EP1751414B1 - Procede et dispositif de commande d'une soupape - Google Patents

Procede et dispositif de commande d'une soupape Download PDF

Info

Publication number
EP1751414B1
EP1751414B1 EP05746333A EP05746333A EP1751414B1 EP 1751414 B1 EP1751414 B1 EP 1751414B1 EP 05746333 A EP05746333 A EP 05746333A EP 05746333 A EP05746333 A EP 05746333A EP 1751414 B1 EP1751414 B1 EP 1751414B1
Authority
EP
European Patent Office
Prior art keywords
value
valve
function
piezoactuator
valve member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05746333A
Other languages
German (de)
English (en)
Other versions
EP1751414A1 (fr
Inventor
Hans-Jörg Wiehoff
Reiner Lederle
Richard Pirkl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1751414A1 publication Critical patent/EP1751414A1/fr
Application granted granted Critical
Publication of EP1751414B1 publication Critical patent/EP1751414B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors

Definitions

  • the invention relates to a method and a device for controlling a valve.
  • the valve has a valve drive, which is designed as a piezo actuator, a valve member, a valve body and a valve seat.
  • a valve is used for example in a pump-nozzle device for supplying fuel into a combustion chamber of a cylinder of an internal combustion engine, in particular a diesel engine.
  • a pump, a control unit with the valve and a nozzle unit form a structural unit.
  • the drive of a piston of the pump is preferably via a camshaft of an internal combustion engine by means of a rocker arm.
  • the pump can be hydraulically coupled via the valve to a low-pressure fuel supply device. It is hydraulically coupled on the output side with the nozzle unit. Start of injection and injection quantity are determined by the valve and its valve drive. Due to the compact design of the pump-nozzle device results in a very low volume of high pressure and high hydraulic stiffness. This enables very high injection pressures of around 2,000 bar. This high injection pressure in conjunction with the good controllability of the start of injection and the injection quantity allow a significant reduction in emissions while low fuel consumption when using the internal combustion engine.
  • a pump-nozzle device comprising a pump and a valve having a valve member which controls the hydraulic coupling of a spill space to a drain passage.
  • the drainage channel is hydraulically coupled with the pump and a nozzle unit.
  • An inlet channel is provided, which is hydraulically coupled to the Abberichtraum.
  • the valve member is associated with a piezoelectric valve drive, via which the valve member can be adjusted between two end positions. In a first end position of the valve member of the flow channel is hydraulically coupled to a Ab tenuraum and this in turn with the inlet channel. In a second end position of the valve member of the drainage channel is hydraulically decoupled from the Abberichtraum and the valve member is in a valve seat of the valve.
  • the end of injection is determined by controlling the valve member to its first end position by means of the actuator and thus allowing fluid to flow back into the discharge chamber and the inlet channel via the discharge channel, with the result that the pressure in the pump and thus also in the nozzle unit decreases, which in turn leads to a closing of the nozzle unit.
  • the object of the invention is to provide a method and a device for controlling a valve, by which or a precise control of the valve can be ensured, over a long period of operation.
  • the invention is characterized by a method and a corresponding device for controlling a valve with a valve drive, which is designed as a piezoelectric actuator, with a valve member, a valve body and a valve seat.
  • An actuating signal for charging the piezoactuator is determined and generated as a function of a precontrol value and of an output value of a controller.
  • the pre-tax value depends on at least one farm size.
  • the piezoactuator is charged such that the valve member is controlled from a position away from the valve seat into the valve seat.
  • a first value is determined which is characteristic of the electrical energy supplied to the piezoactuator when the valve member strikes the valve seat.
  • a second value is determined which is characteristic of the electrical energy supplied to the piezoactuator at the end of the charging process of the piezoactuator.
  • An actual value which is characteristic of a sealing force with which the valve member is pressed onto the valve seat, is determined as a function of the first and second values.
  • the actual value and a predefinable setpoint value are fed to the controller, which generates an output value as a function of this.
  • a pre-tax value assignment rule is adjusted depending on the initial value and at least one farm size. If a predetermined condition is met, the pre-tax value assignment rule is adopted to determine the pre-tax value.
  • the precontrol value assignment rule is understood to be the calculation rule by means of which the precontrol value is determined as a function of the at least one operating variable. It may for example be implemented by a corresponding analytical function, but is particularly easily represented by a suitable map.
  • the invention is characterized in that the valve force with which the valve is pressed by the valve drive into the valve seat, when it is in systems with the valve seat, is very accurate and very reproducible adjustable.
  • the valve seat force is decisive for the tightness of the valve when the valve member is in contact with the valve seat.
  • the mechanical stress of the valve member and the valve seat can be selectively reduced over a long period of operation of the valve and at the same time ensure that over this long period of operation, the valve seat force, so the sealing force, is consistent. It can also be easily minimized tolerances in the closing and opening of the valve.
  • the invention thus also utilizes the knowledge that the first value depends decisively on a force which is caused by the pressure of the fluid which acts on the valve member and a force of a regularly existing return means. It also makes use of the knowledge that the second value is critically dependent on the sealing force and, in addition, on the force caused by the pressure of the fluid acting on the valve member and the force of the return means. Thus, an actual value of the sealing force can be determined simply depending on the two values. In this way, therefore, the piezoelectric actuator is also used simultaneously as a sensor.
  • a basic pre-control value is determined as a function of the at least one operating variable.
  • An adaptation value is determined as a function of the at least one operating variable and an adaptation value assignment rule is adapted as a function of the output value and at least one operating variable and, if the predetermined condition is met, the adaptation value assignment rule is adopted for determining the adaptation value.
  • the precontrol value is determined as a function of the basic precontrol value and the adaptation value.
  • the respective base pilot value can be determined by means of the same basic pilot value assignment rule, which then may not be adjusted, and it is simply possible to adapt the adaptation value assignment rule individually for each valve. In this way, then simply a very precise control of the individual Valve allows and at the same time the basis pre-tax value assignment rule can be shared.
  • the predetermined condition is then configured such that it is fulfilled when an operation is initiated after a pause in operation of the valve.
  • a break in operation is characterized in that the valve member is not moved much longer than is the case during a typical operation of the valve.
  • such a pause in operation may be, for example, the period of time between a switching off of the internal combustion engine and a subsequent engine start.
  • the precontrol value assignment instruction can be particularly simple, depending on the initial value and a rotational speed of a crankshaft of an internal combustion engine, when the valve is used in an internal combustion engine, for example in a pump-nozzle device. It has surprisingly been found in this context that by a simple consideration of the speed already a sufficiently precise adjustment of the pilot value assignment rule is possible. In particular, dynamic effects can easily be taken into account as a result.
  • the pump-nozzle device ( FIG. 1 ) comprises a pump unit, a control unit and a nozzle unit.
  • the pump-nozzle device is preferably used for supplying fuel into the combustion chamber of a cylinder of an internal combustion engine.
  • the internal combustion engine is preferably designed as a diesel engine.
  • the internal combustion engine has an intake tract for intake of air, which can be coupled by means of gas inlet valves with cylinders.
  • the internal combustion engine also has an exhaust tract, which discharges the gases to be discharged from the cylinders via the outlet valve.
  • the cylinders are each assigned pistons, which are each coupled via a connecting rod with a crankshaft.
  • the crankshaft is coupled to a camshaft.
  • the pump unit comprises a piston 11, a pump body 12, a working space 13 and a pump return means 14, which is preferably designed as a spring.
  • the piston 11 is coupled in the installed state in an internal combustion engine with a camshaft 16, preferably by means of a rocker arm, and is driven by this.
  • the piston 11 is guided in a recess of the pump body 12 and determined depending on its position, the volume of the working space thirteenth
  • the pump return means 14 is designed and arranged such that the volume of the working space 13 bounded by the piston 11 has a maximum value when no forces act on the piston 11, ie. H. Forces transmitted via the coupling with the camshaft 16.
  • the nozzle unit comprises a nozzle body 51, in which a nozzle return means 52, which is designed as a spring and possibly additionally as a damping unit, and a nozzle needle 53 are arranged.
  • the nozzle needle 53 is arranged in a recess of the nozzle body 51 and is guided in the region of a needle guide 55.
  • the nozzle needle 53 abuts a needle seat 54 and thus closes a nozzle 56, which is provided for supplying the fuel into the combustion chamber of the cylinder of the internal combustion engine.
  • the nozzle unit is preferably, as shown, formed as an inwardly opening nozzle unit.
  • the nozzle needle 53 is slightly spaced from the needle seat 54 toward the nozzle return means 52, thus releasing the nozzle 56.
  • fuel is metered into the combustion chamber of the cylinder of the internal combustion engine.
  • the first or second state is assumed depending on a balance of forces from the force acting on the nozzle needle 53 by the nozzle return means 52 and the counteracting force caused by the hydraulic pressure in the region of the needle heel 57.
  • the control unit comprises an inlet channel 21 and an outlet channel 22.
  • the inlet channel 21 and the outlet channel 22 can be hydraulically coupled by means of a valve.
  • the inlet channel 21 is guided from a low-pressure side connection of the pump-nozzle device to the valve.
  • the drainage channel 22 is hydraulically coupled to the working space 13 and is led to the needle heel 57 and is hydraulically coupled to the nozzle 56 depending on the state which is occupied by the nozzle needle 53.
  • the valve comprises a valve member 231, which is preferably designed as a so-called.
  • a valve d. H. it opens outward against the flow direction of the fluid.
  • the valve further comprises a Abêtraum 232 which is hydraulically coupled to the inlet channel 21 and by means of the valve member 231 with a high-pressure chamber is hydraulically coupled.
  • the high-pressure chamber is hydraulically coupled to the drainage channel 22.
  • valve return means is provided, which is arranged and formed so that it the valve member 231 in an open position, d. H. spaced apart from the valve seat 234 when the forces acting on the valve member by an actuator 24 are less than the forces caused by the pressure of the fluid, here the fuel, acting on the valve member 231 through the valve return means.
  • the actuator 24 is formed as a piezo stack.
  • the actuator 24 is preferably coupled to the valve member 231 by means of a transformer which preferably amplifies the stroke of the actuator 24.
  • a transformer which preferably amplifies the stroke of the actuator 24.
  • On the actuator 24 is preferably also a plug for receiving electrical contacts for driving the actuator 24 is provided.
  • a device 60 for controlling the pump-nozzle device is provided, which generates a control signal SG for the valve.
  • valve member 231 In the open position of the valve member 231 is at a movement of the piston 11, ie upwards in the direction away is directed from the nozzle 56, sucked fuel through the inlet passage 21 toward the working space 13. As long as the valve member 231 continues to be in its open position during a subsequent downward movement of the piston 11, ie in a direction directed towards the nozzle 56, the fuel located in the working space 13 and the discharge channel 22 is returned to the discharge space 232 via the valve and possibly pushed back into the inlet channel 21.
  • valve member 231 when the valve member 231 is controlled in its closed position during the downward movement of the piston 11, the fuel in the working chamber 13 and thus also in the discharge passage 22 and in the high-pressure chamber is compressed, whereby the pressure with increasing downward movement of the piston 11 in the working space 13, in the high pressure chamber and in the drain passage 22 increases.
  • the force caused by the hydraulic pressure increases, which acts on the needle shoulder 57 in the direction of an opening movement of the nozzle needle 53 to release the nozzle 56.
  • the nozzle needle 53 moves away from the needle seat 54, thus giving the nozzle 56 for the fuel supply to the cylinder of the internal combustion engine free.
  • the nozzle needle 53 then moves back into the needle seat 54 and thus closes the nozzle 56 when the hydraulic pressure in the drain passage 22 falls below the value at which the force caused by the hydraulic pressure at the needle heel 57 is smaller than that caused by the nozzle return means 52 Force.
  • the time at which this value is exceeded and at which thus the fuel metering is terminated, can be influenced by the control of the valve member 231 from its closed position to an open position.
  • the hydraulic coupling between the high pressure chamber and the Abêtraum 232 and the inlet channel 21 is made. Due to the high pressure difference prevailing during opening between the fluid in the high-pressure space and the outlet channel 22 and the fluid in the discharge space 232 and the inlet channel 21, the fuel then flows from the high-pressure space into the discharge space 232 at very high speed, generally at the speed of sound and further into the inlet channel 21. As a result, the pressure in the high-pressure chamber and the outlet channel 22 is then rapidly reduced so much that the forces acting on the nozzle needle 53 by the nozzle return means 52 cause the nozzle needle 53 to move into the needle seat 54 and Thus then the nozzle 56 closes.
  • the valve member 231 is controlled from its position away from the valve seat 234 into the valve seat.
  • the predefinable first time is preferably chosen so that the piston 11 is in its top dead center and remains until the expected impact of the valve member 231 on the valve seat 234.
  • the impact time can be detected very precisely.
  • the predefinable first time may also be selected such that the piston 11 has left its top dead center until the expected impact of the valve member 231 on the valve seat 234.
  • a basic precontrol value EGY_PRE of the electrical energy to be supplied is dependent on a fuel temperature T_FU and / or a rotational speed N and determined at the predetermined first time.
  • the predefinable first time is in a function of the time SOI of moving away the nozzle needle 53 from its abutment against the nozzle body 51, ie the beginning of the injection, in the event that the piston 11 is partially outside its top dead center during the valve member 231 is in abutment with the valve seat 234.
  • the precontrol value EGY_PRE of the electrical energy to be supplied is determined, for example, by means of a characteristic map whose characteristic map values were determined in advance by tests.
  • a desired value EGY_D_SP of an electrical differential energy is determined in block B1.
  • the differential electric energy reference EGY_D_SP is characteristic of the sealing force exerted by the valve member 231 on the valve seat 234 of the valve body 237 when the valve member 231 is in contact with the valve seat 234.
  • the desired value EGY_D_SP of the electrical differential energy is determined in the block B1 depending on the fuel temperature T_FU, the rotational speed N and / or the predeterminable first time. This can also be done for example by means of a corresponding map. Alternatively or additionally, this can also be done depending on a coolant temperature.
  • the electrical energy supplied to the piezoactuator during the charging process is determined until the energy applied to the valve seat 234 when the valve member 231 strikes. This can be done, for example, by evaluating actual values V_AV of the piezoelectric voltage or corresponding variables characterizing them, such as, for example, the actual current through the piezoelectric actuator or the charge or electrical charge supplied to the piezoactuator Energy. Upon impact of the valve member 231 results in a characteristic course of these variables, by which the time of impact of the valve member 231 can be detected.
  • an actual value EGY_DET of the supplied electrical energy is determined in the block B2 on the basis of the determined instant of impact of the valve member 231 in the valve seat 234 and the actual value EGY_AV of the energy supplied thereto when the valve member 231 strikes the valve seat 234.
  • the actual values EGY_AV of the supplied electrical energy are also read in and the actual value EGY_AV is assigned to an actual value EGY_CHA of the supplied electrical energy at the end of the charging process at the end of the charging process of the piezoactuator.
  • the conclusion of the charging process can be recognized, for example, by the fact that the actual values EGY_AV of the supplied electrical energy reach a maximum or also by a corresponding information of a further control function for the pump-nozzle device.
  • a block B4 the difference between the actual value EGY_CHA of the supplied electrical energy at the conclusion of the charging process and the actual value EGY_DET of the supplied electrical energy is determined when the valve member 231 impinges on the valve seat 234 and fed to a block B5 which comprises a low-pass filter and provides an actual value EGY_D_AV of the electrical differential energy at its output.
  • the difference between the setpoint value EGY_D_SP and the actual value EGY_D_AV of the electrical differential energy is formed.
  • the Actual value EGY_D_AV of the electrical differential energy can also be determined directly without the low-pass filter of block B5.
  • the output of the block B6 is connected on the input side to a block B7, which comprises a regulator, which is preferably designed as a PI controller.
  • the manipulated variable of the regulator which in this exemplary embodiment is a control value EGY_FBC of the electrical energy to be supplied, which can also be referred to as the output value, is then fed to a block B8.
  • an adaptation value EGY_D_PRE of the electrical differential energy to be supplied is determined as a function of one or more of the following variables.
  • the variables are, for example, the fuel temperature T_FU or the coolant temperature or the rotational speed or the time SOI of the start of injection.
  • an adaptation value assignment rule is stored for this purpose, which is executed during the operation of the valve for determining the adaptation value EGY_D_AD.
  • a map is preferably stored for each individual pump-nozzle device in block B9 in which values of the adaptation value EGY_D_AD are stored as a function of one or more input variables of block B9.
  • a predeterminable number of map points are stored in this map.
  • the determination of the respective adaptation value EGY_D_AD is carried out, as is generally customary in the case of characteristic maps, by means of appropriate interpolation between the stored characteristic map points.
  • the map of the block B9 is updated in the presence of a predetermined condition. The predetermined condition is then preferably fulfilled, if after an engine stop, the internal combustion engine, which is associated with the pump-nozzle device, is restarted. The updating of the map will be explained in more detail below.
  • the adaptation value EGY_D_PRE of the electrical differential energy to be supplied and the basic precontrol value EGY_PRE of the electrical energy to be supplied are added in the block B8 and thus form a precontrol value of the electrical energy to be supplied. Furthermore, the control value EGY_FBC of the electrical energy to be supplied is also added in the block B8 and, in total, this results in a desired electrical energy EGY_THRUST to be supplied to the piezoactuator.
  • the value EGY_THRUST of the desired electrical energy to be supplied is supplied to a block B10, in which a corresponding actuating signal SG for driving the valve drive 24 designed as a piezoactuator is generated.
  • the control signal SG is preferably a pulse-width-modulated signal and the desired electrical energy EGY_THRUST to be supplied is preferably divided into a predetermined number of partial energy quantities, which are respectively supplied to the piezoactuator in one period of the pulse width modulated or pulse amplitude modulated signal.
  • the block B10 further preferably comprises a further lower-level controller in which the actual supply of electrical energy to the piezoactuator is regulated, wherein the manipulated variable is the respective pulse width or pulse height of the actuating signal SG.
  • the current charge or the actual values V_AV of the piezoelectric voltage or the actual values EGY_AV of the supplied electrical energy can serve as a controlled variable.
  • control value is preferred EGY_FBC of the supplied electrical energy taken over by a charging process, which took place in advance after the first predetermined time. Only the basic precontrol value EGY_PRE of the electrical energy to be supplied and the adaptation value EGY_D_AD of the electrical energy to be supplied are then recalculated.
  • a block B12 is provided to which the control value EGY_FBC of the controller of the block B7 is supplied.
  • the control value EGY_FBC of the electrical energy to be supplied is representative of an error of the precontrol value of the electrical energy to be supplied at the current operating point, which is determined by one or more of the variables fuel temperature T_FU, coolant temperature, rotational speed N, injection start SOI.
  • the block B12 comprises an intermediate map, which is reinitialized each time the map of the block B9 is updated.
  • the control values EGY_FBC occurring during operation of the pump-nozzle device are stored. this happens Depending on the respectively assigned current sizes, ie one or more of the input variables of the block B12.
  • the intermediate map comprises a predetermined number of discrete points for storing the control value EGY_FBC.
  • This "learning" of the corresponding map values may preferably be performed via a basis weighting, a filter, or similar methods.
  • the surface weighting method it is taken into account how far away the respective current operating point is from a corresponding interpolation point of the intermediate characteristic field and the or more interpolation points of the intermediate characteristic field are then updated correspondingly weighted.
  • the map of the block B9 is updated by means of the intermediate map of the block B12. It is particularly advantageous in this context if the intermediate map is previously smoothed by means of a suitable filter. In the simplest case, the nodes of the intermediate map are added to the corresponding nodes of the map B9. Alternatively, however, this can also be done by means of a predeterminable weighting or the like.
  • control values EGY_FBC which have occurred since the last update of the characteristic diagram B9 and which are representative of an error of the pilot control value at the current operating point are used so efficiently to improve the quality of the respective Pre-tax value.
  • the controller of the block B7 can be limited to the compensation of only very small differences of the setpoint EGY_D_SP and the actual value EGY_D_AV the electrical differential energy and so even during an extremely high dynamic operation of the pump-nozzle device, a very precise driving the actuator 24, which is the Piezoaktuator guaranteed.
  • the predetermined condition may also be configured such that it is fulfilled after a predefinable number of engine runs, for example two, three, four or five engine runs, or that it is fulfilled after a predefinable operating time, for example five or ten operating hours ,
  • the adaptation value EGY_DAD instead of the adaptation value EGY_DAD, updating of the local assignment rule depending on the intermediate characteristic field of the block B12 can also take place directly in the block B1.
  • the basic precontrol value EGY_PRE can then also be equal to the precontrol value.
  • the output quantities of the blocks B1, B2, B3, B4, B5, B6, B7, B8, B9, B10 can also be corresponding electrical voltages or currents or charges.
  • the block B1 can be realized identically for all the pump-nozzle devices, while the block B9 then preferably for each individual pump-nozzle device individually is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Claims (5)

  1. Procédé pour commander une soupape avec un entraînement de soupape (24), qui est conçu comme actionneur piézo-électrique, avec un élément de soupape (231), un corps de soupape (237) et un siège de soupape (234), dans lequel
    - un signal de commande (SG) pour le chargement de l'actionneur piézo-électrique est déterminé et généré de telle sorte que l'élément de soupape (231) est amené d'une position éloignée du siège de soupape (234) dans le siège de soupape (234), en fonction d'une valeur de pré-commande, qui dépend d'au moins une grandeur de service et par une valeur de départ d'un régulateur,
    - une première valeur est déterminée, qui est caractéristique de l'énergie électrique amenée à l'actionneur piézo-électrique lors de l'arrivée de l'élément de soupape (231) sur le siège de soupape (234),
    - une seconde valeur est déterminée, qui est caractéristique de l'énergie électrique amenée à l'actionneur piézo-électrique lors de l'achèvement de l'opération de chargement de l'actionneur piézo-électrique,
    - une valeur réelle, qui est caractéristique d'une force d'étanchéité avec laquelle l'élément de soupape (231) est comprimé sur le siège de soupape (234), est déterminée en fonction de la première et de la seconde valeur,
    - la valeur réelle et une valeur théorique prédéfinie sont amenées au régulateur qui génère en fonction de cela la valeur de départ,
    - une prescription d'attribution de valeur de pré-commande est adaptée en fonction de la valeur de départ et d'au moins une grandeur de service et, lorsqu'une condition prédéfinie est satisfaite, la prescription d'attribution de valeur de pré-commande est prise en charge pour la détermination de la valeur de pré-commande.
  2. Procédé selon la revendication 1,
    dans lequel une valeur de pré-commande de base est déterminée en fonction d'au moins une grandeur de service, une valeur d'adaptation (EGY_D_AD) est déterminée en fonction d'au moins une grandeur de service, la valeur de pré-commande est déterminée en fonction de la valeur de pré-commande de base et de la valeur d'adaptation et une prescription d'attribution de valeur d'adaptation est adaptée en fonction de la valeur de départ et d'au moins une grandeur de service, et lorsque la condition prédéfinie est satisfaite, la prescription d'attribution de valeur d'adaptation est prise en charge pour la détermination de la valeur d'adaptation.
  3. Procédé selon l'une quelconque des revendications précédentes, dans lequel la condition prédéfinie est conçue de telle sorte qu'elle est satisfaite lorsqu'une reprise de service intervient après une pause de service de la soupape.
  4. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'adaptation de la prescription d'attribution de la valeur de pré-commande s'effectue en fonction de la valeur de départ et d'un régime (N) d'un vilebrequin d'un moteur à combustion interne.
  5. Dispositif pour commander une soupape avec un entraînement de soupape (24), qui est conçu comme actionneur piézo-électrique, avec un élément de soupape (231), un corps de soupape (237) et un siège de soupape (234), le dispositif étant conçu pour
    - déterminer et générer un signal de commande (SG) pour le chargement de l'actionneur piézo-électrique de telle sorte que l'élément de soupape (231) est amené d'une position éloignée du siège de soupape (234) dans le siège de soupape (234), en fonction d'une valeur de pré-commande qui dépend d'au moins une grandeur de service, et d'une valeur de départ d'un régulateur,
    - déterminer une première valeur qui est caractéristique de l'énergie électrique amenée à l'actionneur piézo-électrique lors de l'arrivée de l'élément de soupape (231) sur le siège de soupape (234),
    - déterminer une seconde valeur qui est caractéristique de l'énergie électrique amenée à l'actionneur piézo-électrique lors de l'achèvement de l'opération de chargement de l'actionneur piézo-électrique,
    - déterminer une valeur réelle qui est caractéristique d'une force d'étanchéité avec laquelle l'élément de soupape (231) est pressé sur le siège de soupape (234), en fonction de la première et de la seconde valeur,
    - l'arrivée de la valeur réelle et de la valeur prescrite prédéfinie au régulateur qui génère la valeur de départ en fonction de cela,
    - adapter une prescription d'attribution de valeur de pré-commande en fonction de la valeur de départ et d'au moins une grandeur service et, lorsqu'une condition prédéfinie est satisfaite, prendre en charge la prescription d'attribution de la valeur de pré-commande pour la détermination de la valeur de pré-commande.
EP05746333A 2004-06-04 2005-05-27 Procede et dispositif de commande d'une soupape Expired - Fee Related EP1751414B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004027291A DE102004027291B4 (de) 2004-06-04 2004-06-04 Verfahren und Vorrichtung zum Steuern eines Ventils
PCT/EP2005/005699 WO2005119039A1 (fr) 2004-06-04 2005-05-27 Procede et dispositif de commande d'une soupape

Publications (2)

Publication Number Publication Date
EP1751414A1 EP1751414A1 (fr) 2007-02-14
EP1751414B1 true EP1751414B1 (fr) 2008-05-07

Family

ID=34968916

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05746333A Expired - Fee Related EP1751414B1 (fr) 2004-06-04 2005-05-27 Procede et dispositif de commande d'une soupape

Country Status (5)

Country Link
US (1) US7690358B2 (fr)
EP (1) EP1751414B1 (fr)
CN (1) CN100394008C (fr)
DE (2) DE102004027291B4 (fr)
WO (1) WO2005119039A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022910B4 (de) * 2010-06-07 2017-09-21 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben eines Einspritzventils
DE102010063099A1 (de) 2010-12-15 2012-06-21 Robert Bosch Gmbh Verfahren zum Betreiben einer Kraftstoffeinspitzanlage einer Brennkraftmaschine
ITMI20120245A1 (it) * 2012-02-20 2013-08-21 Automobili Lamborghini Spa Processo per fabbricare tessuti in fibra di carbonio e tessuto fabbricato con questo processo
DE102013220607B4 (de) * 2013-10-11 2017-01-05 Continental Automotive Gmbh Vorrichtung und Verfahren zur Reduzierung von Varianten bei Kraftstoffpumpen-Elektroniken

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68921047T2 (de) * 1988-11-30 1995-06-14 Toyota Motor Co Ltd Apparat zum Antreiben eines piezoelektrischen Elements zum Öffnen oder zum Schliessen eines Ventilteils.
JP2536114B2 (ja) * 1989-01-18 1996-09-18 トヨタ自動車株式会社 圧電素子の駆動装置
DE19652801C1 (de) * 1996-12-18 1998-04-23 Siemens Ag Verfahren und Vorrichtung zum Ansteuern wenigstens eines kapazitiven Stellgliedes
DE19835494C2 (de) * 1998-08-06 2000-06-21 Bosch Gmbh Robert Pumpe-Düse-Einheit
DE19936944A1 (de) * 1999-08-05 2001-02-08 Bosch Gmbh Robert Verfahren zum Zumessen von Brennstoff mit einem Brennstoffeinspritzventil
US6584958B2 (en) * 1999-10-15 2003-07-01 Westport Research Inc. Directly actuated injection valve with a ferromagnetic needle
DE60022619T2 (de) * 2000-04-01 2006-03-16 Robert Bosch Gmbh Verfahren und Vorrichtung zum Laden eines piezoelektrischen Elements
DE10148217C1 (de) * 2001-09-28 2003-04-24 Bosch Gmbh Robert Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine
WO2003081007A1 (fr) * 2002-03-27 2003-10-02 Siemens Aktiengesellschaft Procede et dispositif de detection du moment d'impact du pointeau d'une soupape de commande piezoelectrique
DE10225911B3 (de) * 2002-06-11 2004-02-12 Siemens Ag Verfahren und Vorrichtung zum Messen und Regeln der Schließ- und Öffnungszeit eines Piezo-Steuerventils
DE10321999A1 (de) * 2002-07-31 2004-02-12 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ansteuerung eines Aktors
DE10303573B4 (de) * 2003-01-30 2011-02-24 Robert Bosch Gmbh Verfahren, Computerprogramm, Speichermedium und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine insbesondere für ein Kraftfahrzeug
US6766761B1 (en) * 2003-02-07 2004-07-27 Isidro Tamez, Jr. Firehose coupling exit indicator
DE10359675B3 (de) * 2003-12-18 2005-07-07 Volkswagen Mechatronic Gmbh & Co. Kg Verfahren und Vorrichtung zum Steuern eines Ventils und Verfahren und Vorrichtung zum Steuern einer Pumpe-Düse-Vorrichtung mit dem Ventil

Also Published As

Publication number Publication date
CN100394008C (zh) 2008-06-11
DE102004027291B4 (de) 2009-11-26
CN1977101A (zh) 2007-06-06
US20080000439A1 (en) 2008-01-03
DE502005004014D1 (de) 2008-06-19
DE102004027291A1 (de) 2006-01-12
WO2005119039A1 (fr) 2005-12-15
EP1751414A1 (fr) 2007-02-14
US7690358B2 (en) 2010-04-06

Similar Documents

Publication Publication Date Title
EP1825124B1 (fr) Procede pour commander un actionneur piezoelectrique, et unite de commande pour commander un actionneur piezoelectrique
DE19531652A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102005032087A1 (de) Verfahren und Vorrichtung zum Steuern eines Einspritzventils
DE102006003861A1 (de) Verfahren zum Betreiben einer Kraftstoffeinspritzvorrichtung, insbesondere eines Kraftfahrzeugs
EP1664511B1 (fr) Procede de determination de la tension de commande d'un actionneur piezoelectrique d'une soupape d'injection
EP1704316B1 (fr) Procede et dispositif pour reguler une soupape et procede et dispositif pour reguler un ensemble injecteur-pompe avec cette soupape
EP1751414B1 (fr) Procede et dispositif de commande d'une soupape
EP1704315B1 (fr) Procede de commande d'une soupape et procede de commande d'un dispositif pompe-ajutage avec une soupape
DE19882042B4 (de) Kontrollvorrichtung und Kontrollverfahren für eine nockengetriebene, elektronisch gesteuerte Pumpe-Düse-Einspritzeinheit
DE10345226B4 (de) Verfahren und Vorrichtung zum Steuern eines Ventils und Verfahren und Vorrichtung zum Steuern einer Pumpe-Düse-Vorrichtung mit einem Ventil
DE102009028650A1 (de) Verfahren zum Betreiben eines Kraftstoff-Einspritzventils einer Brennkraftmaschine
EP2104783B1 (fr) Procédé de fonctionnement d'une soupape d'injection
EP0412075B1 (fr) Dispositif pour introduire du combustible dans la chambre de combustion d'un moteur à combustion interne
EP1551065B1 (fr) Procédé et appareil de détermination de la tension de commande d'un actionneur piézoélectrique d'une soupape d'injection
EP3951160A1 (fr) Soupape d'injection de carburant et procédé d'injection de carburant pour un gros moteur diesel, ainsi que gros moteur diesel
WO2003091559A1 (fr) Dispositif et procede pour commander le piezo-actionneur d'une soupape de commande d'une unite pompe-gicleur
DE102017216942A1 (de) Verfahren zum Kalibrieren eines Kraft- oder Drucksensors
EP1236884A2 (fr) Dispositif d'injection de combustible pour moteurs à combustion interne
WO2003018995A1 (fr) Dispositif d'injection de carburant pour moteurs a combustion interne
DE102004029906B4 (de) Verfahren und Vorrichtung zum Steuern eines Einspritzventils und Computerprogramm
EP1377745B1 (fr) Procede pour actionner une unite pompe-ajutage et unite pompe-ajutage correspondante
DE10310120B4 (de) Verfahren zur Bestimmung der auf einen Piezoaktor ausgeübten Last sowie Verfahren und Vorrichtung zur Ansteuerung eines Piezoaktors eines Steuerventils einer Pumpe-Düse-Einheit
DE102005001578A1 (de) Verfahren zum Betreiben einer Kraftstoff-Einspritzvorrichtung einer Brennkraftmaschine
DE10325067B3 (de) Vorrichtung zur Steuerung der zeitlich versetzten Verbindung von zwei mit einem Druckmittel beaufschlagbaren Aggregaten mit einer Druckmittelquelle
DE102017130901B4 (de) Kraftstoffeinspritz-Controller

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060912

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PIRKL, RICHARD

Inventor name: WIEHOFF, HANS-JOERG

Inventor name: LEDERLE, REINER

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

REF Corresponds to:

Ref document number: 502005004014

Country of ref document: DE

Date of ref document: 20080619

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090210

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180531

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190523

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005004014

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005004014

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531