EP1744138B1 - Mikromechanische Vorrichtung mit zwei Sensorstrukturen und Verfahren zur Herstellung einer mikromechanischen Vorrichtung - Google Patents

Mikromechanische Vorrichtung mit zwei Sensorstrukturen und Verfahren zur Herstellung einer mikromechanischen Vorrichtung Download PDF

Info

Publication number
EP1744138B1
EP1744138B1 EP06115078A EP06115078A EP1744138B1 EP 1744138 B1 EP1744138 B1 EP 1744138B1 EP 06115078 A EP06115078 A EP 06115078A EP 06115078 A EP06115078 A EP 06115078A EP 1744138 B1 EP1744138 B1 EP 1744138B1
Authority
EP
European Patent Office
Prior art keywords
sensor
semiconductor material
membrane
cavity
sensor structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06115078A
Other languages
English (en)
French (fr)
Other versions
EP1744138A1 (de
Inventor
Hubert Benzel
Christoph Schelling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1744138A1 publication Critical patent/EP1744138A1/de
Application granted granted Critical
Publication of EP1744138B1 publication Critical patent/EP1744138B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/0092Pressure sensor associated with other sensors, e.g. for measuring acceleration or temperature

Definitions

  • the invention relates to a micromechanical device according to the preamble of the main claim 1.
  • a micromechanical device in particular a pressure sensor
  • the functionality of the sensor structure of the pressure sensor being based on a piezoresistive transducer principle for converting a mechanical force into an electrical signal.
  • a disadvantage of this is that for measuring a plurality of different mechanical parameters, for example for measuring a pressure and an acceleration, a plurality of sensors is necessary, which are usually still based on different transducer principles and therefore not on a chip monolithically integrated representable.
  • US Pat. No. 6,293,154 B1 discloses a pressure measuring arrangement with vibration compensation.
  • EP 1 561 724 A1 whose priority date is 06.02.2004 and disclosure date 10.08.2005 discloses a micromechanical device with a pressure sensor and an acceleration sensor.
  • the micromechanical device according to the invention with the features of the main claim has the advantage that a first and a second sensor structure are monolithically integrated on a common semiconductor material, which on the one hand reduces the cost and the required space and the functionality because of smaller connection paths, lesser Improves contact resistances, etc., and by using the same transducer principle, namely in particular a piezoresistive transducer principle, makes a cost-effective overall solution possible for both sensor structures. Also, both sensor structures can be integrated monolithically with a single, dual-channel evaluation circuit, so that on the one hand, the production cost for the micromechanical device is lower and on the other hand, the evaluation of the signals generated is improved.
  • the transducer principle is based on the piezosensitive effect, in particular the piezoresistive effect, in a plurality of sensor regions of the semiconductor material. This makes it possible in a particularly advantageous manner to combine a high sensitivity of the sensor structures with a cost-effective production of the micromechanical device. It is also the case that a transducer principle based on the piezoresistive effect is less susceptible to the problems caused by static charge, so that the device according to the invention can be made more reliable. It is also the case that the first sensor structure has a first membrane introduced into the semiconductor material and the second sensor structure has a second membrane introduced into the semiconductor material, wherein each of the membranes comprises at least one sensor region or is connected to at least one sensor region.
  • the membranes according to the invention it is possible in a simple and robust manner to produce a structure sensitive to mechanical influence variable, so that sensor structures can be produced on the basis of the piezoresistive transducer principle which are particularly robust and reliable. Furthermore, it is the case that the first sensor structure has a hermetically sealed first cavity below the first membrane and the second sensor structure has a seismic mass connected to the second membrane, the second membrane being closed.
  • the seismic mass is preferably hermetically encapsulated and / or the second membrane is provided supported, in particular by means of at least one lateral constriction.
  • a pressure sensor and an inertia-sensitive sensor in particular an acceleration sensor for measuring a linear acceleration or for measuring a rotational acceleration or a rotation rate to realize.
  • the support of the membrane ensures that there is no sticking of the sensor membrane to the underlying substrate during the formation of the at least intermediate vacuum cavity. It is particularly advantageous according to the invention that a circuit structure of an electronic circuit for evaluating and / or processing signals emanating from the sensor structures or modified by the sensor structures is introduced into the semiconductor material, the generation of the circuit structure preferably being provided at least partially simultaneously with the generation of the sensor structures is.
  • the membranes essentially comprise a monocrystalline material, preferably monocrystalline silicon. This makes it possible with very low cost to produce piezo sensors, which already react to small deflections of the membrane and thus work with a very high sensitivity.
  • the method according to the invention with the features of independent independent method claim 6 has the advantage over the prior art that the membranes for the first sensor structure as well as for the second sensor structure for measuring two different mechanical parameters, in particular pressure and linear acceleration, are produced at the same time. so that the production of the device according to the invention is particularly cost feasible. It is particularly advantageous that the seismic mass of substrate material, d. H. from the semiconductor material.
  • a partial region of the semiconductor material to be etched porous for introduction of the membranes into the semiconductor material, preferably with a porosity of more than 50%, preferably of more than 80%, and in that the first cavity and a second cavity Umlagern or etching out of the semiconductor material are formed in the porous etched portion.
  • the caverns can be generated without the introduction of accesses and without the use of undercutting methods.
  • an etching stop layer preferably silicon oxide, is introduced into the second cavity in the region of the seismic mass to be formed.
  • the structuring of the seismic mass preferably by means of a volume micromechanical machining sequence, can be carried out particularly precisely from the rear side of the semiconductor material.
  • Another object of the present invention is a combined acceleration and pressure sensor according to claim 9 with a micromechanical device according to the invention, wherein the combined acceleration and pressure sensor has the advantage that by the use of the same - preferably a piezoresistive - transducer principle for both SENSATIONS cost-effective Overall solution with a single, two-channel evaluation ASIC is possible, with a total of the combined acceleration and pressure sensor either only two chips are needed or even a monolithic integration of the two sensor structures together with the evaluation circuit is possible.
  • the acceleration and pressure sensor it is possible to detect various components of the linear acceleration or the rotational acceleration, for example the detection of a linear acceleration perpendicular to the substrate plane of the device or a rotational acceleration parallel to the substrate plane of the device.
  • the substrate plane corresponds to the plane of the largest extent of the semiconductor material.
  • FIG. 1 a first preliminary structure for a micro-mechanical device according to the invention is shown.
  • a semiconductor material 10 which is provided in particular as a silicon wafer
  • various doping regions 12 are introduced.
  • the semiconductor material 10 is, for example, a p-type substrate and the introduced dopants 12 are doping areas which are comparatively strongly negatively doped.
  • Further doping regions are likewise introduced into the semiconductor material 10 as so-called first well doping regions 13 and serve as electrical insulation between different regions or structures of the semiconductor material 10
  • FIG. 1 a first area 20 and a second area 30 can be seen, in which a first sensor structure 20 or a second sensor structure 30 will be realized in the finished micromechanical device according to the invention, which will become apparent from the description of the following figures.
  • masks 41 are applied in a subsequent step, which serve the delimitation of so-called Anodmaschines Symposiumen.
  • FIG. 2 is shown a further precursor structure of the device according to the invention, wherein like reference numerals FIG. 1 again represent the same parts or areas of the device or the semiconductor material. In the following figures, the same reference numerals again designate the same parts or regions of the device.
  • the of the anodization mask 41 in FIG. 1 Uncovered areas are etched porous by means of an anodization process, which is described in US Pat FIG. 2 designated by the reference numeral 42.
  • FIG. 3 is shown a further preliminary stage of the device according to the invention, wherein the anodized areas 42 of FIG. 2 are covered with a, preferably monocrystalline epitaxial layer 10a.
  • This epitaxial layer 10a serves above the regions 42 FIG. 2 as a membrane.
  • the epitaxial layer 10a forms a first membrane 21 and in the region of the second sensor structure 30, the epitaxial layer 10a forms a second membrane 31.
  • a thermal treatment causes a rearrangement of the semiconductor material in the porous regions 42. wherein a first cavity 24 and a second cavity 34 is formed.
  • the membranes 21, 31 are located above the respective cavities 24, 34.
  • FIG. 4 a further precursor structure of the device according to the invention is shown, in which further diffusion regions 15 are introduced into the epitaxial layer 10a and furthermore the actual sensor regions 22, 23, 32, 33 are also introduced.
  • These sensor regions are realized according to the invention in such materials that cause a large piezoresistive effect at a given material tension.
  • the sensor regions 22, 23, 32, 33 are preferably arranged at those points of the membranes 21, 31 which have large mechanical stresses when the membrane is deflected.
  • a first and second sensor region 22, 23 are part of the first sensor structure 20 and there is a third and fourth sensor region 32, 33 part of the second sensor structure 30.
  • the diffusion regions 15 serve as low-impedance leads to the sensor regions 22, 23, 32, 33rd ,
  • FIG. 5 a further precursor structure of the device according to the invention is shown, wherein a passivation layer 16 and terminal metallizations 17 are applied to the epitaxial layer 10a.
  • the terminal metallizations 17 are in particular made temperature-stable.
  • FIG. 6 a further precursor structure of the device according to the invention is shown, wherein an access area 36 to the second cavity 34 in the precursor structure according to the FIG. 5 is introduced and then a closure layer 18 is applied to the structure, which forms an etch stop layer 341 in the second cavity 34 in the region of the seismic mass to be structured later and closes the access area 36 to the second cavity 34.
  • the sealing layer 18 is, for example, an oxidic sealing layer, for example produced by deposition according to the TEOS process, in which TEOS (tetraethyl orthosilicate) is deposited, in particular silicon oxide.
  • the access opening 36 is made to the second cavity 34, in particular by means of a trench process.
  • FIG. 7 a further precursor structure of a device according to the invention is shown, wherein on the front of the structure, ie in the FIG. 7 in the upper region, causes an at least partial exposure of the metallizations 17 and wherein the structuring of the seismic mass 35, in particular by means of trench etching, takes place from the rear side of the semiconductor material 10.
  • This etching process for structuring the seismic mass 35 is stopped at the etch stop layer 341.
  • the etch stop layer 341 is then removed and thus the seismic mass 35 is exposed at its suspension point 351 on the second membrane 31.
  • the removal of the oxidic ⁇ tzstop für 341 can be carried out in particular by means of HF vapor etching.
  • FIG. 8 the finished micromechanical device 1 is shown, wherein a second substrate material 11 on the back of the semiconductor material 10 is applied to protect the seismic mass.
  • FIG. 9 a second embodiment of the micromechanical device 1 according to the invention is shown, wherein the second cavity 34 is opened from the rear side, ie from the further substrate material 11, by means of an opening 111.
  • FIG. 10 a precursor structure of an alternative manufacturing method for producing a micromechanical device 1 according to the invention is shown.
  • the steps of FIGS. 1 to 6 identical in the alternative manufacturing method takes place before the introduction of the access region 36 to the second cavity 34 and the deposition of the ⁇ tzstop für 341, the deposition of a passivation layer 19, in particular in the form of a nitride, for example silicon nitride.
  • the access region 36 is generated to the second cavity 34, in particular by means of trench etching, this access region 36 subsequently again, cf.
  • FIG. 11 in which the sealing layer 18, in particular silicon oxide, is closed to form the etching stop layer 341, which is described in US Pat FIG. 11 is shown.
  • FIG. 12 is shown a further precursor structure of the device according to the invention. Compared to the presentation of the FIG. 11 again, the seismic mass 35 was exposed from the backside of the semiconductor material.
  • FIG. 13 a further precursor structure of the device according to the invention, wherein the seismic mass 35 is completely exposed and is only connected to its connection point 351 with the second membrane 31.
  • This exposure of the seismic mass 35 is accomplished by etching the etch stop layer 341 (see FIG. FIG. 12 ) is effected, for example, by a selective wet process with AMS5.
  • AMS5 a selective wet process with AMS5.
  • the oxide layer 18 is etched away substantially (except, if appropriate, in the region of the access opening 36 to the second cavity 34) so that only the passivation layer 19 or the nitride layer 19 remains.
  • FIGS. 14 and 15 are views from below, ie from the back of the semiconductor material 10 ago on the seismic mass 35 shown. Visible on the one hand, the region of the suspension 351 of the seismic mass 35 on the second diaphragm 31 and the areas of the sensor elements 32, 33 on the front of the device.
  • constrictions 36 in the production of the second membrane 31, ie those areas in which no anodization and consequently no cavity is formed, it is possible to support the second membrane 31 at these locations, so that they are characterized by the formation of in the not opened second cavity 34 resulting vacuum does not bend down to the bottom of the second cavity 34. This can lead to the second membrane 31 adhering to its substrate and thus the device is no longer usable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pressure Sensors (AREA)

Description

    Stand der Technik
  • Die Erfindung geht aus von einer mikromechanischen Vorrichtung nach der Gattung des Hauptanspruchs 1. Aus der Druckschrift DE 103 23 559 A1 ist bereits eine mikromechanische Vorrichtung, insbesondere ein Drucksensor, bekannt, wobei die Funktionalität der Sensorstruktur des Drucksensors auf einem piezoresistiven Wandlerprinzip zur Umwandlung einer mechanischen Kraft in ein elektrisches Signal beruht. Nachteilig ist hieran, dass zur Messung von mehreren unterschiedlichen, mechanischen Größen, beispielsweise zur Messung eines Drucks und eine Beschleunigung, eine Mehrzahl von Sensoren notwendig ist, die darüber hinaus üblicherweise noch auf unterschiedlichen Wandlerprinzipien beruhen und daher nicht auf einem Chip monolithisch integriert darstellbar sind. Anwendungen, bei denen eine gleichzeitige Erfassung einer Mehrzahl von unterschiedlichen mechanischen Größen, insbesondere Druck und Beschleunigung wünschenswert sind, fmden sich beispielsweise bei der Reifendruckmessung oder auch bei der Seitenaufprallsensierung im Automobilbereich. Bei der Verwendung von auf unterschiedlichen Wandlerprinzipien beruhenden Sensoren zur Messung dieser unterschiedlichen mechanischen Größen ist es daher notwendig, bis zu 4 unterschiedliche Chips für diese Anwendungen vorzusehen, nämlich jeweils ein Chip für den Beschleunigungssensor (beispielsweise kapazitive Messung) und den Drucksensor (piezoresistive Messung) sowie jeweils eines Auswerteschaltkreises für den Beschleunigungssensor und den Drucksensor. Solche Multichip-Anwendungen sind jedoch relativ kostenintensiv, was erfindungsgemäß vermieden werden soll.
  • US 6 293 154 B1 offenbart eine Druckmessanordnung mit Schwingungskompensation. EP 1 561 724 A1 , deren Prioritätsdatum 06.02.2004 und Offenlegungsdatum 10.08.2005 ist, offenbart eine mikromechanische Vorrichtung mit einem Drucksensor und einem Beschleunigungssensor.
  • Vorteile der Erfindung
  • Die erfindungsgemäße mikromechanische Vorrichtung mit den Merkmalen des Hauptanspruchs hat dem gegenüber den Vorteil, dass eine erste und eine zweite Sensorstruktur monolithisch integriert auf einem gemeinsamen Halbleitermaterial vorgesehen sind, was zum einen die Kosten sowie den benötigten Bauraum verringert als auch die Funktionalität wegen kleineren Verbindungswegen, geringerer Übergangswiderstände etc. verbessert und durch den Einsatz des gleichen Wandlerprinzips, nämlich insbesondere eines piezoresistiven Wandlerprinzips, für beide Sensorstrukturen eine kostengünstigere Gesamtlösung möglich macht. Auch können beide Sensorstrukturen mit einem einzigen, zweikanaligen Auswerteschaltkreis monolithisch integriert werden, so dass zum einen der Herstellungsaufwand für die mikromechanische Vorrichtung geringer ist und zum anderen die Auswertung der erzeugten Signale verbessert wird.
  • Durch die in den Unteransprüchen aufgeführte Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der in den nebengeordneten Ansprüchen angegebenen mikromechanischen Vorrichtung bzw. des Verfahrens möglich.
  • Besonders vorteilhaft ist, dass das Wandlerprinzip auf dem piezosensitiven Effekt, insbesondere dem piezoresistiven Effekt, in einer Mehrzahl von Sensorbereichen des Halbleitermaterials beruht. Hierdurch ist es in besonders vorteilhafter Weise möglich, eine große Empfindlichkeit der Sensorstrukturen mit einer kostengünstigen Herstellungsweise der mikromechanischen Vorrichtung zu verbinden. Es ist ferner so, dass ein Wandlerprinzip auf Basis des piezoresistiven Effekts weniger anfällig für die durch statische Aufladung auftretenden Probleme ist, so dass die erfindungsgemäße Vorrichtung betriebssicherer gestaltet werden kann. Es ist ferner so , dass die erste Sensorstruktur eine in das Halbleitermaterial eingebrachte erste Membran und die zweite Sensorstruktur eine in das Halbleitermaterial eingebrachte zweite Membran aufweist, wobei jede der Membranen wenigstens einen Sensorbereich umfaßt oder mit wenigstens einem Sensorbereich verbunden ist. Mittels der Membranen ist es erfindungsgemäß in einfacher und robuster Weise möglich, eine auf mechanische Einflußgröße sensible Struktur herzustellen, so dass auf der Basis des piezoresistiven Wandlerprinzips Sensorstrukturen erzeugt werden können, die besonders robust und betriebssicher sind. Weiterhin ist es so, dass die erste Sensorstruktur eine hermetisch abgeschlossene erste Kavität unterhalb der ersten Membran aufweist und die zweite Sensorstruktur eine mit der zweiten Membran verbundene seismische Masse aufweist, wobei die zweite Membran geschlossen ist. Die seismische Masse ist vorzugsweise hermetisch gekapselt und/oder die zweite Membran ist gestützt vorgesehen, insbesondere mittels wenigstens einer seitlichen Einschnürung . Hierdurch ist es mit verhältnismäßig geringem Aufwand und unter Verwendung von robust herstellbaren Strukturen möglich, einen Drucksensor und einen auf eine Trägheitskraft hin empfindlichen Sensor, insbesondere einen Beschleunigungssensor zur Messung einer linearen Beschleunigung oder zur Messung einer Drehbeschleunigung bzw. einer Drehrate, zur realisieren. Die Stützung der Membran bewirkt, dass es bei der Bildung der zumindest zwischenzeitlich Vakuum aufweisenden Kavität nicht zu einem Verkleben der Sensormembran mit dem darunterliegenden Substrat kommt. Erfindungsgemäß ist ganz besonders vorteilhaft, dass in das Halbleitermaterial eine Schaltungsstruktur einer elektronischen Schaltung zur Auswertung und/oder Verarbeitung von von den Sensorstrukturen ausgehenden oder von den Sensorstrukturen modifizierten Signalen eingebracht ist, wobei die Erzeugung der Schaltungsstruktur vorzugsweise zumindest teilweise gleichzeitig mit der Erzeugung der Sensorstrukturen vorgesehen ist. Hierdurch ist es möglich, einen kompletten, kombinierten Sensor bzw. eine komplette, kombinierte Sensoreinheit herzustellen, die sowohl die auf die zu messenden, mechanischen Größen empfmdlichen Strukturen aufweist, als auch eine Vorverarbeitung der Sensorsignale durchführt, ggf. sogar mit einer gewissen Intelligenz. Unter einer intelligenten Vorverarbeitung wird in diesem Zusammenhang verstanden, dass bereits eine Beziehung zwischen den von den die unterschiedlichen, mechanischen Größen messenden Sensorstrukturen ausgehenden Signalen hergestellt wird, so dass beispielsweise unplausible Kombinationen von Druck- und Beschleunigungswerten entweder nicht weitergeleitet werden oder zumindest deren Unplausibilität angezeigt bzw. signalisiert wird. Erfindungsgemäß ist es besonders bevorzugt, dass die Membranen im wesentlichen ein monokristallines Material, vorzugsweise monokristallines Silizium, umfassen. Hierdurch ist es mit besonders geringem Kostenaufwand möglich, Piezosensoren herzustellen, die bereits auf geringe Auslenkungen der Membran reagieren und damit mit einer besonders hohen Empfindlichkeit arbeiten.
  • Das erfindungsgemäße Verfahren mit den Merkmalen des nebengeordneten unabhängigen Verfahrensanspruchs 6 hat gegenüber dem Stand der Technik den Vorteil, dass gleichzeitig die Membranen für die erste Sensorstruktur als auch für die zweite Sensorstruktur zur Messung zweier unterschiedlicher mechanischer Größen, insbesondere Druck und lineare Beschleunigung, hergestellt werden, so dass die Herstellung der erfindungsgemäßen Vorrichtung besonders kostengünstig realisierbar ist. Besonders vorteilhaft ist es, dass die seismische Masse aus Substratmaterial, d. h. aus dem Halbleitermaterial, besteht. Bevorzugt ist beim erfindungsgemäßen Verfahren ferner, dass zur Einbringung der Membranen in das Halbleitermaterial ein Teilbereich des Halbleitermaterials porös geätzt wird, vorzugsweise mit einer Porosität von mehr als 50%, bevorzugt von mehr als 80%, und dass die erste Kaverne und eine zweite Kaverne durch Umlagern bzw. Herausätzen des Halbleitermaterials im porös geätzten Teilbereich gebildet werden. Hierdurch ist es erfindungsgemäß vorteilhaft möglich, dass die Kavernen ohne die Einbringung von Zugängen und ohne die Anwendung von Unterätzungsverfahren erzeugt werden können. Erfindungsgemäß ist es ferner vorteilhaft, dass nach der Bildung der zweiten Kaverne eine Ätzstopschicht, vorzugsweise Siliziumoxid, im Bereich der zu bildenden seismischen Masse in die zweite Kaverne einbracht wird. Hierdurch kann die Strukturierung der seismischen Masse, bevorzugt mittels einer volumenmikromechanischen Bearbeitungsabfolge, von der Rückseite des Halbleitermaterials aus besonders präzise erfolgen.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist ein kombinierter Beschleunigungs- und Drucksensor gemäß Anspruch 9 mit einer erfindungsgemäßen mikromechanischen Vorrichtung, wobei der kombinierte Beschleunigungs- und Drucksensor den Vorteil hat, dass durch den Einsatz des gleichen ― bevorzugt eines piezoresistiven ― Wandlerprinzips für beide Sensierungen eine kostengünstige Gesamtlösung mit einem einzigen, zweikanaligen Auswerte-ASIC möglich wird, wobei insgesamt für den kombinierten Beschleunigungs- und Drucksensor entweder nur zwei Chips benötigt werden oder sogar eine monolithische Integration der beiden Sensorstrukturen zusammen mit der Auswerteschaltung möglich ist. Weiter ist bei dem erfindungsgemäßen Beschleunigungs- und Drucksensor eine Detektion verschiedener Komponenten der linearen Beschleunigung bzw. der Drehbeschleunigung möglich, etwa die Detektion einer zur Substratebene der Vorrichtung senkrechten linearen Beschleunigung oder einer zur Substratebene der Vorrichtung parallelen Drehbeschleunigung. Die Substratebene entspricht hierbei der Ebene der größten Erstreckung des Halbleitermaterials.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert.
  • Es zeigen
    • Figuren 1 bis 8 eine erste Bearbeitungsabfolge zur Herstellung einer erfindungsgemäßen mikromechanischen Vorrichtung bzw. die Darstellung eines erfindungsgemäßen Verfahrens zur Herstellung der Vorrichtung,
    • Figur 9 eine alternative Ausführung der mikromechanischen Vorrichtung, hergestellt mittels der ersten Bearbeitungsabfolge,
    • Figuren 10 bis 13 eine zweite Bearbeitungsabfolge zur Herstellung einer erfindungsgemäßen, mikromechanischen Vorrichtung und
    • Figuren 14 und 15 zwei alternative Ausführungen der seismischen Masse.
  • In Figur 1 ist eine erste vorläufige Struktur für eine erfindungsgemäße, mikomechanische Vorrichtung dargestellt. Auf einem Halbleitermaterial 10, welches insbesondere als Siliziumwafer vorgesehen ist, sind verschiedene Dotierungsbereiche 12 eingebracht. Erfindungsgemäß ist das Halbleitermaterial 10 beispielsweise ein p-Substrat und die eingebrachten Dotierungen 12 sind vergleichsweise stark negativdotierte Dotierungsbereiche. Weitere Dotierungsbereiche sind als so genannte erste Wannendotierungsbereiche 13 ebenfalls in das Halbleitermaterial 10 eingebracht und dienen als elektrische Isolierung zwischen verschiedenen Bereichen bzw. Strukturen des Halbleitermaterials 10. So ist bereits in der Figur 1 erkennbar ein erster Bereich 20 und ein zweiter Bereich 30 dargestellt, in welchen bei der fertiggestellten, erfindungsgemäßen mikromechanischen Vorrichtung eine erste Sensorstruktur 20 bzw. eine zweite Sensorstruktur 30 realisiert sein werden, was sich aus der Beschreibung der nachfolgenden Figuren ergeben wird. Auf das Halbleitermaterial 10 mit seinen Dotierungen 12 und 13 werden in einem nachfolgenden Schritt Masken 41 aufbracht, die der Abgrenzung von so genannten Anodisierungsbereichen dienen.
  • In Figur 2 ist eine weitere Vorläuferstruktur der erfindungsgemäßen Vorrichtung dargestellt, wobei gleiche Bezugszeichen aus Figur 1 wiederum gleiche Teile bzw. Bereiche der Vorrichtung bzw. des Halbleitermaterials darstellen. Auch in den nachfolgenden Figuren bezeichnen gleiche Bezugszeichen wiederum gleiche Teile bzw. Bereiche der Vorrichtung. Die von der Anodisierungsmaske 41 in Figur 1 nicht abgedeckten Bereiche werden mittels eines Anodisierverfahrens porös geätzt, was in der Figur 2 mit den Bezugszeichen 42 bezeichnet ist.
  • In Figur 3 ist eine weitere Vorstufe der erfindungsgemäßen Vorrichtung dargestellt, wobei die anodisierten Bereiche 42 aus Figur 2 mit einer, vorzugsweise monokristallinen Epitaxieschicht 10a bedeckt sind. Diese Epitaxieschicht 10a dient oberhalb der Bereiche 42 aus Figur 2 als Membran. Im Bereich der ersten Sensorstruktur 20 bildet die Epitaxieschicht 10a eine erste Membran 21 und im Bereich der zweiten Sensorstruktur 30 bildet die Epitaxieschicht 10a eine zweite Membran 31. Nach der Abscheidung der Epitaxieschicht wird durch eine thermische Behandlung eine Umlagerung des Halbleitermaterials in den porösen Bereichen 42 bewirkt, wobei sich eine erste Kavität 24 und eine zweite Kavität 34 bildet. Die Membranen 21, 31 befinden sich oberhalb der jeweiligen Kavitäten 24, 34. Sowohl die Herstellung der porösen Siliziumbereiche 42 aus Figur 2 als auch die Herstellung der Kavitäten 24, 34 werden entsprechend eines in der deutschen Offenlegungsschrift DE 100 32 579 A1 angegebenen Verfahrens durchgeführt. In Bezug auf das Verfahren zur Anodisierung, d.h. zur Herstellung von porösen Bereichen in dem Halbleitermaterial 10 sowie zur Abscheidung einer vorzugsweise monokristallinen Epitaxieschicht 10a und der Herstellung der Kavitäten 24, 34, wird daher diese Druckschrift als Referenz in die vorliegende Beschreibung aufgenommen. In Figur 3 und in den weiteren Figuren sind die Dotierungsbereiche 12 im Halbleitermaterial 10 nicht mehr eigens mit Bezugszeichen angegeben.
  • In Figur 4 ist eine weitere Vorläuferstruktur der erfindungsgemäßen Vorrichtung dargestellt, wobei in die Epitaxieschicht 10a weitere Diffusionsbereiche 15 eingebracht werden sowie weiterhin auch die eigentlichen Sensorbereiche 22, 23, 32, 33 eingebracht werden. Diese Sensorbereiche werden erfindungsgemäß in solchen Materialien realisiert, die einen großen piezoresistiven Effekt bei vorgegebener Materialspannung hervorrufen. Die Sensorbereiche 22, 23, 32, 33 sind bevorzugt an solchen Stellen der Membranen 21, 31 angeordnet, die große mechanische Spannungen bei einer Durchbiegung der Membran aufweisen. Hierbei sind ein erster und zweiter Sensorbereich 22, 23 Teil der ersten Sensorstruktur 20 und es ist ein dritter und vierter Sensorbereich 32, 33 Teil der zweiten Sensorstruktur 30. Die Diffusionsbereiche 15 dienen dabei als niederohmige Zuleitungen zu den Sensorbereichen 22, 23, 32, 33.
  • In Figur 5 ist eine weitere Vorläuferstruktur der erfindungsgemäßen Vorrichtung dargestellt, wobei auf die Epitaxieschicht 10a eine Passivierungsschicht 16 sowie Anschlußmetallisierungen 17 aufgebracht sind. Die Anschlußmetallisierungen 17 sind insbesondere temperaturstabil ausgeführt.
  • In Figur 6 ist eine weitere Vorläuferstruktur der erfindungsgemäßen Vorrichtung dargestellt, wobei ein Zugangsbereich 36 zu der zweiten Kavität 34 in die Vorläuferstruktur gemäß der Figur 5 eingebracht wird und anschließend eine Verschlußschicht 18 auf die Struktur aufgebracht wird, die im Bereich der später zu strukturierenden seismischen Masse eine Ätzstopschicht 341 in der zweiten Kavität 34 bildet und den Zugangsbereich 36 zur zweiten Kavität 34 verschließt. Bei der Verschlußschicht 18 handelt es sich beispielsweise um eine oxidische Verschlußschicht, hergestellt beispielsweise durch Abscheidung gemäß dem TEOS-Prozeß, bei dem TEOS (TetraEthylOrthoSilikat) abgeschieden wird, insbesondere um Siliziumoxid. Weiterhin wird die Zugangsöffnung 36 zur zweiten Kavität 34, insbesondere mittels eines Trenchprozesses hergestellt.
  • In Figur 7 ist eine weitere Vorläuferstruktur einer erfindungsgemäßen Vorrichtung dargestellt, wobei auf der Vorderseite der Struktur, d.h. in der Figur 7 im oberen Bereich, eine zumindest teilweise Freilegung der Metallisierungen 17 bewirkt und wobei von der Rückseite des Halbleitermaterials 10 her die Strukturierung der seismischen Masse 35, insbesondere mittels Trenchätzen erfolgt. Dieser Ätzvorgang zur Strukturierung der seismischen Masse 35 wird an der Ätzstopschicht 341 gestoppt. In einem weiteren Ätzschritt wird dann noch die Ätzstopschicht 341 entfernt und somit die seismische Masse 35 an ihrem Aufhängungspunkt 351 an der zweiten Membran 31 freigelegt. Das Entfernen der oxidischen Ätzstopschicht 341 kann insbesondere mittels HF-Dampfätzen erfolgen.
  • In Figur 8 ist die fertiggestellte mikromechanische Vorrichtung 1 abgebildet, wobei zum Schutz der seismischen Masse noch ein zweites Substratmaterial 11 auf der Rückseite des Halbleitermaterials 10 aufgebracht wird.
  • In Figur 9 ist eine zweite Ausführungsform der erfindungsgemäßen mikromechanischen Vorrichtung 1 dargestellt, wobei die zweite Kavität 34 von der Rückseite her, d. h. vom weiteren Substratmaterial 11 her mittels einer Öffnung 111 geöffnet ist.
  • In Figur 10 ist eine Vorläuferstruktur eines alternativen Herstellungsverfahrens zur Herstellung einer erfindungsgemäßen mikromechanischen Vorrichtung 1 dargestellt. Hierbei sind die Schritte der Figuren 1 bis 6 bei dem alternativen Herstellungsverfahren identisch, jedoch erfolgt vor dem Einbringen des Zugangsbereichs 36 zur zweiten Kavität 34 und dem Abscheiden der Ätzstopschicht 341 die Abscheidung einer Passivierungsschicht 19, insbesondere in Form eines Nitrids, beispielsweise Siliziumnitrids. Anschließend wird auch bei dieser Ausführungsform der Zugangsbereich 36 zur zweiten Kavität 34, insbesondere mittels Trenchätzen erzeugt, wobei dieser Zugangsbereich 36 anschließend wieder, vgl. Figur 11 , mit der Verschlußschicht 18, insbesondere Siliziumoxid, zur Bildung der Ätzstopschicht 341 verschlossen wird, was in Figur 11 dargestellt ist.
  • In Figur 12 ist eine weitere Vorläuferstruktur der erfindungsgemäßen Vorrichtung dargestellt. Im Vergleich zur Darstellung der Figur 11 wurde wiederum die seismische Masse 35 von der Rückseite des Halbleitermaterials her freigelegt.
  • In Figur 13 ist eine weitere Vorläuferstruktur der erfindungsgemäßen Vorrichtung dargestellt, wobei die seismische Masse 35 vollständig freigelegt ist und nur noch an ihren Verbindungspunkt 351 mit der zweiten Membran 31 verbunden ist. Diese Freilegung der seismischen Masse 35 wird durch Abätzen der Ätzstopschicht 341 (vgl. Figur 12) beispielsweise durch einen selektiven Nassprozess mit AMS5 bewirkt. Hierbei wird lediglich das Oxid geätzt aber nicht das Nitrid, das Silizium oder das Metall. Daher wird auch auf der Oberseite der Vorrichtung die Oxidschicht 18 (vgl. ebenfalls Figur 12) im wesentlichen weggeätzt (außer ggf. im Bereich der Zugangsöffnung 36 zur zweiten Kavität 34) so dass lediglich die Passivierungsschicht 19 bzw. die Nitridschicht 19 verbleibt.
  • In den Figuren 14 und 15 sind Ansichten von unten, d.h. von der Rückseite des Halbleitermaterials 10 her auf die seismische Masse 35 dargestellt. Erkennbar sind zum einen der Bereich der Aufhängung 351 der seismischen Masse 35 an der zweiten Membran 31 sowie die Bereiche der Sensorelemente 32, 33 auf der Vorderseite der Vorrichtung. Durch das Vorsehen von Einschnürungen 36 bei der Herstellung der zweiten Membran 31 d. h. solche Bereiche, in denen keine Anodisierung und folglich keine Kavität entsteht, ist es möglich, die zweite Membran 31 an diesen Stellen abzustützen, so dass sie sich durch die Bildung des in der nicht geöffneten zweiten Kavität 34 entstehenden Vakuums nicht nach unten bis zum Untergrund der zweiten Kavität 34 durchbiegt. Dies kann dazu führen, dass die zweite Membran 31 auf ihrem Untergrund anklebt und somit die Vorrichtung nicht mehr brauchbar ist.

Claims (9)

  1. Mikromechanische Vorrichtung (1) mit einem Halbleitermaterial (10),
    - wobei das Halbleitermaterial (10) eine erste Sensorstruktur (20) aufweist,
    - wobei die erste Sensorstruktur (20) zur Erfassung eines Druckes vorgesehen ist,
    - wobei die Funktionalität der ersten Sensorstruktur (20) auf einem vorgegebenen Wandlerprinzip beruht,
    - wobei das Halbleitermaterial (10) eine zweite Sensorstruktur (30) aufweist, wobei die zweite Sensorstruktur (30) zur Erfassung einer Beschleunigung vorgesehen ist,
    - wobei die Funktionalität der zweiten Sensorstruktur (30) auf dem gleichen vorgegebenen Wandlerprinzip beruht,
    - wobei die erste Sensorstruktur (20) eine in das Halbleitermaterial (10) eingebrachte erste Membran (21) und die zweite Sensorstruktur (30) eine in das Halbleitermaterial (10) eingebrachte zweite Membran (31) aufweist, wobei jede der Membranen (21, 31) wenigstens einen Sensorbereich (22, 23, 32, 33) umfasst oder mit wenigstens einem Sensorbereich (22, 23, 32, 33) verbunden ist,
    dadurch gekennzeichnet, dass
    die erste Sensorstruktur (20) eine hermetisch abgeschlossene erste Kavität (24) in dem Halbleitermaterial (10) unterhalb der ersten Membran (21) aufweist und dass die zweite Sensorstruktur (30) eine mit der zweiten Membran (31) verbundene seismische Masse (35) aufweist, wobei die zweite Membran (31) geschlossen ist.
  2. Vorrichtung (1) nach Anspruch 1, dadurch gekennzeichnet, dass das Wandlerprinzip auf dem piezoresistiven Effekt in einer Mehrzahl von Sensorbereichen (22, 23, 32, 33) des Halbleitermaterials (10) beruht.
  3. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die seismische Masse (35) hermetisch gekapselt ist und/oder dass die zweite Membran (31) gestützt vorgesehen ist, insbesondere mittels wenigstens einer seitlichen Einschnürung (36).
  4. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in das Halbleitermaterial (10) eine Schaltungsstruktur einer elektronischen Schaltung zur Auswertung und/oder Verarbeitung von den Sensorstrukturen (20, 30) ausgehenden oder von den Sensorstrukturen (20, 30) modifizierten Signalen eingebracht ist, wobei vorzugsweise die Erzeugung der Schaltungsstruktur zumindest teilweise gleichzeitig mit der Erzeugung der Sensorstrukturen (20, 30) vorgesehen ist.
  5. Vorrichtung (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Membranen (21, 31) im wesentlichen ein monokristallines Material, vorzugsweise monokristallines Silizium, umfassen.
  6. Verfahren zur Herstellung einer Vorrichtung (1) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in einem ersten Schritt die Membranen (21, 31) in das Halbleitermaterial (10) eingebracht werden, vorzugsweise mittels einer oberflächenmikromechanischen Bearbeitungsabfolge, und dass in einem zweiten Schritt die seismische Masse (35) strukturiert wird, vorzugsweise mittels einer volumenmikromechanischen Bearbeitungsabfolge.
  7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass zur Einbringung der Membranen (21, 31) in das Halbleitermaterial (10) ein Teilbereich des Halbleitermaterials (10) porös geätzt wird, vorzugsweise mit einer Porosität von mehr als 50%, bevorzugt von mehr als 80%, und dass die erste Kavität (24) und eine zweite Kavität (34) durch Umlagern bzw. Herauslösen von Teilen des Halbleitermaterials im porös geätzten Teilbereich gebildet wird.
  8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass nach der Bildung der zweiten Kavität (34) eine Ätzstoppschicht (341), vorzugsweise Siliziumoxid, im Bereich der zu bildenden seismischen Masse (35) in die zweite Kavität (34) eingebracht wird.
  9. Beschleunigungs- und Drucksensor mit einer Vorrichtung (1) gemäß einem der Ansprüche 1 bis 5, wobei der Beschleunigungssensor zur Detektion einer zur Substratebene der Vorrichtung (1) senkrechten Komponente der linearen Beschleunigung und/oder zur Detektion einer zur Substratebene der Vorrichtung (1) parallelen Komponente der Drehbeschleunigung vorgesehen ist.
EP06115078A 2005-07-13 2006-06-07 Mikromechanische Vorrichtung mit zwei Sensorstrukturen und Verfahren zur Herstellung einer mikromechanischen Vorrichtung Active EP1744138B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005032635A DE102005032635A1 (de) 2005-07-13 2005-07-13 Mikromechanische Vorrichtung mit zwei Sensorstrukturen, Verfahren zur Herstellung einer mikromechanischen Vorrichtung

Publications (2)

Publication Number Publication Date
EP1744138A1 EP1744138A1 (de) 2007-01-17
EP1744138B1 true EP1744138B1 (de) 2009-06-03

Family

ID=36688683

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06115078A Active EP1744138B1 (de) 2005-07-13 2006-06-07 Mikromechanische Vorrichtung mit zwei Sensorstrukturen und Verfahren zur Herstellung einer mikromechanischen Vorrichtung

Country Status (3)

Country Link
US (1) US7555956B2 (de)
EP (1) EP1744138B1 (de)
DE (2) DE102005032635A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105783998A (zh) * 2016-04-15 2016-07-20 广东合微集成电路技术有限公司 一种复合传感器

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI118829B (fi) * 2005-07-08 2008-03-31 Valtion Teknillinen Mikromekaaninen sensori, sensoriryhmä ja menetelmä sekä pitkittäisten akustisten aaltojen uusi käyttö
DE102005055473A1 (de) * 2005-11-22 2007-05-24 Robert Bosch Gmbh Mikromechanische Vorrichtung und Verfahren zur Herstellung einer mikromechanischen Vorrichtung
FR2897937B1 (fr) * 2006-02-24 2008-05-23 Commissariat Energie Atomique Capteur de pression a jauges resistives
US7832279B2 (en) * 2008-09-11 2010-11-16 Infineon Technologies Ag Semiconductor device including a pressure sensor
US8723276B2 (en) 2008-09-11 2014-05-13 Infineon Technologies Ag Semiconductor structure with lamella defined by singulation trench
US8393222B2 (en) * 2010-02-27 2013-03-12 Codman Neuro Sciences Sárl Apparatus and method for minimizing drift of a piezo-resistive pressure sensor due to progressive release of mechanical stress over time
US8518732B2 (en) 2010-12-22 2013-08-27 Infineon Technologies Ag Method of providing a semiconductor structure with forming a sacrificial structure
CN102442634B (zh) * 2010-10-05 2016-04-20 英飞凌科技股份有限公司 通过形成牺牲结构而提供半导体结构的方法
US20130044565A1 (en) * 2011-08-15 2013-02-21 Frederick James Barr Piezoelectric sensors for geophysical streamers
US9021887B2 (en) 2011-12-19 2015-05-05 Infineon Technologies Ag Micromechanical semiconductor sensing device
US9550669B2 (en) 2012-02-08 2017-01-24 Infineon Technologies Ag Vertical pressure sensitive structure
EP2693182A1 (de) * 2012-07-31 2014-02-05 Honeywell International Inc. Resonanzgryo- und Drucksensor auf einem Chip
EP2693183A1 (de) * 2012-08-01 2014-02-05 Honeywell International Inc. Resonanzbeschleunigungs- und Drucksensor auf einem Chip
KR101521712B1 (ko) * 2013-10-22 2015-05-19 삼성전기주식회사 압저항 감지모듈 및 이를 포함하는 mems 센서
US9428381B2 (en) * 2014-03-03 2016-08-30 Infineon Technologies Ag Devices with thinned wafer
US10554153B2 (en) * 2016-06-17 2020-02-04 Globalfoundries Singapore Pte. Ltd. MEMS device for harvesting sound energy and methods for fabricating same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2641612B1 (fr) * 1989-01-06 1991-07-26 Thomson Csf Capteur acoustique integre de pression et d'acceleration
JP2811768B2 (ja) * 1989-07-17 1998-10-15 株式会社デンソー 半導体式加速度センサおよびその製造方法
DE4125467A1 (de) * 1991-08-01 1993-02-04 Bosch Gmbh Robert Sensor zur gleichzeitigen bestimmung der beschleunigung und des differenzdrucks
DE4206174C2 (de) * 1992-02-28 1995-06-22 Bosch Gmbh Robert Integrierter Sensor aus Silizium
US5427975A (en) * 1993-05-10 1995-06-27 Delco Electronics Corporation Method of micromachining an integrated sensor on the surface of a silicon wafer
DE4410794C2 (de) * 1994-03-28 1998-03-19 Ads Mestechnik Gmbh Barometrisches Meßsystem
DE19626083C2 (de) * 1996-06-28 2000-03-23 Siemens Ag Sensor-Bauelement
FI102114B1 (fi) * 1996-11-20 1998-10-15 Vtt Anturi äänenpaineen ja kiihtyvyyden mittaamiseksi
US6293154B1 (en) * 1999-12-10 2001-09-25 Kulite Semiconductor Products Vibration compensated pressure sensing assembly
DE10032579B4 (de) 2000-07-05 2020-07-02 Robert Bosch Gmbh Verfahren zur Herstellung eines Halbleiterbauelements sowie ein nach dem Verfahren hergestelltes Halbleiterbauelement
DE10323559A1 (de) 2003-05-26 2004-12-30 Robert Bosch Gmbh Mikromechanische Vorrichtung, Drucksensor und Verfahren
US20050172717A1 (en) * 2004-02-06 2005-08-11 General Electric Company Micromechanical device with thinned cantilever structure and related methods
JP5009505B2 (ja) * 2004-03-03 2012-08-22 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ダイヤフラムを備えたマイクロマシニング型の構成エレメントおよびこのような構成エレメントを製作するための方法
EP1684079A1 (de) * 2005-01-25 2006-07-26 STMicroelectronics S.r.l. Piezoresistiver Beschleunigungssensor mit Masse auf einer Membran, und Herstellungsverfahren
US7518493B2 (en) * 2005-12-01 2009-04-14 Lv Sensors, Inc. Integrated tire pressure sensor system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105783998A (zh) * 2016-04-15 2016-07-20 广东合微集成电路技术有限公司 一种复合传感器

Also Published As

Publication number Publication date
DE102005032635A1 (de) 2007-01-25
US7555956B2 (en) 2009-07-07
EP1744138A1 (de) 2007-01-17
DE502006003862D1 (de) 2009-07-16
US20070169558A1 (en) 2007-07-26

Similar Documents

Publication Publication Date Title
EP1744138B1 (de) Mikromechanische Vorrichtung mit zwei Sensorstrukturen und Verfahren zur Herstellung einer mikromechanischen Vorrichtung
DE4332843C2 (de) Verfahren zur Herstellung einer mikromechanischen Vorrichtung und mikromechanische Vorrichtung
DE19537814B4 (de) Sensor und Verfahren zur Herstellung eines Sensors
DE102010039293B4 (de) Mikromechanisches Bauteil und Herstellungsverfahren für ein mikromechanisches Bauteil
WO2005118463A1 (de) Mikromechanisches bauelement mit mehreren kammern und herstellungsverfahren
EP1846319A1 (de) Mikromechanisches bauelement und entsprechendes herstellungsverfahren
DE102005055473A1 (de) Mikromechanische Vorrichtung und Verfahren zur Herstellung einer mikromechanischen Vorrichtung
EP1966578A1 (de) Mikromechanischer kapazitiver druckwandler und herstellungsverfahren
DE112006002946T5 (de) Halbleiter-Druckmesser und Verfahren zu seiner Herstellung
DE4309206C1 (de) Halbleitervorrichtung mit einem Kraft- und/oder Beschleunigungssensor
EP1105344B1 (de) Mikromechanischer sensor und verfahren zu seiner herstellung
EP0941460B1 (de) Verfahren zur herstellung von mikromechanischen sensoren
WO1995008775A1 (de) Integrierte mikromechanische sensorvorrichtung und verfahren zu deren herstellung
EP1115649B1 (de) Mikromechanisches bauelement mit verschlossenen membranöffnungen
WO2018069028A1 (de) Mikromechanischer sensor mit stressentkopplungsstruktur
EP2019812B1 (de) Verfahren zur herstellung eines mikromechanischen bauelements mit membran und mikromechanisches bauelement
DE102019205347A1 (de) Mikromechanisches Bauteil für eine kapazitive Sensorvorrichtung
DE102019202794B3 (de) Mikromechanische Sensorvorrichtung und entsprechendes Herstellungsverfahren
DE19839123C1 (de) Mikromechanische Struktur
EP0531347B1 (de) Mikromechanisches bauelement und verfahren zur herstellung desselben
EP1716070B1 (de) Mikromechanischer sensor
WO2003068668A2 (de) Mikromechanisches bauelement und verfahren zu dessen herstellung
DE19710324A1 (de) Verfahren zur Herstellung von mikromechanische Strukturen aufweisenden Halbleiterbauelemente
DE102018210063A1 (de) MEMS-Sensor sowie Verfahren zur Herstellung eines MEMS-Sensors
DE102020123160B3 (de) Halbleiterdie mit Druck- und Beschleunigungssensorelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070717

17Q First examination report despatched

Effective date: 20070817

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502006003862

Country of ref document: DE

Date of ref document: 20090716

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100304

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230817

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240621

Year of fee payment: 19