EP1754078A1 - Verfahren zur reduzierung von störsignaleinflüssen auf ein hochfrequenzmessgerät, sowie hochfrequenzmessgerät - Google Patents

Verfahren zur reduzierung von störsignaleinflüssen auf ein hochfrequenzmessgerät, sowie hochfrequenzmessgerät

Info

Publication number
EP1754078A1
EP1754078A1 EP05736044A EP05736044A EP1754078A1 EP 1754078 A1 EP1754078 A1 EP 1754078A1 EP 05736044 A EP05736044 A EP 05736044A EP 05736044 A EP05736044 A EP 05736044A EP 1754078 A1 EP1754078 A1 EP 1754078A1
Authority
EP
European Patent Office
Prior art keywords
signal
interference
measurement
analog
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP05736044A
Other languages
English (en)
French (fr)
Inventor
Michael Mahler
Ulli Hoffmann
Reiner Krapf
Christoph Wieland
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1754078A1 publication Critical patent/EP1754078A1/de
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
    • G01S13/888Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons through wall detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • G01S7/0235Avoidance by time multiplex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4017Means for monitoring or calibrating of parts of a radar system of HF systems

Definitions

  • the invention is based on a method for reducing interference signal influences on a high-frequency measuring device, in particular a method for operating a high-frequency locating device according to the preamble of claim 1, and on a high-frequency measuring device according to the preamble of claim 12.
  • High-frequency measuring devices which operate according to the radar principle, for example, are used to locate objects in walls, ceilings or floors to avoid consequential damage when drilling. Other areas of application of such devices are the localization of structural defects, such as concrete coverings for bridges, air holes in concrete or similar
  • Such devices which can also be designed as capacitive measuring devices, are also used in security technology in the context of room monitoring to control the presence or the exact position or of people. In this way it is possible to locate people through a wall as part of police or military operations.
  • Such measuring devices can be distance measurement by means of high frequency, as is used, for example, in the automotive sector as a parking aid or driver assistance system.
  • high-frequency measuring devices can be used for distance measurement in the construction sector, for example in the interior construction of buildings.
  • Handheld rangefinders are particularly possible for craftsmen.
  • the frequency range in which all these devices are usually operated is between a few hundred megahertz and over 100 gigahertz, that is to say in the microwave range.
  • interference occurs increasingly, for example due to cell phones (GSM, GPRS, UMTS, DECT), wireless networks (WLAN, Bluetooth, wireless DSL) or microwave ovens.
  • GSM Global System for Mobile communications
  • GPRS Global System for Mobile Communications
  • UMTS Universal Mobile Communications
  • DECT wireless networks
  • WLAN Bluetooth
  • wireless DSL microwave ovens
  • DE 10207424 AI discloses a method and a measuring device for locating enclosed objects, in which a detection signal is generated by means of at least one capacitive sensor device, which intervenes in the medium to be examined, so that information is evaluated by evaluating the detection signal, in particular by an impedance measurement can be obtained via objects enclosed in the medium.
  • a detection signal is generated by means of at least one capacitive sensor device, which intervenes in the medium to be examined, so that information is evaluated by evaluating the detection signal, in particular by an impedance measurement can be obtained via objects enclosed in the medium.
  • An inclusion signal conveyed by dielectric inclusions is typically in the sub-picofarad range in the case of plastic pipes, so that these small changes in the capacitance to be measured with an AC voltage applied to the capacitive sensor of, for example, one volt and a measuring frequency of 100 KHz in differences in the displacement current of less as a microampere results.
  • a device-internal reference measurement is used in order to determine the level of external EMC interference, such as that generated by neighboring transmitter systems, for example.
  • EMC interference can later be calculated out of a current measurement signal using the method of DE 10207424 AI.
  • the object on which the invention is based is to avoid incorrect measurements and malfunctions of a high-frequency measuring device by reducing the influence of external interference sources on the high-frequency measuring device.
  • the high-frequency measuring device is supplied with an analog measuring signal detected by a receiving device of the high-frequency measuring device for further signal evaluation of at least one analog-digital converter of an evaluation unit of the measuring device.
  • the sampling rate of the at least one analog / digital converter is varied by the interference signal influences d. H. to reduce the strength of the interference signals also detected with such a high-frequency measuring device as far as possible.
  • sampling rate of an analog-to-digital converter of the evaluation unit of a high-frequency measuring device is fixed, it may be that other radio services that work, for example, in “burst mode” (TDMA method, cell phones, etc.) have a measurement signal from the The high-frequency measuring device overlap or even work synchronously with the receiving and evaluating unit of the high-frequency measuring device and thus falsify its useful signal. A received signal sampled in this way, which can lead to falsifications of the measurement result, can therefore no longer be used without restriction.
  • the sampling rate of an analog-to-digital converter of an evaluation unit for the measurement signal ie for the useful signal
  • the sampling rate of an analog-to-digital converter of an evaluation unit for the measurement signal can be changed in accordance with the method according to the invention, and it can be measured in each case whether the interference influence on the useful signal, ie reduced to the location measurement.
  • the method according to the invention thus eliminates the interference-emitted interference signal effects by adapting the sampling rate (sampling rate) of a receiving device of a high-frequency measuring device in such a way that, in the case of analog-digital conversion, measurements are only made between the pulses of the external interference or interference sources.
  • the sampling rate of the at least one analog / digital converter is advantageously changed if the interference signal measurement value correlated with the interference signals exceeds a threshold value. Based on the strength of the interference signals, it can be decided whether a measurement with the high-frequency measuring device is useful or is possible at all or not. If the interference signal measured value is clearly above the threshold value, the sampling rate of the analog-digital converter is changed and a new measurement can be carried out.
  • the measurement of the interference signals with a changed sampling rate is repeated if the measured value correlated with the interference signals exceeds a predeterminable threshold value.
  • This threshold value can be, for example, the intrinsic noise of the receiving unit or a variable correlated with this intrinsic noise.
  • the measurement of the interference signals can therefore be repeated with a changed sampling rate until either one
  • Sampling rate has determined its associated interference signal level, ie the corresponding interference signal measurement value, is below the predefinable threshold or, if this should not be possible, the sampling rate has been determined which has the lowest interference signal level, i.e. has the lowest interference signal measured value. It is advantageous to start with the measurement of the interference signal level with the maximum possible sampling rate of the analog-digital converter and then to gradually lower the sampling rate, since reduced sampling rates cause an extended measuring duration or a reduced resolution of the measuring signal.
  • the interference signal level ie when determining the interference signal measured value, one can either refer to certain of the interference signal or the amplitudes of the individual interference signals are also added up over the entire bandwidth of the receiving device.
  • the entire frequency spectrum is advantageously used for analysis so that, for example, future sources of interference that would transmit in frequency bands that are not yet occupied are also taken into account.
  • the frequency spectrum obtained during the interference signal measurement is evaluated and an interference signal level is quantified.
  • the frequency spectrum can be integrated, for example, and the interference signal measurement value thus obtained can then be compared with a predetermined threshold, for example the intrinsic noise of the receiving device.
  • a corresponding measurement can be carried out to reduce the influence of the interference signals detected with the high-frequency measuring device. Based on the strength of the interference signals, i.e. H. the interference signal measured value can then be used to decide whether a measurement is possible or not.
  • the method according to the invention is used in particular to operate a high-frequency measuring device, in particular a hand-held measuring device for locating objects.
  • a measuring device accordingly has at least one analog-digital converter for a measuring signal received by a receiving device of the device, which is sampled for further signal processing.
  • the sampling rate of the at least one analog-to-digital converter is variably adjustable.
  • Converter is controlled by a microcontroller. For example, a routine can be started automatically or manually each time such a device is switched on, which detects the current interference signal level and optimizes the sampling rate in the manner described in order to reduce the interference signal influences on the high-frequency measuring device.
  • the measuring frequency or the measuring frequencies of such a high-frequency measuring device lie in an interval from 0.1 GHz to 10 GHz, in particular frequencies from 1 GHz to 5 GHz and preferably frequencies in a frequency band from 1.5 GHz to 3.5 GHz are used.
  • Such high frequencies make it possible, for example
  • Locating device to detect even the smallest material differences, which can be used advantageously in the detection of objects enclosed in a medium.
  • the method according to the invention or a high-frequency measuring device operating according to the method according to the invention reduces the influence of pulses emitted by pulses
  • Interference signals by adjusting the sampling rate of the receiving device in such a way that, if possible, the interference is measured only between the interference pulses.
  • the sampling rate is varied in such a way that a minimum of interference radiation can be found in the digital output data of the receiving unit, or the interference signal influence is completely eliminated
  • FIG. 1 shows, as an example of a measuring device according to the invention, the basic structure of a high-frequency locating device in which a high-frequency generator emits pulses in the gigahertz range (microwaves, radar), which are wholly or partly reflected at interfaces, and by a receiver of the measuring device as a pulse response be registered and evaluated again.
  • a high-frequency generator emits pulses in the gigahertz range (microwaves, radar), which are wholly or partly reflected at interfaces, and by a receiver of the measuring device as a pulse response be registered and evaluated again.
  • a pulse generator 12 controlled by a time base 10 generates in a transmission unit 19 of the measuring device according to FIG. 1 a short, spectrally wide voltage pulse which is coupled into an antenna arrangement 14 of the transmission unit via a wave coupler (not shown in more detail).
  • the antenna 14 emits the corresponding electromagnetic radiation 16, which is partially reflected at interfaces which are in the vicinity of the transmitter unit 19.
  • the high-frequency locating device is brought into the vicinity of a medium, for example a wall 18, then there are reflections on the surface 17 of the wall
  • a measuring signal 22 reflected in this way is in turn detected by the measuring device via a receiving device 23, which also includes a receiving antenna 24.
  • the receiver receives from the antenna 14 and possibly existing couplers, filters or amplifiers of the receiving unit 23, which are shown schematically in FIG.
  • Assembly 26 are summarized, an analog signal 30, which is sampled in at least one analog-to-digital converter 28 of the measuring device.
  • sampling or sampling rate The speed at which such a sampling takes place is called the sampling or sampling rate.
  • a sampling rate of, for example, 25 KHz corresponds to 25000 Readings per second.
  • the “sampling” in the analog-digital converter 28, that is to say the conversion of the analog arriving signals 30 into digital output signals 32, can be significantly slower than the basic clock (for example 8 MHz) of the transmitting 19 or receiving device 23 specified by the time base 10 During this time, for example, data for noise suppression can be averaged until the analog-digital converter digitizes this data.
  • the returning measurement signals 30 detected by the receiving antenna 24 are first amplified in a high-frequency amplifier of the unit 26 of the receiving device 23 of the measuring device.
  • the voltage signals of the measurement signal 30 are then sampled at defined times.
  • the points in time at which the voltage is measured are specified by a sampling pulse. Since the voltage signal is evaluated both in magnitude and in phase and thus a determination of the phase of the reflected voltage relative to the phase of the voltage generated by the pulse generator is carried out, it is important that the generator 16 of the transmission signal and the generator of the scanning pulses for the analog Digital converters 28 are phase-locked. This is ensured by using the time base 10
  • the now digitized measurement signal 32 is passed on to a digital signal processor, which is no longer shown in FIG. 1, for further signal processing and evaluation.
  • This digital signal processor takes on both further signal processing and control of the time base 10 for generating both the excitation pulse and the sampling pulse.
  • sampling rate on the receiving side were fixed or predefined, it could happen with a high-frequency locating device that other radio services, such as cell phones that work in “burst mode”, overlap in time with the sampled measurement signals or even synchronously with them A received signal 30 sampled in this way would therefore no longer be usable since it would lead to falsifications of the measurement result.
  • the method according to the invention now eliminates the influence of pulsed emitted interference on the measurement signal by adapting the sampling rate of the receiving end so that it is only measured between the pulses of the external interferers, i.e. the analog to digital conversion is carried out,
  • the transmitter or the transmitting device 19 of the high-frequency measuring device is switched off, for example, before the start of an actual location measurement.
  • only external interference signals are received by the receiving device 23. If you now measure the external interference radiation before the useful measurement, information can be obtained about the presence and the strength of the interference frequencies. If this information indicates that a source of interference exists, the method according to the invention is used
  • Sampling rate of the analog-digital converter 28 changed and measured whether the interference is reduced.
  • the sampling rate for the analog-digital converter 28 can be varied until a minimum of the interference radiation can be found in the digital output data 32 of the receiving device or until the interference is reduced below a predefinable threshold.
  • the entire frequency spectrum of the interference signals is advantageously used for analysis. This has the advantage that interference sources that still occur in the future, in frequency bands that are not yet occupied, can also be taken into account.
  • the frequency spectrum of the interference radiation detected in this way can also be integrated, for example, in order to obtain a value for the interference signal level.
  • This interference signal measured value can then be compared in a routine, for example a digital signal processor, with a predetermined threshold, for example the intrinsic noise of the receiving device. Based on the strength of the
  • Interference signals ie on the basis of the interference signal measurement value determined in this way, a measurement routine can then decide whether a measurement is sensible, possible or nonsensical. If, for example, the interference signal measured value is clearly above the defined threshold, the sampling rate of the analog-digital converter is changed by an automatic routine and a new measurement of the interference signal level is carried out. This can be carried out once or more often until either a sampling rate for the analog-digital converter has been found, the associated interference signal measured value of which is below the specified value
  • sampling rate of the analog-digital converter can advantageously be taken over by a microcontroller 34.
  • the transmitting device 19 of the measuring device according to the invention can be reactivated, so that, for example, a location measurement by sending a pulse 16 via the antenna 14 and Detection of the returning measurement signal 22 can be carried out with the aid of the receiving antenna 24.
  • the method according to the invention can be provided that it runs automatically after the corresponding high-frequency measuring device is switched on, in order to set the measuring device immediately to the optimal sampling rate of the analog-digital conversion, which leads to the best possible reduction of the current interference signal influences Optimization of the sampling rate to reduce the interference signal influences can also be activated manually, for example, as part of a calibration measurement by the user of such a measuring device.
  • a method can be provided which adapts the sampling rate for the analog-digital conversion of a high-frequency measuring device during the actual measuring process. This means that none before the actual measurement, for example the location of an object enclosed in a medium separate interference signal measurement is carried out, but work is carried out directly with the transmitting device and the receiving device activated. During the location measurement, the sampling rate of the analog-to-digital conversion is successively reduced, for example, starting from the maximum possible sampling rate, and the sampling rate which is selected to the best is selected by a digital signal processor
  • Measurement result, d. H. leads to the best useful signal. If, for example, a pattern recognition method is used as part of a location measurement, a criterion for the provision of good measurement results can be set up in a simple manner.
  • pulsed interference sources can be effectively suppressed or their effect on the measurement result of high-frequency measuring devices can be minimized.
  • Continuously radiating sources of interference can be effectively suppressed by means of the signal processing of the measuring device.
  • noise sources with their noise-like signal cause a signal level increase, so that components in the receiving device, such as an amplifier or the A / D converter, can be overridden.
  • a variably adjustable resistor can be inserted before the amplifier, the A / D converter or other components serving to evaluate the measurement signal, as indicated in FIG. 1 with the component 34.
  • This component can be, for example, a VCR element (voltage controlled resistor) or a DCA element (digitally controlled amplify).
  • the regulation of the VCR element or the DCA element can then be controlled using the above-described method for determining and mmmizing the interference signal measured value, in that the measuring device determines the interference signals at different sampling rates of at least one analog-digital converter. In this way, the measurement signals are always sampled undistorted.
  • high-frequency measuring devices can deliver optimized and largely unadulterated measurement results.
  • control loops in the case of non-compensatable sources of interference, provide reliable protection against incorrect measurements, since they allow a user of a warn such measuring device, for example, of malfunctions and may not allow measurement by means of an automatic circuit.
  • the method according to the invention and the measuring device according to the invention are not limited to the embodiment shown in FIG.
  • the method is not limited to the variation of the sampling rate of only one analog-to-digital converter.
  • a plurality of converters can also be operated in a corresponding manner.
  • the method according to the invention and the corresponding measuring device are not limited to measurements for locating objects enclosed in a medium.
  • the method according to the invention can be used in any high-frequency measuring device.
  • such devices in addition to the high-frequency measuring devices for location, such devices also include devices for room and person monitoring or devices for
  • Another area of application for the method according to the invention is distance measurement by means of radio frequency, which is used, for example, in the automotive sector as a parking aid or driver assistance system or for mobile distance measurement in the construction industry.
  • the frequency range in which these devices usually work is in the

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Reduzierung von Störsignaleinflüssen auf ein Hochfrequenzmessgerät, insbesondere ein Verfahren zum Betreiben eines Hochfrequenzortungsgerätes, bei dem ein von einer Empfangseinrichtung (23) des Hochfrequenzmessgerätes detektiertes, analoges Messsignal (22) mindestens einem Analog-Digital-Wandler (28) einer Auswerteeinheit fair das Messsignal zugefñhrt wird. Erfindungsgemäss wird vorgeschlagen, dass in Abhängigkeit eines mit den Störsignalen korrelierten Störsignalmesswertes, die Abtastrate des mindestens einen Analog-Digital­Wandlers (28) variiert wird.

Description

Verfahren zur Reduzierung von Störsignaleinflüssen auf ein Hochfrequenzmessgerät sowie Hochfrequenzmessgerät
Die Erfindung geht aus von einem Verfahren zur Reduzierung von Störsignaleinflüssen auf ein Hochfrequenzmessgerät, insbesondere einem Verfahren zum Betreiben eines Hochfrequenzortungsgerates nach dem Oberbegriff des Anspruchs 1, sowie vom einem Hochfrequenzmessgerät nach dem Oberbegriff des Anspruchs 12.
Stand der Technik
Hochfrequenzmessgeräte, welche beispielsweise nach dem Radarprinzip arbeiten, werden u.a. zur Ortung von Objekten in Wänden, Decken oder Böden verwendet, um so zum Beispiel Folgeschäden beim Bohren zu vermeiden. Andere Anwendungsgebiete derartiger Geräte sind die Lokalisierung baulicher Mängel, wie beispielsweise Betonüberdeckungen bei Brücken, Luftlöcher in Beton oder vergleichbare
Materialinhomogenitäten. Ebenfalls verwendet werden solche Geräte, die auch als kapazitive Messgeräte ausgebildet sein können, in der Sicherheitstechnik im Rahmen der Raumüberwachung zur Kontrolle der Anwesenheit, bzw. der genauen Position bzw. von Personen. So ist es auf diese Weise möghch, im Rahmen polizeilicher oder militärischer Einsätze eine LokaHsierung von Personen durch eine Wand hindurch vorzunehmen.
Ein weiteres Einsatzgebiet derartiger Messgeräte ist die Entfernungsmessung mittels Hochfrequenz, wie sie beispielsweise im Automobilbereich als Einparkhilfe oder Fahrerassistenzsystem Verwendung findet. Darüber hinaus können derartige Hochfrequenzmessgeräte für die Entfernungsmessung im Baubereich, beispielsweise beim Innenausbau von Gebäuden, Anwendung finden. Hier sind insbesondere handgehaltene Entfernungsmessgeräte für Handwerker möglich. Der Frequenzbereich, in dem alle diese Geräte üblicherweise betrieben werden, liegt zwischen einigen hundert Megahertz bis zu über 100 Gigahertz, also im Mikrowellenbereich.
Gerade im Bereich von 1 bis 5 GHz treten jedoch vermehrt Störungen, beispielsweise durch Mobiltelefone (GSM, GPRS, UMTS, DECT), drahtlose Netzwerke (WLAN, Bluetooth, wireless DSL) oder Mikrowellenherde auf. Diese Störquellen verschlechtern die Messungen der oben genannten Hochfrequenzmessgerät in erheblichem Maße oder machen diese nahezu vollständig unmöglich. Fehlmessungen mit Sach- bzw. Personenschäden können somit nicht mehr ausgeschlossen werden.
Bisher eingesetzte Verfahren zur Vermeidung von Fehlmessungen können zwar einige Störquellen durch geschickte Art der Messdatenaufnahme eliminieren, dies ist jedoch nur bei Vorhandensein weniger Störquellen, die zudem zumeist auch noch gleichzeitig aktiv sein müssen. Diese Methoden versagen jedoch, wenn neu entwickelte Störquellen, wie beispielsweise neue Funktechniken zum Einsatz kommen.
Aus der DE 10207424 AI ist ein Verfahren und ein Messgerät zur Ortung eingeschlossener Objekte bekannt bei welchem mittels zumindest einer kapazitiven Sensorvorrichtung ein Detektionssignal erzeugt wird, welches in das zu untersuchende Medium eingreift, so dass durch eine Auswertung des Detektionssignals, insbesondere durch eine Impedanzmessung, Informationen über in dem Medium eingeschlossene Objekte gewonnen werden. Bei dem Verfahren der DE 10207424 AI wird eine
Messfrequenz im GHz-Bereich genutzt, um selbst für geringste Kapazitätsänderungen aufgrund eines in dem Medium eingeschlossenen Objekts noch hinreichend große Änderungen im Messsignal zu erzeugen. Ein durch dielelektrische Einschlüsse vermitteltes Einschlusssignal liegt im Fall von Kunststoffrohren typischerweise im Subpikofarad-Bereich, so dass diese kleinen Änderungen der zu vermessenden Kapazität bei einer an den kapazitiven Sensor angelegten Wechselspannung von beispielsweise einem Volt und einer Messfrequenz von 100 KHz in Differenzen des Verschiebestrom von weniger als einem Mikroampere resultiert.
Bei der Vorrichtung der DE 102 07424 AI wird eine geräteinterne Referenzmessung genutzt um das Niveau von externen EMV-Störungen, wie sie beispielsweise durch benachbarte Sendeanlagen erzeugt werden, zu ermitteln. Solche EMV-Störungen lassen sich mit dem Verfahren der DE 10207424 AI später aus einem aktuellen Messsignal herausrechnen.
Aus der DE 10233 835 AI ist ein Verfahren zur Störbefreiung von Messsignalen, die durch gepulste Störsignale mit einem bekannten oder bestimmbaren Störpulsabstand verfälscht sind, bekannt Eine Beseitigung der Störung impulsartig sendender Störquellen wird nach dem Verfahren der DE 10233 835 AI dadurch erreicht, dass mindestens drei aufeinanderfolgende Einzehnesswerle mit Zeitabständen erfasst werden, die sich von dem Störpulsabstand unterscheiden, wobei aus den mindestens drei Einzelmesswerten eine störbefreite Messgröße ermittelt wird.
Die der Erfindung zugrundeliegende Aufgabe besteht darin, Fehlmessungen und Funktionsstörungen eines Hochfrequenzmessgeräts zu vermeiden, indem der Einfluss externer Störquellen auf das Hochfrequenzmessgerät vermindert wird.
Vorteile der Erfindung
Bei dem erfindungsgemäßen Verfahren zur Reduzierung von Störsignaleinfiüssen auf ein
Hochfrequenzmessgerät wird ein von einer Empfangseinrichtung des Hochfrequenzmessgeräts detektiertes, analoges Messsignal zur weiteren Signalauswertung mindestens einem Analog-Digital-Wandler einer Auswerteeinheit des Messgeräts zugeführt. In Abhängigkeit eines mit den Storsignalen korrelierten Störsignalmesswerts wird die Abtastrate des mindestens einen Analog-Digital-Wandlers variiert um die Störsignaleinflüsse d. h. die Stärke des mit einem solchen Hochfrequenzmessgeräts auch detektierten Störsignale möglichst weit zu reduzieren.
Ist die Abtastrate eines Analog-Digital-Wandlers der Auswerteeinheit eines Hochfrequenzmessgeräts fest vorgegeben, so kann es sein, dass andere Funkdienste, die beispielsweise im ,,Burst-Betrieb" arbeiten (TDMA- Verfahren, Handys, etc.) zeithch mit einem Messsignal des Hochfrequenzmessgeräts überlappen bzw. sogar zeitlich synchron zu der Empfangs- und Auswerteeinheit des Hochfrequenzmessgeräts arbeiten und somit dessen Nutzsignal verfälschen. Ein derart abgetastetes Empfangssignal, welches zu Verfälschungen des Messergebnisses führen kann, ist somit nicht mehr uneingeschränkt verwendbar.
Misst man nun beispielsweise die externe Störstrahlung vor der eigentlichen Messung, wie beispielsweise einer Ortungsmessung, in geeigneter Weise, so kann man über das Vorhandensein und die Stärke der Störung Informationen zur Reduzierung der
Störsignaleinflüsse auf das Nutzsignal erhalten. Zeigen diese Informationen beispielsweise an, dass eine Störquelle existiert, so kann gemäß des erfϊndungsgemäßen Verfahrens die Abtastrate eines Analog-Digital-Wandlers einer Auswerteeinheit für das Messsignal, d. h. für das Nutzsignal verändert werden und jeweils nachgemessen werden, ob sich der Störeinfruss auf das Nutzsignal, d.h. auf die Ortungsmessung vermindert. Das erfindungsgemäße Verfahren eliminiert somit gepulst abgestrahlte Störsignaleinflüsse, indem die Abtastrate (Samplingrate) einer Empfangseinrichtung eines Hochfrequenzmessgeräts so angepasst wird, dass bei der Analog-Digital-Wandlung möglichst nur zwischen den Pulsen des oder der externen Störer gemessen wird.
Vorteilhafte Ausfuhrungsformen und Weiterbildungen des erf dungsgemäßen Verfahrens gemäß Ansprach 1 ergeben sich aus den mit den Unteransprüchen aufgeführten Merkmalen.
In vorteilhafter Weise wird bei dem erfindungsgemäßen Verfahren die Abtastrate des mindestens einen Analog-Digital-Wandlers geändert, falls der mit den Störsignalen korrelierte Störsignalmesswert einen Schwellwert übersteigt. Anhand der Stärke der Störsignale kann entschieden werden, ob eine Messung mit dem Hochfrequenzmessgerät sinnvoll bzw. überhaupt möglich ist oder nicht. Liegt der Störsignalmesswert deutlich über dem Schwellwert, so wird die Abtastrate des Analog-Digital-Wandlers verändert und eine neuerliche Messung kann vorgenommen werden.
In vorteilhafter Weise sieht das erfindungsgemäße Verfahren vor, dass der mit den Storsignalen korrelierte Störsignalmesswert mit Hilfe der Empfangseinheit des
Messgeräts gemessen wird. Dazu kann beispielsweise ein im Hochfrequenzmessgerät vorgesehener Sender abgeschaltet werden, so dass nur externe Störsignale von der Empfangseinrichtung des Hochfrequenzmessgeräts detektiert werden. Eine zusätzliche Einheit zur Bestimmung der Störsignaleinflüsse ist somit nicht erforderlich.
Die Messung der Störsignale mit geänderter Abtastrate wird wiederholt falls der mit den Störsignalen korrelierte Messwert einen vorgebbaren Schwellwert übersteigt. Dieser Schwellwert kann beispielsweise das Eigenrauschen der Empfangseinheit oder eine mit diesem Eigenrauschen korrelierte Größe sein. Die Messung der Störsignale kann demnach so lange mit geänderter Abtastrate wiederholt werden, bis man entweder eine
Abtastrate ermittelt hat deren zugehöriges Störsignalniveau, d.h. der entsprechende Störsignalmesswert, unterhalb der vorgebbaren Schwelle liegt oder, falls dies nicht möglich sein sollte, diejenige Abtastrate ermittelt wurde, welche den niedrigsten Störsignalpegel, d, h. den geringsten Störsignalmesswert aufweist. Vorteilhafterweise fängt man bei der Messung des Störsignalniveaus mit der maximal möglichen Abtastrate des Analog-Digital-Wandlers an und senkt dann sukzessive die Samplingrate ab, da verringerte Abtastraten eine verlängert Messdauer bzw. eine reduzierte Auflösung des Messsignals hervorrufen.
Bei der Bestimmung des Störsignalniveaus, d. h. bei der Ermittlung des Störsignalmesswerts kann entweder auf bestimmte des Störsignals geachtet werden oder aber auch über die gesamte Bandbreite der Empfangseinrichtung die Amplituden der einzelnen Störsignale aufsummiert werden. Vorteilhafter Weise wird das gesamte Frequenzspektrum zur Analyse verwendet damit beispielsweise auch zukünftige Störquellen, die in aktuell noch nicht belegten Frequenzbändern senden würden, berücksichtigt werden. Das bei der Störsignalmessung erhaltene Frequenzspektrum wird ausgewertet und ein Störsignalpegel quantifiziert. Dabei kann beispielsweise das Frequenzspektrum integriert werden und der somit erhaltene Störsignalmesswert kann anschließend mit einer vorher festgelegten Schwelle, beispielsweise dem Eigenrauschen der Empfangseinrichtung verglichen werden.
So kann beispielsweise vor der eigentlichen Messung eines Nutzsignals, beispielsweise vor einer Messung zur Ortung von Objekten, eine entsprechende Messung zur Reduzierung des Einflusses der mit dem Hochfrequenzmessgerät detektierten Störsignale durchgeführt werden. Anhand der Stärke der Störsignale, d. h. anhand des Störsignalmesswerts kann dann entschieden werden, ob eine Messung möglich ist oder nicht.
In alternativen Ausführungsformen des erfindungsgemäßen Verfahrens, kann vorgesehen sein, die Abtastrate eines Analog-Digital-Wandlers während der Messung eines Nutzsignals, d. h. während einer Messung mit aktivierter Sende- und Empfangseinrichtung, wie sie beispielsweise zur Ortung von Objekten durchgeführt wird, zu variieren, um somit die Störsignaleinflüsse auf das Messergebnis zu reduzieren.
Das erfindungsgemäße Verfahren wird insbesondere genutzt zum Betreiben eines Hochfrequenzmessgeräts, insbesondere eines handgehaltenen Messgeräts zur Ortung von Objekten. Ein solches Messgerät weist entsprechend zumindest einen Analog-Digital- Wandler für ein von einer Empfangseinrichtung des Geräts empfangenes Messsignal auf, welcher zur weiteren Signalverarbeitung abgetastet wird. Entsprechend dem erfϊndungsgemäßen Verfahren ist die Abtastrate des zumindest einen Analog-Digital- Wandlers variabel einstellbar.
In vorteilhafter Weise ist in einem solchen, erfindungsgemäßen Hochfrequenzmessgerät vorgesehen, dass die Variation der Abtastrate des zumindest einen Analog-Digital-
Wandlers von einem MikrocontroUer gesteuert wird. So kann beispielsweise eine Routine nach jedem Einschalten eines solchen Geräts automatisch oder auch manuell gestartet werden, die das aktuelle Störsignalniveau detektiert und die Abtastrate in beschriebener Weise optimiert um die Störsignaleinflüsse auf das Hochfrequenzmessgerät zu reduzieren.
Die Messfrequenz bzw. die Messfrequenzen eines solchen Hochfrequenzmessgeräts liegen in einem Intervall von 0,1 GHz bis 10 GHz, insbesondere werden Frequenzen von 1 GHz bis 5 GHz und vorzugsweise Frequenzen in einem Frequenzband von 1,5 GHz bis 3,5 GHz genutzt. Derart hohe Frequenzen ermöglichen es beispielsweise einem
Ortungsgerät, auch kleinste Materialunterschiede zu detektieren, was vorteilhaft bei der Detektion von in einem Medium eingeschlossenen Objekten ausgenutzt werden kann.
Das erfindungsgemäße Verfahren bzw. ein nach dem erfindungsgemäßen Verfahren arbeitendes Hochfrequenzmessgerät reduziert den Einfluss von gepulst abgestrahlten
Störsignalen, indem die Abtastrate der Empfangseinrichtung so angepasst wird, dass möglichst nur zwischen den Störpulsen der Störer gemessen wird. Dabei wird die Abtastrate derart variiert, dass ein Minimum an Störstrahlung in den digitalen Ausgangsdaten der Empfangseinheit zu finden ist, bzw. der Störsignaleinfluss vollkommen eliminiert ist
Weitere Vorteile des erfindungsgemäßen Verfahrens bzw. des erfindungsgemäßen Messgeräts ergeben sich aus der Zeichnung und der zugehörigen Beschreibung eines Ausführungsbeispiels.
Zeichnung
In der Zeichnung ist ein Ausführungsbeispiel für das erfindungsgemäße Verfahren dargestellt das in der nachfolgenden Beschreibung näher erläutert werden soll. Die Figuren der Zeichnung, deren Beschreibung sowie die Ansprüche enthalten zahlreiche Merkmale in Kombination. Ein Fachmann wird diese Merkmale auch einzeln betrachten und zu weiteren, sinnvollen Kombinationen zusammenfassen, die somit als ebenfalls offenbart anzusehen sind.
Es zeigt:
Fig. 1 den prinzipiellen Aufbau eines erfϊndungsgemäßen Messgeräts zur Verdeutlichung des zugrundeliegenden Verfahrens in einer vereinfachten, schematisierten Darstellung.
Fig. 1 zeigt als Beispiel eines erfindungsgemäßen Messgeräts den prinzipiellen Aufbau eines Ortungsgeräts auf Hochfrequenzbasis, bei dem ein Hochfrequenzerzeuger Pulse im Gigahertz-Bereich (Mikrowellen, Radar) aussendet, die an Grenzflächen ganz oder teilweise reflektiert werden, und von einem Empfänger des Messgerätes als Pulsantwort wieder registriert und ausgewertet werden.
Ein von einer Zeitbasis 10 gesteuerter Pulsgenerator 12 erzeugt in einer Sendeeimheit 19 des Messgeräts gemäß Figur 1 einen zeitlich kurzen, spektral breiten Spannungsimpuls, der über einen nicht näher dargestellten Wellenkoppler in eine Antennenanordnung 14 der Sendeeinheit eingekoppelt wird. Die Antenne 14 strahlt die entsprechende elektromagnetische Strahlung 16 ab, die an Grenzflächen, welche sich in der Nähe der Sendeeinheit 19 befinden, zum Teil reflektiert werden.
Wird das Hochfrequenzortungsgerät in die Nähe eines Mediums, beispielsweise einer Wand 18 gebracht so kommt es neben den Reflektionen an der Oberfläche 17 der Wand
18 auch zu entsprechenden Reflektionen an in dem Medium eingeschlossenen Objekten 20. Ein derart reflektiertes Messsignal 22 wird über eine Empfangseinrichtung 23, die unter anderem auch eine Empfangsantenne 24 umfasst vom Messgerät wiederum detektiert. Der Empfänger erhält von der Antenne 14 und evtl. vorhandenen Kopplern, Filtern, oder Verstärkern der Empfangseinheit 23, die schematisch in Fig. 1 in einer
Baueinheit 26 zusammengefasst sind, ein Analogsignal 30, das in zumindest einem Analog-Digital-Wandler 28 des Messgerätes abgetastet wird.
Die Geschwindigkeit in der eine solche Abtastung geschieht nennt man Abtast- oder Samplingrate. Dabei entspricht eine Abtastrate von beispielsweise 25 KHz 25000 Messwerten pro Sekunde. Das „Sampling" im Analog-Digital-Wandler 28, also die Wandlung der analog ankommenden Signale 30 in digitale Ausgangssignale 32 kann dabei deutlich langsamer als der von der Zeitbasis 10 vorgegebene Grundtakt (beispielsweise 8 MHz) der Sende- 19 bzw. Empfangseinrichtung 23 sein. Innerhalb dieser Zeit können beispielsweise Daten zur Rauschunterdrückung gemittelt werden, bis der Analog-Digital-Wandler diese Daten digitalisiert.
Bei dem erfindungsgemäßen Verfahren werden die durch die Empfangsantenne 24 detektierten rücklaufenden Messsignale 30 zunächst in einem Hochfrequenzverstärker der Baueinheit 26 der Empfangseinrichtung 23 des Messgerätes verstärkt. Anschließend erfolgt eine Abtastung der Spannungssignale des Messsignals 30 zu definierten Zeitpunkten. Die Zeitpunkte, zu denen die Spannung gemessen wird, werden dabei durch einen Abtastpuls vorgegeben. Da das Spannungssignal sowohl in Betrag als auch Phase ausgewertet wird und somit eine Bestimmung der Phase der reflektierten Spannung relativ zur Phase des vom Pulsgenerators erzeugten Spannung durchgeführt wird, ist es wichtig, dass der Generator 16 des Sendesignals und der Generator der Abtastpulse für den Analog-Digital-Wandler 28 phasengekoppelt sind. Dies wird durch den Einsatz der Zeitbasis 10 sichergestellt
Nach dem Analog-Digital-Wandler 28 wird das nun digitalisierte Messsignal 32 einem digitalen Signalprozessor, der in Fig. 1 nicht mehr dargestellt ist, zur weiteren Signalaufbereitung und Auswertung weitergeleitet. Dieser digitale Signalprozessor übernimmt sowohl ^s weitere Signalverarbeitung als auch die Steuerung der Zeitbasis 10 zur Erzeugung sowohl des Anregeimpulses als auch des Abtastimpulses.
Wäre die Abtastrate auf der Empfangsseite fest eingestellt bzw. vorgegeben, so könnte es bei einem Hochfrequenzortungsgerät vorkommen, dass andere Funkdienste, wie beispielsweise Handys, die im „Burst-Betrieb" arbeiten, zeitlich mit den abgetasteten Messsignalen überlappen bzw. sogar mit diesen zeitlich synchron laufen und somit das Messsignal verfalschen würden. Ein derart abgetastetes Empfangssignal 30 wäre somit nicht mehr verwendbar, da es zu Verfälschungen des Messergebnisses führen würde.
Bei auftretender Störstrahlung unterscheidet man grob zwischen kontinuierUchen (CW bzw. CDMA, code division multiple acces) oder gepulst abstrahlenden Störquellen (TDMA, time division multiple acces). Das erfindungsgemäße Verfahren eliminiert nun den Einfluss von gepulst abgestrahlten Störungen auf das Messsignal, indem die Abtastrate der Empfangsseite so angepasst wird, dass möghchst nur zwischen den Pulsen der externen Störer gemessen, d, h. die Analog- zu Digitalwandlung durchgeführt wird,
Dazu wird beispielsweise vor Beginn einer eigentlichen Ortungsmessung, der Sender bzw. die Sendeeinrichtung 19 des Hochfrequenzmessgeräts abgeschaltet. Es werden somit nur externe Störsignale von der Empfangseinrichtung 23 aufgenommen. Misst man nun die externe Störstrahlung vor der Nutzmessung, kann man über das Vorhandensein und die Stärke der Störfrequenzen Informationen erhalten. Zeigen diese Informationen an, dass eine Störquelle existiert so wird gemäß des erfindungsgemäßen Verfahrens die
Abtastrate des Analog-Digital-Wandlers 28 verändert und nachgemessen, ob sich der Störeinfluss reduziert. Dabei kann die Abtastrate für den Analog-Digital-Wandler 28 solange variiert werden, bis ein Minimum der Störstrahlung in den digitalen Ausgangsdaten 32 der Empfangseinrichtung zu finden ist oder bis die Störung unter einer vorgebbaren Schwelle reduziert ist.
Hierbei können beispielsweise lediglich bestimmte Frequenzlinien des Frequenzspektrums der Störstrahlung betrachtet werden. Alternativer Weise kann jedoch auch über die gesamte spektrale Bandbreite der Empfangseinrichtung gemessen werden und die Amplituden der Störsignale aufsummiert werden, um einen Störsignalmesswert zu erhalten. In vorteilhafter Weise wird bei dem erfindungsgemäßen Verfahren bevorzugt das gesamte Frequenzspektrum der Störsignale zur Analyse verwendet. Dies hat den Vorteil, dass auch zukünftig noch auftretende Störquellen, in aktuell noch nicht belegten Frequenzbändern, berücksichtigt werden können.
Das derart detektierte Frequenzspektrum des Störstrahlung kann beispielsweise auch integriert werden, um einen Wert für das Störsignalniveau zu erhalten. Dieser Störsignalmesswert kann dann in einer Routine, beispielsweise eines digitalen Signalprozessors mit einer vorher festgelegten Schwelle, beispielsweise dem Eigenrauschen der Empfangseinrichtung verglichen werden. Anhand der Stärke der
Störsignale, d. h. anhand des so ermittelten Störsignalmesswerts kann von einer Messroutine dann entschieden werden, ob eine Messung sinnvoll, möglich oder unsinnig ist. Liegt der Störsignalmesswert beispielsweise deutlich über der festgelegten Schwelle, so wird die Abtastrate des Analog-Digital-Wandlers durch eine automatische Routine verändert und eine neue Messung des Störsignalniveaus vorgenommen. Dies kann einmal oder öfter durchgeführt werden, bis entweder eine Abtastrate für den Analog-Digital- Wandler gefunden ist deren zugehöriger Störsignalmesswert unter dem vorgegebenen
Schwellwert liegt oder falls dies innerhalb einer vorgebbaren Zeit nicht erreichbar ist diejenige Abtastrate ermittelt wurde, welche in dem definierten Zeitintervall den niedrigsten Störsignalpegel, d. h. den geringsten Störsignalmesswert erzeugt hat.
Idealer Weise fangt man dabei mit der maximal möglichen Abtastrate des Analog-
Digital-Wandlers an und senkt diese dann sukzessive ab, da niedrigere Abtastraten eine verlängerte Messdauer hervorrufen. Die Variation der Abtastrate des Analog-Digital- Wandlers kann in vorteilhafter Weise durch einen Mikrokontoller 34 übernommen werden.
Ist auf diese Weise eine Abtastrate für einen Analog-Digital-Wandler 28 festgelegt worden, die zu einem reduzierten Störsignaleinfluss führt, kann die Sendeeinrichtung 19 des erfϊndungsgemäßen Messgeräts wieder aktiviert werden, so dass beispielsweise eine Ortungsmessung durch Aussendung eines Impulses 16 über die Antenne 14 und Detektion des rücklaufenden Messsignals 22 mit Hilfe der Empfangsantenne 24 durchgeführt werden kann.
Bei dem erfindungsgemäßen Verfahren kann vorgesehen sein, dass dieses automatisch nach Einschalten des entsprechenden Hochf equenzmessgeräts abläuft, um das Messgerät sofort auf die optimale Abtastrate der Analog-Digital-Wandlung einzustellen, die zu der bestmöglichen Reduzierung der aktuellen Störsignaleinflüsse führ Die Bestimmung des Störsignalmesswerts sowie die Optimierung der Abtastrate zur Verringerung der Störsignaleinflüsse können jedoch auch beispielsweise im Rahmen einer Kalibrierungsmessung durch den Anwender eines derartigen Messgeräts gegebenenfalls auch manuell aktiviert werden.
Alternativer Weise kann ein Verfahren vorgesehen sein, welches die Anpassung der Abtastrate für die Analogdigitalwandlung eines Hochfrequenzmessgeräts während des eigentlichen Messvorgangs vornimmt. Dies bedeutet dass vor der eigentlichen Messung, beispielsweise der Ortung eines in einem Medium eingeschlossenen Objekts, keine gesonderte Störsignalmessung durchgeführt wird, sondern direkt mit aktivierter Sendeeinrichtung und aktivierter Empfangseinrichtung gearbeitet wird. Dabei wird während der Ortungsmessung die Abtastrate der Analogdigitalwandlung beispielsweise ausgehend von der maximal möghchen Abtastrate sukzessive verringert und durch einen digitalen Signalprozessor diejenige Abtastrate ausgewählt welche zu dem bestem
Messergebnis, d. h. zu dem besten Nutzsignal führt. Wird im Rahmen einer Ortungsmessung beispielsweise ein Mustererkennungsverfahren genutzt, so lässt sich in einfacher Weise ein Kriterium für das Vorhegen guter Messergebnisse aufstellen.
Mit dem beschriebenen erfϊndungsgemäßen Verfahren können gepulste Störquellen wirksam unterdrückt bzw. deren Auswirkung auf das Messergebnis von Hochfrequenzmessgeräten minimiert werden.
Kontinuierhch abstrahlende Störquellen lassen sich mittels der Signalverarbeitung des Messgeräts wirksam unterdrücken. Allerdings rufen solche Störquellen mit ihrem rauschartigen Signal eine Signalpegelerhöhung hervor, so dass Komponenten in der Empfangseinrichtung, wie beispielsweise ein Verstärker oder auch der A/D-Wandler übersteuert werden können. Um hier ein Clipping d, h. ein Übersteuern zu vermeiden, kann man vor dem Verstärker, dem A/D-Wandler oder anderen der Auswertung des Messsignals dienenden Bauelementen, einen variabel einstellbaren Widerstand, wie dies in Fig. 1 mit dem Bauelement 34 angedeutet ist, einfügen. Bei diesem Bauelement kann es sich beispielsweise um ein VCR-Element (voltage controlled resistor) oder auch ein DCA-Element (digital controlled amplifire) handeln.
Die Regelung des VCR-Elements bzw. des DCA-Elements kann man dann mit dem oben beschriebenen Verfahren zur Bestimmung und MMmierung des Störsignalmesswerts steuern, indem das Messgerät die Störsignale bei verschiedenen Abtastraten mindestens eines Analog-Digital-Wandlers bestimmt Auf diese Weise werden die Messsignale immer unverzerrt abgetastet.
Mit dem hier vorgestellten Verfahren zur Vermeidung bzw. zur Reduzierung von Störsignaleinflüssen vom gepulsten oder kontinuierlich abstrahlenden Störquellen können Hochfrequenzmessgeräte optimierte und weitgehend unverfälschte Messergebnisse liefern. Des weiteren erlauben die Regelkreise, im Falle von nichtkompensierbaren Störquellen, einen sicheren Schutz gegen Fehlmessungen, da sie einen Anwender eines derartigen Messgeräts beispielsweise auch vor Störungen warnen und ggf. eine Messung mittels einer automatischen Schaltung nicht zulassen können.
Das erfindungsgemäße Verfahren sowie das erfindungsgemäße Messgerät ist nicht auf die in der Fig.1 dargestellte Ausführungsform beschränkt. Das Verfahren ist insbesondere nicht beschränkt auf die Variation der Abtastrate lediglich eines Analog- Digital-Wandlers. In entsprechender Weise können auch eine Mehrzahl von Wandlern betrieben werden.
Das erfindungsgemäße Verfahren und das entsprechende Messgerät aind nicht beschränkt auf Messungen zur Ortung von in einem Medium eingeschlossenen Objekten.
Prinzipiell ist das erfindungsgemäße Verfahren in jedem Hochfrequenzmessgerät einsetzbar. Darunter fallen insbesondere neben den Hochfrequenzmessgeräten zur Ortung auch solche Geräte zur Raum- und Personenüberwachung oder auch Geräte zur
Lokalisierung von Lebewesen durch eine Wand hindurch. Ein weiteres Einsatzgebiet für das erfindungsgemäße Verfahren ist die Entfernungsmessung mittels Hochfrequenz, die beispielsweise im Automobilbereich als Einparkhilfe oder Fahrerassistenzsystem oder auch zur mobilen Entfernungsmessung im Baugewerbe zur Anwendung kommt. Der Frequenzbereich, in dem diese Geräte üblicherweise arbeiten, liegt dabei im
Mikrowellenbereich.

Claims

Ansprüche
1. Verfahren zur Reduzierung von Störsignaleinflüssen auf ein Hochfrequenzmessgerät, insbesondere ein Verfahren zum Betreiben eines Hochfrequenzortungsgerates, bei dem ein von einer Empfangseinrichtung (23) des Hochfrequenzmessgerätes detektiertes, analoges Messsignal (22) mindestens einem Analog-Digital-Wandler (28) einer Auswerteeinheit für das Messsignal (22) zugeführt wird, dadurch gekennzeichnet, dass in Abhängigkeit eines mit den Störsignalen korrelierten Störsignalmesswertes, die Abtastrate des mindestens einen Analog-Digital-Wandlers (28) variiert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet dass die Abtastrate des mindestens einen Analog-Digital-Wandlers (28) geändert wird, falls der mit den Störsignalen korrelierte Störsignalmesswert einen Schwellwert übersteigt.
3. Verfahren nach Ansprach 1 oder 2, dadurch gekennzeichnet, dass der mit den Störsignalen korrelierte Störsignalmesswert mit Hilfe der Empfangseinheit (23) des Messgerätes gemessen wird.
4. Verfahren nach Ansprach 3, dadurch gekennzeichnet, dass die Messung der Störsignale mit geänderter Abtastrate des mindestens einen Analog-Digital-Wandlers (28) wiederholt wird, falls der mit den Störsignalen korrelierte Messwert einen vorgebbaren Schwellwert übersteigt.
5. Verfahren nach Ansprach 3, dadurch gekennzeichnet, dass die Messung der Störsignale mit geänderter Abtastrate des mindestens einen Analog-Digital-Wandlers (28) wiederholt wird, bis eine Abtastrate mit minimalem Störeinfluss vorliegt
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abtastrate des mindestens einen Analog-Digital-Wandlers (28) ausgehend von einer hohen Abtastrate hin zu geringeren Abtastraten variiert wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei einer Messung der Störsignale, das gesamte, mit der Bandbreite der Empfangseinrichtung (23) detektierbare Spektrum von Störsignalfrequenzen zur Ermittlung des mit den Störsignalen korrelierten Messwertes genutzt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche 1 bis 6, dadurch gekennzeichnet, dass bei einer Messung der Störsignale selektive Störsignalfrequenzen innerhalb der Bandbreite der Empfangseinrichtung (23) zur Ermittlung des mit den Storsignalen korrelierten Messwertes genutzt werden.
9. Verfahren nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass das bei einer Messung der Störsignale detektierte Frequenzspektrum ausgewertet wird und der daraus resultierende, mit den Störsignalen korrelierte Messwert mit einem vorgebbaren Schwellwert verglichen wird.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass vor einer Messung zur Ortung von Objekten (20), zumindest eine Messung zur Bestimmung von Störsignalen durchgeführt wird.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein variabel einstellbares, die SignalampHtude des Messsignals (30) beeinflussendes "-- Bauelement (34) der Empfangseinrichtung (23) entsprechend dem mit den Störsignalen korrelierten Störsignalmesswert gestellt wird, um ein Clipping des auszuwertenden Messsignals im Empfängerzweig zu vermeiden.
12. Hochfrequenzmessgerät, insbesondere ein handgehaltenes Messgerät zur Ortung von Objekten (20), mit einer Sendeeinrichtung (19) zur Erzeugung und Aussendung eines Messsignals (16), und einer Empfangseinrichtung (23) zur Detektion eines rücklaufenden Messsignals (22), sowie mit einer Steuer- und Auswerteeinrichtung umfassend zumindest einen Analog-Digital-Wandler (28) für ein von der Empfangseinrichtung (23) detektiertes Messsignal (22), welches zur weiteren Signalverarbeitung abgetastet wird, dadurch gekennzeichnet, dass die Abtastrate des zumindest einen Analog-Digital-Wandlers (28) variabel einstellbar ist.
13. Hochfrequenzmessgerät nach Ansprach 12, dadurch gekennzeichnet, dass das von der Sendeeinrichtung (19) erzeugte Messsignal (16) mehr als eine Messfrequenz aufweist.
14. Hochfrequenzmessgerät nach Ansprach 12, dadurch gekennzeichnet, dass zumindest eine Messfrequenz des von der Sendeeinrichtung (19) erzeugten Messsignals (16) in einem Intervall von 100 MHz bis 10000 MHz, insbesondere in einem Intervall von 1000 MHz bis 5000 MHz, und vorzugsweise in einem Intervall von 1500 MHz bis 3500 MHz liegt.
15. Hochfrequenzmessgerät nach Anspruch 12, dadurch gekennzeichnet, dass ein MikroController (36) vorgesehen ist, der die Variation der Abtastrate des zumindest einen Analog-Digital-Wandlers (28) steuert.
EP05736044A 2004-05-28 2005-04-19 Verfahren zur reduzierung von störsignaleinflüssen auf ein hochfrequenzmessgerät, sowie hochfrequenzmessgerät Ceased EP1754078A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004026182A DE102004026182A1 (de) 2004-05-28 2004-05-28 Verfahren zur Reduzierung von Störsignaleinflüssen auf ein Hochfrequenzmessgerät, sowie Hochfrequenzmessgerät
PCT/EP2005/051707 WO2005116683A1 (de) 2004-05-28 2005-04-19 Verfahren zur reduzierung von störsignaleinflüssen auf ein hochfrequenzmessgerät, sowie hochfrequenzmessgerät

Publications (1)

Publication Number Publication Date
EP1754078A1 true EP1754078A1 (de) 2007-02-21

Family

ID=34965307

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05736044A Ceased EP1754078A1 (de) 2004-05-28 2005-04-19 Verfahren zur reduzierung von störsignaleinflüssen auf ein hochfrequenzmessgerät, sowie hochfrequenzmessgerät

Country Status (5)

Country Link
US (1) US7724175B2 (de)
EP (1) EP1754078A1 (de)
JP (1) JP5215660B2 (de)
DE (1) DE102004026182A1 (de)
WO (1) WO2005116683A1 (de)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007075639A2 (en) * 2005-12-20 2007-07-05 Walleye Technologies, Inc. Microwave datum tool
US7586433B1 (en) * 2007-03-26 2009-09-08 Mala Geoscience Ab Dual port memory trigger system for a ground penetrating radar
DE102007046645A1 (de) * 2007-09-28 2009-04-02 Robert Bosch Gmbh Messvorrichtung
DE102007061383A1 (de) * 2007-12-19 2009-06-25 Robert Bosch Gmbh Verfahren zum Betreiben eines elektrischen Gerätes sowie elektrisches Gerät
US8805420B2 (en) * 2012-03-22 2014-08-12 Intel Corporation Systems and methods for implementing intelligent wideband digital frequency selection scanning
DE102012208261A1 (de) * 2012-05-16 2013-11-21 Robert Bosch Gmbh Verfahren zur Entstörung eines Abtastprozesses sowie eine Vorrichtung zur Durchführung des Verfahrens
US9658329B2 (en) * 2013-03-27 2017-05-23 Symbol Technologies, Llc Measurement of reflected ultrasound signal for ultrasonic emitter gating control
US8982989B2 (en) * 2013-06-28 2015-03-17 Rosemount Inc. Process variable transmitter with variable frequency clock circuit for rejection of clock synchronous noise
US10371813B2 (en) * 2013-08-13 2019-08-06 Duke University Systems and methods for using time of flight measurements for imaging target objects
DE102014111952A1 (de) * 2014-08-21 2016-02-25 Valeo Schalter Und Sensoren Gmbh Sensorvorrichtung zum Erfassen eines Umfelds eines Kraftfahrzeugs, Fahrerassistenzsystem, Kraftfahrzeug sowie Verfahren
DE102014225830A1 (de) * 2014-12-15 2016-06-16 Robert Bosch Gmbh Verfahren zum Kalibrieren eines Radarsystems
WO2017175190A1 (en) 2016-04-07 2017-10-12 Uhnder, Inc. Adaptive transmission and interference cancellation for mimo radar
US9846228B2 (en) 2016-04-07 2017-12-19 Uhnder, Inc. Software defined automotive radar systems
US10261179B2 (en) 2016-04-07 2019-04-16 Uhnder, Inc. Software defined automotive radar
US9791564B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Adaptive filtering for FMCW interference mitigation in PMCW radar systems
US9806914B1 (en) 2016-04-25 2017-10-31 Uhnder, Inc. Successive signal interference mitigation
US9945935B2 (en) 2016-04-25 2018-04-17 Uhnder, Inc. Digital frequency modulated continuous wave radar using handcrafted constant envelope modulation
US9599702B1 (en) 2016-04-25 2017-03-21 Uhnder, Inc. On-demand multi-scan micro doppler for vehicle
US9772397B1 (en) * 2016-04-25 2017-09-26 Uhnder, Inc. PMCW-PMCW interference mitigation
WO2017187243A1 (en) 2016-04-25 2017-11-02 Uhnder, Inc. Vehicular radar sensing system utilizing high rate true random number generator
EP3449272B1 (de) 2016-04-25 2022-11-02 Uhnder, Inc. Fahrzeugradarsystem mit einem gemeinsamen radar und kommunikationssystem, und verfahren zur verwaltung eines solchen systems in einem fahrzeug
US9791551B1 (en) 2016-04-25 2017-10-17 Uhnder, Inc. Vehicular radar system with self-interference cancellation
US10573959B2 (en) 2016-04-25 2020-02-25 Uhnder, Inc. Vehicle radar system using shaped antenna patterns
US9753121B1 (en) 2016-06-20 2017-09-05 Uhnder, Inc. Power control for improved near-far performance of radar systems
WO2018051288A1 (en) 2016-09-16 2018-03-22 Uhnder, Inc. Virtual radar configuration for 2d array
WO2018146632A1 (en) 2017-02-10 2018-08-16 Uhnder, Inc. Radar data buffering
US10908272B2 (en) 2017-02-10 2021-02-02 Uhnder, Inc. Reduced complexity FFT-based correlation for automotive radar
US11454697B2 (en) 2017-02-10 2022-09-27 Uhnder, Inc. Increasing performance of a receive pipeline of a radar with memory optimization
CA3055448C (en) * 2017-03-10 2024-03-05 Proceq Sa Probing a structure of concrete by means of electromagnetic waves
US11130692B2 (en) * 2017-06-28 2021-09-28 Uop Llc Process and apparatus for dosing nutrients to a bioreactor
US11105890B2 (en) 2017-12-14 2021-08-31 Uhnder, Inc. Frequency modulated signal cancellation in variable power mode for radar applications
KR101929821B1 (ko) 2018-06-21 2018-12-17 국방과학연구소 표적 유형에 따른 적응형 임계치를 이용한 전파형 거리측정장치 및 그 방법
US11474225B2 (en) 2018-11-09 2022-10-18 Uhnder, Inc. Pulse digital mimo radar system
US11681017B2 (en) 2019-03-12 2023-06-20 Uhnder, Inc. Method and apparatus for mitigation of low frequency noise in radar systems
CN110045358B (zh) * 2019-03-22 2022-06-21 深圳迈睿智能科技有限公司 基于多普勒效应原理的微波探测器及抗辐射干扰方法
US11899126B2 (en) 2020-01-13 2024-02-13 Uhnder, Inc. Method and system for multi-chip operation of radar systems
DE102020101390B4 (de) 2020-01-22 2024-08-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft System und Verfahren zur prädiktiven Verarbeitung digitaler Signale

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012053A1 (en) * 1997-09-01 1999-03-11 Cambridge Consultants Limited Electromagnetic sensor system
WO2002044750A1 (de) * 2000-12-01 2002-06-06 Robert Bosch Gmbh Impuls-radarverfahren sowie impuls-radarsensor und system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3905735A1 (de) 1989-02-24 1990-08-30 Pierburg Gmbh Verfahren zum auswerten eines eingangssignals
US5194865A (en) * 1991-12-06 1993-03-16 Interbold Analog-to-digital converter circuit having automatic range control
JPH05180926A (ja) * 1991-12-27 1993-07-23 Mitsubishi Electric Corp レーダ装置
US6163292A (en) * 1998-10-15 2000-12-19 Hilti Aktiengesellschaft Method of determining the ability of a medium to absorb electromagnetic waves and a sensor for detecting foreign bodies in the medium
DE19915016C2 (de) * 1998-10-15 2001-08-16 Hilti Ag Verfahren zur Bestimmung der Dämpfung eines Mediums für elektromagnetische Wellen und Sensor zur Erkennung von Fremdeinschlüssen in dem Medium
US6834073B1 (en) * 2000-05-26 2004-12-21 Freescale Semiconductor, Inc. System and method for baseband removal of narrowband interference in ultra wideband signals
AU2000258822A1 (en) * 2000-05-26 2001-12-11 Xtremespectrum, Inc. Ultra wide bandwidth spread-spectrum communications method and system
JP3783549B2 (ja) * 2000-10-12 2006-06-07 三菱電機株式会社 レーダ信号処理装置
DE10207424A1 (de) * 2002-02-21 2003-09-04 Bosch Gmbh Robert Verfahren und Meßgerät zur Ortung eingeschlossener Objekte
DE10233835A1 (de) * 2002-07-25 2004-02-12 Robert Bosch Gmbh Verfahren zur Störbefreiung von Messsignalen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012053A1 (en) * 1997-09-01 1999-03-11 Cambridge Consultants Limited Electromagnetic sensor system
WO2002044750A1 (de) * 2000-12-01 2002-06-06 Robert Bosch Gmbh Impuls-radarverfahren sowie impuls-radarsensor und system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2005116683A1 *

Also Published As

Publication number Publication date
US7724175B2 (en) 2010-05-25
JP5215660B2 (ja) 2013-06-19
DE102004026182A1 (de) 2005-12-22
JP2008501108A (ja) 2008-01-17
WO2005116683A1 (de) 2005-12-08
US20090015459A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
WO2005116683A1 (de) Verfahren zur reduzierung von störsignaleinflüssen auf ein hochfrequenzmessgerät, sowie hochfrequenzmessgerät
EP2144083B1 (de) Verfahren zur dynamischen Ermittlung des Rauschlevels
EP2225581B1 (de) Verfahren zum betreiben eines elektrischen gerätes sowie elektrisches gerät
EP2783237B1 (de) Radargerät und verfahren zur erkennung eines ausfalls eines empfangskanals eines radargerätes
DE19929794A1 (de) Fahrzeug-Radarvorrichtung
WO2008058786A1 (de) Verfahren und vorrichtung zum erkennen von niederschlag mittels radar
DE102017109293A1 (de) Verfahren zum Betreiben eines Authentifizierungssystems und Authentifizierungssystem
DE102019135473A1 (de) Fmcw-radar mit frequenzspringen
DE10162668B4 (de) System zur Messung des Abstandes zu Objekten mittels elektromagnetischer Impulse
EP1763687A2 (de) Verfahren und vorrichtung zur werkstoffdurchdringenden ortung eines messsignals
DE102018200688B4 (de) Verfahren und Vorrichtung zum Betreiben eines akustischen Sensors
EP1946049B1 (de) Messgerät
DE102009032124A1 (de) Verfahren zum Erkennen eines blockierten Zustands eines Radargeräts und Fahrerassistenzeinrichtung
DE102021132556A1 (de) Akustische hindernisdetektion mit erhöhter resistenz gegen systematische interferenz
DE102014209723A1 (de) Bestimmung eines Indikators für eine Erblindung eines Radarsensors
EP3685151B1 (de) Verfahren und vorrichtung zum verarbeiten eines von einem akustischen sensor empfangenen echosignals
EP2335091A1 (de) Ultraschallsensor und verfahren zum betreiben eines ultraschallsensors
EP0432360A2 (de) Vorrichtung zur Ermittelung der mittleren Wasserfilmdicke aufStrassenoberflächen
DE202020004025U1 (de) Vorrichtungen und Systeme zum Erfassen einer Sättigung von empfangenen Echosignalen
DE19915016A1 (de) Verfahren zur Bestimmung der Absorptionsfähigkeit eines Mediums für elektromagnetische Wellen und Sensor zur Erkennung von Fremdeinschlüssen in dem Medium
EP3418699A1 (de) Füllstandradargerät mit gesteuerter sendeleistung
DE102019219640A1 (de) Radarmodul, Radarsystem und Verfahren zum Betreiben eines Radarmoduls
DE10259283B4 (de) Impulsradarvorrichtung
DE102022103196A1 (de) System, Vorrichtung und Verfahren zum Feststellen einer Distanz zu einer Bodenoberfläche, die von Vegetation bedeckt ist, für den Betrieb einer Fräs- oder Gewinnungsmaschine
EP2877877B1 (de) Verfahren zum betrieb eines umfelderfassungssystems eines fahrzeugs und umfelderfassungssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20071109

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20181212