EP1704315B1 - Procede de commande d'une soupape et procede de commande d'un dispositif pompe-ajutage avec une soupape - Google Patents

Procede de commande d'une soupape et procede de commande d'un dispositif pompe-ajutage avec une soupape Download PDF

Info

Publication number
EP1704315B1
EP1704315B1 EP04803890A EP04803890A EP1704315B1 EP 1704315 B1 EP1704315 B1 EP 1704315B1 EP 04803890 A EP04803890 A EP 04803890A EP 04803890 A EP04803890 A EP 04803890A EP 1704315 B1 EP1704315 B1 EP 1704315B1
Authority
EP
European Patent Office
Prior art keywords
valve
piezo actuator
duration
during
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04803890A
Other languages
German (de)
English (en)
Other versions
EP1704315A1 (fr
Inventor
Jörg BEILHARZ
Sven Rebeschiess
Harald Schmidt
Maximilian Kronberger
Richard Pirkl
Hans-Jörg Wiehoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP1704315A1 publication Critical patent/EP1704315A1/fr
Application granted granted Critical
Publication of EP1704315B1 publication Critical patent/EP1704315B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors

Definitions

  • the invention relates to a method for controlling a valve. It further relates to a method for controlling a pump-nozzle device with a valve.
  • the valve has a valve drive, which is designed as a piezoelectric actuator, a valve member, a valve body and a valve seat.
  • a pump-nozzle device is used in particular for supplying fuel into a combustion chamber of a cylinder of an internal combustion engine, in particular a diesel internal combustion engine.
  • a pump, a control unit with the valve and a nozzle unit form a structural unit.
  • the drive of a piston of the pump is preferably via a camshaft of an internal combustion engine by means of a rocker arm.
  • the pump can be hydraulically coupled via the valve to a low-pressure fuel supply device. It is hydraulically coupled on the output side with the nozzle unit. Start of injection and injection quantity are determined by the valve and its valve drive. Due to the compact design of the pump-nozzle device results in a very low volume of high pressure and high hydraulic stiffness. This enables very high injection pressures of around 2,000 bar. This high injection pressure in conjunction with the good controllability of the start of injection and the injection quantity allow a significant reduction in emissions while low fuel consumption when used in the internal combustion engine.
  • a pump-nozzle device comprising a pump and a valve having a valve member which controls the hydraulic coupling of a spill space to a drain passage.
  • the drainage channel is hydraulically coupled to the pump and a nozzle unit.
  • An inlet channel is provided, which is hydraulically coupled to the Abberichtraum.
  • the valve member is associated with a piezoelectric valve drive, via which the valve member can be adjusted between two end positions. In a first end position of the valve member of the flow channel is hydraulically coupled to a Ab tenuraum and this in turn with the inlet channel. In a second end position of the valve member of the drainage channel is hydraulically decoupled from the Abberichtraum and the valve member is in a valve seat of the valve.
  • the injection end is determined by the valve member being controlled to its first end position by means of the actuator and thus allowing fluid to flow back into the discharge chamber and the inlet channel via the discharge channel, with the result that the pressure in the pump and thus also decreases in the nozzle unit, which in turn leads to a closing of the nozzle unit.
  • a precise metering of fuel through the pump-nozzle device requires a very precise controllability of the valve.
  • a method for driving an injection valve with a piezoelectric actuator in which the piezoelectric actuator is initially reloaded with a first partial charge with a maximum pitch during opening and closing of the valve and thus performs a partial stroke. After a transfer break with a predetermined period of time then the piezoelectric actuator is loaded in the same direction with a second partial charge on the final stroke, wherein the slope for the second partial charge is less than the maximum slope of the first partial stroke.
  • the object of the invention is to provide a method for controlling a valve or a pump-nozzle device with the valve, which ensures a precise driving of the valve.
  • the invention is characterized by a method for controlling a valve with a valve drive, which is designed as a piezoelectric actuator, with a valve member, a valve body and a valve seat.
  • a valve drive which is designed as a piezoelectric actuator
  • the valve member is controlled from a position in contact with the valve seat to a predetermined position away from the valve seat by a discharge of the piezoelectric actuator.
  • the discharging operation is divided into a first discharging period during which a predetermined first amount of electric power is dissipated from the piezoactuator, a subsequent holding period during which the piezoactuator is not driven, and a subsequent second discharging period during which a predetermined second amount of electric energy of is removed from the piezoelectric actuator.
  • the hold time period and / or the first discharge time period is adapted.
  • pressure oscillations can easily be greatly dampened even under various operating conditions of the valve, which are caused by the release of the valve seat in a fluid flowing through the valve. Furthermore, so also noise emissions can be easily reduced.
  • the magnitude is the voltage that drops across the piezoelectric actuator, or the current that flows through the piezoelectric actuator.
  • the invention is further distinguished by a method for controlling the valve, in which at a predeterminable time, the valve member is controlled from a predetermined position away from the valve seat into the valve seat by a charging operation of the piezoelectric actuator.
  • the charging process is divided into a first charging period, during which a predetermined first amount of electrical energy is supplied to the piezoelectric actuator, a subsequent holding period during which the piezoelectric actuator is not driven, and a subsequent second charging period, during which a predetermined second amount of electrical energy is supplied to the piezoelectric actuator ,
  • Dependent from the course of the size, which is characteristic of the vibration behavior of the piezoelectric actuator during the holding period, the holding period and / or the first charging period is adapted. As a result, a bouncing when hitting even under different operating conditions of the valve can be easily reduced.
  • the methods are also used for controlling a pump-nozzle device.
  • the holding period and / or the first discharge period or the first charging period is adapted depending on an amplitude and / or the period of the course of the size which is characteristic of the vibration behavior of the piezoelectric actuator during the holding period. This is very easy.
  • the holding period is adapted depending on the period of the course of the variable, which is characteristic of the vibration behavior of the piezoelectric actuator during the holding period.
  • the hold period may thus be easily adjusted to a particular portion of one or more oscillations of magnitude characteristic of the vibration behavior of the piezo actuator during the hold period, e.g. on a half-oscillation of size.
  • the first discharge time duration or the first charge time duration is adapted depending on the amplitude of the characteristic of the variable which is characteristic of the vibration behavior of the piezoelectric actuator during the hold time period.
  • This has the advantage that the amplitude of the course of the size is particularly characteristic of a possible occurrence of a bounce or pressure oscillations of the fluid.
  • the sum of the first charging time duration and the holding time duration is limited to a maximum value at which it is ensured that the valve member is not yet in contact with the valve seat.
  • the method may be used to particular advantage for controlling a pump-nozzle device when the first discharge period is limited to a minimum value at which it is ensured that a nozzle needle of the nozzle unit of the pump-nozzle device closes a nozzle via which the fuel is measured. Since the nozzle needle in the pump-nozzle device is hydraulically coupled to the valve via a drainage channel, it can be ensured that a fuel delivery end is not affected.
  • the pump-nozzle device ( FIG. 1 ) comprises a pump unit, a control unit and a nozzle unit.
  • the pump-nozzle device is preferably used for supplying fuel into the combustion chamber of a cylinder of an internal combustion engine.
  • the internal combustion engine is preferably designed as a diesel internal combustion engine.
  • the internal combustion engine has an intake tract for intake of air, which can be coupled by means of gas inlet valves with cylinders.
  • the internal combustion engine also has an exhaust tract, which discharges the gases to be discharged from the cylinders via the outlet valve.
  • the cylinders are each assigned pistons, which are each coupled via a connecting rod with a crankshaft.
  • the crankshaft is coupled to a camshaft.
  • the pump unit comprises a piston 11, a pump body 12, a working space 13 and a pump return means 14, which is preferably designed as a spring.
  • the piston 11 is in the installed state in an internal combustion engine with a Camshaft 16 coupled, preferably by means of a rocker arm, and is driven by this.
  • the piston 11 is guided in a recess of the pump body 12 and determined depending on its position, the volume of the working space 13.
  • the pump return means 14 is formed and arranged so that the volume of the working chamber 13 limited by the piston 11 has a maximum value acting on the piston 11 no external forces, ie forces that are transmitted via the coupling with the camshaft 16.
  • the nozzle unit comprises a nozzle body 51, in which a nozzle return means 52, which is designed as a spring and possibly additionally as a damping unit, and a nozzle needle 53 are arranged.
  • the nozzle needle 53 is arranged in a recess of the nozzle body 51 and is guided in the region of a needle guide 55.
  • the nozzle needle 53 abuts a needle seat 54 and thus closes a nozzle 56, which is provided for supplying the fuel into the combustion chamber of the cylinder of the internal combustion engine.
  • the nozzle unit is preferably, as shown, formed as an inwardly opening nozzle unit.
  • the nozzle needle 53 is slightly spaced from the needle seat 54 toward the nozzle return means 52, thus releasing the nozzle 56.
  • fuel is metered into the combustion chamber of the cylinder of the internal combustion engine.
  • the first or second state is assumed depending on a balance of forces from the force acting through the nozzle return means 52 on the nozzle needle 53 and from this counteracting force, which is caused by the hydraulic pressure in the region of the Nadelabsatzes 57.
  • the control unit comprises an inlet channel 21 and an outlet channel 22.
  • the inlet channel 21 and the outlet channel 22 can be hydraulically coupled by means of a valve.
  • the inlet channel 21 is guided from a low-pressure side connection of the pump-nozzle device to the valve.
  • the drainage channel 22 is hydraulically coupled to the working space 13 and is guided to the needle hub 57 and is hydraulically coupled to the nozzle 56 depending on the condition occupied by the nozzle needle 53.
  • the valve comprises a valve member 231, which is preferably designed as a so-called.
  • a valve d. H. it opens outward against the flow direction of the fluid.
  • the valve further comprises a Abêtraum 232 which is hydraulically coupled to the inlet channel 21 and by means of the valve member 231 with a high-pressure chamber is hydraulically coupled.
  • the high-pressure chamber is hydraulically coupled to the drainage channel 22.
  • valve return means is provided, which is arranged and formed so that it presses the valve member 231 in an open position, ie spaced from the valve seat 234, when acting by an actuator 24 to the valve member forces are less than the forces by the Valve return means act on the valve member 231.
  • the valve return means is preferably a spring.
  • the actuator 24 is formed as a piezoelectric actuator with a piezo stack.
  • the actuator 24 is preferably coupled to the valve member 231 by means of a transformer which preferably amplifies the stroke of the actuator 24.
  • a transformer which preferably amplifies the stroke of the actuator 24.
  • On the actuator 24 is preferably also a plug for receiving electrical contacts for driving the actuator 24 is provided.
  • a device 60 for controlling the pump-nozzle device is provided, which generates corresponding actuating signals for the valve.
  • valve member 231 In the open position of the valve member 231 is at a movement of the piston 11, the upward d. H. is directed away from the nozzle 56, sucked fuel through the inlet channel 21 toward the working space 13. As long as the valve member 231 during a subsequent downward movement of the piston 11, d. H. in a directed towards the nozzle 56 movement, is still in its open position, located in the working chamber 13 and the drain passage 22 fuel is pushed back through the valve back into the Abêtraum 232 and possibly into the inlet channel 21.
  • valve member 231 when the valve member 231 is controlled in its closed position during the downward movement of the piston 11, the fuel in the working chamber 13 and thus in the flow passage 22 and in the high-pressure chamber 233 is compressed, whereby the pressure with increasing downward movement of the piston 11 in the Working space 13, in the high-pressure chamber 233 and in the drain passage 22 increases.
  • the force caused by the hydraulic pressure increases, which acts on the needle shoulder 57 in the direction of an opening movement of the nozzle needle 53 to release the nozzle 56.
  • the hydraulic coupling between the high pressure chamber and the Abêtraum 232 and the inlet channel 21 is made. Due to the high pressure difference prevailing during opening between the fluid in the high-pressure space and the outlet channel 22 and the fluid in the discharge space 232 and the inlet channel 21, the fuel then flows from the high-pressure space into the discharge space 232 at very high speed, generally at the speed of sound and further into the inlet channel 21. As a result, the pressure in the high-pressure chamber and the outlet channel 22 is then rapidly reduced so much that the forces acting on the nozzle needle 53 by the nozzle return means 52 cause the nozzle needle 53 to move into the needle seat 54 and Thus then the nozzle 56 closes.
  • FIG. 2a shows the course of the actual values V_AV of the voltage drop across the piezoelectric actuator plotted over the time t.
  • FIG. 2b shows the stroke CTRL_VL of the valve member 231 plotted over the time t and Figure 2c shows the course of the speed CTRL_VL_V of the stroke of the valve member 231.
  • a charging of the piezoelectric actuator is started. The exact control of the charging process is described below on the basis of FIG. 3 explained. A first amount of electrical energy is supplied to the piezo actuator during a first charging period T1, which is completed at a time t2.
  • the piezoelectric actuator is supplied with no electrical energy for a holding period T2 which ends at a time t3.
  • the piezoelectric actuator is supplied with a second predetermined amount of electrical energy distributed over the second charging period T3, which has ended at a time t4. From a time t3 ', the valve member 231 is in contact with the valve seat 234th
  • a discharge of the piezoelectric actuator is controlled, which is also explained in more detail below.
  • the piezo actuator is discharged at a predetermined first amount of energy until a time t6.
  • the piezoelectric actuator is not further discharged for a given holding period T5 until a time t7.
  • the piezoelectric actuator is further discharged for a second discharge period T6, in which a predetermined second amount of electrical energy is dissipated.
  • the discharge process is then completed at a time t8.
  • the valve member 231 is then again in its predetermined position away from the valve seat 234th
  • the charging control will be described below with reference to the flowchart of FIG. 3 described, which is stored in the form of a program in the device for controlling the pump-nozzle device and is loaded during operation and processed.
  • the program is started in a step S1 in which variables are initialized if necessary.
  • a step S2 the first charging period T1, the second charging period T3 and the retention period T2 are read.
  • the values of the first and second charging time periods T1, T3 and the holding time period T2 may be fixed in step S2 or may have been stored at the end of a previous run of the program or determined in another way.
  • a desired value EGY_SP of an energy to be supplied to the piezoelectric actuator during the charging process is subsequently determined as a function of a rotational speed N of the crankshaft of an internal combustion engine, the time t1, and a fuel temperature T_F.
  • a step S6 it is checked whether the current time t is equal to the time t1. If this is not the case, then the program remains in a step S8 for a predefined waiting time T_W.
  • the predefined waiting time T_W is selected to be sufficiently short that, in a subsequent renewed check of the condition of step S6, it is ensured that the current time t is at most equal to or only insignificantly greater than the time t1.
  • step S10 the supply of a first amount of electrical energy started to the piezoelectric actuator.
  • a first amount of energy is supplied to the piezoelectric actuator according to the setpoint EGY_SP of the amount of energy to be supplied in proportion to the ratio of the first charging time T1 to the sum of the first charging time T1 and the second charging time T3.
  • the supply of electrical energy is carried out by appropriately energizing the piezoelectric actuator.
  • step S12 it is then checked whether the current time t is equal to or greater than the sum of the time t1 and the first charging time T1.
  • step S16 for the predetermined waiting time T_W before the condition of step S12 is checked again. If, on the other hand, the condition of step S12 is satisfied, then a pause of the charging process is controlled in a step S16, specifically for the holding period T2.
  • the voltage which drops across the piezoactuator and which is detected in a subsequent step S18 as actual values V_AV of the voltage drop across the piezoactuator has a characteristic oscillation profile which is caused by the excitation of a spring mass oscillator which passes through the piezoelectric actuator, the valve member 231 and the return means is formed, the excitation caused by the charging during the first charging period T1.
  • step S20 it is then checked whether the current time t is greater than or equal to the time t1 and the sum of the first charging time period T1 and the holding time period T2. If the condition of step S20 is not satisfied, then the program remains in step S22 for the predefined waiting time T_W before another actual value V_AV of the voltage drop across the piezoelectric actuator is detected in step S18 becomes.
  • the actual values V_AV of the voltage drop across the piezoelectric actuator detected in step S18 are temporarily stored for later processing.
  • step S20 If, on the other hand, the condition of step S20 is met, the charging process is continued in a step S24 and during the subsequent processing of steps S26 to S28, a predetermined second electrical energy quantity corresponding to the fraction of the first setpoint EGY_SP of the electrical energy to be supplied is supplied to the piezoactuator, which corresponds to the proportion of the second charging period T3 to the sum of the first and second charging periods T1, T3.
  • step S26 it is checked in step S26 whether the current time t is greater than or equal to the time t1 and the sum of the first and second charging time periods T1, T3 and the holding time period T2. If the condition of step S26 is not satisfied, the program remains in the step S28 for the predetermined waiting time T_W before the condition of step S26 is checked again.
  • step S30 an actual value AMP_AV of the amplitude of the profile of the actual values V_AV of the voltage drop at the piezoactuator, which was determined during the hold period T2, is determined.
  • a correction value D_T1 is subsequently determined as a function of the actual value AMP_AV and a desired value AMP_SP of the amplitude.
  • the desired value AMP_SP of the amplitude is preferably a fixed value or a value that is preferably determined beforehand by tests, depending on operating parameters of the valve or the pump-nozzle device in such a way that, with the smallest possible deviation of the actual value AMP_AV of the amplitude from the desired value AMP_SP of the amplitude, a bouncing of the valve member 231 is reduced in the desired manner when it strikes the valve seat 234.
  • the correction value D_T1 of the first charging time period T1 is determined by means of a regulator, which preferably has P or PI behavior.
  • a corrected first charging time period T1 is then determined as a function of the charging time period T1 and the correction value D_T1 of the first charging time duration.
  • a step S36 an actual value PER_AV of the period of the oscillation of the course of the actual values V_AV of the voltage drop across the piezoelectric actuator during the holding period T2 is subsequently determined.
  • a correction value D_T2 of the hold time period is then determined as a function of the actual value PER_AV of the period and a setpoint value PER_SP of the period.
  • the setpoint PER_SP of the period is, like the setpoint AMP_SP of the amplitude, chosen such that when the actual value PER_AV approaches the setpoint PER_SP of the period, the bouncing of the valve member is reduced in the desired manner.
  • a corrected holding period T2 is subsequently determined as a function of the holding period T2 and the correction value D_T2 of the holding period.
  • step S42 it is then also checked whether the first charging time period T1 in total with the holding time period T2 is greater than a maximum value T_MAX, wherein in the processing of step S42 the corrected time periods T1 and T2 are relevant. If this is the case, then in step S42 the first charging time period T1 is limited in such a way that the sum of the first charging time period T1 and the holding time duration T2 is not greater than the maximum value T_MAX.
  • a step S44 the second charging period T3 is changed in opposition to the first charging period T1, so that the sum of the first and second charging periods T1, T3 remains unchanged.
  • step S4 The processing of the program is then subsequently resumed in step S4 if a reload is to be controlled.
  • step S18 a variable other than the voltage drop across the piezoelectric actuator, which is characteristic of the vibration behavior of the piezoelectric actuator during the holding period T2. This is, for example, the electrical energy stored in the piezoelectric actuator, the current flow through the piezoelectric actuator or the electrical charge in the piezoelectric actuator.
  • step S30 only the maximum and minimum values of the actual values V_AV detected in step S18 can be determined and then in a suitably adapted step S32 the correction value D_T1 of the first charging time T1 depending on the maximum and minimum Value and corresponding reference values are determined.
  • the steps of the program according to FIG. 4 are essentially analogous to the steps of the program of FIG. 3 and only differences will be explained below.
  • the program is started in a step S1 '.
  • values of the first discharge time period T4, the hold time period T5 and the second discharge time period T6 are read in, which are simply predefined or can be predetermined depending on operating variables of the valve or have been stored in a previous run of the program.
  • a desired value EGY_SP of the electrical energy is determined, which is to be taken from the piezoelectric actuator during the discharge process. This is done depending on the rotational speed N, the time t1, the time t5 and preferably depending on the fuel temperature T_F.
  • a step S6 ' it is checked whether the current time t is greater than the time t5, if this is the case, then in a step S10' the discharging process is started and the piezoelectric actuator is deprived of a first amount of electrical energy corresponding to the fractional part of the setpoint EGY_SP corresponds to the electrical energy to be taken from the piezoelectric actuator according to the ratio of the first discharge time T4 and the sum of the first discharge time T4 and the second discharge time T6.
  • the piezoelectric actuator is subsequently correspondingly discharged during the further processing of steps S12 'and S16' until, in step S16 ', there is a pause in the discharging process, specifically for the predetermined holding time period T5.
  • step S18 ' actual values V_AV of the voltage drop at the piezoelectric actuator are detected in accordance with step S18.
  • step S20 ' it is checked whether the current time is greater than or equal to the time t5 and the sum of the first discharge time T4 and the hold time T5. If the condition of step S20 'is fulfilled, then in a step S24' the unloading process is continued for the second discharge time period T6, during which a second predetermined amount of electrical energy is taken from the piezoelectric actuator during the subsequent processing of steps S26 'and S28'. the value of which corresponds to the fraction of the setpoint value EGY_SP of the electrical energy to be taken from the piezoactuator, corresponding to the proportion of the second discharging time period T6 to the sum of the first and second charging time periods T4, T6.
  • step S30 corresponds to the step S30.
  • a correction value D_T4 of the first discharge time period T4 is then determined as a function of the actual value AMP_AV and a desired value AMP_SP of the amplitude of the oscillation of the course of the actual values V_AV of the voltage drop at the piezoactuator.
  • step S32 a correction value D_T4 of the first discharge time period T4 is then determined as a function of the actual value AMP_AV and a desired value AMP_SP of the amplitude of the oscillation of the course of the actual values V_AV of the voltage drop at the piezoactuator.
  • a corrected first discharge time T4 is then determined as a function of the first discharge time T4 and the correction value D_T4 of the first discharge time T4.
  • a step S36 'then corresponds to the step S36.
  • a correction value D_T5 of the hold time period T5 is then determined as a function of the actual value PER_AV of the period duration, and the setpoint value PER_SP of the period.
  • the setpoint PER_SP of the period is set so that the desired damping of pressure oscillations and noise emissions is achieved at an approach of the actual value PER_AV to the setpoint PER_SP of the period in the pump-nozzle device.
  • step S40 ' the hold period T5 is then corrected depending on the hold period T5 and the hold period correction D_T5.
  • a subsequent step S42 ' is then still checked whether the first discharge time T4 is smaller than a minimum value T_MIN, which is preferably determined depending on the rotational speed N, the time t1, the time t5 and the fuel temperature T_F. If the first discharge period T4 is less than the minimum value T_MIN, the first discharge period T4 is set equal to the minimum value T_MIN. This ensures that, in a subsequent processing of steps S2 'to S42', the delivery end of the pump-nozzle device, ie the closing of the nozzle needle 53, is not influenced by the interruption of the discharge process following the first discharge time period T4. The step S42 'can then be omitted if correspondingly higher-level control functions of the pump-nozzle device, which determine the desired times t1 and t5, are adjusted accordingly.
  • T_MIN preferably determined depending on the rotational speed N, the time t1, the time t5 and the fuel temperature T_F.
  • a step S44 ' the second charging period T6 is changed in opposition to the first charging period T4, so that the sum of the first and second charging periods T4, T6 remains unchanged.
  • step S30 an actual value AMP_AV of the amplitude is determined, and in step S36 an actual value PER_AV of the period of the oscillation of the course of the actual values V_AV of the voltage drop at the piezoactuator, which were determined during the holding period T2.
  • step S32 or S38 a correction value D_T1 for the first charging time period T1 or a correction value D_T2 for the holding time T2 is determined from the actual value AMP_AV or PER_AV and the associated desired value AMP_SP or PER_SP.
  • correction values D_T4 are determined for the first discharge time period T4 and D_T5 for the hold time period T5 during the discharge process, depending on the actual values AMP_AV and PER_AV and assigned setpoint values AMP_SP and PER_SP.
  • the actual values AMP_AV and PER_AV are preferably determined for each charging process and each discharging process.
  • the correction values D_T1, D_T2 are determined during each charging process and the correction values D_T4 and D_T5 during each discharging process.
  • the correction values D_T1, D_T2, D_T4 and D_T5 are determined not only as a function of the last actual value AMP_AV or PER_AV, but in each case as a function of a plurality of actual values AMP_AV or PER_AV determined during previous charging processes or discharging processes.
  • Each of the four control loops can then have, for example, I, PI ID or PID characteristics.
  • control loops can also be advantageous.
  • any linear or nonlinear combinations or functions of the same can also be considered as controlled variables.
  • Each of these control variables, which relates to the charging process can be combined with each manipulated variable of the charging process (first charging time period T1, holding time duration T2).
  • each of the aforementioned controlled variables relating to the discharging process may be combined with each manipulated variable of the discharging process (first discharging period T4, holding period T5).
  • any other values determined from the actual values V_AV acquired during the holding period T2 or T5 can be used as controlled variables.
  • further controlled variables which, like AMP_AV and PER_AV, characterize the vibration behavior of the piezoactuator are the maximum slope dV_AV / dt during the holding period T2 or T5, which is the maximum value of the slope
  • the present invention is used in a pump-injector for an internal combustion engine, depending on the mechanical design of the injector especially at higher and high speeds of the internal combustion engine, a regime can be achieved in which the control valve needle the valve seat is not quite enough, so not closes more completely because the injection pulses become very short.
  • This regime is called ballistic regime.
  • the holding periods T2, T5 can be reduced and disappear at high speeds. Under these conditions, it may be advantageous to make the described control only at speeds close to the idling speed. At higher speeds, the manipulated variable is then simply held.
  • the first charging time T1 the holding period T2, the first discharging time T4 or the holding time T5, but a parameter (for example, an Off -set), which enters into the calculation of the same, wherein in the calculation further further operating parameters such as the current speed, the fuel temperature, etc. are received.
  • a parameter for example, an Off -set

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Claims (8)

  1. Procédé de commande d'une soupape, comprenant un entraînement de soupape (24), qui se présente sous la forme d'un actionneur piézoélectrique, un élément de soupape (231), un corps de soupape (237) et un siège de soupape (234), dans lequel,
    - à un moment prédéterminable (t5), l'élément de soupape (231) est commandé d'une position en appui sur le siège de soupape (234) à une position prédéterminée éloignée du siège de soupape (234) par une opération de décharge de l'actionneur piézoélectrique,
    - l'opération de décharge est subdivisée en une première durée de décharge (T4), pendant laquelle une première quantité d'énergie électrique prédéterminée est évacuée de l'actionneur piézoélectrique, une durée de maintien suivante (T5), pendant laquelle l'actionneur piézoélectrique n'est pas commandé, et une seconde durée de décharge suivante (T6), pendant laquelle une seconde quantité d'énergie électrique prédéterminée est évacuée de l'actionneur piézoélectrique, et
    - la durée de maintien (T5) et/ou la première durée de décharge (T4) est/sont adaptée(s) en fonction de la variation d'une tension de l'actionneur piézoélectrique ou d'un courant à travers l'actionneur piézoélectrique, qui est caractéristique du comportement aux oscillations de l'actionneur piézoélectrique pendant la durée de maintien (T5), dans le but de garantir une commande précise de la soupape.
  2. Procédé de commande d'une soupape, comprenant un entraînement de soupape (24), qui se présente sous la forme d'un actionneur piézoélectrique, un élément de soupape (231), un corps de soupape (237) et un siège de soupape (234), dans lequel,
    - à un moment prédéterminable (t1), l'élément de soupape (231) est commandé d'une position prédéterminée éloignée du siège de soupape (234) dans le siège de soupape (234) par une opération de charge de l'actionneur piézoélectrique,
    - l'opération de charge est subdivisée en une première durée de charge (T1), pendant laquelle une première quantité d'énergie électrique prédéterminée est acheminée à l'actionneur piézoélectrique, une durée de maintien suivante (T2), pendant laquelle l'actionneur piézoélectrique n'est pas commandé, et une seconde durée de charge suivante (T3), pendant laquelle une seconde quantité d'énergie électrique prédéterminée est acheminée à l'actionneur piézoélectrique, et
    - la durée de maintien (T2) et/ou la première durée de charge (T1) est/sont adaptée(s) en fonction de la variation d'une tension de l'actionneur piézoélectrique ou d'un courant à travers l'actionneur piézoélectrique, qui est caractéristique du comportement aux oscillations de l'actionneur piézoélectrique pendant la durée de maintien (T2), dans le but de garantir une commande précise de la soupape.
  3. Procédé selon l'une quelconque des revendications précédentes,
    dans lequel on adapte la durée de maintien (T2, T5) et/ou la première durée de décharge (T4) ou la première durée de charge (T1 en fonction de l'amplitude et/ou de la période de la variation de la tension de l'actionneur piézoélectrique ou du courant à travers l'actionneur piézoélectrique, qui est caractéristique du comportement aux oscillations de l'actionneur piézoélectrique pendant la durée de maintien.
  4. Procédé selon la revendication 3,
    dans lequel on adapte la durée de maintien (T2, T5) en fonction de la période de la variation de la tension sur l'actionneur piézoélectrique ou du courant à travers l'actionneur piézoélectrique, qui est caractéristique du comportement aux oscillations de l'actionneur piézoélectrique pendant la durée de maintien.
  5. Procédé selon l'une quelconque des revendications 3 ou 4, dans lequel la première durée de décharge (T4) ou la première durée de charge (T1) est adaptée en fonction de l'amplitude de la variation de la tension de l'actionneur piézoélectrique ou du courant à travers l'actionneur piézoélectrique, qui est caractéristique du comportement aux oscillations de l'actionneur piézoélectrique pendant la durée de maintien (T2, T5).
  6. Procédé selon l'une quelconque des revendications 2 à 5 prise avec la revendication 2, dans lequel la somme de la première durée de charge (T1) et de la durée de maintien (T2) est limitée à une valeur maximale (T_MAX), à laquelle on garantit que l'élément de soupape (231) ne se trouve pas encore en appui sur le siège de soupape (234).
  7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel la soupape fait partie d'un dispositif à pompe et injecteur comprenant
    - une pompe qui a un piston (11) et un espace de travail (13),
    - une unité de commande, qui comprend un canal d'évacuation (22), qui est couplé hydrauliquement à l'espace de travail (13), l'actionneur piézoélectrique, qui forme un entraînement de soupape (24), et la soupape, laquelle soupape comprend un élément de soupape (231), un corps de soupape (237), un siège de soupape (234) et un espace de déversement (232), qui est désaccouplé par voie hydraulique du canal d'évacuation (22), lorsque l'élément de soupape (231) est appliqué sur le siège de soupape (234), et qui est couplé autrement par voie hydraulique au canal d'évacuation (22).
  8. Procédé selon la revendication 7,
    dans lequel la première durée de décharge (T1) est limitée à une valeur minimale (T_MIN), à laquelle on garantit que l'aiguille (53) ferme l'injecteur (56).
EP04803890A 2003-12-19 2004-12-15 Procede de commande d'une soupape et procede de commande d'un dispositif pompe-ajutage avec une soupape Expired - Fee Related EP1704315B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10360019A DE10360019A1 (de) 2003-12-19 2003-12-19 Verfahren zum Steuern eines Ventils und Verfahren zum Steuern einer Pumpe-Düse-Vorrichtung mit einem Ventil
PCT/EP2004/014270 WO2005061876A1 (fr) 2003-12-19 2004-12-15 Procede de commande d'une soupape et procede de commande d'un dispositif pompe-ajutage avec une soupape

Publications (2)

Publication Number Publication Date
EP1704315A1 EP1704315A1 (fr) 2006-09-27
EP1704315B1 true EP1704315B1 (fr) 2009-08-19

Family

ID=34672963

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04803890A Expired - Fee Related EP1704315B1 (fr) 2003-12-19 2004-12-15 Procede de commande d'une soupape et procede de commande d'un dispositif pompe-ajutage avec une soupape

Country Status (5)

Country Link
US (1) US7802561B2 (fr)
EP (1) EP1704315B1 (fr)
CN (1) CN101094979B (fr)
DE (2) DE10360019A1 (fr)
WO (1) WO2005061876A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016213522A1 (de) * 2016-07-22 2018-01-25 Continental Automotive Gmbh Verfahren und Vorrichtung zur Ansteuerung eines Piezoaktors eines Einspritzventils eines Kraftfahrzeugs

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004058971B4 (de) * 2004-12-08 2006-12-28 Volkswagen Mechatronic Gmbh & Co. Kg Verfahren zum Steuern eines piezoelektrischen Aktors und Steuereinheit zum Steuern eines piezoelektrischen Aktors
US7856964B2 (en) 2006-05-23 2010-12-28 Delphi Technologies Holding S.Arl Method of controlling a piezoelectric actuator
GB0610225D0 (en) * 2006-05-23 2006-07-05 Delphi Tech Inc Method of controlling a piezoelectric actuator
GB0616713D0 (en) * 2006-08-23 2006-10-04 Delphi Tech Inc Piezoelectric fuel injectors
EP2128415A1 (fr) * 2008-05-27 2009-12-02 Delphi Technologies, Inc. Améliorations d'une commande d'injecteur de carburant
DE102011004613A1 (de) * 2011-02-23 2012-08-23 Continental Automotive Gmbh Verfahren zur Überwachung des Zustandes eines Piezoinjektors eines Kraftstoffeinspritzsystems
DE102011081161A1 (de) 2011-08-18 2013-02-21 Continental Automotive Gmbh Ansteuerung und Ansteuerverfahren für einen piezoelektrischen Aktor
DE102012202344B4 (de) * 2012-02-16 2013-11-14 Continental Automotive Gmbh Verfahren zur Druckregelung in einem Hochdruckbereich einer Brennkraftmaschine
FR2990998B1 (fr) 2012-05-23 2016-02-26 Continental Automotive France Procede de pilotage d'au moins un actionneur piezoelectrique d'injecteur de carburant d'un moteur a combustion interne
DE102013208528B3 (de) * 2013-05-08 2014-08-21 Continental Automotive Gmbh Verfahren zur Ermittlung der Öffnungs- und/oder Schließzeit der Düsennadel eines Einspritzventils

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784102A (en) 1984-12-25 1988-11-15 Nippon Soken, Inc. Fuel injector and fuel injection system
DE68921047T2 (de) * 1988-11-30 1995-06-14 Toyota Motor Co Ltd Apparat zum Antreiben eines piezoelektrischen Elements zum Öffnen oder zum Schliessen eines Ventilteils.
DE19733560B4 (de) * 1997-08-02 2007-04-05 Robert Bosch Gmbh Verfahren und Vorrichtung zum Laden und Entladen eines piezoelektrischen Elements
DE19835494C2 (de) * 1998-08-06 2000-06-21 Bosch Gmbh Robert Pumpe-Düse-Einheit
DE19921456A1 (de) 1999-05-08 2000-11-16 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung eines piezoelektrischen Aktors
DE10012552A1 (de) * 2000-03-15 2001-09-27 Bosch Gmbh Robert Einspritzeinrichtung mit einem Aktor zur Nadelhubsteuerung
DE10063080B4 (de) * 2000-12-18 2006-12-28 Siemens Ag Aktorsteuerung und zugehöriges Verfahren

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016213522A1 (de) * 2016-07-22 2018-01-25 Continental Automotive Gmbh Verfahren und Vorrichtung zur Ansteuerung eines Piezoaktors eines Einspritzventils eines Kraftfahrzeugs
DE102016213522B4 (de) 2016-07-22 2023-10-12 Vitesco Technologies GmbH Verfahren und Vorrichtung zur Ansteuerung eines Piezoaktors eines Einspritzventils eines Kraftfahrzeugs

Also Published As

Publication number Publication date
CN101094979A (zh) 2007-12-26
WO2005061876A1 (fr) 2005-07-07
CN101094979B (zh) 2010-05-12
US7802561B2 (en) 2010-09-28
DE502004009939D1 (de) 2009-10-01
DE10360019A1 (de) 2005-07-14
US20070240685A1 (en) 2007-10-18
EP1704315A1 (fr) 2006-09-27

Similar Documents

Publication Publication Date Title
EP1825124B1 (fr) Procede pour commander un actionneur piezoelectrique, et unite de commande pour commander un actionneur piezoelectrique
DE102009018289B3 (de) Verfahren und Vorrichtung zum Betreiben eines Einspritzventils
DE19531652A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP2536942B1 (fr) Soupape d'injection de carburant haute pression pour un moteur à combustion interne
WO2006074842A1 (fr) Procede et dispositif de commande d'un injecteur
EP1704315B1 (fr) Procede de commande d'une soupape et procede de commande d'un dispositif pompe-ajutage avec une soupape
EP1172541B1 (fr) Actionneur piézo-électrique pour système d'injection
EP1664511A1 (fr) Procede de determination de la tension de commande d'un actionneur piezoelectrique d'une soupape d'injection
DE102012103139A1 (de) Kraftstoffinjektions-Steuerungsvorrichtung für einen Verbrennungsmotor
WO2012016763A2 (fr) Procédé servant à faire fonctionner un moteur à combustion interne comprenant plusieurs chambres de combustion et moteur à combustion interne comprenant plusieurs chambres de combustion
EP1704316B1 (fr) Procede et dispositif pour reguler une soupape et procede et dispositif pour reguler un ensemble injecteur-pompe avec cette soupape
WO2005052355A1 (fr) Systeme d'injection et procede d'injection pour un moteur a combustion interne
WO2008074618A1 (fr) Procédé de fonctionnement d'une soupape d'injection
EP1751414B1 (fr) Procede et dispositif de commande d'une soupape
DE19930530B4 (de) Vorrichtung und Verfahren zum Regeln der Einspritzung von Kraftstoff durch einen Kraftstoffinjektor in einer Brennkraftmaschine
DE102005001499B4 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
WO2003091559A1 (fr) Dispositif et procede pour commander le piezo-actionneur d'une soupape de commande d'une unite pompe-gicleur
EP1377745B1 (fr) Procede pour actionner une unite pompe-ajutage et unite pompe-ajutage correspondante
DE10310120B4 (de) Verfahren zur Bestimmung der auf einen Piezoaktor ausgeübten Last sowie Verfahren und Vorrichtung zur Ansteuerung eines Piezoaktors eines Steuerventils einer Pumpe-Düse-Einheit
WO2005080776A1 (fr) Procede et dispositif pour determiner les flancs de charge d'un actionneur piezo-electrique
DE102007061946A1 (de) Verfahren zum Betreiben einer Kraftstoff-Einspritzvorrichtung
DE102009045867A1 (de) Verfahren zum Bestimmen einer Einspritzdauer
DE102005058303A1 (de) Verfahren zum Betreiben eines Kraftstoffeinspritzsystems
WO2017001198A1 (fr) Procédé et dispositif de commande d'un actionneur piézoélectrique d'un injecteur d'un système d'injection de carburant dans un moteur à combustion interne
DE102015121790A1 (de) Technologie zur Ausführung von hydraulisch gekoppelten Kraftstoff-Injektionen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004009939

Country of ref document: DE

Date of ref document: 20091001

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100520

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502004009939

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004009939

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201231

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004009939

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20211221

Year of fee payment: 18

Ref country code: FR

Payment date: 20211224

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20211224

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004009939

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221215