EP1744042B1 - Verfahren zur Regeneration eines Partikelfilters - Google Patents

Verfahren zur Regeneration eines Partikelfilters Download PDF

Info

Publication number
EP1744042B1
EP1744042B1 EP20050106289 EP05106289A EP1744042B1 EP 1744042 B1 EP1744042 B1 EP 1744042B1 EP 20050106289 EP20050106289 EP 20050106289 EP 05106289 A EP05106289 A EP 05106289A EP 1744042 B1 EP1744042 B1 EP 1744042B1
Authority
EP
European Patent Office
Prior art keywords
particulate filter
exhaust gas
diesel particulate
filter
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20050106289
Other languages
English (en)
French (fr)
Other versions
EP1744042A1 (de
EP1744042A9 (de
Inventor
Brendan Carberry
Alexei Dubkov
Albert Chigapov
Yasser Mohammed Sayed Yacoub
Jan Harmsen
Steven Maertens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to EP20050106289 priority Critical patent/EP1744042B1/de
Publication of EP1744042A1 publication Critical patent/EP1744042A1/de
Publication of EP1744042A9 publication Critical patent/EP1744042A9/de
Application granted granted Critical
Publication of EP1744042B1 publication Critical patent/EP1744042B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/029Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections

Definitions

  • the Invention relates to a Method to regenerate a Diesel paticulate filter (DPF), according to the features of claim 1.
  • DPF Diesel paticulate filter
  • the EP 0 528 289 B1 relates to a device for removing particulates in the exhaust gas of a diesel engine.
  • the device comprises a filter arranged in an exhaust line for receiving the exhaust gas from the diesel engine, the filter being capable of trapping particulates included in the exhaust gas.
  • the device further comprises heating means arranged adjacent to the filter for generating heat in the filter. Further air supplying means for supplyng air into the filter for incinerating the particulates, and control means for controlling an amount of air flow for obtaining a desired incineration performance of the particulates trapped in the filter are comprised by the device.
  • the control means comprises detecting means for detecting the amount of residual unburnt particulates upon the incineration process, and air flow amount control means responsive to the detected amount of residual unburnt particulates for controlling the amount of the air flow used in the subsequent incineration process.
  • the EP 0 528 289 B1 discloses a device for purifying particulates in the exhaust gas of a diesel engine, whereby the control means comprises effective area detecting means for detecting the value of the effective area of the filter before commencement of trapping of the particulates by the filter, and determining means for determining the amount of the air to be introduced into the filter in the subsequent incineration process in accordance with the detected value of the effective area.
  • the EP 0 528 289 B1 describes that during a filter regeneration the periphery of the filter may not be regenerated completely, leading to a more and more clogged filter after regeneration. In order to regenerate the DPF additional hardware is used. In the EP 0 528 289 B1 it is disclosed, that in the centre of the filter a temperature of 900°C is to be achieved, so that in the periphery a temperature of 500°C is achieved. These high temperature gradients will certainly decrease filter life time, and limit the soot load, which in turn will lead to the requirement of more frequent regenerations and hence a larger fuel consumption.
  • the secondary air system including an air pump adds hardware costs, takes up package space and uses a lot of energy, leading to a high operating cost.
  • the EP 0 528 289 B1 uses pressure difference measurements for determining the amount of soot present in the filter, no information is available on the axial distribution of the soot after a (partial) regeneration.
  • US2003/0089102 discloses a system for aiding the regeneration of pollution control means that are integrated in an exhaust line of an of an engine of an motor vehicle, in which the engine is associated with means of the common supply of the cylinders thereof, which means are in a form suitable for injecting fuel, during regeneration, into each cylinder in the form of at least one principal injection and at least one post-injection during the expansion phase of the cylinder, wherein the supply means are in a form suitable for cutting at least the principal injection of at least one of the cylinders in order to increase the oxygen content of the exhaust gases and to optimise the regeneration of the pollution control means.
  • one of the cylinders While cutting the principal injection, one of the cylinders has the only function to compress fresh air which is disadvantageously cold compared with the exhaust gas coming from the other cylinders, so that the temperature of the air/exhaust-gas mixture is reduced. Therefore further steps have to be done, so that a required temperature is maintained to regenerate the particulate filter.
  • EP 1 245 814 A2 relates to an exhaust emission control system of an internal combustion engine, comprising:
  • the method disclosed in the EP 1 245 814 A2 consists in controlling particulate filter regeneration via controlling oxygen concentration, the last being based on the found positive correlation between oxygen concentration and exhaust gas flow rate.
  • control system allows high oxygen concentration; however, due to high flow rate heat losses are also high and this decrease reaction temperature resulting in lower regeneration efficiency.
  • control system allows low oxygen concentration; however, due to low oxygen content reaction rate is not high enough; regeneration rate is low resulting in lower regeneration efficiency.
  • the objective of the present invention is to provide a better method to regenerate a particulate filter to achieve a complete and fast, i.e. in a short time, regeneration of the particulate filter, thus saving energy, leading to a low fuel penalty for a driver of a vehicle without using additional hardware so that extra hardware costs, package space and total vehicle mass is saved leading to a more robust design.
  • the objective is solved by a method according to claim 1.
  • Initiating an ignition of soot inside a filter can be performed by increasing temperature of the filter utilizing in-cylinder combustion using multiple injections, and/or by increasing engine speed and/or load, and/or by using post-cylinder fuel or other combustible compound injection/addition into the post-combustion gases and burning this combustible compound over an oxidation catalyst placed in the exhaust gas passage between combustion chamber(s) and diesel particulate filter, or over an active catalyst deposited onto the diesel particulate filter material.
  • monitoring means such as measurements of the exhaust gas mass flow, fuel consumption, exhaust gas and internal filter temperatures, exhaust gas backpressure, can be applied.
  • reducing the exhaust gas mass flow through the filter can be done by means of switching the engine into conditions providing lower mass flow and/or higher oxygen content (for example idling), if necessary ⁇ together with decreasing amount of fuel added for heating a particulate filter.
  • reducing the exhaust gas mass flow through the filter can be done by means of activating valve(s) allowing only a controllable portion of the exhaust gas to pass through the filter, while the rest of the exhaust gas to by-pass the filter, if necessary - together with decreasing amount of fuel added for heating a particulate filter.
  • reducing the exhaust gas mass flow through the filter can be done by means of activating a system that separately supplies air and/or exhaust gas to the filter at flow rate and with oxidant content that are sufficient to maintain the filter regeneration.
  • Example 1 a shows versus example 1 b (Table 1), that initiating regeneration during 2 min of post-injecting, followed by decreasing gas flow through a filter together with cutting off fuelling results in high regeneration efficiency (96%); while without decreasing gas flow and without cutting fuelling off, similar regeneration efficiency can be achieved only after 10 min of post injection causing higher fuel consumption compared to 1a.
  • Table 1 Ex. No.
  • Example 1a shows versus example 1c (Table 2), that initiating regeneration during 2 min of post-injecting, followed by decreasing gas flow through a filter results in high regeneration efficiency (96%); with cutting fuelling off but without decreasing gas flow, regeneration efficiency is much lower (only 27%).
  • Table 2 Ex. No.
  • Examples 2a and 2b show that according to the method of the present invention, either exhaust gas, or air can be used for efficient regeneration of a particulate filter.
  • Table 3 Ex. No. Particulate Filter Description SL, g/L Duration of post injection, s Regeneration method and media Regeneration efficiency, % mass 2a DPF#2 Catalysed SiC filter; 5,66"D x 6"L; 300cpsi 6.3 119 Exhaust gas; after cutting post-injection, mass flow of 30+/-20 kg/hr 69.5 2b DPF#2 Catalysed SiC filter; 5,66"D x 6"L; 300cpsi 6.7 115 After cutting post-injection, air with mass flow of 30+/-20 kg/hr 71.1
  • Examples 3a-3e show that the method of the present invention is applicable to un-catalysed filters Table 4 Ex. No. Particulate Filter Description SL, g/L Duration of post injection, s Regeneration method and media Regeneration efficiency, % mass 3a DPF#3 Uncoated SiC; 5,66"D x 6"L; 200 cpsi 3.40 172 Exhaust gas; after cutting post-injection, mass flow of 30+/-20 kg/hr 94.0 3b -"- -"- 5.40 175 -"- 90.9 3c -"- -"- 8.43 130 -"- 74.3 3d -"- -"- 11.30 123 -"- 65.9 3e -"- -"- 12.69 121 -"- 67.7
  • Examples 4a-4g show that the method of the present invention is applicable to processes in which regeneration is assisted by fuel borne additive.
  • Table 5 Ex. No. Particulate Filter Description SL, g/L Duration of post injection, s Regeneration method and media Regeneration efficiency, % mass 4a DPF#4 Uncoated SiC X00 cpsi; 5,66"D x 10"L; Ce-Fe fuel borne additive assisted regeneration 3.95 126 Exhaust gas; after cutting post-injection, mass flow of 30+/-20 kg/hr 90.8 4b -"- -"- 5.02 70 -"- 98.1 4c -"- -"- 5.77 84 -"- 93.3 4d -"- -"- 7.98 40 -"- 97.3 4e -"- -"- 9.70 66 -"- 95.8 4f -"- -"- 11.45 70 -"- 96.0 4g -"- -"- 14.12 51 96.0
  • Examples 5a-5d show that the method of the present invention is applicable to the catalysed DPF prepared on the silicon carbide 200 cpsi DPF support (6"-long filter).
  • Table 6 Ex. No. Particulate Filter Description SL, g/L Duration of post injection, s Regeneration method and media Regeneration efficiency, % mass 5a DPF #5 Catalysed SiC filter; 5,66"D x 6"L; 200cpsi 4.6 116 Exhaust gas; after cutting post-injection, mass flow of 30+/-20 kg/hr 45.5 5b -"- -"- 5.8 156 -"- 100 5c -"- -"- 8.5 157 -"- 97.6 5d -"- -"- 9.7 147 -"- 93.6
  • Examples 6a-6g show that the method of the present invention is applicable to the longer catalysed filters; in this case, results for DPF prepared on the silicon carbide 300 cpsi DPF support are shown (10"-long filter). Table 7 Ex. No.
  • Examples 7a-7g show that the method of the present invention is applicable to even much longer catalysed filters; in this case, results for DPF prepared on the silicon carbide 300 cpsi DPF support are shown (14"-long filter). Table 8 Ex. No.
  • Particulate Filter Description SL, g/L Duration of post injection, s Regeneration method and media Regeneration efficiency, % mass 7a DPF #7 Catalysed SiC filter; 5,66"D x 14"L; 300cpsi 4.2 96 Exhaust gas; after cutting post-injection, mass flow of 30+/-20 kg/hr 61.3 7b -"- -"- 4.9 100 -"- 45.7 7c -"- -"- 6.2 104 -"- 48.1 7d -"- -"- 6.5 139 -"- 89.5 7e -"- -"- 7.6 136 -"- 92.1 7f -"- -"- 8.7 129 -"- 95.7 7g -"- -"- 9.6 115 -"- 99.1
  • Examples 8a-8d show that the method of the present invention is applicable to the catalysed DPF prepared on the refractory oxide (cordierite) 300 cpsi DPF support (6"-long filter).
  • Table 9 Ex. No. Particulate Filter Description SL, g/L Duration of post injection, s Regeneration method and media Regeneration efficiency, % mass 8a DPF #8 Catalysed SiC filter; 5,66"D x 6"L; 300cpsi 2.0 116 Exhaust gas; after cutting post-injection, mass flow of 30+/-20 kg/hr 81.3 8b -"- -"- 3.8 133 -"- 66.7 8c -"- -"- 6.2 99 -"- 88.2 8d -"- -"- 7.5 97 -"- 94.0
  • each regeneration carried out via the inventional method provides nearly complete regeneration of the particulate filter.
  • Mainly insulated particulate filters and particulate filters with a high thermal conductivity are used, so that radial temperature profiles are reduced.
  • the reduced radial temperature profiles lead advantageously to an increased particulate filter lifetime and hence a smaller fuel consumption.
  • the preferred embodiment of the invention includes, after initiating particulate regeneration inside the filter, putting the engine into low mass-flow and/or higher oxygen content conditions to support regeneration without any other means such as secondary air supply, external heater, additional valves, pipes or by-passes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Claims (8)

  1. Verfahren zur Regeneration eines Dieselpartikelfilters (DPF), wobei der Partikelfilter in einem Auslasskanal zum Empfang eines Abgases von einem Dieselmotor angeordnet ist, wobei der Partikelfilter in dem Abgas enthaltene Partikel fängt, so dass Ruß in dem Partikelfilter gesammelt wird, mit den folgenden Schritten: (i) Einleiten einer Entzündung des Rußes innerhalb des Partikelfilters, gefolgt von (ii) Aktivierung einer Reduzierung des Abgasmassenstroms durch den Filter, wobei die Schritte (i) und (ii) mehrmals mit einer bestimmten Häufigkeit wiederholt werden können, so dass ein gewünschter Grad an Filterregeneration erreicht wird,
    dadurch gekennzeichnet, dass
    Aktivierung einer Reduzierung des Abgasmassenstroms durch den Filter zusammen mit Erhöhen der Konzentration von Sauerstoff in dem Abgas mittels Schaltens des Motors zu Leerlaufbedingungen, wodurch ein geringerer Massenstrom und ein höherer Sauerstoffgehalt bereitgestellt werden, erfolgt.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das Einleiten der Entzündung von Ruß in dem Dieselpartikelfilter durch Erhöhen der Temperatur des Dieselpartikelfilters durch Verbrennung im Zylinder mit mehreren Nacheinspritzungen durchgeführt wird.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    das Einleiten der Entzündung von Ruß in dem Dieselpartikelfilter durch Erhöhen der Temperatur des Dieselpartikelfilters durch Erhöhen der Motordrehzahl und/oder -last durchgeführt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    das Einleiten der Entzündung von Ruß in dem Dieselpartikelfilter durch Erhöhen der Temperatur des Dieselpartikelfilters durch Einspritzen einer brennbaren Verbindung in Nachverbrennungsgase und Verbrennen der brennbaren Verbindung über einen Oxidationskatalysator, der im Auslasskanal zwischen der (den) Brennkammer(n) und dem Dieselpartikelfilter platziert ist, durchgeführt wird.
  5. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet, dass
    die brennbare Verbindung vorzugsweise normaler Kraftstoff ist.
  6. Verfahren nach einem der vorhergehenden Ansprüche,
    gekennzeichnet durch
    Überwachungsmittel zur Erfassung der Einleitung der Rußverbrennung in dem Dieselpartikelfilter.
  7. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Abgasmassenstrom durch den Dieselpartikelfilter mit Erhöhen der Sauerstoffkonzentration im Abgas weiterhin mittels Aktivierens eines Systems, das dem Dieselpartikelfilter getrennt Luft mit einem Durchsatz und mit einem Oxidationsmittelgehalt zuführt, die dazu ausreichend sind, die Dieselpartikelfilterregeneration aufrechtzuerhalten, reduziert wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Abgasmassenstrom durch den Dieselpartikelfilter vorzugweise mit Erhöhen der Sauerstoffkonzentration in dem Abgas weiterhin mittels Aktivierens eines Systems, das dem Dieselpartikelfilter getrennt Abgas mit einem Durchsatz und mit einem Oxidationsmittelgehalt zuführt, die dazu ausreichend sind, die Dieselpartikelfilterregeneration aufrechtzuerhalten, reduziert wird.
EP20050106289 2005-07-11 2005-07-11 Verfahren zur Regeneration eines Partikelfilters Expired - Fee Related EP1744042B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20050106289 EP1744042B1 (de) 2005-07-11 2005-07-11 Verfahren zur Regeneration eines Partikelfilters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20050106289 EP1744042B1 (de) 2005-07-11 2005-07-11 Verfahren zur Regeneration eines Partikelfilters

Publications (3)

Publication Number Publication Date
EP1744042A1 EP1744042A1 (de) 2007-01-17
EP1744042A9 EP1744042A9 (de) 2007-03-28
EP1744042B1 true EP1744042B1 (de) 2012-02-22

Family

ID=35406249

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050106289 Expired - Fee Related EP1744042B1 (de) 2005-07-11 2005-07-11 Verfahren zur Regeneration eines Partikelfilters

Country Status (1)

Country Link
EP (1) EP1744042B1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008079299A2 (en) 2006-12-22 2008-07-03 Cummins Inc. Software, methods and systems including soot loading metrics
FR2925598A1 (fr) * 2007-12-21 2009-06-26 Renault Sas Procede de post traitement des gaz d'echappement d'un moteur a combustion
US8061127B2 (en) 2008-04-29 2011-11-22 Cummins, Inc. Thermal management of diesel particulate filter regeneration events
US8499550B2 (en) 2008-05-20 2013-08-06 Cummins Ip, Inc. Apparatus, system, and method for controlling particulate accumulation on an engine filter during engine idling
SE535802C2 (sv) * 2010-08-31 2012-12-27 Scania Cv Ab Förfarande och system vid regenerering av ett partikelfilter för avgasrening
GB2549783B (en) 2016-04-29 2018-05-23 Ford Global Tech Llc A method of reducing heating of a particulate filter during a regeneration event

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1205647B1 (de) * 2000-11-03 2003-03-05 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Verfahren zur Regeneration des Partikelfilters eines Dieselmotors
JP3838339B2 (ja) * 2001-03-27 2006-10-25 三菱ふそうトラック・バス株式会社 内燃機関の排気浄化装置
JP3812362B2 (ja) * 2001-04-19 2006-08-23 日産自動車株式会社 内燃機関の排気浄化装置
FR2832182B1 (fr) * 2001-11-13 2004-11-26 Peugeot Citroen Automobiles Sa Systeme d'aide a la regeneration de moyens de depollution integres dans une ligne d'echappement d'un moteur de vehicule automobile
SE524181C2 (sv) * 2002-11-05 2004-07-06 Volvo Lastvagnar Ab Metod för regenerering av ett partikelfilter samt fordon i vilket en sådan metod utnyttjas
EP1541837B1 (de) * 2003-12-08 2012-09-05 Nissan Motor Co., Ltd. Regenerationsmethode und Steuerung eines Dieselpartikelfilters

Also Published As

Publication number Publication date
EP1744042A1 (de) 2007-01-17
EP1744042A9 (de) 2007-03-28

Similar Documents

Publication Publication Date Title
US6901747B2 (en) Fuel injection control method for diesel engine and regenerative control method for exhaust gas after treatment device
CN100427739C (zh) 废气净化系统
EP1316692B1 (de) Abgasreinigungsvorrichtung und Verfahren zur Steuerung der Regenerierung
JP4169076B2 (ja) 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP2004225579A (ja) 排気ガス浄化システム
EP1744042B1 (de) Verfahren zur Regeneration eines Partikelfilters
WO2004104385A1 (ja) 排気浄化装置
JP5383615B2 (ja) 後処理バーナシステムの暖機方法
JP2007270705A (ja) エンジンのegr装置
JP2010265873A (ja) 排気浄化装置
WO2006038480A1 (ja) 排ガス浄化装置
JP3572439B2 (ja) ディーゼルエンジンの排気浄化装置
JP2010031799A (ja) 内燃機関の排気浄化装置
JP2004340137A (ja) 内燃機関の排気浄化装置
JP2004162611A (ja) 内燃機関の排気浄化装置
JP4895019B2 (ja) 内燃機関の排気浄化装置
JP3633365B2 (ja) 排気ガス浄化装置
JP5516888B2 (ja) 内燃機関の排気浄化装置
JP4412049B2 (ja) ディーゼルエンジンの排気ガス後処理装置
JP2006274980A (ja) 排気浄化装置
JP2004353596A (ja) 排気浄化装置
JP4292923B2 (ja) 内燃機関の排気ガス浄化方法と排気ガス浄化システム
JP2005090249A (ja) 温度制御装置
JP2005291062A (ja) フィルタ装置及びこれを備えた排気ガス浄化装置
JP4998109B2 (ja) 排気ガス浄化システム及び排気ガス浄化方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

XX Miscellaneous (additional remarks)

Free format text: AMENDED CLAIMS IN ACCORDANCE WITH RULE 86 (2) EPC.

17P Request for examination filed

Effective date: 20070717

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/02 20060101AFI20110923BHEP

Ipc: F02D 41/08 20060101ALI20110923BHEP

Ipc: F01N 3/023 20060101ALI20110923BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

XX Miscellaneous (additional remarks)

Free format text: AMENDED CLAIMS IN ACCORDANCE WITH RULE 86 (2) EPC.

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005032759

Country of ref document: DE

Effective date: 20120419

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005032759

Country of ref document: DE

Effective date: 20121123

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R083

Ref document number: 602005032759

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190621

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190626

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200711

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220615

Year of fee payment: 18

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005032759

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240201