelkasten 3) aus dem Deckel 6 und dem Boden 7 zusammengesetzt. Zum Fügen beider Teile wird der Rohrbo¬ den 7, nachdem die Rohre 10 mit ihren Rohrenden 11 eingesetzt worden sind, mit einer flüssigen oder pastösen Dichtmasse 19 bedeckt („geflutet"). Eine solche flüssige Dichtmasse kann ein Zweikomponentenkleber (Silikon) sein, der zu Beginn seiner Verarbeitung in flüssiger Form vorliegt und später zu einer elastischen Masse aushärtet. Diese Dichtmasse 19 füllt dann die Zwischenräume zwischen den Flachrohrenden 11 und auch die umlaufende Rinne 18 aus. In diesem flüssigen Zustand wird dann der Deckel 6, der ei¬ nen an die Rinne 18 angepassten Flansch 20 mit einer Rippe 20a aufweist in die Dichtmasse 19 und auf den Rohrboden 7 aufgesetzt. Dabei taucht die umlaufende Rippe 20a in die flüssige Dichtmasse 19 ein und bildet mit die¬ ser eine vergrößerte Dicht- bzw. Abbindefläche, sodass sich eine mecha¬ nisch feste und dichte Verbindung zwischen Rohrboden 7 und Deckel 6 er¬ gibt. Gleichzeitig sind die Rohre 10 bzw. ihre Rohrenden 11 durch die aus¬ härtende Dichtmasse 19 hinreichend gegenüber dem Rohrboden 7 abge- dichtet und infolge der Klebwirkung der Dichtmasse 19 mechanisch gehal¬ ten. Im Prinzip braucht somit keine mechanische Aufweitung der Rohrenden 11 gegenüber den Rohröffnungen 17 vorgenommen zu werden, wenngleich dies zur Steigerung der Dicht- und Haltewirkung vorteilhaft sein kann.
Fig. 3 zeigt ein einzelnes Flachrohr 10, dessen Rohrenden 11, 12 in der Längs- und Querrichtung aufgeweitet sind, was insbesondere auch aus der Schnittdarstellung hervorgeht. Die Aufweitung der Flachrohre 10 erfolgt zu dem Zweck, um den an sich gegen Innendruck relativ instabilen Flachrohren, insbesondere bei extremer Tiefe wie hier, eine erhöhte Stabilität zu verlei- hen, d. h. im Bereich der Rohr/Boden-Verbindungen. Der Querschnitt des Flachrohres 10 setzt sich aus zwei glatten, geraden Längsseiten 10a, 10b und im Bereich der Flachrohrenden 11 aus zwei glatten Längsseiten 11a, 11b zusammen sowie aus zwei halbkreisförmigen Bögen 11c, 11d. Aufgrund dieser einfachen Ovalform, zwei Geraden und zwei Halbkreise, lassen sich auch die entsprechenden Rohröffnungen im Rohrboden einfach herstellen.
Fig. 4 zeigt eine weitere Ausgestaltung eines Flachrohres 21 , welches in Längsrichtung und parallel zueinander verlaufende, nach innen gerichtete Längssicken 22 aufweist. Das Flachrohr 21 wird durch diese Innensicken 22 hinsichtlich seiner Stabilität erheblich verbessert und erhält eine höhere Steifigkeit.
Alternativ sind abgewandelte Formen der Sicken 22 in Zahl und Form, d. h. z. B. nicht durchgehend möglich. Die Sicken 22 können auch nach außen gerichtet sein oder durch runde oder längliche Noppen ersetzt werden. Damit kann auch eine Stützwirkung nach außen, d. h. von Flachrohr zu Flachrohr erzielt werden. Ansonsten sind die Innenflächen der Flachrohre im Wesentli¬ chen glatt, sodass das Kondensat gut ablaufen kann.
Fig. 5 zeigt eine weitere Ausgestaltung eines Flachrohres 23, das aus zwei Halbschalen zusammengesetzt ist, die stirnseitig dicht und gegebenenfalls fest miteinander verbunden sind. Die Verbindungsnähte 24, 25 sind vor¬ zugsweise durch Schweiß-, Löt-, Klebverfahren und/oder durch Falzen her¬ stellbar. Die ansonsten unter Umständen schwierig abzudichtende Kontur der zu verbindenden Flächen oder Kanten ist durch eine flüssig-pastöse Ab¬ dichtmasse ausgleichbar oder zumindest tolerierbar.
Bezugszahlenliste
1 Kondensator
2 Sammelkasten, zulaufseitig
3 Sammelkasten, ablaufseitig
4 Zulaufstutzen
5 Ablaufstutzen
6 Deckel, oben
7 Rohrboden, oben
8 Deckel, unten
9 Rohrboden, unten
10 Flachrohr
11 Rohrende
12 Rohrende
13 Spalt
14 Diffusorplatte
15 Lochblende
16 Zwischenraum
17 Rohröffnungen
18 Bodenrinne
18a äußere Wand
19 Dichtmasse
20 Flansch
20a Rippe
21 Sickenrohr
22 Innensicke
23 Flachrohr

Claims

P a t e n t a n s p r ü c h e
1. Wärmeübertrager, insbesondere Kondensator (1) für ein erstes dampf- und/oder gasförmiges Fluid mit einem zulaufseitigen und ei¬ nem ablaufseitigen Sammelkasten (2, 3) und die beiden Sammelkäs¬ ten (2, 3) verbindenden Rohren, die von dem ersten Fluid durch¬ strömbar und von einem zweiten gasförmigen Fluid, insbesondere Luft umströmbar sind und Rohrenden aufweisen, dadurch gekennzeich¬ net, dass die Rohre als Flachrohre (10) ausgebildet und aus einem korrosionsbeständigen Werkstoff hoher Wärmeleitfähigkeit, insbeson¬ dere Edelstahl hergestellt sind, dass die Sammelkästen (2, 3) aus ei¬ nem korrosionsbeständigen Material, insbesondere Kunststoff herge- stellt sind und je einen Deckel und einen Rohrboden aufweisen, und dass die Rohrenden (11, 12) in den Rohrböden (7, 9) fest und dicht gehalten sind.
2. Wärmeübertrager nach Anspruch 1 , dadurch gekennzeichnet, dass die Flachrohre (10) aus einem dünnwandigen Blech hergestellt sind und in Längsrichtung verlaufende Sicken, insbesondere Innensicken oder Noppen aufweisen.
3. Wärmeübertrager nach Anspruch 1 oder 2, dadurch gekennzeich- net, dass zwischen den Flachrohren (10) rippenlose Spalte (13) zur
Führung der Kühlluft belassen sind.
4. Wärmeübertrager nach Anspruch 1, 2 oder 3, dadurch gekenn¬ zeichnet, dass die Rohrenden (11, 12) aufgeweitet sind.
5. Wärmeübertrager nach Anspruch 1 , 2, 3 oder 4, dadurch gekenn¬ zeichnet, dass die Sammelkästen (2) im Wesentlichen zweiteilig aus¬ gebildet, aus Deckel (6) und Rohrboden (7) gefügt sind und einen um- laufenden Fügebereich (18, 20) aufweisen.
6. Wärmeübertrager nach einem der Ansprüche 1 bis 5, dadurch ge¬ kennzeichnet, dass der Rohrboden (7) auf seiner dem Deckel (6) zu¬ gewandten Seite mit einer Schicht aus einer verklebenden Dichtmas- se (19) bedeckt ist, die eine Abdichtung der Rohrenden (11) gegen¬ über dem Rohrboden (7) und/oder zwischen Deckel (6) und Rohrbo¬ den (7) im Fügebereich (20, 18) bildet.
7. Wärmeübertrager nach Anspruch 6, dadurch gekennzeichnet, dass die Dichtmasse vergießbar ist und insbesondere aus einem Zweikom¬ ponenten-Silikon (19) besteht.
8. Wärmeübertrager nach einem der Ansprüche 1 bis 7, dadurch ge¬ kennzeichnet, dass die Sammelkästen (2, 3) bzw. die Deckel (6) und Rohrböden (7) aus einem Polyamid (PA), vorzugsweise als Spritz¬ gussteile, hergestellt sind.,
9. Wärmeübertrager nach einem der Ansprüche 1 bis 8, dadurch ge¬ kennzeichnet, dass im zulaufseitigen Sammelkasten (2) eine Diffu- sorplatte (14) parallel zur Ebene des Rohrbodens (7) angeordnet ist.
10. Wärmeübertrager nach Anspruch 9, dadurch gekennzeichnet, dass die Diffusorplatte als Mehrlochblende (14, 15) insbesondere aus Kunststoff ausgebildet ist.
11. Wärmeübertrager nach einem der Ansprüche 5 bis 10, dadurch ge¬ kennzeichnet, dass der Deckel (6) mit dem Rohrboden (7) und/oder die Diffusorplatte (14) mit dem Deckel (6) verklipst oder verrastet sind.
12. Wärmeübertrager nach Anspruch 5, dadurch gekennzeichnet, dass zwischen Deckel (6) und Rohrboden (7) im Fügebereich eine elasto- mere Dichtung angeordnet und dass der Deckel (6) und der Rohrbo¬ den (7) mechanisch verklammert sind.
13. Verwendung eines Kondensators nach mindestens einem der vorher¬ gehenden Ansprüche für die Kühlung und Kondensation von Pro¬ zessabgasen eines Brennstoffzellensystems, insbesondere in einer DMFC.
EP05770489A 2004-07-23 2005-07-04 Wärmeübertrager, insbesondere kondensator Withdrawn EP1774237A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004036020A DE102004036020A1 (de) 2004-07-23 2004-07-23 Wärmeübertrager, insbesondere Kondensator
PCT/EP2005/007182 WO2006010435A1 (de) 2004-07-23 2005-07-04 Wärmeübertrager, insbesondere kondensator

Publications (1)

Publication Number Publication Date
EP1774237A1 true EP1774237A1 (de) 2007-04-18

Family

ID=35115727

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05770489A Withdrawn EP1774237A1 (de) 2004-07-23 2005-07-04 Wärmeübertrager, insbesondere kondensator

Country Status (3)

Country Link
EP (1) EP1774237A1 (de)
DE (1) DE102004036020A1 (de)
WO (1) WO2006010435A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770527A (zh) * 2017-06-22 2020-02-07 翰昂汽车零部件有限公司 热传递装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006028143A1 (de) * 2006-06-16 2007-12-20 Behr Gmbh & Co. Kg Wärmetauscher
DE102007010238A1 (de) * 2007-03-02 2008-09-04 Behr Gmbh & Co. Kg Wärmeübertragerbauteil
DE102008032287B4 (de) 2008-04-30 2012-09-27 Modine Manufacturing Co. Wärmetauscher mit einerKlebeverbindung, sowie Verfahren zur Herstellung eines Wärmetauschers
EP2300770B1 (de) 2008-07-09 2012-04-18 Modine Manufacturing Company Wärmetauscher und Herstellungsverfahren
DE202008009811U1 (de) * 2008-07-21 2009-06-04 Behr Gmbh & Co. Kg Wärmeübertrager
DE102009004908A1 (de) * 2009-01-16 2010-09-16 Mahle International Gmbh Verfahren zur Herstellung eines Wärmetauschers
DE102014219401A1 (de) * 2014-09-25 2016-03-31 Mahle International Gmbh Anordnung für eine Temperiereinrichtung sowie Temperiereinrichtung
DE102015225684A1 (de) * 2015-12-17 2017-06-22 Mahle International Gmbh Wärmeübertrager und Adapterstück
DE102018111585A1 (de) * 2017-06-22 2018-12-27 Hanon Systems Vorrichtung zur Wärmeübertragung sowie Verfahren zum Herstellen der Vorrichtung
DE102021206021A1 (de) 2021-06-14 2022-12-15 Mahle International Gmbh Wärmeübertrager
FR3127560A1 (fr) * 2021-09-24 2023-03-31 Sogefi Air & Cooling Structure de répartition de fluide caloporteur

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3415315A (en) * 1966-06-29 1968-12-10 Borg Warner Heat exchanger
US4531578A (en) * 1984-06-28 1985-07-30 Modine Manufacturing Company Tank-header plate connection
FR2584488A1 (fr) * 1985-07-03 1987-01-09 Chausson Usines Sa Procede pour la liaison d'au moins une plaque collectrice et d'une boite a eau sur les tubes d'un echangeur de chaleur et echangeur de chaleur en faisant application.
FR2614408A1 (fr) * 1987-04-22 1988-10-28 Chausson Usines Sa Dispositif d'assemblage entre une plaque collectrice et une boite a eau d'un echangeur de chaleur
US5186250A (en) * 1990-05-11 1993-02-16 Showa Aluminum Kabushiki Kaisha Tube for heat exchangers and a method for manufacturing the tube
US5125454A (en) * 1991-08-27 1992-06-30 Thermal Components, Inc. Manifold assembly for a parallel flow heat exchanger
FR2770633B1 (fr) * 1997-11-06 2000-01-07 Valeo Thermique Moteur Sa Dispositif a deux faisceaux d'echange de chaleur, notamment pour vehicule automobile
DE19753408B4 (de) * 1997-12-02 2005-08-18 Behr Gmbh & Co. Kg Wärmeübertrager für ein Kraftfahrzeug
FR2777643B1 (fr) * 1998-04-20 2000-06-30 Valeo Thermique Moteur Sa Echangeur de chaleur multifonction, en particulier pour vehicule automobile
DE19836889A1 (de) * 1998-08-14 2000-02-17 Modine Mfg Co Abgaswärmetauscher
DE10040088A1 (de) * 2000-08-16 2002-04-25 Siemens Ag Verfahren zum Betrieb eines Brennstoffzellensystems und zugehörige Brennstoffzellenanlage
DE20118505U1 (de) * 2000-11-01 2002-03-21 Autokuehler Gmbh & Co Kg Wärmeaustauschernetz und damit hergestellter Wärmeaustauscher
TW552382B (en) * 2001-06-18 2003-09-11 Showa Dendo Kk Evaporator, manufacturing method of the same, header for evaporator and refrigeration system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006010435A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110770527A (zh) * 2017-06-22 2020-02-07 翰昂汽车零部件有限公司 热传递装置
EP3644005A4 (de) * 2017-06-22 2021-02-17 Hanon Systems Wärmeübertragungsvorrichtung

Also Published As

Publication number Publication date
WO2006010435A1 (de) 2006-02-02
DE102004036020A1 (de) 2006-02-16

Similar Documents

Publication Publication Date Title
WO2006010435A1 (de) Wärmeübertrager, insbesondere kondensator
DE60010377T2 (de) Kältemittelverdampfer mit Kältemittelverteilung
DE102006043951A1 (de) Wärmeübertrager, insbesondere Abgaswärmeübertrager für Kraftfahrzeuge
EP1707911A1 (de) Wärmetauscher, beispielsweise Ladeluftkühler und Herstellungsverfahren
DE3720483A1 (de) Waermetauscher
DE102008007597A1 (de) Herstellungsverfahren Mehrkammer-Flachrohr, Wärmetauscher und Verwendung eines Wärmetauschers
DE10045175A1 (de) Wärmetauscher und Verfahren zur Herstellung desselben
DE202007017283U1 (de) Wärmetauscher mit ringförmig ausgebildeten Strömungskanälen
DE4141556C2 (de) Wärmetauscher für eine Abgasanlage eines Kraftfahrzeuges
WO2013107536A1 (de) Saugrohr einer brennkraftmaschine mit einem kühlfluidladeluftkühler
DE102008059737A1 (de) Kreuzstrom-Wärmetauscher
DE2429370A1 (de) Verfahren zur herstellung von austauschern mit rohrbuendeln, und mittels dieses verfahrens hergestellte austauscher
EP1972879B1 (de) Wärmeübertrager, insbesondere Kühlmittelkühler für Kraftfahrzeuge
DE102005042708A1 (de) Kondensatorbaugruppe mit einer Montagerippe
DE102008007612A1 (de) Mehrkammer-Flachrohr, Wärmetauscher und Verwendung eines Wärmetauschers
DE102007052888A1 (de) Wärmeübertrager, insbesondere für ein Fahrzeug
EP1853868A1 (de) Kasten zur aufnahme eines fluids für einen wärmeübertrager, wärmeübertrager, insbesondere für eine wärmeübertragereinheit, wärmeübertragereinheit, insbesondere in ausführung als monoblock
DE102008007601A1 (de) Mehrkammer-Flachrohr, Wärmetauscher und Verwendung eines Wärmetauschers
DE102008039403A1 (de) Heizgerät
DE112014001829T5 (de) Verfahren zur Herstellung eines Wärmetauschers und Wärmetauscher
EP2085732B1 (de) Glaswärmetauscher mit Kunststoffrohrboden
DE102008007610A1 (de) Mehrkammer-Flachrohr, Wärmetauscher und Verwendung eines Wärmetauschers
DE102006050052B4 (de) Gehäuseschale eines Abgasfilters und Verfahren zu deren Herstellung
DE4338959C2 (de) Wasser/Luft-Wärmetauscher für Kraftfahrzeuge und Herstellungsverfahren für diesen
EP0893667B1 (de) Gehäuseloser Plattenwärmetauscher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090223

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091006