EP1747380A1 - Procede de localisation de defaut et diagnostic d'une installation fluidique - Google Patents

Procede de localisation de defaut et diagnostic d'une installation fluidique

Info

Publication number
EP1747380A1
EP1747380A1 EP04727868A EP04727868A EP1747380A1 EP 1747380 A1 EP1747380 A1 EP 1747380A1 EP 04727868 A EP04727868 A EP 04727868A EP 04727868 A EP04727868 A EP 04727868A EP 1747380 A1 EP1747380 A1 EP 1747380A1
Authority
EP
European Patent Office
Prior art keywords
consumption
subsystems
time
fluid
diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04727868A
Other languages
German (de)
English (en)
Other versions
EP1747380B1 (fr
Inventor
Jan Bredau
Jens Engelhardt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Festo SE and Co KG
Original Assignee
Festo SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Festo SE and Co KG filed Critical Festo SE and Co KG
Publication of EP1747380A1 publication Critical patent/EP1747380A1/fr
Application granted granted Critical
Publication of EP1747380B1 publication Critical patent/EP1747380B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/02Servomotor systems with programme control derived from a store or timing device; Control devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B19/00Testing; Calibrating; Fault detection or monitoring; Simulation or modelling of fluid-pressure systems or apparatus not otherwise provided for
    • F15B19/005Fault detection or monitoring

Definitions

  • the invention relates to a method for error limitation and diagnosis in a fluidic system, in particular in a pneumatic system, wherein the fluid consumption of at least one area of the system is recorded and, depending on the operating cycle, is compared with a corresponding stored reference consumption.
  • Such a method is known from DE 19628221 C2, which, however, serves to determine the operating positions of working devices of a pneumatic system, sensors, in particular position sensors, being dispensed with. Especially in the case of larger systems in which processes overlap, the position of one or in a specific work facility cannot be determined with certainty. If a malfunction or a leak occurs in one of the work facilities, it is no longer possible to make any clear statements and statements, and certainly not a particular work facility or component of the system that is no longer working properly can be determined.
  • the advantages of the method according to the invention for error limitation and diagnosis are, in particular, that only an additional volume flow sensor system is required in terms of hardware in the supply line of the system in order to measure the fluid consumption.
  • the position, limit switch and actuator control signals which are present anyway, are used in order to assign events determined during the fluid consumption measurement to specific systems or subsystems and thereby to be able to detect an error. Malfunctions in the respective system and / or subsystem as well as leaks can be identified and assigned to the respective system or subsystem. An error can thus be limited to a specific system within the plant or even to a specific subsystem. This is done very quickly while the system control sequence program is running.
  • the recorded fluid consumption and the stored reference consumption are expediently present as curve profiles, which are generated in particular by summing or integrating flow values.
  • a particularly good error detection is achieved by forming difference values or difference curve profiles between fluid consumption and reference consumption, since these deviations can be identified particularly easily.
  • a time comparison is advantageously carried out with the sequence program of the system control. This makes it easy to use the sequence program to determine which system or subsystem was or is currently active. Alternatively or additionally, it can also be checked which control signals for systems or subsystems and / or sensor feedback occurred immediately before this point in time and to which systems or subsystems they were assigned. This also allows the faulty system or subsystem to be determined exactly.
  • the travel and / or positioning times of the systems and / or subsystems can also be checked using stored reference values before or during the fluid consumption diagnosis. If there are any deviations from the stored travel and / or positioning times, the faulty system can be inferred and - if this is done before the consumption diagnosis - the fluid consumption diagnosis itself can also be omitted if the faulty system or subsystem could already be determined by the preliminary process.
  • these parameters or at least one of these parameters are expediently recorded and can be used for the parameter-dependent correction of the fluid consumption.
  • 1 is a pneumatic system, in the feed of which a flow meter is connected,
  • FIG. 3 shows a more extensive pneumatic system which is divided into three sections and with a flow meter being assigned to each section,
  • FIG. 1 A pneumatic system is shown schematically in FIG. 1, which could in principle also be another fluid system, such as a hydraulic system.
  • the pneumatic system consists of five subsystems 10-14, each of which can be actuators such as valves, cylinders, linear drives and the like, as well as combinations thereof. These subsystems 10-14 are fed by a pressure source 15, a flow meter 17 for measuring the flow rate in a common feed line 16. ses or the volume flow is arranged. The air consumption is obtained by summing or integrating the measured values for the flow or volume flow or mass flow.
  • the subsystems 11, 12 on the one hand and the subsystems 13, 14 on the other hand each form a system with a common supply line.
  • An electronic control device 18 is used to specify the sequence process of the system and is electrically connected to the subsystems 10-14. Preserve subsystems 10-14
  • sensor signals are, for example, position signals, limit switch signals, pressure signals and the like.
  • the flow meter 17 is connected to an electronic diagnostic device 19, to which the signals of a temperature sensor 20 and a pressure sensor 21 for measuring the temperature and the pressure in the feed line 16 are additionally fed. Furthermore, the diagnostic device 19 has access to the flow chart of the electronic control device 18. The diagnostic results are fed to a display 22, whereby these diagnostic results can of course also be saved, printed out or transmitted to a central office via lines or wirelessly.
  • the diagnostic device 19 can of course also be integrated in the electronic control device 18, which can contain, for example, a microcontroller for executing the drain program and possibly for diagnosis.
  • this reference curve can be formed, for example, by adding or integrating reference flow values during the sequence program. For example, it can be saved in a learning mode.
  • a difference curve profile ⁇ L is formed as the difference between the air consumption curve L formed from the measured values and the reference curve L ref .
  • the difference curve profile ⁇ L and the air consumption curve L and the reference air consumption curve L ref can then be shown on the display 22, as will be explained in more detail in connection with FIGS. 4 to 6.
  • FIG. 3 shows an expanded version of the exemplary embodiment according to FIG. 1.
  • the pressure source 15 supplies further subsystems 25-32 here.
  • the additional subsystems 25-32 are divided into two groups, each of which is supplied with compressed air via its own flow meter 33, 34.
  • the three partial areas of the system can thus be diagnosed independently of one another by means of the three flow meters 17, 33, 34.
  • the electronic control device 18, the diagnostic device 19 and corresponding temperature sensors and pressure sensors are not shown for the sake of simplicity, but are of course also provided in accordance with FIG. 1.
  • a common control device and a common diagnostic device 19 can be provided as two separate units or as a single integrated unit. The procedure for fault isolation and diagnosis will now be explained below using the pneumatic system described.
  • FIG. 5 shows the case that during the entire sequence program, that is to say during the entire cycle of the system, the difference ⁇ L down to a small range between t2 and t3 increases continuously, so that at the end of the cycle the total air consumption L is significantly greater than the reference air consumption L ref .
  • the curve shows the case of a leak in an actuator of a subsystem. This is partly pressurized during the cycle and partly pressureless. In the depressurized state, there is consequently an air consumption difference of 0 or an air consumption difference that no longer increases during this time interval. A comparison with the sequence program now determines which actuator was depressurized during this time interval and pressurized during the rest of the time. The leakage can thus be limited to this actuator.
  • an air consumption difference to the reference air consumption curve L ref occurs in a time interval from time t4 and again in a time interval from time t5. Again, it must be determined by comparison with the sequence program which actuator or which subsystem were active in these two time intervals from time t4 and t5. As a result, these are recognized as faulty, which can also be the same actuator or the same subsystem that comes into action twice during the sequence program.
  • a new reference value for air consumption is formed, which results from the old reference value (0) and the new offset in air consumption.
  • the measured air consumption is checked for deviations using the new reference value. This means that if the same subsystem or another subsystem fails again, the error can be determined again.
  • the barriers for a permissible change in air consumption can be fixed or can be kept variable in accordance with the current air consumption values. On the one hand, it is possible to cycle in the area of a small air consumption begin to choose very narrow bounds to get a very high sensitivity, and on the other hand, in the area of high air consumption at the end of the cycle, choose rough bounds to be robust against fluctuation and measurement errors.
  • the flow measurement values or air consumption values are subjected to a temperature correction and a pressure correction, the corresponding measurement variables being made available by the temperature sensor 20 and the pressure sensor 21.
  • a temperature compensation or only a pressure compensation can be provided, or any compensation is dispensed with, in particular even if the pressure and temperature influences to be expected are not very great.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
EP04727868A 2004-04-16 2004-04-16 Procede de localisation de defaut et diagnostic d'une installation fluidique Expired - Lifetime EP1747380B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2004/004050 WO2005111433A1 (fr) 2004-04-16 2004-04-16 Procede de localisation de defaut et diagnostic d'une installation fluidique

Publications (2)

Publication Number Publication Date
EP1747380A1 true EP1747380A1 (fr) 2007-01-31
EP1747380B1 EP1747380B1 (fr) 2011-07-06

Family

ID=34957275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04727868A Expired - Lifetime EP1747380B1 (fr) 2004-04-16 2004-04-16 Procede de localisation de defaut et diagnostic d'une installation fluidique

Country Status (5)

Country Link
EP (1) EP1747380B1 (fr)
CN (1) CN1973136B (fr)
AT (1) ATE515638T1 (fr)
DK (1) DK1747380T3 (fr)
WO (1) WO2005111433A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7917325B2 (en) * 2007-02-14 2011-03-29 Festo Ag & Co. Kg Method for error containment and diagnosis in a fluid power system
CN101454580B (zh) * 2007-02-14 2012-08-01 费斯托股份有限两合公司 在流体装置中进行故障定位及诊断的方法
DE102012005224A1 (de) * 2012-03-15 2013-09-19 Festo Ag & Co. Kg Fluidsystem und Verfahren zum Betreiben eines Fluidsystems
CN104533881B (zh) * 2014-12-04 2016-09-21 上海中联重科桩工机械有限公司 工程机械行走跑偏原因的判断系统及判断方法
EP3243608B1 (fr) 2016-05-09 2022-04-06 J. Schmalz GmbH Procede de surveillance des etats de fonctionnement d'un actionneur commande par pression et actionneur commande par pression
CN107420381B (zh) * 2017-03-17 2018-11-23 北京交通大学 一种伺服阀温筛系统的标定装置
IT201800007875A1 (it) * 2018-08-06 2020-02-06 Gd Spa Un metodo di diagnosi ed una unità operativa di una linea di produzione per articoli da fumo
CN109325692B (zh) * 2018-09-27 2021-01-22 清华大学合肥公共安全研究院 水管网的数据实时分析方法及装置
FR3107955A1 (fr) * 2020-03-05 2021-09-10 Sagemcom Energy & Telecom Sas Détection d’une dérive métrologique anormale d’un compteur de fluide

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5136499A (en) * 1986-07-07 1992-08-04 Rydborn S A O Monitoring for distinguishing normal from abnormal deviations in a knitting machine
US5067099A (en) * 1988-11-03 1991-11-19 Allied-Signal Inc. Methods and apparatus for monitoring system performance
GB2285700B (en) * 1994-01-12 1998-06-24 Drallim Ind Monitoring apparatus and method
DE19628221C2 (de) * 1996-07-15 2000-05-31 Festo Ag & Co Verfahren und Vorrichtung zur Bestimmung von Betriebspositionen einer Arbeitseinrichtung
DE10052664B4 (de) * 2000-10-24 2004-10-28 Festo Ag & Co. Vorrichtung zur Prozeßüberwachung
DE20120609U1 (de) * 2001-12-20 2002-03-21 Festo Ag & Co Diagnoseeinrichtung für eine fluidtechnische Einrichtung sowie damit ausgestattete fluidtechnische Einrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005111433A1 *

Also Published As

Publication number Publication date
CN1973136A (zh) 2007-05-30
WO2005111433A1 (fr) 2005-11-24
DK1747380T3 (da) 2011-09-26
EP1747380B1 (fr) 2011-07-06
ATE515638T1 (de) 2011-07-15
CN1973136B (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
EP2047117B1 (fr) Procédé de localisation de défaut et de diagnostic d'une installation fluidique
DE19723650B9 (de) Verfahren und Vorrichtung zur Überwachung eines Stellgeräts
EP1552128B1 (fr) Procede, appareil de commande, et programme informatique pour detecter des detecteurs de pression defectueux dans un moteur a combustion interne
EP2047118B1 (fr) Procédé de localisation de défaut et de diagnostic d'une installation fluidique
WO2008009703A1 (fr) Dispositif et procédé de détermination de positions verticales
DE102005016786A1 (de) Verfahren und Vorrichtung zum Diagnostizieren eines Lecks in einem Fluidkraftsystem
EP3546763B1 (fr) Détection des états de maintenance de vannes
EP2568348A1 (fr) Aide au diagnostic d'erreurs d'une installation industrielle
EP1747380B1 (fr) Procede de localisation de defaut et diagnostic d'une installation fluidique
WO2015022058A1 (fr) Procédé permettant le diagnostic pour chaque injecteur d'un dispositif d'injection de carburant et moteur à combustion interne pourvu d'un dispositif d'injection de carburant
EP3631593A1 (fr) Dispositif de contrôle et procédé de contrôle d'un système
DE19628221C2 (de) Verfahren und Vorrichtung zur Bestimmung von Betriebspositionen einer Arbeitseinrichtung
WO2011039343A1 (fr) Système et procédé permettant de mesurer des processus d'injection dans un moteur à combustion interne
EP0916535B1 (fr) Dispositif et procédé pour l'actionnement hydraulique des parts mobiles
DE19927372C2 (de) Verfahren und Vorrichtung zum Erkennen einer Fehlfunktion von Stellantrieben
DE102006021306B3 (de) Verfahren zur Diagnose und Steuervorrichtung zur Steuerung eines Kraftfahrzeuges
DE102014214452B3 (de) Verfahren und Vorrichtung zur Detektion eines fehlerhaften Raildrucksensors
DE102012014493B4 (de) Verfahren und Vorrichtung zur redundanten Erkennung einer Drehrichtung
EP1313936B1 (fr) Procede et dispositif de commande d'un moteur a combustion interne
EP2203649B1 (fr) Procédé et dispositif pour l'indication de position d'accessoires de robinetterie à commande hydraulique
DE102014225867A1 (de) Vorrichtung und Verfahren zur Überprüfung eines Arbeitstaktsignals einer Positionsmesseinrichtung
EP2926014B1 (fr) Procédé et dispositif permettant d'indiquer la position d'accessoires de robinetterie à commande hydraulique
DE102012209030A1 (de) Verfahren zur Steuerung einer Brennkraftmaschine und System mit einer Brennkraftmaschine, einem Kraftstoffspeicher und einem Steuergerät
DE102018214295A1 (de) Messung von Betriebsparametern an Stellenantrieben
DE102011004007B4 (de) Eingabevorrichtung für ein Feldgerät zur Prozessinstrumentierung sowie Verfahren zur Detektion einer Betätigung einer Taste einer derartigen Eingabevorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061010

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BREDAU, JAN

Inventor name: ENGELHARDT, JENS

17Q First examination report despatched

Effective date: 20070424

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FESTO AG & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TROESCH SCHEIDEGGER WERNER AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004012668

Country of ref document: DE

Effective date: 20110901

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111107

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

26N No opposition filed

Effective date: 20120411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20120424

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004012668

Country of ref document: DE

Effective date: 20120411

BERE Be: lapsed

Owner name: FESTO A.G. & CO. KG

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120411

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111006

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20130429

Year of fee payment: 10

Ref country code: GB

Payment date: 20130402

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130415

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111017

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20130430

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 515638

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110706

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040416

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20141101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170424

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170420

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004012668

Country of ref document: DE

Representative=s name: PATENTANWAELTE MAGENBAUER & KOLLEGEN PARTNERSC, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004012668

Country of ref document: DE

Owner name: FESTO SE & CO. KG, DE

Free format text: FORMER OWNER: FESTO AG & CO. KG, 73734 ESSLINGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004012668

Country of ref document: DE

Owner name: FESTO AG & CO. KG, DE

Free format text: FORMER OWNER: FESTO AG & CO. KG, 73734 ESSLINGEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200226

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004012668

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211103