EP1377745B1 - Procede pour actionner une unite pompe-ajutage et unite pompe-ajutage correspondante - Google Patents

Procede pour actionner une unite pompe-ajutage et unite pompe-ajutage correspondante Download PDF

Info

Publication number
EP1377745B1
EP1377745B1 EP02727288A EP02727288A EP1377745B1 EP 1377745 B1 EP1377745 B1 EP 1377745B1 EP 02727288 A EP02727288 A EP 02727288A EP 02727288 A EP02727288 A EP 02727288A EP 1377745 B1 EP1377745 B1 EP 1377745B1
Authority
EP
European Patent Office
Prior art keywords
pressure
valve
system pressure
valve element
preloading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02727288A
Other languages
German (de)
English (en)
Other versions
EP1377745A1 (fr
Inventor
Roger Potschin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1377745A1 publication Critical patent/EP1377745A1/fr
Application granted granted Critical
Publication of EP1377745B1 publication Critical patent/EP1377745B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/06Pumps peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift

Definitions

  • Pump-nozzle units comprise a valve element, which from a spring is pressed into its closed position.
  • One of a piston pump driven by a camshaft delivers one System pressure on a pressure surface of the valve element attacks and with which the valve element against the biasing force can be opened.
  • the spring that the valve element in presses its closed position supports itself on her other End on a movable switching element. Will that Moving the switching element towards the valve element increases the biasing force acting on the valve element and the direct related valve opening and closing pressure.
  • the system pressure is initially increased so that the Valve element opens against the spring force. Now it will Switching element moves and the preload increases. This happens so that the valve closing pressure increases faster increased than the system pressure acting.
  • the system pressure will "Overhauled” by the valve closing pressure, so to speak. Despite As the system pressure rises, the valve closes. In the The valve opening pressure remains in the end position of the switching element and the valve closing pressure constantly increased Level.
  • the system pressure is raised further until it is above again of the increased valve opening pressure. Now that opens Again, the valve element against the increased biasing force Main injection. This is ended by the System pressure to a level below the (increased) valve closing pressure is lowered. The switching element is in again moved back to its original position so that the valve opening pressure and the valve closing pressure on again normal level decrease.
  • valve opening pressure is in the known Process limited, otherwise the break between the Pre-injection and the main injection would be too long.
  • some use cases are very high Injection pressure desired. This is particularly the case if there is a post-injection after the main injection should be done. Too low pressure during post-injection can lead to undesirably high soot formation.
  • a fuel injection system is also known from EP 0 805 271 A1, whose pump nozzle injector one pre and one Main injection can inject. This will be done during the Pre-injection the closing pressure increased and the system pressure lowered, which ends the pilot injection. The control this process takes place, among other things, by means of a Overflow valve.
  • the object of the present invention is therefore a method of the type mentioned in such a way that with him post-injection with very high injection pressure possible is.
  • the Preload force only increases so quickly that the valve closing pressure is always below the system pressure. in the This contrasts with the known method excluded that the valve closing pressure the System pressure "outdated” and thereby despite increasing System pressure closes the valve element. So there is much of the period of main injection for the Increasing the preload and thus for increasing the Valve opening pressure available.
  • the preload can therefore be increased much more than is possible with the known methods. Closing the valve element between the The main injection and the post-injection become active causes the system pressure to be lowered. On "Hydraulic" closing as in the known method is not provided here.
  • step c) the system pressure to a value below an elevated Valve closing pressure is lowered, so that Valve element closes, and the biasing force on the Valve element is reduced, the due to lower preload, lower valve opening pressure is always above the system pressure, so that Valve element remains closed.
  • the valve element is already at a relatively high level System pressure closed. This has the advantage that while the overall post-injection is relatively high Injection pressure is present.
  • step c) the switching element in the direction of Biasing force is moved back to its original position.
  • step b) the Switching element is moved hydraulically. Then this is possible if there is a pressure surface on the switching element which is with a pressure, preferably the system pressure, can be applied. In this case for example, on an electrical control of the Switching element can be dispensed with, which security the implementation of the method according to the invention increased.
  • step b) Switching element by successively applying counter at least two pressure areas with the system pressure the application of the biasing element from its Starting position is moved out, the first Printing area always with the system pressure and the second Only then is pressure applied to the system surface is when the switching element is something out of its Has moved out of the starting position.
  • the method according to the invention is particularly preferred then when in addition to the main and post-injection a pre-injection can be carried out. hereby the consumption and emission behavior of the with the Internal combustion engine operated method according to the invention optimized again. It is proposed that before Step a) the system pressure to a value above the normal valve opening pressure is raised, so that Valve element against the action of the Preload element for a pre-injection at normal System pressure opens, and then the system pressure opens a value below the normal valve closing pressure is lowered so that the valve element closes.
  • the on pre-injection carried out in this way takes place at a relatively low system pressure and at one Switching element, which is in the starting position located.
  • valve element Another way to open the valve increase is to counter the valve element Apply pressure to the opening direction. This can in addition or as an alternative to the application of the Valve element done by the biasing element. For this it is also proposed that the valve element against the Opening direction acted upon with system pressure with a time delay becomes. The system pressure is in the area of the valve element anyway before and can therefore without expensive measures Increasing the valve opening pressure can be used.
  • the present invention also relates to a pump-nozzle unit for supplying fuel to a combustion chamber Internal combustion engine, with an injection nozzle for injection the fuel into the combustion chamber, with at least one Valve element, which has at least a first pressure surface has, the force resultant approximately in Opening direction of the valve element shows with a Preload element, which the valve element in the direction of Applied to the closed position, with a switching element on the the biasing element is supported and which along the Direction of action movable by the biasing element is, with a pump device, which one on the first Pressure area of the valve element builds up system pressure, and with a control device which assembles and disassembles the Controls system pressure.
  • Such a pump-nozzle unit is also known from document EP 805 271 A1. As already mentioned at the beginning, it will be used primarily for Motor vehicle diesel internal combustion engines used. To with of such a pump-nozzle unit is as fuel-efficient as possible Emission-optimized operation of the internal combustion engine To be able to implement, it is proposed according to the invention that the characteristic of the pretensioner and the sizes of the Pressure areas are coordinated so that the valve closing pressure while increasing the system pressure during a main injection always remains below the system pressure, so with such Pump-nozzle unit the procedure of the above type can be carried out.
  • the switching element be a first Has printing area and a second printing area
  • the first pressure area of the switching element is smaller than that first pressure surface on the valve element
  • the first Pressure area and the second pressure area of the switching element together are larger than the entire printing area of the Valve element, wherein the first pressure surface of the Switching element is always connected to the pump device, so that it is always pressurized with the system pressure, and the second pressure surface of the switching element only is then connected to the pump device when the Switching element somewhat from its starting position has moved out.
  • a pretensioning device is also particularly simple realize which includes a compression spring.
  • the Pump-nozzle unit according to the invention is between the Valve element and the switching element a pressure chamber available, which of a second printing surface of the Valve element is limited, the force resultant too the force resultant of the first pressure surface of the Valve element is oriented approximately opposite, and a flow channel is provided in the switching element which is from the pressure space to the second pressure area of the switching element leads.
  • valve element alternatively or in addition to the pretension e.g. by means of a compression spring acted upon by hydraulic pressure be, which also the valve opening pressure or Valve closing pressure can be increased.
  • the application takes place in that the pressure space between the Switching element and the valve element fluidly with that Pressure chamber is connected by the second printing area of the switching element is limited.
  • Loading of the Pressure space between the switching element and the valve element with hydraulic pressure only takes place when that Switching element somewhat from its starting position has moved out.
  • the flow channel is a Flow restrictor includes. This builds up the pressure in the Pressure space between valve element and switching element only gradually on. This in turn ensures that during the increase in system pressure from the valve closing pressure is not "caught up".
  • a simple realization for one Flow channel possibly with flow restrictor, consists of a through hole through the shank element. Furthermore, it is also possible to have a gap between the Switching element and a surrounding the switching element Provide housing. This can take the form of, for example Grinding on an area of the outer jacket of the Switching element take place. All of these trainings one Flow channels are easy to implement.
  • the Control device comprises a switching valve; which the Connect the pump device to a low pressure area can. This ensures that when the Pumping device delivers fuel to the valve element however, an increase in system pressure is not desired is the volume flow towards the low pressure area can be drained and therefore there is no system pressure builds.
  • a particularly fast switching of such Switching valve is reached when the switching valve as Actuator has at least one piezo element.
  • valve opening pressures can be achieved.
  • the increased valve opening pressure is more than twice that high than the normal valve opening pressure, further it is preferably 400 to 800 bar, still further preferably at 700 to 800 bar.
  • a 'first embodiment of a unit injector bears overall reference number 10 in FIG. 1 a pump device 12, a nozzle device 14 and a Control device 16.
  • the pump device 12 is a Single-cylinder piston pump 18, which is driven by a cam 20 is driven.
  • the cam 20 is in turn with the Crankshaft of an internal combustion engine (not shown) coupled.
  • the pumping device conveys each delivery stroke 12 fuel from a line, not shown a reservoir 64 via a fuel line 22 to Nozzle device 14.
  • the nozzle device 14 comprises a housing 24 in which one Stepped bore 26 is formed.
  • a valve element 28 In the stepped bore 26 is a valve element 28 with a circular cylindrical cross section guided.
  • the valve element 28 is along its longitudinal axis 29 movable.
  • At the lower end of the housing 24 is one Injection opening 30 is present.
  • the valve element 28 will by a compression spring 32 against a valve seat (not visible) pressed in the area of the injection opening 30.
  • the Valve element 28 has a circumferential oblique first Printing area 34, which of an annular pressure chamber 36 is surrounded.
  • the pressure chamber 36 is in turn with the Fuel line 22 connected.
  • the end of the compression spring remote from the valve element 28 32 is supported on a circular cylindrical switching element 38 from.
  • the switching element 38 has one of the compression springs 32 facing section 40 with a constant diameter and a section 42 facing away from the compression spring 32, which is conical in the manner of a truncated cone rejuvenated.
  • the blunt tip of the conical section 42 forms a first pressure surface 44 of the switching element 38, whereas the sloping surface of the conical Section 42 of the switching element 38 a second pressure surface 46 forms.
  • the switching element 38 can be located in the stepped bore 26 along the longitudinal axis 29 between that in FIG. 1 shown starting position and one by a radial inwardly facing ring web 54 limited switching position move. In this switching position, the sealing edge 48 lies no longer on the oblique pressure surface 46 of the Switching element 38 on, so that the two pressure chambers 50 and 51 are connected.
  • a branch line 56 branches off from the fuel line 22 which leads to the control device 16.
  • the Control device 16 comprises a piezo actuator 58 actuable switching valve 60, which on the output side a low pressure line 62 with the fuel tank 64 connected is.
  • the piezo actuator 58 of the control device 16 is from a control and not shown in the figure Control device controlled. In a not shown Embodiment is used instead of a piezo actuator Magnetic actuator used.
  • the pump-nozzle unit 10 shown in Fig. 1 becomes Injection of fuel into the combustion chamber Internal combustion engine used. There is for every combustion chamber (that is, for each cylinder) of the internal combustion engine own pump-nozzle unit 10 is provided. The fuel can by a "triple injection" in the Coming to the combustion chamber of the internal combustion engine. The procedure after such a triple injection takes place, is now explained with reference to FIGS. 2-5:
  • the cam 20 of the pump device 12 is so with the Crankshaft of the internal combustion engine synchronizes that Single-cylinder piston pump during an injection stroke of the always assigned a delivery stroke to its assigned cylinder performs.
  • Switch valve 60 initially at the beginning of an injection cycle closed (rising edge 66 in Fig. 2). This leads to, 3, an increase in the System pressure in the fuel line 22 and in the sequence also in the pressure chamber 36 (rising edge 68 in FIG. 3).
  • the spring force of the compression spring 32 will Valve element 28 with a certain force against the corresponding valve seat in the area of the injection opening 30 pressed. This will result in a normal valve opening force specified.
  • the increasing pressure in the pressure chamber 36 now acts on the Pressure surface 34 on the valve element 28. Exceeds this resulting force the pressure exerted by the compression spring 32 Closing force becomes the normal valve opening pressure of the valve element 28 is exceeded, the valve element lifts 28 from the valve seat in the region of the injection opening 30 opens.
  • the normal valve opening pressure is in Fig. 3 represented by a dash-dotted curve and is with POVN marked.
  • the opening of the valve element 28 is 5 recognizable on the rising edge 70. By this opening of the valve element 28 becomes a Pre-injection performed.
  • Switch valve 60 opens again (falling edge 72 in FIG. 2). This causes the system pressure in the Fuel line 22, since this is now for Fuel tank 64 is open. This is through the falling edge 74 shown in FIG. 3. Corresponding closes the valve element 28 (falling edge 76 in FIG. 5) as soon as the system pressure P in FIG. 3 is below a normal valve closing pressure PSVN has dropped.
  • the Valve closing pressure PSVN is double in Fig. 3 by one dash-dotted line shown.
  • the switching valve 60 is closed again (increasing Edge 78 in Fig. 2).
  • the system pressure P increases accordingly (Edge 80 in Fig. 3).
  • the valve opening pressure POVN is exceeded, the valve element 28 opens (Rising edge 82 in Fig. 5).
  • the system pressure P exceeds an opening switching pressure POS of the switching element 38.
  • This pressure POS corresponds to the pressure at which the switching element 38 begins to separate from the sealing edge 48. This is again the case when the pressure surface 44 outgoing force the biasing force of the compression spring 32nd exceeds.
  • the second pressing surface 46 With the system pressure P. This will causes the switching element 38 to oppose the Acted upon by the compression spring 32 moved down, until it rests on the ring web 54 (flank 83 in FIG. 4).
  • the starting position is designated by S0, whereas the switch position, in which the Switching element 38 rests on the ring web 54, designated S1 is.
  • the characteristic of the spring 32 and the sizes of the Printing areas 34 and 44 are coordinated so that the valve closing pressure PSV during this increase in System pressure P is always below the system pressure P.
  • the main injection is ended by the fact that the Switch valve 60 is opened again, analogously to the end of Pilot injection.
  • the corresponding falling edges in 2, 3 and 5 bear the reference numerals 88, '90 and 92.
  • the closing of the valve element 28 is brought about by that the system pressure P in Fig. 3 is below the increased valve closing pressure PSVH drops.
  • the drop in system pressure P is limited so that a switching pressure PSS, in which the switching element 38 again in its Starting position S0 returns, is not fallen below.
  • a post-injection is again by closing the Switching valve 60 initiated.
  • the corresponding edges in 2, 3 and 5 bear the reference numerals 94, 96 and 98.
  • the system pressure P again exceeds the increased pressure Valve opening pressure POVH, so that the valve element 28 opens again.
  • the post-injection takes place accordingly high injection pressure.
  • Usual values for a normal one Valve opening pressure is approximately 300 bar, whereas the injection pressure during post-injection due to the increased valve opening pressure POVH is about 500 to 600 bar.
  • Fig. 1st illustrated embodiment of a pump-nozzle unit 10 relate to the design of the switching element 38 the embodiment shown in Fig. 1 was the between the valve element 28 and the switching element 38 formed area of the stepped bore 26 is not under pressure set. In this case, the valve element 28 thus acts only the preload force, which is caused by the compression spring 32 is applied.
  • the switching element 38 lifts from the sealing edge 48, so that the second pressure chamber 51 and the first pressure chamber 50 with the fuel line 22 is connected and thus the two pressure surfaces 44 and 46 with the system pressure P.
  • the Flow channel 110 now also flows into the fuel between the switching element 38 and the valve element 28 formed pressure chamber 108, so that this also a corresponding pressure builds up to the system pressure P.
  • This pressure also acts on that of the compression spring 32 facing printing area (not visible in FIGS. 6 - 8) of the valve element 28, so that this in addition to Biasing force of the compression spring 32 with a corresponding Pressure force is applied.
  • valve opening pressure POV again raised so that in these embodiments particularly high injection pressure of up to 800 bar can be realized.
  • pressure chamber 108 also system pressure could be a hazard exist that act on the switching element 38 hydraulic force resultant becomes smaller than that of the compression spring 32 force exerted on the switching element 38. In this case, the switching element 38 would be in again to move back to its original position.
  • This second Flow channel connects the pressure chamber 108 with the Low pressure area, for example the fuel tank.

Claims (20)

  1. Procédé pour faire fonctionner une unité de pompe-injecteur (10), qui permet d'injecter le carburant dans une chambre de combustion d'un moteur à combustion interne de telle sorte qu'un élément de soupape (28) soit ouvert par une augmentation de la pression système (P) sous une force de précontrainte, le procédé comprenant les étapes successives suivantes consistant à :
    a) augmenter (80) la pression système (P) sur une valeur au-dessus d'une pression normale d'ouverture de soupape (POVN) de telle sorte que l'élément de soupape (28) s'ouvre (82) sous la force de précontrainte pour une injection principale,
    b) augmenter la force de précontrainte pendant l'augmentation (80) de la pression système (P),
    c) diminuer (102) la pression système (P) et diminuer la force de précontrainte, de telle sorte que l'élément de soupape (28) se ferme (104),
    caractérisé en ce que
    à l'étape b) une pression de fermeture de soupape (PSVH) accrue en raison de la force de précontrainte croissante est toujours en dessous de la pression système (P) de telle sorte que l'élément de soupape (28) reste ouvert et que, entre les étapes b) et c), les étapes successives suivantes consistent à :
    b1)
    diminuer (90) la pression système (P) sur une valeur en dessous de la pression de fermeture de soupape (PSVH) accrue, de telle sorte que l'élément de soupape (28) se ferme (92),
    b2)
    augmenter (96) la pression système (P) de telle sorte que l'élément de soupape (28) s'ouvre (98) pour une injection principale sous une pression d'ouverture de soupape (POVH) accrue en raison de la force de précontrainte croissante.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    à l'étape c), la pression système (P) est diminuée (102) sur une valeur en dessous d'une pression normale de fermeture de soupape (PSVH) accrue (102) de telle sorte que l'élément de soupape (28) se ferme et que la force de précontrainte soit diminuée sur l'élément de soupape (28), la pression d'ouverture de soupape (POV) plus faible en raison de la force de précontrainte plus faible étant ainsi toujours au-dessus de la pression système (P) de telle sorte que l'élément de soupape (28) reste fermé.
  3. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    l'élément de soupape (28) s'ouvre sous la force de précontrainte d'un élément de précontrainte (32) qui est supporté par un élément de commutation mobile (38), et à l'étape d) l'élément de commutation (38) est déplacé (83) sous la force de précontrainte pendant l'augmentation (80) de la pression système (P) de telle sorte que la force de précontrainte augmente.
  4. Procédé selon la revendication 3,
    caractérisé en ce que
    à l'étape c), l'élément de commutation (38) est redéplacé (106) dans sa position de sortie (S0) en direction de la force de précontrainte.
  5. Procédé selon l'une des revendications 3 ou 4,
    caractérisé en ce que
    à l'étape b), l'élément de commutation est déplacé hydrauliquement (106).
  6. Procédé selon la revendication 5,
    caractérisé en ce que
    à l'étape b), l'élément de commutation (38) est déplacé de sa position de sortie (S0) par une percussion successive d'au moins deux surfaces de compression (44, 46) par la pression système (P) sous la percussion de l'élément de précontrainte (32), la première surface de compression (44) étant toujours percutée par la pression système (P) et la seconde surface de compression (46) n'étant percutée par la pression système (P) que lorsque l'élément de commutation (38) a été déplacé un peu de sa position de sortie (S0).
  7. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    avant l'étape a), la pression système (P) est élevée (68) sur une valeur au-dessus de la pression normale d'ouverture de soupape (POVN) de telle sorte que l'élément de soupape (28) s'ouvre (70) sous la percussion de l'élément de précontrainte (32) pour une pré-injection dans la pression système (P) normale, et la pression système (P) est ensuite diminuée (74) sur une valeur en-dessous de la pression normale de fermeture de soupape (PSVN) de telle sorte que l'élément de soupape (28) se ferme (76).
  8. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    l'élément de soupape (28) est percuté par la pression (P) contre la direction d'ouverture et ainsi la pression d'ouverture de soupape (POV) est augmentée.
  9. Procédé selon la revendication 8,
    caractérisé en ce que
    l'élément de soupape (28) est percuté en déplacement temporel par la pression système (P) contre la direction d'ouverture.
  10. Unité de pompe-injecteur (10) pour introduire du carburant dans une chambre de combustion d'un moteur à combustion interne, comprenant une buse d'injection (30) pour injecter le carburant dans la chambre de combustion, comprenant au moins un élément de soupape (28), qui présente au moins une première surface de compression (34) présentant une résultante de force à peu près en direction d'ouverture de l'élément de soupape (28), comprenant un élément de précontrainte (32) qui percute l'élément de soupape (28) en direction de la position de fermeture, comprenant un élément de commutation (38) sur lequel s'appuie l'élément de précontrainte (32) et qui est déplacé le long de la direction de percussion par l'élément de précontrainte (32), comprenant un dispositif de pompage (12) qui construit une pression système (P) agissant sur la première surface de compression (34) de l'élément de soupape (28) et comprenant un dispositif de commande (16) qui commande l'augmentation et la diminution de la pression système (P),
    caractérisée en ce que
    la caractéristique du dispositif de précontrainte (32) et les grandeurs des surfaces de compression (34) sont déterminées entre elles de telle sorte que la pression de fermeture de soupape (PSV) reste toujours en dessous de la pression système (P) lorsque la pression système (P) augmente pendant une injection principale, de telle sorte que, avec l'unité de pompe-injecteur, le procédé puisse être mise en oeuvre selon une des revendications 1 à 9.
  11. Unité de pompe-injecteur (10) selon la revendication 10,
    caractérisée en ce que
    l'élément de commutation (38) présente une première surface de compression (44) et une seconde surface de compression (46), la première surface de compression (44) de l'élément de commutation (38) étant inférieure à la première surface de compression (34) sur l'élément de soupape (28), la première surface de compression (44) et la seconde surface de compression (46) de l'élément de commutation (38) étant ensemble supérieures à la surface de compression totale (34) de l'élément de soupape (28), la première surface de compression (44) de l'élément de commutation (38) étant toujours reliée au dispositif de pompage (12) de telle sorte qu'elle soit toujours percutée par la pression système (P) et la seconde surface de compression (46) de l'élément de commutation (38) n'étant reliée au dispositif de pompage (12) que lorsque l'élément de commutation (38) s'est un peu déplacé de sa position de sortie (S0).
  12. Unité de pompe-injecteur (10) selon la revendication 11,
    caractérisée en ce que
    une arête d'étanchéité (48) est prévue pour séparer les deux surfaces de compression (44, 46) l'une de l'autre dans la position de sortie (S0) de l'élément de commutation (38).
  13. Unité de pompe-injecteur (10) selon l'une des revendications 10 à 12,
    caractérisée en ce que
    le dispositif de précontrainte comprend un ressort de compression (32).
  14. Unité de pompe-injecteur (10) selon l'une des revendications 10 à 13,
    caractérisée en ce qu'
    on prévoit entre l'élément de soupape (28) et l'élément de commutation (38), une chambre de compression (108) limitée par une seconde surface de compression (112) de l'élément de soupape (28) dont la résultante de force est dirigée approximativement à l'opposé de la résultante de force de la première surface de compression (34) de l'élément de soupape (28), et un canal d'écoulement (110) dans l'élément de commutation (38) conduit depuis la chambre de compression (108) à la seconde surface de compression (46) de l'élément de commutation (38).
  15. Unité de pompe-injecteur (10) selon la revendication 14,
    caractérisée en ce que
    le canal d'écoulement (110) comprend un étranglement.
  16. Unité de pompe-injecteur (10) selon l'une des revendications 14 ou 15,
    caractérisée en ce qu'
    un alésage débouchant (110) traverse l'élément de commutation (38).
  17. Unité de pompe-injecteur (10) selon l'une des revendications 14 à 16,
    caractérisée en ce qu'
    une fente (110) est prévue entre l'élément de commutation (38) et un boítier (24) entourant l'élément de commutation (38).
  18. Unité de pompe-injecteur (10) selon l'une des revendications 10 à 17,
    caractérisée en ce que
    le dispositif de commande (16) comprend une soupape de commutation (60) qui peut relier le dispositif de pompage (12) à une zone de basse pression (62, 64).
  19. Unité de pompe-injecteur (10) selon la revendication 18,
    caractérisée en ce que
    la soupape de commutation (60) présente au moins un élément piézoélectrique (58) comme actionneur.
  20. Unité de pompe-injecteur (10) selon l'une des revendications 10 à 19,
    caractérisée en ce que
    la pression d'ouverture de soupape (POVH) accrue est deux fois plus élevée que la pression normale d'ouverture de soupape (POVN), de préférence d'environ 400 à 800 bars, et de préférence encore de 700 à 800 bars.
EP02727288A 2001-04-04 2002-04-04 Procede pour actionner une unite pompe-ajutage et unite pompe-ajutage correspondante Expired - Lifetime EP1377745B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10116635 2001-04-04
DE10116635A DE10116635A1 (de) 2001-04-04 2001-04-04 Verfahren zum Betreiben einer Pumpe-Düse-Einheit sowie Pumpe-Düse-Einheit
PCT/DE2002/001235 WO2002081900A1 (fr) 2001-04-04 2002-04-04 Procede pour actionner une unite pompe-ajutage et unite pompe-ajutage correspondante

Publications (2)

Publication Number Publication Date
EP1377745A1 EP1377745A1 (fr) 2004-01-07
EP1377745B1 true EP1377745B1 (fr) 2004-11-03

Family

ID=7680252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02727288A Expired - Lifetime EP1377745B1 (fr) 2001-04-04 2002-04-04 Procede pour actionner une unite pompe-ajutage et unite pompe-ajutage correspondante

Country Status (4)

Country Link
US (1) US20040020458A1 (fr)
EP (1) EP1377745B1 (fr)
DE (2) DE10116635A1 (fr)
WO (1) WO2002081900A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106836A1 (fr) * 2002-06-13 2003-12-24 Siemens Aktiengesellschaft Unite pompe-injecteur
DE10233101A1 (de) * 2002-07-20 2004-01-29 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
WO2004057176A1 (fr) * 2002-12-20 2004-07-08 Volkswagen Mechatronic Gmbh & Co. Kg Unite d'injecteur-pompe
DE102004057151B4 (de) * 2004-11-26 2009-04-16 Continental Automotive Gmbh Einspritzventil mit einem Druckhalteventil zur Fluiddruckbeaufschlagung eines Federraums

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9609382D0 (en) * 1996-05-03 1996-07-10 Lucas Ind Plc Fuel injection system

Also Published As

Publication number Publication date
EP1377745A1 (fr) 2004-01-07
DE10116635A1 (de) 2002-10-17
US20040020458A1 (en) 2004-02-05
WO2002081900A1 (fr) 2002-10-17
DE50201468D1 (de) 2004-12-09

Similar Documents

Publication Publication Date Title
EP1636484B1 (fr) Injecteur pour moteurs a combustion interne
EP1654456B1 (fr) Dispositif d'injection de carburant pour moteur a combustion interne
EP1458970B1 (fr) Dispositif d'injection de carburant pour moteurs a combustion interne
DE10221384A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
WO2003018990A2 (fr) Systeme d'injection de carburant pour moteur a combustion interne
EP1185785B1 (fr) Systeme d'injection
EP1144859B1 (fr) Systeme et procede d'injection de fluide
EP1377745B1 (fr) Procede pour actionner une unite pompe-ajutage et unite pompe-ajutage correspondante
EP2835526B1 (fr) Agencement de vannes pour une installation d'alimentation en carburant et installation d'alimentation en carburant
WO2002103197A1 (fr) Dispositif d'injection de carburant pour moteur a combustion interne
EP1392965B1 (fr) Amplificateur de pression pour systeme d'injection de carburant
DE102005014180A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
DE10160490B4 (de) Kraftstoff-Einspritzvorrichtung, Kraftstoffsystem sowie Brennkraftmaschine
EP2256332B1 (fr) Injecteur de carburant doté d'un piston d'amplification de pression
DE102007001365A1 (de) Injektor mit Steuer- und Schaltkammer
DE19834763C2 (de) Pumpe-Leitung-Düse-System
DE10359169A1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
EP1606511B1 (fr) Dispositif d'injection de carburant pour moteur a combustion interne
DE102004007797A1 (de) Verfahren zum Betreiben eines Kraftstoffsystems für eine Brennkraftmaschine mit Kraftstoffdirekteinspritzung, sowie Kraftstoffsystem für eine solche Brennkraftmaschine
AT408253B (de) Einspritzdüse für eine brennkraftmaschine
EP1284360A2 (fr) Dispositif d'injection de carburant pour moteur à combustion interne
DE102019220172A1 (de) Kraftstoffinjektor für eine Brennkraftmaschine
EP1601870A1 (fr) Soupape d'injection de carburant pour un moteur a combustion interne
WO2002086305A2 (fr) Dispositif d'injection de carburant pour moteur a combustion
DE10326506A1 (de) Vorrichtung zum Einspritzen von Kraftstoff mit hubstabilisiertem Einspritzventilglied

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040210

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20041103

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50201468

Country of ref document: DE

Date of ref document: 20041209

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050203

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050214

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060404

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060404