EP1762802B1 - Verfahren zur Trocknung einer auf einem Kraftfahrzeug-Bauteil aufgebrachten Lackschicht sowie Trocknungssystem hierfür - Google Patents

Verfahren zur Trocknung einer auf einem Kraftfahrzeug-Bauteil aufgebrachten Lackschicht sowie Trocknungssystem hierfür Download PDF

Info

Publication number
EP1762802B1
EP1762802B1 EP06016182A EP06016182A EP1762802B1 EP 1762802 B1 EP1762802 B1 EP 1762802B1 EP 06016182 A EP06016182 A EP 06016182A EP 06016182 A EP06016182 A EP 06016182A EP 1762802 B1 EP1762802 B1 EP 1762802B1
Authority
EP
European Patent Office
Prior art keywords
drying
coating
motor
component
vehicle component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06016182A
Other languages
English (en)
French (fr)
Other versions
EP1762802A2 (de
EP1762802A3 (de
Inventor
Peter Krauss
Helmut Ansorge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rehau Automotive SE and Co KG
Original Assignee
Rehau AG and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rehau AG and Co filed Critical Rehau AG and Co
Publication of EP1762802A2 publication Critical patent/EP1762802A2/de
Publication of EP1762802A3 publication Critical patent/EP1762802A3/de
Application granted granted Critical
Publication of EP1762802B1 publication Critical patent/EP1762802B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/28Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun
    • F26B3/283Drying solid materials or objects by processes involving the application of heat by radiation, e.g. from the sun in combination with convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B15/00Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form
    • F26B15/10Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions
    • F26B15/12Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions the lines being all horizontal or slightly inclined
    • F26B15/14Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form with movement in a path composed of one or more straight lines, e.g. compound, the movement being in alternate horizontal and vertical directions the lines being all horizontal or slightly inclined the objects or batches of materials being carried by trays or racks or receptacles, which may be connected to endless chains or belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B2210/00Drying processes and machines for solid objects characterised by the specific requirements of the drying good
    • F26B2210/12Vehicle bodies, e.g. after being painted

Definitions

  • the invention relates to a method for drying a paint layer applied to a motor vehicle component. Furthermore, the invention relates to a drying system for carrying out such a drying process.
  • a drying process and a drying plant therefor as part of the drying system of the type mentioned are known by public prior use. Motor vehicle components are painted in different colors and with different paints, some with effect paints.
  • the known drying method and the drying system for this have drying times that are not tolerable in the interest of a high throughput through the drying system.
  • the EP-A-0 647 478 discloses a method for drying a coating applied to a motor vehicle component paint layer, wherein a component carrier transported with the motor vehicle component to a drying plant and then the coating layer is dried by means of the control of drying radiators.
  • the different drying behavior of different lacquers can be reproducibly assigned lacquer data and lacquer parameters which can be determined or measured before the actual drying.
  • the drying behavior of a coated paint can, if these data or parameters are known, predetermine within narrow limits. It is therefore possible to specify a drying process which is tailor-made for this drying behavior. Each coating application can then be dried optimally fast. This leads to a high throughput in the application of the drying method according to the invention. Since essential paint data, which influence the drying behavior, for example the absorption or reflection behavior, are known even before the paint application, these data do not have to be re-measured each time.
  • lacquer data determined for example, in the course of a calibration measurement can be stored in a database and retrieved during the assignment step.
  • the thickness measurement of the freshly applied lacquer layer before drying remains as a measuring step, since this layer thickness influences the drying behavior.
  • the rejects are reduced due to the reproducible drying process, a constant degree of dryness is achieved and the energy input is optimized.
  • the paint data assignment according to the invention leads to the possibility of an automatic paint data acquisition during the transport of the components to be painted and dried.
  • the additional inclusion of at least one solvent characteristic according to claim 2 improves the fineness in the predetermination of the drying behavior.
  • the solvent content and the type of solvent are examples of such a solvent characteristic.
  • An additional air drying according to claim 3 increases the drying efficiency again, since the formation of solvent and / or steam vapor on the surface of the component to be dried, which undesirably weaken the drying radiation, is prevented by these solvent and / or steam vapor by the introduced - in particular dehumidified - drying air is absorbed and thereby removed from the surface of the component to be dried.
  • the drying air is, in particular, dried, heated air which is able to absorb the swaths intensively. Depending on the composition of the paint, this has a different tendency to form troublesome swaths.
  • the paint-dependent drying air control leads to a further increase in the drying efficiency, as it is specifically prevented that a high proportion of dry radiation energy is absorbed by the solvent and / or water vapor swaths and thus can not be fed to the drying of the lacquer layer.
  • a layer thickness monitoring according to claim 4 enables a fine correction of the control values.
  • Monitoring method according to claims 5 to 7 prevent the process control leaves defined parameter limits. In addition to pure warning, a corrective intervention in the drying control values can also take place.
  • a skid according to claim 8 is suitable for use in the drying plant.
  • Another object of the invention is to provide a drying system in which the component throughput is increased compared to known systems.
  • the advantages of this drying system correspond to those described above with reference to claims 1 to 9.
  • the drying system of the drying system for carrying out the method according to claim 4 also includes an integrated paint layer thickness measuring device with which the layer thickness monitoring during drying, so online, is possible.
  • the drying system for the drying system for carrying out the method according to claim 6 includes a surface temperature measuring device, preferably a long-wave working pyrometer. A thermal imaging camera can also be used.
  • the drying system for carrying out the method according to claim 8 includes a skid transport system. Alternatively, it is also possible to use a circulation conveyor system with cars.
  • the drying plant for carrying out the drying process according to claim 9 additionally has a rotating device which cooperates with the transport system for component carrier transport.
  • the predefined control values may also include the air temperature of the drying air of the air drying blower, which is then preferably set via an air conditioning unit.
  • a designated in the drawing as a total of 1 drying plant is arranged downstream of a paint shop, not shown in the drawing and part of an otherwise not shown drying system.
  • An inner chamber 3 of the drying installation 1 is delimited upward by a fan cover wall 4 and perpendicular to the transport direction 3a on both sides by two fan side walls 5.
  • air conditioning units 6 are arranged, which are in communication with a fan guide in the fan top wall 4 and in the fan side walls 5.
  • a plurality of infrared (IR) radiators are arranged as radiator strips parallel to the transport direction 3a.
  • Two first groups of four IR emitters 7 are in Fig. 1 arranged on the right and left of the lower transport path of the transport system and mounted on the inner sides of the fan side walls 5.
  • a second group of IR emitters 8 is in Fig. 1 arranged on the right and left of the upper transport path of the transport system and mounted on the inner sides of the fan side walls 5.
  • Two further IR radiators 9, which form a third group, are arranged in the two upper corner regions of the inner chamber 3, which are formed where the upper sections of the fan side walls 5 are attached to the fan top wall 4.
  • the IR emitters 9 are spaced both from the top wall 4 and from the side walls 5.
  • Two further IR emitters 10 form a fourth group and are arranged between the two transport paths of the transport system.
  • the IR emitters 10 are spaced from the side walls 5 as far as the IR emitter 9.
  • Two further IR emitters 11 form a fifth group of IR emitters and are arranged below the lower transport path of the transport system.
  • the distance of the IR emitter 11 from the side walls 5 corresponds to the lateral distance of the IR emitters 9 and 10. From a bottom wall 12 of the drying system 1, the IR emitters 11 are also spaced.
  • the IR emitters 7, 10 and 11 irradiate the components with IR radiation 13, which are conveyed on the lower transport path of the skid transport system.
  • the IR emitters 8, 9 and 10 irradiate the components with IR radiation 13, which are conveyed on the upper transport path of the skid transport system.
  • the typical distance of the IR emitters 7 to 11 from the surface of the motor vehicle components 2 is between 100 and 300 mm.
  • the air blower 14 flows between the IR emitters 7 to 11 through or past this.
  • the drying plant 1 is divided into two IR zones 15, 16.
  • the first IR zone 15 covers about two thirds of the transport path of the motor vehicle components 2 through the drying plant 1 and the second IR zone 16 covers in the connection thereto about one third of this transport path.
  • the radiator strips of the IR radiators 7 to 11 are divided, so that a separate control of the IR radiators 7 to 11 in the first IR zone 15 on the one hand and in the second IR zone 16 on the other hand is possible.
  • the paint drying of the drying plant 1 is integrated into an overall process as described below: First, it is selected with which waterborne or solventborne paints in which specified composition and quantity the automotive components 2 to be painted are to be coated.
  • Corresponding paint data are retrieved from a database in which these paint data are collected.
  • These paint data include the following paint characteristics: The color-specific target lacquer layer thickness, ie the layer thickness which the dried lacquer is to have later on the component, the color-specific reflection value, ie the energy component of the IR radiation impinging on the lacquer, which is reflected back from the lacquer, ie does not contribute to the drying, the maximum permissible for this paint surface temperature of the motor vehicle component 2 as well as the substrate material of the motor vehicle component 2 dependent limits.
  • the target layer thicknesses are between 10 and 20 ⁇ m, depending on whether it is a primer or a basecoat and depending on the paint color.
  • the paint is further characterized in the database by its chemical definition, its solids content, its proportion of organic solvents and its water content. In the stored reflection value is in addition to the color information, whether it is a paint containing metal or interference pigments.
  • lacquer data which characterize the absorption and / or reflection behavior of the lacquer to be applied, in particular contain a lacquer characteristic which characterizes the absorption and / or reflection behavior, are then conveyed to a body part carrier which transports the plastic component 2 to be lacquered, namely the skid. assigned.
  • a body part carrier which transports the plastic component 2 to be lacquered
  • the skid carries him a unique individualizing identifier, for example, a serial number, with the help of the paint data, ie stored in the database, color-specific parameters for transported on the skid, to be painted component, the skid assigned using the control computer become.
  • the identifier of the skid is housed on a machine-readable medium which is mounted on the skid.
  • the assigned data also includes, in particular, the geometry of the motor vehicle component 2 to be painted. Subsequently, the motor vehicle components 2 in the paint shop are coated with the corresponding paint. Here, depending on the hiding power of the paint, a different paint layer thickness is applied.
  • the motor vehicle components are transported on the skids in a evaporation zone.
  • the components 2 stay about two to four minutes. There prevails an air temperature between 23 and 40 ° C and a relative humidity of 55 to 70%.
  • an air flow with an air velocity between 0.2 and 1 m / s is provided.
  • the motor vehicle components 2 on the skids are continuously conveyed through the evaporation zone.
  • portions of the organic and aqueous solvents volatilize. This will prepare the paint film for subsequent drying.
  • the components 2 are conveyed on the skids continuously through the drying plant 1.
  • the current layer thickness of the coating layer applied to the component 2 is measured without contact, for example by means of a pulsed photothermal process.
  • a measuring method is known per se by obvious prior use. In principle, it is possible to use a likewise known eddy current measuring method for non-contact coating thickness measurement.
  • an unillustrated control computer of the drying installation 1 calculates control values for the time profile of the power of the IR radiators 7 to 11, for the time course of the fan power of the fan cover wall 4 and of the blower Side wall 5, for the fan temperature and for the time course of the transport speed of the skids through the drying unit 1.
  • a more reflective coating with a large actual layer thickness for example, a higher drying performance must be provided as in more absorbent or thinner applied paint layers.
  • the paint and base material-dependent limit parameters for example for the maximum surface temperature, must also be taken into account.
  • the central computer first predetermines desired curves with regard to the time profile of the temperature of the air in the inner chamber 3, the air humidity of the air in the inner chamber 3 and the velocity of the air flow in the inner chamber 3.
  • desired curves control values for the radiator output of the IR radiators 7 to 11 as well as for the blower air 14 of the blower cover wall 4 and of the blower side walls 5 are calculated.
  • a calculation of the time profile of the transport speed by the drying installation 1 takes place.
  • the skid with the motor vehicle component 2 is transported through the drying installation 1, whereby the IR radiators 7 to 11, the blowers and the skid Transport system are driven by the calculated control values.
  • the radiation powers are predetermined independently of each other. In the second IR zone 16, the IR radiation power is generally reduced compared to the radiation power in the first IR zone 15.
  • the blower air 14 ensures that evaporating solvent or water vapor does not undesirably absorb the IR radiation 13 over the surface of the motor vehicle components 2 to be dried. In this way, a finely adjusted to the respective paint of the component and thus highly efficient drying.
  • At least one solvent parameter which characterizes the solvent of the applied lacquer, is included in the calculation of the control value.
  • solvent parameters which characterizes the solvent of the applied lacquer.
  • the instantaneous coating layer thickness is monitored on the motor vehicle component 2 to be dried. From this conclusions about the temporal course of the drying are drawn. In particular, it is checked whether this time course coincides with a desired layer thickness profile, which is to be expected on the basis of the drying control specifications. Too large a deviation of the coating thickness measured online during drying from the target strength specification results in a warning signal. Such a warning signal is output in each case, provided that the current measured coating layer thickness measured online is less than the final target paint layer thickness. A deviation of the paint thickness measured online from the specified paint thickness desired course can also be used to fine-tune the control values for the IR radiators on the one hand and the forced air on the other hand.
  • the surface temperature of the paint layer applied to the respective motor vehicle component 2 is also monitored without contact, for example with a pyrometer operating at long wavelength. As soon as the surface temperature measured online is greater than the specified limit value for the surface temperature, a warning is also issued. Even if the surface temperature measured online is lower than a setpoint that is to be expected based on the drying specification, a warning signal is output because this is an indication of a process error.
  • the air temperature and the humidity in the inner chamber 3 are continuously detected with appropriate measuring instruments.
  • the motor vehicle components 2 can be rotated in the drying installation 1 during the drying process.
  • the component is lifted by means of a known turning device together with the skid transporting this component of a conveyor chain of the skid transport system to 180 ° about the component vertical axis (see Fig. 1 ) and then put back on the conveyor chain.
  • a known turning device together with the skid transporting this component of a conveyor chain of the skid transport system to 180 ° about the component vertical axis (see Fig. 1 ) and then put back on the conveyor chain.
  • the passage of a motor vehicle component 2 to be dried by the drying plant 1 takes depending on the specification between four and six minutes. Depending on the specification, an air temperature between 50 and 80 ° C, an absolute humidity, which is less than 10 g / kg, an air flow of 0.2 to 1 m / s and an IR radiation power between 5 and 20 kW / m 2 set. Typical values of the surface temperature which occurs during drying in the drying installation 1 are between 23 and 80 ° C.
  • the motor vehicle components 2 After drying, the motor vehicle components 2 leave the drying plant 1 and are cooled to room temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Drying Of Solid Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Trocknung einer auf einem Kraftfahrzeug-Bauteil aufgebrachten Lackschicht. Ferner betrifft die Erfindung ein Trocknungssystem zur Durchführung eines derartigen Trocknungsverfahrens.
  • Ein Trocknungsverfahren sowie eine Trocknungsanlage hierfür als Teil des Trocknungssystems der eingangs genannten Art sind durch offenkundige Vorbenutzung bekannt. Kraftfahrzeug-Bauteile werden in unterschiedlichen Farben und mit unterschiedlichen Lacken, teilweise mit Effektlacken, lackiert. Das bekannte Trocknungsverfahren sowie die Trocknungsanlage hierfür weisen Trocknungsdauern auf, die im Interesse eines hohen Durchsatzes durch die Trocknungsanlage nicht tolerabel sind.
  • Die EP-A-O 647 478 offenbart ein Verfahren zur Trocknung einer auf einem Kraftfahrtzeug-Bauteil aufgebrachten Lackschicht, wobei ein Bauteilträger mit dem Kraftfahrzeug-Bauteil zu einer Trocknungsanlage transportiert und anschließend die Lackschicht mit Hilfe des Ansteuerns von Trocknungsstrahlern getrocknet wird.
  • In der DE 197 56 467 A1 wird ein Verfahren zur Regelung der Qualität von Lackschichten beschrieben, während die US 6 484 121 B1 die automatische Messung von Lackschichtdicken auf Kraftfahrzeug-Bauteilen betrifft. Die DE 101 06 889 A1 zeigt ein Verfahren zur Trocknung von Gelatine.
  • Es ist eine Aufgabe der vorliegenden Erfindung, ein Trocknungsverfahren der eingangs genannten Art derart weiterzubilden, dass insbesondere dann, wenn unterschiedliche Lacke getrocknet werden sollen, ein hoher Bauteil-Durchsatz gewährleistet ist.
  • Diese Aufgabe ist erfindungsgemäß gelöst durch ein Verfahren mit den im Anspruch 1 angegebenen Merkmalen.
  • Erfindungsgemäß wurde erkannt, dass das unterschiedliche Trocknungsverhalten unterschiedlicher Lacke reproduzierbar Lackdaten und Lackparametern zugeordnet werden kann, die vor der eigentlichen Trocknung bestimmt bzw. gemessen werden können. Das Trocknungsverhalten eines aufgetragenen Lacks lässt sich, wenn diese Daten bzw. Parameter bekannt sind, in engen Grenzen vorherbestimmen. Es ist daher möglich, einen Trocknungsprozess vorzugeben, der für dieses Trocknungsverhalten maßgeschneidert ist. Jeder Lackauftrag kann dann optimal schnell getrocknet werden. Dies führt zu einem hohen Durchsatz bei der Anwendung des erfindungsgemäßen Trocknungsverfahrens.
    Da wesentliche Lackdaten, die das Trocknungsverhalten beeinflussen, zum Beispiel das Absorptions- oder Reflexionsverhalten, schon vor dem Lackauftrag bekannt sind, müssen diese Daten nicht jedes Mal neu gemessen werden. Diese zum Beispiel im Rahmen einer Kalibriermessung bestimmten Lackdaten können in einer Datenbank abgelegt sein und im Rahmen des Zuordnungsschritts abgerufen werden. Als Messschritt verbleibt in jedem Fall die Dickenmessung der frisch aufgetragenen Lackschicht vor dem Trocknen, da diese Schichtdicke das Trocknungsverhalten beeinflusst. Neben dem höheren Durchsatz ist aufgrund des reproduzierbaren Trocknungsprozesses der Ausschuss reduziert, es wird ein konstanter Trocknungsgrad erreicht und der Energieeinsatz ist optimiert. Die erfindungsgemäße Lackdatenzuordnung führt zur Möglichkeit einer automatischen Lackdatenerfassung während des Transports der zu lackierenden und zu trocknenden Bauteile.
  • Die zusätzliche Einbeziehung mindestens eines Lösungsmittel-Kennwertes nach Anspruch 2 verbessert die Feinheit bei der Vorbestimmung des Trocknungsverhaltens. Der Lösungsmittelanteil und die Art die Lösungsmittels sind Beispiele für einen derartigen Lösungsmittel-Kennwert.
  • Ein zusätzliches Lufttrocknen nach Anspruch 3 erhöht die Trocknungseffizienz nochmals, da die Ausbildung von Lösungsmittel und/oder Wasserdampfschwaden an der Oberfläche des zu trocknenden Bauteils, die unerwünscht die Trocknungsstrahlung schwächen, verhindert wird, indem diese Lösungsmittel- und/oder Wasserdampfschwaden durch die eingebrachte - insbesondere entfeuchtete - Trocknungsluft aufgenommen und hierdurch von der Oberfläche des zu trocknenden Bauteils entfernt werden. Bei der Trocknungsluft handelt es sich insbesondere um getrocknete, erwärmte Luft, die in der Lage ist, die Schwaden intensiv aufzunehmen. Je nach Zusammensetzung des Lacks hat dieser eine unterschiedliche Neigung zur Ausbildung störender Schwaden. Daher führt die lackabhängige Trocknungsluftansteuerung zu einer weiteren Steigerung der Trocknungseffizienz, da gezielt verhindert wird, dass ein hoher Anteil von Trocknungsstrahlungsenergie durch die Lösungsmittel- und/oder Wasserdampfschwaden absorbiert wird und somit nicht der Trocknung der Lackschicht zugeführt werden kann.
  • Eine Schichtdickenüberwachung nach Anspruch 4 ermöglicht eine Feinkorrektur der Steuerwerte.
  • Überwachungsverfahren nach den Ansprüchen 5 bis 7 verhindern, dass die Prozessführung definierte Parametergrenzen verlässt. Neben dem reinen Warnen kann auch ein korrigierender Eingriff in die Trocknungs-Steuerwerte erfolgen.
  • Ein Skid nach Anspruch 8 eignet sich zum Einsatz in der Trocknungsanlage.
  • Durch das Drehen des Bauteils gemäß Anspruch 9 kann eine Symmetrisierung des Trocknungsprozesses auch bei unsymmetrischen Bauteilen erzielt werden.
  • Eine weitere Aufgabe der Erfindung ist es, ein Trocknungssystem zu schaffen, bei der der Bauteildurchsatz im Vergleich zu bekannten Anlagen erhöht ist.
  • Diese Aufgabe ist erfindungsgemäß gelöst durch ein Trocknungssystem gemäß Anspruch 10.
  • Die Vorteile dieses Trocknungssystems entsprechen denen, die vorstehend unter Bezugnahme auf die Ansprüche 1 bis 9 beschrieben wurden. Die Trocknungsanlage für ein Trocknungssystem zur Durchführung des Verfahrens nach Anspruch 3 beinhaltet neben Trocknungsstrahlern, vorzugsweise IR-Strahlern, noch ein Lufttrocknungsgebläse. Die Trocknungsanlage des Trocknungssystems zur Durchführung des Verfahrens nach Anspruch 4 beinhaltet zudem eine integrierte Lackschichtdicken-Messvorrichtung, mit der die Schichtdickenüberwachung während des Trocknens, also online, möglich ist. Die Trocknungsanlage für das Trocknungssystem zur Durchführung des Verfahrens nach Anspruch 6 beinhaltet eine Oberflächentemperatur-Messvorrichtung, vorzugsweise ein langwellig arbeitendes Pyrometer. Auch eine Wärmebildkamera kann eingesetzt sein.
  • Das Trocknungssystem zur Durchführung des Verfahrens nach Anspruch 8 beinhaltet ein Skid-Transportsystem. Alternativ ist es auch möglich, ein Umlauffördersystem mit Wagen einzusetzen. Die Trocknungsanlage zur Durchführung des Trocknungsverfahrens nach Anspruch 9 hat zusätzlich eine Dreheinrichtung, die mit dem Transportsystem zum Bauteilträgertransport zusammenarbeitet. Zu den vorgegebenen Steuerwerten kann auch die Lufttemperatur der Trocknungsluft des Lufttrocknungsgebläses gehören, die dann vorzugsweise über ein Klimaaggregat eingestellt wird.
  • Ein Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnung näher erläutert. In dieser zeigen:
  • Fig. 1
    einen Querschnitt durch eine Trocknungsanlage senkrecht zur Transportrichtung von zu trocknenden Bauteilen; und
    Fig. 2
    einen Schnitt durch die Trocknungsanlage gemäß Linie II - II in Fig. 1, wobei der Schnitt so gedreht ist, dass die Transportrichtung nach rechts zeigt.
  • Eine in der Zeichnung insgesamt mit 1 bezeichnete Trocknungsanlage ist einer in der Zeichnung nicht dargestellten Lackieranlage nachgeordnet und Teil eines ansonsten nicht dargestellten Trocknungssystems.
  • Durch die Trocknungsanlage 1 werden zwei Reihen von Kraftfahrzeug-Bauteilen 2, zum Beispiel Stoßfänger, übereinander auf zwei etagenweise übereinander angeordneten Skid-Transportsystemen längs einer Transportrichtung 3a transportiert. Die Transportrichtung 3a steht senkrecht auf der Schnittebene der Fig. 1. Das Skid-Transportsystem ist in der stark schematisierten Darstellung der Fig. 1 und 2 nicht gezeigt.
  • Eine Innenkammer 3 der Trocknungsanlage 1 ist nach oben von einer Gebläse-Deckwand 4 und senkrecht zur Transportrichtung 3a zu beiden Seiten hin von zwei Gebläse-Seitenwänden 5 begrenzt. Außen an den Seitenwänden 5 sind Klimaaggregate 6 angeordnet, die mit einer Gebläseführung in der Gebläse-Deckwand 4 und in den Gebläse-Seitenwänden 5 in Verbindung stehen.
  • Innerhalb der Innenkammer 3, den Transportweg der Kraftfahrzeug-Bauteile 2 nicht behindernd, ist eine Mehrzahl von Infrarot-(IR-)Strahlern als Strahlerleisten parallel zur Transportrichtung 3a angeordnet. Zwei erste Gruppen zu je vier IR-Strahlern 7 sind in Fig. 1 rechts und links des unteren Transportwegs des Transportsystems angeordnet und an den Innenseiten der Gebläse-Seitenwände 5 montiert. Eine zweite Gruppe von IR-Strahlern 8 ist in Fig. 1 rechts und links des oberen Transportwegs des Transportsystems angeordnet und an den Innenseiten der Gebläse-Seitenwände 5 montiert.
  • Zwei weitere IR-Strahler 9, die eine dritte Gruppe bilden, sind in den beiden oberen Eckbereichen der Innenkammer 3 angeordnet, die dort gebildet sind, wo die oberen Abschnitte der Gebläse-Seitenwände 5 an die Gebläse-Deckwand 4 angefügt sind. Die IR-Strahler 9 sind sowohl von der Deckwand 4 als auch von den Seitenwänden 5 beabstandet. Zwei weitere IR-Strahler 10 bilden eine vierte Gruppe und sind zwischen den beiden Transportwegen des Transportsystems angeordnet. Die IR-Strahler 10 sind dabei von den Seitenwänden 5 soweit beabstandet wie die IR-Strahler 9. Zwei weitere IR-Strahler 11 bilden eine fünfte Gruppe von IR-Strahlern und sind unterhalb des unteren Transportwegs des Transportsystems angeordnet. Der Abstand der IR-Strahler 11 von den Seitenwänden 5 entspricht dem Seitenabstand der IR-Strahler 9 und 10. Von einer Bodenwand 12 der Trocknungsanlage 1 sind die IR-Strahler 11 ebenfalls beabstandet.
  • Die IR-Strahler 7, 10 und 11 bestrahlen die Bauteile mit IR-Strahlung 13, die auf dem unteren Transportweg des Skid-Transportsystems gefördert werden. Die IR-Strahler 8, 9 und 10 bestrahlen die Bauteile mit IR-Strahlung 13, die auf dem oberen Transportweg des Skid-Transportsystems gefördert werden. Der typische Abstand der IR-Strahler 7 bis 11 von der Oberfläche der Kraftfahrzeug-Bauteile 2 liegt zwischen 100 und 300 mm.
  • Die Gebläseluft 14, die über die Klimaaggregate 6 gesteuert vortemperiert und entfeuchtet ist, strömt, ausgehend von der Gebläse-Deckwand 4 und den Gebläse-Seitenwänden 5 hin zu den Kraftfahrzeug-Bauteilen 2. Die Gebläseluft 14 strömt dabei zwischen den IR-Strahlern 7 bis 11 hindurch bzw. an diesen vorbei.
  • Längs der Transportrichtung 3a ist die Trocknungsanlage 1 in zwei IR-Zonen 15, 16 unterteilt. Die erste IR-Zone 15 überdeckt dabei etwa zwei Drittel des Transportweges der Kraftfahrzeug-Bauteile 2 durch die Trocknungsanlage 1 und die zweite IR-Zone 16 überdeckt im Anschluss hieran etwa ein Drittel dieses Transportweges. An der Grenze zwischen den IR-Zonen 15, 16 sind die Strahlerleisten der IR-Strahler 7 bis 11 geteilt, so dass eine separate Ansteuerung der IR-Strahler 7 bis 11 in der ersten IR-Zone 15 einerseits und in der zweiten IR-Zone 16 andererseits möglich ist.
  • Die Lacktrocknung der Trocknungsanlage 1 ist wie nachfolgend beschrieben in einen Gesamtprozess integriert: Zunächst wird ausgewählt, mit welchen wasser- bzw. lösungsmittelhaltigen Lacken in welcher spezifizierten Zusammensetzung und Menge die zu lackierenden Kraftfahrzeug-Bauteile 2 beschichtet werden sollen.
  • Entsprechende Lackdaten werden aus einer Datenbank, in der diese Lackdaten gesammelt sind, abgerufen. Zu diesen Lackdaten gehören folgende Lack-Kennwerte:
    Die farbspezifische Soll-Lackschichtstärke, also die Schichtstärke, die der getrocknete Lack später auf dem Bauteil haben soll, der farbspezifische Reflexionswert, also der Energieanteil der auf den Lack auftreffenden IR-Strahlung, der vom Lack zurückreflektiert wird, also keinen Beitrag zur Trocknung liefert, die maximal bei diesem Lack zulässige Oberflächentemperatur des Kraftfahrzeug-Bauteils 2 sowie vom Substrat-Material des Kraftfahrzeug-Bauteils 2 abhängige Grenzwerte. Die Soll-Schichtstärken betragen zwischen 10 und 20 µm, je nachdem, ob es sich um eine Grundierung oder um einen Basislack handelt und je nach Lackfarbe. Der Lack ist in der Datenbank ferner charakterisiert durch seine chemische Definition, seinen Festkörperanteil, seinen Anteil organischer Lösungsmittel und seinen Wasseranteil. In dem abgelegten Reflexionswert geht neben der Farbe auch die Information ein, ob es sich um einen Metall- oder Interferenzpigmente enthaltenden Lack handelt.
  • Diese Lackdaten, die das Absorptions- und/oder Reflexionsverhalten des aufzubringenden Lacks charakterisieren, insbesondere einen das Absorptions- und/oder Reflexionsverhalten charakterisierenden Lack-Kennwert beinhalten, werden dann einem Karosserieteilträger, der das zu lackierende Kunststoff-Bauteil 2 transportiert, nämlich dem Skid, zugeordnet. Zu dieser Zuordnung trägt der Skid eine ihn eindeutig individualisierende Kennung, zum Beispiel eine laufende Nummer, mit deren Hilfe die Lackdaten, also die in der Datenbank hinterlegten, farbspezifischen Parameter zum auf dem Skid transportierten, zu lackierenden Bauteil, dem Skid mit Hilfe des Steuerrechners zugewiesen werden. Die Kennung des Skid ist auf einem maschinenlesbaren Datenträger untergebracht, der auf dem Skid aufgebracht ist. Zu den zugeordneten Daten gehört insbesondere auch die Geometrie des zu lackierenden Kraftfahrzeug-Bauteils 2. Anschließend werden die Kraftfahrzeug-Bauteile 2 in der Lackieranlage mit dem entsprechenden Lack beschichtet. Hierbei wird je nach Deckkraft des Lacks eine unterschiedliche Lackschichtstärke aufgetragen.
  • Nach der Beschichtung werden die Kraftfahrzeug-Bauteile auf den Skids in eine Abdunstzone transportiert. In der Abdunstzone verweilen die Bauteile 2 etwa zwei bis vier Minuten. Dort herrscht eine Lufttemperatur zwischen 23 und 40°C und eine relative Luftfeuchte von 55 bis 70 %. In der Abdunstzone, die in der Zeichnung nicht dargestellt ist, wird eine Luftströmung mit einer Luftgeschwindigkeit zwischen 0,2 und 1 m/s zur Verfügung gestellt.
  • Während der Verweildauer in der Abdunstzone werden die Kraftfahrzeug-Bauteile 2 auf den Skids kontinuierlich durch die Abdunstzone gefördert.
    In der Abdunstzone verflüchtigen sich Anteile der organischen und wässrigen Lösungsmittel. Hierdurch wird der Lackfilm für die anschließende Trocknung vorbereitet.
  • Anschließend werden die Bauteile 2 auf den Skids kontinuierlich durch die Trocknungsanlage 1 gefördert. Vor dem Eingang in die Trocknungsanlage 1 wird die aktuelle Schichtdicke der auf das Bauteil 2 aufgebrachten Lackschicht berührungslos, zum Beispiel mit Hilfe eines gepulst photothermischen Verfahrens, gemessen. Ein derartiges Messverfahren ist an sich durch offenkundige Vorbenutzung bekannt. Prinzipiell ist es möglich, zur berührungslosen Lackschichtdickenmessung ein ebenfalls bekanntes Wirbelstrom-Messverfahren einzusetzen. Anhand dieses Ist-Schichtdicken-Messwerts und den vom Skid ablesbaren Lackdaten berechnet ein nicht dargestellter Steuerrechner der Trocknungsanlage 1 Steuerwerte für den zeitlichen Verlauf der Leistung der IR-Strahler 7 bis 11, für den zeitlichen Verlauf der Gebläseleistung der Gebläse-Deckwand 4 und der Gebläse-Seitenwand 5, für die Gebläsetemperatur sowie für den zeitlichen Verlauf der Transportgeschwindigkeit der Skids durch die Trocknungsanlage 1. Bei einem stärker reflektierenden Lack mit großer Ist-Schichtdicke muss zum Beispiel eine höhere Trocknungsleistung erbracht werden als bei stärker absorbierenden oder dünner aufgetragenen Lackschichten. Zusätzlich müssen als Nebenbedingungen für die Strahlerleistung einerseits und die Gebläseleistung andererseits noch die lack- und grundmaterialabhängigen Grenzparameter zum Beispiel für die maximale Oberflächentemperatur berücksichtigt werden. Der Zentralrechner gibt anhand der Ist-Schichtdicke und den vom jeweiligen Skid ausgelesenen Lackdaten zunächst Sollkurven hinsichtlich des Zeitverlaufs der Temperatur der Luft in der Innenkammer 3, der Luftfeuchte der Luft in der Innenkammer 3 sowie der Geschwindigkeit der Luftströmung in der Innenkammer 3 vor. Anhand dieser Soll kurven werden Steuerwerte für die Strahlerleistung der IR-Strahler 7 bis 11 sowie für die Gebläseluft 14 der Gebläse-Deckwand 4 und der Gebläse-Seitenwände 5 berechnet. Ferner erfolgt eine Berechnung des zeitlichen Verlaufs der Transportgeschwindigkeit durch die Trocknungsanlage 1. Sobald diese Berechnungen abgeschlossen sind, wird der Skid mit dem Kraftfahrzeug-Bauteil 2 durch die Trocknungsanlage 1 transportiert, wobei die IR-Strahler 7 bis 11, die Gebläse sowie das Skid-Transportsystem anhand der berechneten Steuerwerte angesteuert werden. Für die IR-Strahler 7 bis 11 der beiden IR-Zonen 15, 16 werden die Strahlungsleistungen hierbei unabhängig voneinander vorgegeben. In der zweiten IR-Zone 16 wird in der Regel die IR-Strahlungsleistung gegenüber der Strahlungsleistung in der ersten IR-Zone 15 reduziert.
  • Die Gebläseluft 14 sorgt dafür, dass abdampfendes Lösungsmittel bzw. Wasserdampf die IR-Strahlung 13 über der Oberfläche der zu trocknenden Kraftfahrzeug-Bauteile 2 nicht unerwünscht absorbiert. Auf diese Weise erfolgt eine an den jeweiligen Lack des Bauteils fein angepasste und damit hoch effiziente Trocknung.
  • In die Steuerwertberechnung geht zudem mindestens ein Lösungsmittel-Kennwert ein, der das Lösungsmittel des aufgebrachten Lacks charakterisiert. Es handelt sich hierbei beispielsweise um den Lösungsmittelanteil, die Art des Lösungsmittels sowie den Wasseranteil.
  • Während des Trocknens in der Trocknungsanlage 1 wird die momentane Lack-Schichtdicke auf dem zu trocknenden Kraftfahrzeug-Bauteil 2 überwacht. Hieraus werden Rückschlüsse über den zeitlichen Verlauf der Trocknung gezogen. Insbesondere wird geprüft, ob dieser zeitliche Verlauf mit einem Soll-Schichtdickenverlauf übereinstimmt, der anhand der Trocknungs-Steuervorgaben zu erwarten ist. Eine zu große Abweichung der während des Trocknens online gemessenen Lackschichtstärke von der Sollstärken-Vorgabe resultiert in einem Warnsignal. Ein derartiges Warnsignal wird in jedem Fall ausgegeben, sofern die online gemessene aktuelle Lack-Schichtdicke geringer ist als die endgültige Soll-Lackschichtstärke. Eine Abweichung der online gemessenen Lackstärke vom vorgegebenen Lackstärken-Sollverlauf kann auch zur Feinkorrektur der Steuerwerte für die IR-Strahler einerseits bzw. die Gebläseluft andererseits eingesetzt werden. Während des Trocknungsvorgangs in der Trocknungsanlage 1 wird zudem ebenfalls berührungslos, zum Beispiel mit einem langwellig arbeitenden Pyrometer, die Oberflächentemperatur der auf das jeweilige Kraftfahrzeug-Bauteil 2 aufgebrachten Lackschicht überwacht. Sobald die online gemessene Oberflächentemperatur größer ist als der vorgegebene Grenzwert der Oberflächentemperatur, wird ebenfalls ein Warnhinweis ausgegeben. Auch dann, wenn die online gemessene Oberflächentemperatur geringer ist, als ein Sollwert, der anhand der Trocknungs-Vorgabe zu erwarten ist, wird ein Warnsignal ausgegeben, da dies ein Hinweis auf einen Prozessfehler ist.
  • Auch die Lufttemperatur und die Luftfeuchte in der Innenkammer 3 werden kontinuierlich mit entsprechendem Messinstrumenten erfasst.
  • Abhängig von der auf dem Skid abgelegten Artikelgeometrie können die Kraftfahrzeug-Bauteile 2 während des Trocknungsvorgangs in der Trocknungsanlage 1 gedreht werden. Hierzu wird das Bauteil mit Hilfe einer an sich bekannten Dreheinrichtung mitsamt den dieses Bauteil transportierenden Skid von einer Förderkette des Skid-Transportsystems abgehoben, um 180° um die Bauteil-Hochachse (vgl. Achse 17 in Fig. 1) gedreht und anschließend wieder auf die Förderkette aufgesetzt. Auf diese Weise erfolgt eine Symmetrisierung des Trocknungsvorgangs in der Trocknungsanlage 1 während des Transports durch diese.
  • Der Durchlauf eines zu trocknenden Kraftfahrzeug-Bauteils 2 durch die Trocknungsanlage 1 dauert je nach Vorgabe zwischen vier und sechs Minuten. Je nach Vorgabe wird eine Lufttemperatur zwischen 50 und 80°C, eine absolute Luftfeuchte, die geringer ist als 10 g/kg, eine Luftströmung von 0,2 bis 1 m/s und eine IR-Strahlungsleistung zwischen 5 und 20 kW/m2 eingestellt. Typische Werte der beim Trocknen in der Trocknungsanlage 1 sich einstellenden Oberflächentemperatur liegen zwischen 23 und 80°C.
  • Nach dem Trocknen verlassen die Kraftfahrzeug-Bauteile 2 die Trocknungsanlage 1 und werden auf Raumtemperatur abgekühlt.
  • Anstelle eines Skid-Transportsystems ist es auch möglich, ein Umlauffördersystem mit Wagen zum Transport der zu lackierenden Bauteile einzusetzen.

Claims (10)

  1. Verfahren zur Trocknung einer auf einem Kraftfahrzeug-Bauteil (2) aufgebrachten Lackschicht mit folgenden Schritten:
    - Zuordnen von Lackdaten, welche mindestens einen das Absorptions- und/oder Reflexionsverhalten des aufgebrachten Lacks charakterisierenden Lack-Kennwert beinhalten, zu einem Bauteilträger, welcher das lackierte Kraftfahrzeug-Bauteil (2) transportiert,
    - wobei die Lackdaten durch Aufbringen eines maschinenlesbaren Datenträgers, welcher die Lackdaten trägt, auf ein Transportmittel zum Transport des Bauteilträgers zu einer Trocknungsanlage (1) dem Bauteilträger zugeordnet werden,
    - Messen der Schichtdicke der auf das Kraftfahrzeug-Bauteil (2) aufgebrachten Lackschicht vor dem Trocknen,
    - Ablesen der Lackdaten vom maschinenlesbaren Datenträger mittels eines Lesegeräts,
    - Berechnen von Steuerwerten für den zeitlichen Verlauf einer Trocknungsstrahlerleistung abhängig von dem mindestens einen, zugeordneten Lack-Kennwert und von der Schichtdicke,
    - Transportieren des Bauteilträgers mit dem Kraftfahrzeug-Bauteil (2) zur Trocknungsanlage (1),
    - Trocknen der Lackschicht mit Hilfe des Ansteuerns von Trocknungsstrahlern (7 bis 11) gemäß den berechneten Steuerwerten.
  2. Verfahren nach Anspruch 1, gekennzeichnet durch folgende Schritte:
    - Zusätzliches Zuordnen von Lackdaten, welche mindestens einen das Lösungsmittel des aufgebrachten Lacks charakterisierenden Lösungsmittel-Kennwert beinhalten, zu einem Bauteilträger, welcher das lackierte Kraftfahrzeug-Bauteil (2) transportiert,
    - Berechnen von Steuerwerten für den zeitlichen Verlauf der Trocknungsstrahlerleistung, zusätzlich abhängig von dem mindestens einen Lösungsmittel-Kennwert,
    - Trocknen der Lackschicht mit Hilfe des Ansteuerns der Trocknungsstrahler (7 bis 11) gemäß den berechneten Steuerwerten.
  3. Verfahren nach Anspruch 1 oder 2, gekennzeichnet durch ein zusätzliches Lufttrocknen der Lackschicht mit folgenden Schritten:
    - Berechnen von Steuerwerten für den zeitlichen Verlauf einer Trocknungsluftmenge, abhängig von dem mindestens einen Lösungsmittel-Kennwert und vorzugsweise abhängig von dem mindestens einen Lack-Kennwert,
    - zusätzliches Trocknen der Lackschicht mit Hilfe des Ansteuerns eines Lufttrocknungsgebläses gemäß den berechneten Steuerwerten, wobei mittels entfeuchteter, erwärmter Trockenluft Lösungsmittel- und/oder Wasserdampfschwaden von der Oberfläche des zu trocknenden Bauteils entfernt werden.
  4. Verfahren nach einem der Ansprüche 1 bis 3, gekennzeichnet durch ein Überwachen der Schichtdicke der auf das Kraftfahrzeug-Bauteil (2) aufgebrachten Lackschicht während des Trocknens.
  5. Verfahren nach Anspruch 4, gekennzeichnet durch folgende Schritte:
    - Berechnen bzw. Abrufen einer Soll-Lackschichtstärke für den getrockneten Lack aus den zugeordneten Lackdaten,
    - Überwachen der Schichtdicke der auf das Kraftfahrzeug-Bauteil (2) aufgebrachten Lackschicht während des Trocknens,
    - Ausgeben eines Warnsignals, sofern die überwachte Schichtdicke geringer ist als die Soll-Lackschichtstärke.
  6. Verfahren nach einem der Ansprüche 1 bis 5, gekennzeichnet durch folgende Schritte:
    - Berechnen bzw. Abrufen einer maximal tolerierbaren Grenz-Oberflächentemperatur für den Lack während des Trocknens aus den zugeordneten Lackdaten,
    - Überwachen der Oberflächentemperatur der auf das Kraftfahrzeug-Bauteil (2) aufgebrachten Lackschicht während des Trocknens,
    - Ausgeben eines Warnsignals, sofern die überwachte Oberflächentemperatur größer ist als die Grenz-Oberflächentemperatur.
  7. Verfahren nach Anspruch 6, gekennzeichnet durch folgende Schritte:
    - Berechnen bzw. Abrufen einer minimal tolerierbaren Grenz-Oberflächentemperatur für den Lack während des Trocknens aus den zugeordneten Lackdaten,
    - Überwachen der Oberflächentemperatur der auf das Kraftfahrzeug-Bauteil (2) aufgebrachten Lackschicht während des Trocknens,
    - Ausgeben eines Warnsignals, sofern die überwachte Oberflächentemperatur geringer ist als die Grenz-Oberflächentemperatur.
  8. Verfahren nach einem der Ansprüche 1 bis 7, gekennzeichnet durch den Einsatz eines Skid oder eines Umlauffördersystems mit Wagen als Transportmittel zum Transport des Bauteilträgers zur Trocknungsanlage (1).
  9. Verfahren nach einem der Ansprüche 1 bis 8, gekennzeichnet durch ein Drehen des Kraftfahrzeug-Bauteils (2) während des Trocknens in der Trocknungsanlage (1), wobei der Zeitpunkt und/oder der Drehwinkel dieses Drehvorgangs vorzugsweise anhand der zugeordneten Lackdaten im Rahmen der Steuerwert-Berechnung berechnet wird.
  10. Trocknungssystem zur Durchführung eines Trocknungsverfahrens nach einem der Ansprüche 1 bis 9,
    - mit einem Bauteilträger,
    - mit einem Transportmittel zum Transport des Bauteilträgers,
    - mit einem maschinenlesbaren Datenträger, welcher die Lackdaten trägt und auf dem Transportmittel aufgebracht ist,
    - mit einer Datenbank, in der die Lackdaten abgelegt sind,
    - mit einer Lackschichtdicken-Messvorrichtung,
    - mit einem Lesegerät zum Ablesen eines maschinenlesbaren Datenträgers,
    - mit einem Steuerrechner zum Zuordnen der Lackdaten sowie zur Berechnung und Vorgabe der Steuerwerte und
    - mit einer Trocknungsanlage (1) mit Trocknungsstrahlern (7, 8, 9, 10, 11).
EP06016182A 2005-09-10 2006-08-03 Verfahren zur Trocknung einer auf einem Kraftfahrzeug-Bauteil aufgebrachten Lackschicht sowie Trocknungssystem hierfür Active EP1762802B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005043075A DE102005043075A1 (de) 2005-09-10 2005-09-10 Verfahren zur Trocknung einer auf einem Kraftfahrzeug-Bauteil aufgebrachten Lackschicht sowie Trocknungssystem hierfür

Publications (3)

Publication Number Publication Date
EP1762802A2 EP1762802A2 (de) 2007-03-14
EP1762802A3 EP1762802A3 (de) 2009-11-04
EP1762802B1 true EP1762802B1 (de) 2010-12-15

Family

ID=37441231

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06016182A Active EP1762802B1 (de) 2005-09-10 2006-08-03 Verfahren zur Trocknung einer auf einem Kraftfahrzeug-Bauteil aufgebrachten Lackschicht sowie Trocknungssystem hierfür

Country Status (4)

Country Link
EP (1) EP1762802B1 (de)
AT (1) ATE491921T1 (de)
DE (2) DE102005043075A1 (de)
ES (1) ES2358040T3 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196967B2 (ja) 2007-11-15 2013-05-15 株式会社大気社 塗装用乾燥方法及び塗装用乾燥装置
DE102008046492B4 (de) * 2008-09-09 2011-06-16 Wolf Verwaltungs Gmbh & Co. Kg System zur Steuerung der Kabineninnentemperatur in einer Trocknungs- und/oder Lackier-Kabine
DE202008017366U1 (de) * 2008-09-09 2009-07-09 Wolf Verwaltungs Gmbh & Co. Kg System zur Steuerung der Kabineninnentemperatur in einer Trocknungs- und/oder Lackier-Kabine
DE102009021004A1 (de) * 2009-04-24 2010-10-28 Dürr Systems GmbH Trocknungs- und/oder Härtungsanlage
DE102019101522A1 (de) * 2019-01-22 2020-07-23 Koenig & Bauer Ag Verfahren zum Beschichten eines bahnförmigen Substrats sowie Vorrichtung zur Durchführung des Verfahrens

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4591517A (en) * 1984-06-08 1986-05-27 Overly, Inc. Web dryer with variable ventilation rate
DE3430024A1 (de) * 1984-08-16 1986-02-27 Werner & Pfleiderer, 7000 Stuttgart Durchlauf-tunnelofen zum trocknen lackierter gegenstaende
DE3608902A1 (de) * 1986-03-17 1987-09-24 Brueckner Trockentechnik Gmbh Verfahren zur waermebehandlung einer warenbahn in einer spannmaschine
JP3541434B2 (ja) * 1993-09-30 2004-07-14 マツダ株式会社 塗装方法、塗装装置および被塗物
DE19719483A1 (de) * 1997-05-07 1998-11-12 Motan Holding Gmbh Trocknungsanlage
DE19756467A1 (de) * 1997-12-18 1999-07-01 Abb Research Ltd Verfahren und Vorrichtung zur Regelung der Qualität von Lackschichten
CA2371282C (en) * 1999-04-21 2008-07-22 Neil Morrison Paint drying system
DE19945291B4 (de) * 1999-09-22 2006-07-20 Eisenmann Maschinenbau Gmbh & Co. Kg Lackieranlage zum Lackieren von Kunststoff-Gegenständen
US6484121B1 (en) * 2000-09-07 2002-11-19 Ford Global Technologies, Inc. System for automatically measuring paint film thickness
DE10106889A1 (de) * 2001-02-14 2002-10-02 Advanced Photonics Tech Ag Verfahren und Vorrichtung zur Gelatinetrocknung mittels NIR-Strahlung
DE10109847A1 (de) * 2001-03-01 2002-09-19 Adphos Advanced Photonics Tech Verfahren zum Erzeugen einer Beschichtung auf einem quasi-endlos geförderten Materialband
DE10131620B4 (de) * 2001-06-29 2007-10-25 Adphos Advanced Photonics Technologies Ag Verfahren und Vorrichtung zum Trocknen und/oder Vernetzen oder Erwärmen mittels elektromagnetischer Strahlung
AU2002308228A1 (en) * 2002-03-01 2003-09-16 Advanced Photonics Technologies Ag Method and device for the production of a surface coating by means of nir and uv aftertreatment
DE20221980U1 (de) * 2002-09-26 2009-12-17 Advanced Photonics Technologies Ag Anordnung zur thermischen Behandlung eines Werkstücks
DE10326191B3 (de) * 2003-06-06 2005-02-03 Daimlerchrysler Ag Trocknung von lackierten Oberflächen
CA2533524A1 (en) * 2003-07-24 2005-02-17 Eisenmann Maschinenbau Gmbh & Co. Kg Device for hardening the coating of an object, consisting of a material that hardens under electromagnetic radiation, more particularly an uv paint or a thermally hardening paint

Also Published As

Publication number Publication date
DE502006008494D1 (de) 2011-01-27
EP1762802A2 (de) 2007-03-14
ES2358040T3 (es) 2011-05-05
DE102005043075A1 (de) 2007-03-15
EP1762802A3 (de) 2009-11-04
ATE491921T1 (de) 2011-01-15

Similar Documents

Publication Publication Date Title
EP1762802B1 (de) Verfahren zur Trocknung einer auf einem Kraftfahrzeug-Bauteil aufgebrachten Lackschicht sowie Trocknungssystem hierfür
DE102010023578B4 (de) Lackieranlage zum Beschichten / Lackieren eines langgestreckten Werkstückes
DE102006061585B4 (de) Verfahren und Vorrichtung zur Rotationsbeschichtung von Substraten
DE60001842T2 (de) Verfahren zum trocknen von deckschichten und mehrkomponentige mehrschichtige beschichtung von metallen und kunststoffen
EP3966650B1 (de) Verfahren zur kontrolle und nachbehandlung von werkstücken, kontrollanlage und behandlungsanlage
DE60004361T2 (de) Verfahren zum trocknen und härten von grundierungszusammensetzungen
WO2008151772A2 (de) Verfahren zur vorbehandlung von zu lackierenden polymeren oberflächen
DE69419687T2 (de) Lackierverfahren und Lackiereinrichtung
WO2006063705A1 (de) Verfahren und anlage zum beschichten eines metallbands mit einer lösemittelhaltigen beschichtung und zum trocknen und/oder vernetzen derselben
EP2927003B1 (de) Holzwerkstoffplatten-Herstellanlage und Verfahren zum Herstellen einer Holzwerkstoffplatte
DE102011117666B4 (de) Vorrichtung und Verfahren zum Temperieren von Gegenständen
EP2466237B1 (de) Infrarot-Trocknungsanlage
DE19937857A1 (de) Abtrocknungsprozess für Wasserbasislack
EP0203377B1 (de) Blastunnel zum Trocknen von lackierten Werkstücken
WO2020224714A1 (de) Verfahren zur kontrolle von werkstücken, kontrollanlage und behandlungsanlage
WO2011157603A1 (de) Verfahren zur flutbeschichtung eines polymeren werkstoffes
EP1395784B1 (de) Verfahren und einrichtung zum trocknen
EP1723195B1 (de) Verfahren zur herstellung einer mehrschichtigen folie f und ihre verwendung
DE2256865C2 (de) Verfahren zum elektrostatischen Beschichten von Metallgegenständen
DE10200090A1 (de) Vorrichtung und Verfahren zur Simulation von wärmetransportprozessen
EP4272967B1 (de) Verfahren zum bedrucken eines gegenstandes und digitaldruckeinrichtung umfassend mittels zum reduzieren von kondensatbildungverfahren zum bedrucken eines gegenstandes
DE102022105010B3 (de) Verfahren zur Herstellung von Bremsbelägen
EP1327844A2 (de) Verfahren und Vorrichtung zur Behandlung eines Beschichtungsstoffes auf einem Substrat und/oder eines Substrats
WO2022073562A1 (de) Verfahren zum betreiben einer behandlungsanlage und behandlungsanlage
DE9312505U1 (de) Kammer zur Lackierung oder Nachlackierung von flächigen Gegenständen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20091202

17Q First examination report despatched

Effective date: 20100305

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502006008494

Country of ref document: DE

Date of ref document: 20110127

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20101215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2358040

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110420

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110315

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 8888

Country of ref document: SK

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E010313

Country of ref document: HU

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110415

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110415

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

26N No opposition filed

Effective date: 20110916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006008494

Country of ref document: DE

Effective date: 20110916

BERE Be: lapsed

Owner name: REHAU A.G. + CO

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 491921

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20150817

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160429

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: RN

Effective date: 20160712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: FR

Ref legal event code: FC

Effective date: 20161013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: FR

Effective date: 20161013

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160804

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20190621

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190725

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200803

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 8888

Country of ref document: SK

Effective date: 20200803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006008494

Country of ref document: DE

Owner name: REHAU AUTOMOTIVE SE & CO. KG, DE

Free format text: FORMER OWNER: REHAU AG + CO, 95111 REHAU, DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: GB9C

Owner name: REHAU AUTOMOTIVE SE & CO.KG, DE

Free format text: FORMER OWNER(S): REHAU AG + CO, DE

REG Reference to a national code

Ref country code: HU

Ref legal event code: HC9C

Owner name: REHAU AUTOMOTIVE SE & CO.KG, DE

Free format text: FORMER OWNER(S): REHAU AG + CO, DE; REHAU AUTOMOTIVE SE & CO.KG, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230731

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240625

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240831

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20240703

Year of fee payment: 19