EP1743970B1 - Parallelepipedic product of mineral fibres - Google Patents

Parallelepipedic product of mineral fibres Download PDF

Info

Publication number
EP1743970B1
EP1743970B1 EP06012923A EP06012923A EP1743970B1 EP 1743970 B1 EP1743970 B1 EP 1743970B1 EP 06012923 A EP06012923 A EP 06012923A EP 06012923 A EP06012923 A EP 06012923A EP 1743970 B1 EP1743970 B1 EP 1743970B1
Authority
EP
European Patent Office
Prior art keywords
product
fibers
mineral fibre
product according
primary nonwoven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06012923A
Other languages
German (de)
French (fr)
Other versions
EP1743970A1 (en
Inventor
Markus Mente
Ingram Eusch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KNAUF INSULATION GmbH
Original Assignee
Knauf Insulation GmbH Austria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knauf Insulation GmbH Austria filed Critical Knauf Insulation GmbH Austria
Publication of EP1743970A1 publication Critical patent/EP1743970A1/en
Application granted granted Critical
Publication of EP1743970B1 publication Critical patent/EP1743970B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/10Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products
    • E04C2/16Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of wood, fibres, chips, vegetable stems, or the like; of plastics; of foamed products of fibres, chips, vegetable stems, or the like
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4218Glass fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B2001/7683Fibrous blankets or panels characterised by the orientation of the fibres

Definitions

  • the invention relates to a cuboidal mineral fiber product.
  • the term "cuboid” according to the invention is not to be understood in the strict geometric sense, but technically.
  • a mineral fiber mat or mineral fiber plate formed from a mineral fiber web usually consists of very thin and short vitreous fibers which are fixed to one another via a binder, such a product usually having an open porosity of more than 80% by volume. Accordingly, the surfaces of such products are not exactly planar, but correspond to the arrangement of the individual fibers. Likewise, for example, in the case of a mineral fiber board, the two main surfaces do not run exactly perpendicular to the four circumferential further surfaces. All of these products have been subsumed under the term "cuboid” and regardless of their respective ratio of width: thickness: length.
  • mineral fiber product includes products of glass wool fibers, rockwool fibers, slag wool fibers or the like. Likewise, mixtures of the aforementioned fibers with foreign fibers, such as synthetic fibers, or natural fibers, such as hemp fibers, from the term mineral fiber product comprises.
  • a mineral fiber product according to the invention refers to certificates of mineral fibers bound with a binder or binding fibers; but it should also be such products are included, which were assembled in other ways to the aforementioned cuboid shape, for example by needling (felting).
  • a mineral melt (or molten glass) is poured over a so-called spinner. These are fast rotating rollers. Upon impact of the melt on the peripheral surface of such a rotating roller fibers are formed, which are carried away via an air flow and led away after wetting with a binder as a so-called primary non-woven on a conveyor belt. The fibers within this very thin primary web are predominantly parallel to the large surfaces of the primary web.
  • the primary non-woven is processed into a multi-layer secondary non-woven, with adjacent Primärvlies füren overlap.
  • the removal of the primary web takes place perpendicular to the transport of the primary web. It follows that the predominant fiber orientation within the multilayer secondary web is parallel to its main surfaces and perpendicular to the transport direction of the secondary web.
  • the secondary web is guided in the further production path as a continuous web over a processing line.
  • a processing line In this case, for example, the density of the product can be adjusted.
  • counter-rotating rollers are known, between which the web is guided.
  • the processing section usually also includes a curing oven in which the binder is cured. It also often includes a cutting station, along which the desired final geometry (cuboid geometry) can be created.
  • a disadvantage of these standard products is the low compressive strength perpendicular to the main surfaces due to the described preferred fiber orientation.
  • this compressive strength ( ⁇ D1 ) is only 70 to 100 kPa.
  • ⁇ D2 describes the compressive strength with respect to a force acting perpendicular to such narrow sides of the secondary web, which run in the direction of transport of the secondary web during manufacture.
  • ⁇ D3 defines the compressive strength perpendicular to ⁇ D2 , ie the force is perpendicular to a surface that was perpendicular to the transport direction of the secondary non-woven fabric during manufacture. Concerning the nomenclature is complementary Fig. 1 directed.
  • ⁇ D2 can be 170-220 kPa in the prior art, ⁇ D3 about 120-150 kPa, again relative to the bulk density of about 150 kg / m 3 .
  • the thermal conductivity (according to ⁇ NORM B 6015-1 ff) of these products is usually around 0.04 W / mK. This is especially true in directions perpendicular to the major surfaces.
  • the mineral fiber web is cut into longitudinal strips and these strips are turned by 90 ° about their longitudinal axis and then joined together and connected via a binder to a cuboid overall body.
  • the finished mineral fiber product obtains a preferred fiber orientation perpendicular to the major major surfaces.
  • the method according to CH 620 861 is relatively easy to do; however, the fibers remain substantially in alignment parallel to the major surfaces.
  • the compressive strength can only be improved slightly, the thermal conductivity increases.
  • the method according to DE 23 07 577 C3 Although leads to cuboidal mineral fiber products increased compressive strength (perpendicular to the major major surfaces); however, the process is expensive.
  • the thermal conductivity does not improve significantly.
  • the invention has for its object to provide a cuboid mineral fiber product, which shows good thermal resistance at the same time advantageous values with respect to thermal conductivity, namely in all 3 directions of the coordinate system (that is, each perpendicular to the pairwise opposite surfaces of the cuboid body).
  • the invention is based on the following finding:
  • the invention detaches itself from this deadlocked view and proposes a cuboidal mineral fiber product comprising a plurality of superposed primary nonwoven layers (PV, PVR) characterized by at least one primary nonwoven layer (PVR) having sections (AL, AR) with different fiber orientations which together about V-shaped image for the fiber flow within the primary nonwoven layer (PVR) result.
  • PV, PVR primary nonwoven layers
  • A, AR primary nonwoven layer
  • a further embodiment of the present invention relates to a cuboidal mineral fiber product, the fibers of which are oriented substantially parallel to a product surface and extend predominantly at an angle of ⁇ 80 ° and> 10 ° to longitudinal sides of this product surface.
  • the fibers of individual regions can be oriented in one direction and other fibers (other regions) in a different direction, so that, for example, a V-shaped course or a type of "zigzag" of adjacent fibers within a plane (parallel to a product surface) occurs leaves.
  • the targeted oblique orientation of the fibers is according to alternative embodiments in the ranges ⁇ 75 ° /> 15 ° or ⁇ 70 ° /> 20 ° to the longitudinal sides of the respective product surface.
  • the inclination can be 45 ° +/- 5 °.
  • the fibers formed essentially parallel to a product surface in particular parallel to the two main surfaces, can have a predominantly opposite orientation along adjacent, strip-shaped zones.
  • the above angle indications include an embodiment in which the fibers of one strip are at an angle of 45 ° to the longitudinal side of the product surface, while the fibers of the adjacent strip are oriented more or less perpendicular to these fibers, that is with opposite orientation, but also at an angle of 45 ° to the longitudinal side of the product surface. In this way, a kind of herringbone pattern develops within a plane parallel to a surface of a product according to the invention.
  • a generic mineral fiber product usually consists of a plurality of primary nonwoven layers arranged one above the other, even if these are no longer immediately recognizable as such (in particular after the product has passed through a hardening furnace).
  • adjacent fibers of adjacent primary nonwoven layers may have a predominantly opposite orientation. This will be illustrated by an example:
  • the fibers of 5 layers should extend at least partially at an angle between 10 and 80 ° to a longitudinal side of the product surface, while the fibers of the 5 intermediate layers on the corresponding sections have a substantially opposite orientation.
  • thermal conductivities which are normal (normal) to the primary nonwoven layers ⁇ 0.04 W / mK, in some cases ⁇ 0.038 W / mK, although values of ⁇ 0.036 W / mK in preliminary tests were found.
  • the compressive strength of these mineral fiber products (at about 150 kg / m 3 bulk density) normal to the narrow sides of the product, ie ⁇ D2 and ⁇ D3 , could be determined to be around 150 kPa.
  • the compressive strengths ⁇ D2 , ⁇ D3 vary in a product according to the invention only by about +/- 20% of an average of ⁇ D2 , ⁇ D3 , preferably by a maximum of +/- 15%, that is, the thermal conductivity is largely in both directions constant.
  • FIG. 1 shows schematically a cuboid mineral fiber product according to the prior art, which has been cut out of a mineral fiber web formed in the preparation. It consists of two main surfaces H1, H2, two perpendicular to the original transport direction P of the secondary web (this is the transport direction of the secondary web perpendicular to the transport direction of the primary web) extending "large" narrow sides GS1, GS2 and two, parallel to the original transport direction P of the secondary web extending "small” narrow sides KS1, KS2.
  • the known mineral fiber product was produced in a known manner.
  • the fibers collected in a chute were deposited on a conveyor belt in the form of a so-called primary web.
  • the primary fleece was guided over a so-called pendulum.
  • primary nonwoven layers are stacked one above the other with a certain degree of overlap and removed on a further conveyor belt in the transport direction P. Idealized results in the result of a fiber flow, as in FIG. 1 shown.
  • the fibers F extend substantially parallel to the main surfaces H1, H2 and preferably perpendicular to the small narrow sides KS1, KS2. With PV different primary nonwoven layers are idealized (parallel to each other) shown.
  • the known product has a predetermined bulk density of about 150 kg / m 3, a compressive strength ⁇ D1 perpendicular to the large main surfaces H1, H2 of about 70 to 100 kPa.
  • the compressive strength ⁇ D2 (perpendicular to the small narrow sides KS1, KS2 is approximately 170 to 200 kPa, the compressive strength ⁇ D3 is approximately 120 to 150 kPa.
  • FIG. 2 The fundamentally different structure of a mineral fiber product according to the invention results from FIG. 2 ,
  • the main surfaces and narrow sides are analogous to the FIG. 1 State of the art referred to, even if here the side surfaces GS1, GS2 are shown narrower than KS1, KS2.
  • the individual primary nonwoven layers PV are shown running at an angle ⁇ to the main surface H2. This will become the FIG. 1 described overlap of primary nonwoven layers using the pendulum illustrated, but exaggerated. For better illustration, the connecting portions of adjacent primary nonwoven layers PV are not shown. These would run "predominantly parallel" to the side surfaces KS1, KS2 of the secondary nonwoven. In actuality, the angle ⁇ is only a few degrees and, as a result, the individual primary nonwoven layers PV run almost parallel to the main surfaces H1, H2, in particular when the mineral fiber web (secondary nonwoven web) has passed through rolls during production Compact secondary web.
  • the preferred fiber progression according to the invention is dotted or dashed.
  • the fiber profile according to the invention is illustrated schematically on the basis of 2 cutouts in the region of the primary nonwoven PVR shown on the right. Accordingly, the fibers shown in section AL extend predominantly at an angle ⁇ of about 45 ° to surface KS1 and the fibers represented in section AR approximately at right angles ⁇ to the fibers at AL. This results in a total of approximately V-shaped image for the fiber flow within the primary nonwoven PVR in the supervision. Due to the oscillating placement of the primary web to the secondary web, the basic fiber orientation of the adjacent primary web is exactly the opposite (see schematic diagram of the primary web PVM).
  • This fiber orientation can be achieved in different ways:
  • the conveyor belt for the primary web can be divided into a plurality of conveyor belts running side by side, which run at different speeds and correspondingly change the orientation, in particular of the fibers, which lie in the border region of adjacent conveyor belts. In this case, adjacent fibers are entrained due to the bonding or entanglement of the fibers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Textile Engineering (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Acoustics & Sound (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Nonwoven Fabrics (AREA)
  • Preliminary Treatment Of Fibers (AREA)
  • Toys (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Artificial Filaments (AREA)

Abstract

The product has fibers aligned parallel to a main upper surface (H1) of the product, where the fibers have a set of layers running below an angle between 10 and 80 degree to a longitudinal side of the upper surface. Each of the layers lies in-between the fibers at a corresponding section, and primary fleece layers (PV) are arranged one above the other. The layers of the adjacent fibers of the adjacent fleece layers have an orientation, and the adjacent fibers cross the adjacent fleece layers.

Description

Die Erfindung betrifft ein quaderförmiges Mineralfaserprodukt. Der Begriff "quaderförmig" ist erfindungsgemäß nicht im streng geometrischen Sinne zu verstehen, sondern technisch. Eine aus einer Mineralfaserbahn gebildete Mineralfasermatte oder Mineralfaserplatte besteht in der Regel aus sehr dünnen und kurzen glasartigen Fasern, die über ein Bindemittel untereinander fixiert sind, wobei ein solches Produkt üblicherweise eine offene Porosität von über 80 Vol.-% aufweist. Dementsprechend sind die Oberflächen solcher Produkte nicht exakt plan, sondern entsprechen der Anordnung der einzelnen Fasern. Ebenso verlaufen beispielsweise bei einer Mineralfaserplatte die beiden Hauptoberflächen nicht exakt senkrecht zu den vier umlaufenden weiteren Oberflächen. Alle diese Produkte wurden unter den Begriff "quaderförmig" subsumiert und unabhängig von ihrem jeweiligen Verhältnis von Breite : Dicke : Länge.The invention relates to a cuboidal mineral fiber product. The term "cuboid" according to the invention is not to be understood in the strict geometric sense, but technically. A mineral fiber mat or mineral fiber plate formed from a mineral fiber web usually consists of very thin and short vitreous fibers which are fixed to one another via a binder, such a product usually having an open porosity of more than 80% by volume. Accordingly, the surfaces of such products are not exactly planar, but correspond to the arrangement of the individual fibers. Likewise, for example, in the case of a mineral fiber board, the two main surfaces do not run exactly perpendicular to the four circumferential further surfaces. All of these products have been subsumed under the term "cuboid" and regardless of their respective ratio of width: thickness: length.

Der Begriff "Mineralfaserprodukt" schließt Produkte aus Glaswollefasern, Steinwollefasern, Schlackewollefasern oder dergleichen ein. Ebenso sind Mischungen der vorgenannten Fasern mit Fremdfasern, wie Kunststofffasern, oder Naturfasern, wie Hanffasern, vom Begriff Mineralfaserprodukt umfasst.The term "mineral fiber product" includes products of glass wool fibers, rockwool fibers, slag wool fibers or the like. Likewise, mixtures of the aforementioned fibers with foreign fibers, such as synthetic fibers, or natural fibers, such as hemp fibers, from the term mineral fiber product comprises.

In erster Linie bezieht sich ein erfindungsgemäßes Mineralfaserprodukt auf Zeugnisse aus Mineralfasern, die mit einem Bindemittel oder Bindefasern gebunden sind; es sollen aber auch solche Erzeugnisse erfasst sein, die auf andere Art und Weise zu der genannten Quaderform konfektioniert wurden, beispielsweise durch Vernadeln (Verfilzen).First and foremost, a mineral fiber product according to the invention refers to certificates of mineral fibers bound with a binder or binding fibers; but it should also be such products are included, which were assembled in other ways to the aforementioned cuboid shape, for example by needling (felting).

Mineralfaserprodukte der vorgenannten Art werden beispielsweise wie folgt hergestellt:Mineral fiber products of the aforementioned type are produced, for example, as follows:

Eine Mineralschmelze (oder Glasschmelze) wird über einen so genannten Spinner vergossen. Hierbei handelt es sich um schnell rotierende Walzen. Beim Auftreffen der Schmelze auf die Umfangsfläche einer solchen rotierenden Walze werden Fasern gebildet, die über einen Luftstrom weggeführt und nach Benetzung mit einem Bindemittel als so genanntes Primärvlies auf einem Transportband weggeführt werden. Dabei liegen die Fasern innerhalb dieses sehr dünnen Primärvlieses überwiegend parallel zu den großen Oberflächen des Primärvlieses vor.A mineral melt (or molten glass) is poured over a so-called spinner. These are fast rotating rollers. Upon impact of the melt on the peripheral surface of such a rotating roller fibers are formed, which are carried away via an air flow and led away after wetting with a binder as a so-called primary non-woven on a conveyor belt. The fibers within this very thin primary web are predominantly parallel to the large surfaces of the primary web.

Durch eine pendelartige Bewegung wird das Primärvlies zu einem mehrschichtigen Sekundärvlies aufbereitet, wobei sich benachbarte Primärvliesschichten überlappen. Der Abtransport des Primärvlieses erfolgt senkrecht zum Antransport des Primärvlieses. Daraus ergibt sich, dass die überwiegende Faserorientierung innerhalb des mehrschichtigen Sekundärvlieses parallel zu dessen Haupt-Oberflächen und senkrecht zur Transportrichtung des Sekundärvlieses ist.By a pendulum-like movement, the primary non-woven is processed into a multi-layer secondary non-woven, with adjacent Primärvliesschichten overlap. The removal of the primary web takes place perpendicular to the transport of the primary web. It follows that the predominant fiber orientation within the multilayer secondary web is parallel to its main surfaces and perpendicular to the transport direction of the secondary web.

Vorstehende Angaben über Faserorientierungen im Primärvlies und Sekundärvlies sind im Sinne einer bevorzugten Faserorientierung zu verstehen und nicht im streng mathematischen/geometrischen Sinne. Dies ergibt sich schon aus der oben beschriebenen Art der Faserbildung und des Transportes der Fasern über einen Luftstrom.The above information on fiber orientations in the primary nonwoven and secondary nonwoven are to be understood in the sense of a preferred fiber orientation and not in the strictly mathematical / geometric sense. This already arises from the type of fiber formation described above and the transport of the fibers via an air stream.

Das Sekundärvlies wird im weiteren Herstellungsweg als Endlosbahn über eine Bearbeitungsstrecke geführt. Dabei kann beispielsweise die Dichte des Produktes eingestellt werden. Dazu sind gegenläufige Walzen bekannt, zwischen die die Bahn geführt wird. Die Bearbeitungsstrecke umfasst meist auch einen Härteofen, in dem das Bindemittel ausgehärtet wird. Sie umfasst weiters häufig eine Schneidstation, entlang der die gewünschte Endgeometrie (Quadergeometrie) erstellt werden kann.The secondary web is guided in the further production path as a continuous web over a processing line. In this case, for example, the density of the product can be adjusted. For this purpose, counter-rotating rollers are known, between which the web is guided. The processing section usually also includes a curing oven in which the binder is cured. It also often includes a cutting station, along which the desired final geometry (cuboid geometry) can be created.

Nachteilig bei diesen Standardprodukten ist die geringe Druckfestigkeit senkrecht zu den Hauptoberflächen aufgrund der beschriebenen bevorzugten Faserorientierung. Bei einem Produkt mit einer Rohdichte von ca. 150 kg/m3 beträgt diese Druckfestigkeit (δD1) beispielsweise nur 70 bis 100 kPa.A disadvantage of these standard products is the low compressive strength perpendicular to the main surfaces due to the described preferred fiber orientation. For example, for a product having a bulk density of about 150 kg / m 3 , this compressive strength (δ D1 ) is only 70 to 100 kPa.

Größer ist die Druckfestigkeit in einer Richtung parallel zu den Hauptoberflächen. Dabei gibt es zwei Richtungen: δD2 beschreibt die Druckfestigkeit in Bezug auf eine Kraft, die senkrecht auf solche Schmalseiten des Sekundärvlieses wirkt, die bei der Herstellung in Transportrichtung des Sekundärvlieses verlaufen. δD3 definiert die Druckfestigkeit senkrecht zu δD2, d.h. die Kraft verläuft senkrecht auf eine Fläche, die bei der Herstellung senkrecht zur Transportrichtung des Sekundärvlieses verlief. Bezüglich der Nomenklatur wird ergänzend auf Fig. 1 verwiesen. δD2 kann im Stand der Technik 170-220 kPa betragen, δD3 etwa 120-150 kPa, jeweils wieder bezogen auf die Rohdichte von ca. 150 kg/m3.Greater is the compressive strength in a direction parallel to the major surfaces. There are two directions: δ D2 describes the compressive strength with respect to a force acting perpendicular to such narrow sides of the secondary web, which run in the direction of transport of the secondary web during manufacture. δ D3 defines the compressive strength perpendicular to δ D2 , ie the force is perpendicular to a surface that was perpendicular to the transport direction of the secondary non-woven fabric during manufacture. Concerning the nomenclature is complementary Fig. 1 directed. δ D2 can be 170-220 kPa in the prior art, δ D3 about 120-150 kPa, again relative to the bulk density of about 150 kg / m 3 .

Die Wärmeleitfähigkeit (gemäß ÖNORM B 6015-1 ff) dieser Produkte liegt üblicherweise bei circa 0,04 W/mK. Dies gilt insbesondere in Richtungen senkrecht zu den Hauptoberflächen.The thermal conductivity (according to ÖNORM B 6015-1 ff) of these products is usually around 0.04 W / mK. This is especially true in directions perpendicular to the major surfaces.

Es hat nicht an Versuchen gefehlt, die Druckfestigkeit solcher Mineralfaserprodukte durch Veränderung der überwiegenden (bevorzugten) Faserorientierung zu beeinflussen.There has been no lack of attempts to influence the compressive strength of such mineral fiber products by changing the predominant (preferred) fiber orientation.

In der CH 620 861 wird vorgeschlagen, die Mineralfaserlage (das Sekundärvlies) entlang der vorstehend dargstellten Bearbeitungsstrecke in ihrer Dicke und Länge zu komprimieren, um so eine wechselseitige Ausbauchung des Sekundärvlieses und eine Umorientierung der bevorzugten Faserrichtung zu erreichen.In the CH 620 861 It is proposed to compress the mineral fiber layer (the secondary web) along the above-illustrated processing section in its thickness and length, so as to achieve a mutual bulging of the secondary web and a reorientation of the preferred fiber direction.

Gemäß DE 23 07 577 C3 wird die Mineralfaserbahn in Längsstreifen geschnitten und diese Streifen werden um 90° um ihre Längsachse gewendet und danach zusammengefügt und über ein Bindemittel zu einem quaderförmigen Gesamtkörper verbunden. Auf diese Weise erhält das fertige Mineralfaserprodukt eine bevorzugte Faserorientierung senkrecht zu den großen Hauptoberflächen.According to DE 23 07 577 C3 the mineral fiber web is cut into longitudinal strips and these strips are turned by 90 ° about their longitudinal axis and then joined together and connected via a binder to a cuboid overall body. In this way, the finished mineral fiber product obtains a preferred fiber orientation perpendicular to the major major surfaces.

Das Verfahren gemäß CH 620 861 ist zwar relativ einfach durchzuführen; die Fasern verbleiben aber im Wesentlichen in einer Ausrichtung parallel zu den Hauptoberflächen. Die Druckfestigkeit kann nur gering verbessert werden, die Wärmeleitfähigkeit steigt. Das Verfahren gemäß DE 23 07 577 C3 führt zwar zu quaderförmigen Mineralfaserprodukten erhöhter Druckfestigkeit (senkrecht zu den großen Hauptoberflächen); das Verfahren ist jedoch aufwendig. Die Wärmeleitfähigkeit verbessert sich nicht wesentlich.The method according to CH 620 861 is relatively easy to do; however, the fibers remain substantially in alignment parallel to the major surfaces. The compressive strength can only be improved slightly, the thermal conductivity increases. The method according to DE 23 07 577 C3 Although leads to cuboidal mineral fiber products increased compressive strength (perpendicular to the major major surfaces); however, the process is expensive. The thermal conductivity does not improve significantly.

Der Erfindung liegt die Aufgabe zugrunde, ein quaderförmiges Mineralfaserprodukt anzubieten, welches bei guten Druckfestigkeiten gleichzeitig vorteilhafte Werte bezüglich Wärmeleitfähigkeit zeigt, und zwar in allen 3 Richtungen des Koordinatensystems (das heißt, jeweils senkrecht zu den paarweise gegenüberliegenden Oberflächen des quaderförmigen Körpers).The invention has for its object to provide a cuboid mineral fiber product, which shows good thermal resistance at the same time advantageous values with respect to thermal conductivity, namely in all 3 directions of the coordinate system (that is, each perpendicular to the pairwise opposite surfaces of the cuboid body).

Der Erfindung liegt folgende Erkenntnis zugrunde:The invention is based on the following finding:

Die unterschiedlichen Maßnahmen gemäß Stand der Technik beziehen sich alle auf Faserprodukte, bei denen die bevorzugte Faserorientierung grundsätzlich parallel oder senkrecht zu mindestens zwei gegenüberliegenden Oberflächen des Produktes ist. Dies gilt auch dann, wenn die Fasern umorientiert werden, wie dies in der DE 23 07 577 C3 vorgeschlagen wird, indem die Bahn zunächst in Streifen geschnitten und die Streifen dann um 90° gedreht werden.The various prior art measures all relate to fiber products where the preferred fiber orientation is generally parallel or perpendicular to at least two opposing surfaces of the product. This is true even if the fibers are reoriented, as in the DE 23 07 577 C3 is suggested by first cutting the web into strips and then rotating the strips through 90 °.

Die Erfindung löst sich von dieser festgefahrenen Meinung und schlägt ein quaderförmiges Mineralfaserprodukt aus mehreren, übereinander angeordneten Primärvliesschichten (PV, PVR) vor, gekennzeichnet durch mindestens eine Primärvliesschicht (PVR), die Abschnitte (AL, AR) mit unterschiedlicher Faserorientierung aufweist, die zusammen ein etwa V-förmiges Bild für den Faserverlauf innerhalb der Primärvliesschicht (PVR) ergeben.The invention detaches itself from this deadlocked view and proposes a cuboidal mineral fiber product comprising a plurality of superposed primary nonwoven layers (PV, PVR) characterized by at least one primary nonwoven layer (PVR) having sections (AL, AR) with different fiber orientations which together about V-shaped image for the fiber flow within the primary nonwoven layer (PVR) result.

Eine weitere Ausführungsform der vorliegenden Erfindung betrifft ein quaderförmiges Mineralfaserprodukt, dessen im Wesentlichen parallel zu einer Produktoberfläche ausgerichtete Fasern überwiegend unter einem Winkel < 80° und > 10° zu Längsseiten dieser Produktoberfläche verlaufen.A further embodiment of the present invention relates to a cuboidal mineral fiber product, the fibers of which are oriented substantially parallel to a product surface and extend predominantly at an angle of <80 ° and> 10 ° to longitudinal sides of this product surface.

Es wird also eine gezielte "Schrägstellung" der Fasern innerhalb einer Ebene parallel zu einer Produktoberfläche vorgeschlagen. Dies wird insbesondere durch eine Verschiebung (Veränderung) der Faservorzugsrichtung (Veränderung der Orientierung der Fasern) im Primärvlies erreicht. Durch die Erstellung eines Sekundärvlieses über ein so genanntes Pendel ( DE 41 27 172 C2 ) werden Primärvliesschichten mit wechselnder Faserorientierung übereinander gelegt, wodurch sich die gewünschten Effekte im Sekundärvlies und Endprodukt ergeben.Thus, a targeted "skew" of the fibers within a plane parallel to a product surface is proposed. This is achieved in particular by a shift (change) in the fiber orientation direction (change in the orientation of the fibers) in the primary nonwoven. By creating a secondary web over a so-called pendulum ( DE 41 27 172 C2 ) primary nonwoven layers with alternating fiber orientation are superimposed, resulting in the desired effects in the secondary web and final product.

Dabei können die Fasern einzelner Bereiche in eine Richtung und andere Fasern (andere Bereiche) in eine andere Richtung orientiert werden, sodass sich beispielsweise ein V-förmiger Verlauf oder eine Art "zickzackförmiger Verlauf" benachbarter Fasern innerhalb einer Ebene (parallel zu einer Produktoberfläche) einstellen lässt.In this case, the fibers of individual regions can be oriented in one direction and other fibers (other regions) in a different direction, so that, for example, a V-shaped course or a type of "zigzag" of adjacent fibers within a plane (parallel to a product surface) occurs leaves.

Die gezielte Schrägorientierung der Fasern liegt nach alternativen Ausführungsformen in den Bereichen < 75°/ > 15° beziehungsweise < 70°/ > 20° zu Längsseiten der jeweiligen Produkt-Oberfläche. Die Schrägstellung kann 45°+/- 5° betragen.The targeted oblique orientation of the fibers is according to alternative embodiments in the ranges <75 ° /> 15 ° or <70 ° /> 20 ° to the longitudinal sides of the respective product surface. The inclination can be 45 ° +/- 5 °.

Dabei können die im Wesentlichen parallel zu einer Produktoberfläche, insbesondere parallel zu den beiden Hauptoberflächen, ausgebildeten Fasern entlang benachbarter, streifenförmiger Zonen eine überwiegend entgegen gesetzte Orientierung besitzen. Die vorstehenden Winkelangaben schließen eine Ausführungsform ein, bei der die Fasern eines Streifens in einem Winkel von 45° zur Längsseite der Produktoberfläche verlaufen, während die Fasern des benachbarten Streifens mehr oder weniger senkrecht zu diesen Fasern orientiert sind, das heißt mit entgegen gesetzter Orientierung, aber ebenfalls in einem Winkel von 45° zur Längsseite der Produktoberfläche. Auf diese Weise entsteht eine Art Fischgrätmuster innerhalb einer Ebene parallel zu einer Oberfläche eines erfindungsgemäßen Produkts.In this case, the fibers formed essentially parallel to a product surface, in particular parallel to the two main surfaces, can have a predominantly opposite orientation along adjacent, strip-shaped zones. The above angle indications include an embodiment in which the fibers of one strip are at an angle of 45 ° to the longitudinal side of the product surface, while the fibers of the adjacent strip are oriented more or less perpendicular to these fibers, that is with opposite orientation, but also at an angle of 45 ° to the longitudinal side of the product surface. In this way, a kind of herringbone pattern develops within a plane parallel to a surface of a product according to the invention.

Aufgrund der oben skizzierten Herstellung besteht ein gattungsgemäßes Mineralfaserprodukt üblicherweise aus mehreren, übereinander angeordneten Primärvliesschichten, auch wenn diese als solche nicht mehr unmittelbar zu erkennen sind (insbesondere nachdem das Produkt einen Härteofen durchlaufen hat). In diesem Fall können benachbarte Fasern benachbarter Primärvliesschichten eine überwiegend entgegen gesetzte Orientierung besitzen. Dies soll an einem Beispiel verdeutlicht werden:Due to the production outlined above, a generic mineral fiber product usually consists of a plurality of primary nonwoven layers arranged one above the other, even if these are no longer immediately recognizable as such (in particular after the product has passed through a hardening furnace). In this case, adjacent fibers of adjacent primary nonwoven layers may have a predominantly opposite orientation. This will be illustrated by an example:

Geht man ― idealisiert ― davon aus, dass ein Mineralfaserprodukt aus 10 Primärvliesschichten aufgebaut ist so sollen die Fasern von 5 Schichten zumindest partiell unter einem Winkel zwischen 10 und 80° zu einer Längsseite der Produktoberfläche verlaufen, während die Fasern der 5 dazwischen liegenden Schichten an den korrespondierenden Abschnitten eine im Wesentlichen entgegen gesetzte Orientierung besitzen.Assuming, ideally, that a mineral fiber product is composed of 10 primary nonwoven layers, the fibers of 5 layers should extend at least partially at an angle between 10 and 80 ° to a longitudinal side of the product surface, while the fibers of the 5 intermediate layers on the corresponding sections have a substantially opposite orientation.

Auf diese Weise lässt sich sowohl innerhalb einer einzelnen Ebene als über das gesamte Volumen des Produktes eine gleichmäßige und vorteilhafte "Verzahnung" der Fasern erreichen. Dies führt zu einer günstigen Druckfestigkeit zumindest in zwei von drei Richtungen des Koordinatensystems und ebenso zu vorteilhaften Werten hinsichtlich der Wärmeleitfähigkeit.In this way, a uniform and advantageous "toothing" of the fibers can be achieved both within a single level and over the entire volume of the product. This leads to a favorable compressive strength at least in two of three directions of the coordinate system and also to advantageous values in terms of thermal conductivity.

Abhängig von der Rohdichte, Bindemittelgehalt/Faserorientierung etc. lassen sich Wärmeleitfähigkeiten erreichen, die senkrecht (normal) zu den Primärvliesschichten < 0,04 W/mK betragen, teilweise < 0,038 W/mK, wobei in Vorversuchen auch Werte von < 0,036 W/mK festgestellt wurden.Depending on the bulk density, binder content / fiber orientation, etc., it is possible to achieve thermal conductivities which are normal (normal) to the primary nonwoven layers <0.04 W / mK, in some cases <0.038 W / mK, although values of <0.036 W / mK in preliminary tests were found.

Gleichzeitig konnte die Druckfestigkeit dieser Mineralfaserprodukte (bei ca. 150 kg/m3 Rohdichte) normal zu den Schmalseiten des Produktes, also δD2 und δD3, mit jeweils rund 150 kPa bestimmt werden. Die Druckfestigkeiten δD2, δD3 schwanken bei einem erfindungsgemäßen Produkt nur um circa +/- 20 % von einem Mittelwert aus δD2, δD3, vorzugsweise um maximal +/- 15%, das heißt, auch die Wärmeleitfähigkeit ist in beiden Richtungen weitgehend konstant.At the same time, the compressive strength of these mineral fiber products (at about 150 kg / m 3 bulk density) normal to the narrow sides of the product, ie δ D2 and δ D3 , could be determined to be around 150 kPa. The compressive strengths δ D2 , δ D3 vary in a product according to the invention only by about +/- 20% of an average of δ D2 , δ D3 , preferably by a maximum of +/- 15%, that is, the thermal conductivity is largely in both directions constant.

Weitere Merkmale der Erfindung ergeben sich aus den Merkmalen der Unteransprüche sowie den sonstigen Anmeldungsunterlagen.Other features of the invention will become apparent from the features of the claims and the other application documents.

Figur 1 zeigt schematisch ein quaderförmiges Mineralfaserprodukt gemäß Stand der Technik, welches aus einer bei der Herstellung gebildeten Mineralfaserbahn herausgeschnitten wurde. Es besteht aus zwei Hauptoberflächen H1, H2, zwei, senkrecht zur ursprünglichen Transportrichtung P des Sekundärvlieses (dabei ist die Transportrichtung des Sekundärvlieses senkrecht zur Transportrichtung des Primärvlieses) verlaufenden "großen" Schmalseiten GS1, GS2 und zwei, parallel zur ursprünglichen Transportrichtung P des Sekundärvlieses verlaufenden "kleinen" Schmalseiten KS1, KS2. FIG. 1 shows schematically a cuboid mineral fiber product according to the prior art, which has been cut out of a mineral fiber web formed in the preparation. It consists of two main surfaces H1, H2, two perpendicular to the original transport direction P of the secondary web (this is the transport direction of the secondary web perpendicular to the transport direction of the primary web) extending "large" narrow sides GS1, GS2 and two, parallel to the original transport direction P of the secondary web extending "small" narrow sides KS1, KS2.

Das bekannte Mineralfaserprodukt wurde auf bekannte Art und Weise produziert. Die in einem Fallschacht gesammelten Fasern wurden in Form eines so genannten Primärvlieses auf einem Transportband abgelegt. Das Primärvlies wurde über ein so genanntes Pendel geführt. Dabei werden Primärvliesschichten pendelartig mit einem gewissen Überlappungsgrad übereinander geschichtet und auf einem weiteren Förderband in Transportrichtung P abtransportiert. Idealisiert dargestellt ergibt sich im Ergebnis ein Faserverlauf, wie in Figur 1 dargestellt. Die Fasern F verlaufen im Wesentlichen parallel zu den Hauptoberflächen H1, H2 und bevorzugt senkrecht zu den kleinen Schmalseiten KS1, KS2. Mit PV sind verschiedene Primärvlies-Schichten idealisiert (parallel übereinander) dargestellt.The known mineral fiber product was produced in a known manner. The fibers collected in a chute were deposited on a conveyor belt in the form of a so-called primary web. The primary fleece was guided over a so-called pendulum. In this case, primary nonwoven layers are stacked one above the other with a certain degree of overlap and removed on a further conveyor belt in the transport direction P. Idealized results in the result of a fiber flow, as in FIG. 1 shown. The fibers F extend substantially parallel to the main surfaces H1, H2 and preferably perpendicular to the small narrow sides KS1, KS2. With PV different primary nonwoven layers are idealized (parallel to each other) shown.

Das bekannte Produkt weist bei einer vorgegebenen Rohdichte von circa 150 kg/m3 eine Druckfestigkeit δD1 senkrecht zu den großen Hauptoberflächen H1, H2 von circa 70 bis 100 kPa auf. Die Druckfestigkeit δD2 (senkrecht zu den kleinen Schmalseiten KS1, KS2 liegt bei circa 170 bis 200 kPa; die Druckfestigkeit δD3 beträgt circa 120 bis 150 kPa.The known product has a predetermined bulk density of about 150 kg / m 3, a compressive strength δ D1 perpendicular to the large main surfaces H1, H2 of about 70 to 100 kPa. The compressive strength δ D2 (perpendicular to the small narrow sides KS1, KS2 is approximately 170 to 200 kPa, the compressive strength δ D3 is approximately 120 to 150 kPa.

Der grundsätzlich unterschiedliche Aufbau eines erfindungsgemäßen Mineralfaserproduktes ergibt sich aus Figur 2. Dabei sind die Hauptoberflächen und Schmalseiten analog dem zu Figur 1 dargestellten Stand der Technik bezeichnet, auch wenn hier die Seitenflächen GS1, GS2 schmaler dargestellt sind als KS1, KS2.The fundamentally different structure of a mineral fiber product according to the invention results from FIG. 2 , The main surfaces and narrow sides are analogous to the FIG. 1 State of the art referred to, even if here the side surfaces GS1, GS2 are shown narrower than KS1, KS2.

Wichtig ist, dass die Flächenabschnitte GS1, GS2 senkrecht zur ursprünglichen Produktionsrichtung P des Sekundärvlieses und die Seitenflächen KS1, KS2 parallel zur ursprünglichen Produktionsrichtung P verlaufen.It is important that the surface sections GS1, GS2 run perpendicular to the original production direction P of the secondary web and the side surfaces KS1, KS2 parallel to the original production direction P.

Die einzelnen Primärvliesschichten PV sind unter einem Winkel α zur Hauptoberfläche H2 verlaufend dargestellt. Hierdurch wird die zu Figur 1 beschriebene Überlappung der Primärvliesschichten mit Hilfe des Pendels verdeutlicht, aber übertrieben dargestellt. Zur besseren Darstellung sind die Verbindungsabschnitte benachbarter Primärvliesschichten PV nicht dargestellt. Diese würden "überwiegend parallel" zu den Seitenflächen KS1, KS2 des Sekundärvlieses verlaufen. In Wirklichkeit beträgt der Winkel α nur wenige Grad und führt im Ergebnis dazu, dass die einzelnen Primärvliesschichten PV nahezu parallel zu den Hauptoberflächen H1, H2 verlaufen, insbesondere dann, wenn die Mineralfaserbahn (das Sekundärvlies) bei der Herstellung durch Walzen gelaufen ist, um das Sekundärvlies zu verdichten.The individual primary nonwoven layers PV are shown running at an angle α to the main surface H2. This will become the FIG. 1 described overlap of primary nonwoven layers using the pendulum illustrated, but exaggerated. For better illustration, the connecting portions of adjacent primary nonwoven layers PV are not shown. These would run "predominantly parallel" to the side surfaces KS1, KS2 of the secondary nonwoven. In actuality, the angle α is only a few degrees and, as a result, the individual primary nonwoven layers PV run almost parallel to the main surfaces H1, H2, in particular when the mineral fiber web (secondary nonwoven web) has passed through rolls during production Compact secondary web.

Innerhalb der einzelnen Primärvliesschichten ist der erfindungsgemäß bevorzugte Faserverlauf gepunktet oder gestrichelt dargestellt. Anhand von 2 Ausschnitten im Bereich des rechts dargestellten Primärvlieses PVR ist der erfindungsgemäße Faserverlauf schematisch verdeutlicht. Demnach verlaufen die im Abschnitt AL dargestellten Fasern überwiegend unter einem Winkel β von rund 45° zur Fläche KS1 und die im Abschnitt AR dargestellten Fasern etwa im rechten Winkel γ zu den Fasern bei AL. Daraus ergibt sich in der Aufsicht insgesamt ein etwa V-förmiges Bild für den Faserverlauf innerhalb des Primärvlieses PVR. Aufgrund der pendelnden Ablage des Primärvlieses zum Sekundärvlies ist die grundsätzliche Faserorientierung des benachbarten Primärvlieses genau umgekehrt (siehe schematische Darstellung des Primärvlieses PVM).Within the individual primary nonwoven layers, the preferred fiber progression according to the invention is dotted or dashed. The fiber profile according to the invention is illustrated schematically on the basis of 2 cutouts in the region of the primary nonwoven PVR shown on the right. Accordingly, the fibers shown in section AL extend predominantly at an angle β of about 45 ° to surface KS1 and the fibers represented in section AR approximately at right angles γ to the fibers at AL. This results in a total of approximately V-shaped image for the fiber flow within the primary nonwoven PVR in the supervision. Due to the oscillating placement of the primary web to the secondary web, the basic fiber orientation of the adjacent primary web is exactly the opposite (see schematic diagram of the primary web PVM).

Diese Faserorientierung lässt sich auf verschiedenen Wegen erreichen:This fiber orientation can be achieved in different ways:

Das Transportband für das Primärvlies kann in mehrere, nebeneinander verlaufende Transportbänder aufgeteilt werden, die mit unterschiedlicher Geschwindigkeit laufen und die Orientierung insbesondere der Fasern entsprechend verändern, die im Grenzbereich benachbarter Transportbänder liegen. Dabei werden auch benachbarte Fasern aufgrund der Verklebung beziehungsweise Verfilzung der Fasern mitgeführt.The conveyor belt for the primary web can be divided into a plurality of conveyor belts running side by side, which run at different speeds and correspondingly change the orientation, in particular of the fibers, which lie in the border region of adjacent conveyor belts. In this case, adjacent fibers are entrained due to the bonding or entanglement of the fibers.

Es können Luftdüsen vorgesehen werden, deren Luftstrom die Faserausrichtung in gewünschter Weise verändert.It can be provided air nozzles whose air flow changes the fiber orientation in the desired manner.

Claims (11)

  1. Cuboidal mineral fibre product comprising several layers of primary nonwoven (PV, PVR) arranged one on top of the other, characterised by at least one primary nonwoven layer (PVR), which has sections (AL, AR) with a different fibre orientation that together result in an approximately V-shaped pattern for the fibre structure within the primary nonwoven layer (PVR).
  2. Mineral fibre product according to claim 1, the fibres of which that are oriented substantially parallel to a product surface run predominantly at an angle of < 80° and > 10° to longitudinal sides of this product surface.
  3. Mineral fibre product according to claim 1, the fibres of which that are oriented substantially parallel to a product surface run predominantly at an angle of < 75° and > 15° to longitudinal sides of this product surface.
  4. Mineral fibre product according to claim 1, the fibres of which that are oriented substantially parallel to a product surface run predominantly at an angle of < 70° and > 20° to longitudinal sides of this product surface.
  5. Mineral fibre product according to claim 1, wherein the fibres oriented substantially parallel to a product surface have a predominantly opposed orientation along adjacent strip-shaped zones.
  6. Mineral fibre product according to claim 1 comprising several layers of primary nonwoven arranged one on top of the other, wherein adjacent fibres of adjacent primary nonwoven layers have a predominantly opposed orientation.
  7. Mineral fibre product according to claim 5, wherein adjacent fibres of adjacent primary nonwoven layers intersect.
  8. Mineral fibre product according to claim 5 with a thermal conductivity of < 0.04 W/mK parallel to the primary nonwoven layers.
  9. Mineral fibre product according to claim 5 with a thermal conductivity of < 0.038 W/mK parallel to the primary nonwoven layers.
  10. Mineral fibre product according to claim 5 with a compressive strength of ≥ 150 kPa respectively perpendicular to narrow sides of the product.
  11. Mineral fibre product according to claim 5 with compressive strengths perpendicular to narrow sides of the product that differ by less than +/- 15% from a mean value.
EP06012923A 2005-07-14 2006-06-23 Parallelepipedic product of mineral fibres Active EP1743970B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005032785A DE102005032785B4 (en) 2005-07-14 2005-07-14 Cuboid mineral fiber product

Publications (2)

Publication Number Publication Date
EP1743970A1 EP1743970A1 (en) 2007-01-17
EP1743970B1 true EP1743970B1 (en) 2010-09-01

Family

ID=37309519

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06012923A Active EP1743970B1 (en) 2005-07-14 2006-06-23 Parallelepipedic product of mineral fibres

Country Status (3)

Country Link
EP (1) EP1743970B1 (en)
AT (1) ATE479788T1 (en)
DE (2) DE102005032785B4 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010008748U1 (en) 2010-10-07 2012-01-16 Autefa Solutions Germany Gmbh securing device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA980157A (en) * 1971-12-06 1975-12-23 Lowell G. Grieves Non-woven papermakers felt and method of manufacture
BE795596A (en) * 1972-02-17 1973-06-18 Rockwool Ab METHOD AND SYSTEM FOR MANUFACTURING A MINERAL WOOL LAMINATE PRODUCT AND FOR MAKING IT COHERENT
CH620861A5 (en) * 1977-06-08 1980-12-31 Flumroc Ag Process for producing mineral fibre slabs, device for carrying out the process, mineral fibre slab produced by the process and use thereof
DE3501897A1 (en) * 1985-01-22 1986-07-24 Bayer Ag, 5090 Leverkusen Process for producing a multi-layer fibre mat
NL8700196A (en) * 1987-01-27 1988-08-16 Rockwool Lapinus Bv GROWTH MAT FOR GROWING PLANTS AND A METHOD FOR MANUFACTURING THESE.
DE9116541U1 (en) * 1991-08-16 1993-04-15 Radex-Heraklith Industriebeteiligungs Ag, Wien, At
DK1266991T3 (en) * 1994-01-28 2012-11-26 Rockwool Int A mineral fiber board and a tubular insulating element
GB9604241D0 (en) * 1996-02-28 1996-05-01 Rockwool Int Production of a lapped product from a web, and apparatus for this
WO1999047766A1 (en) * 1998-03-19 1999-09-23 Rockwool International A/S Process and apparatus for the preparation of a mineral fibre product, uses of it and such product
JP2003502521A (en) * 1999-06-21 2003-01-21 ペラ コーポレーション Method of preparing a pultruded part and a reinforcing mat for the part
DE60038566T2 (en) * 1999-09-28 2009-06-04 Rockwool International A/S Glass fiber web roll and production process of roll and glass fiber web
DE19960694B4 (en) * 1999-12-16 2005-02-10 Johns Manville Europe Gmbh Process for producing an insulating body molding and Isolierkörperformteil for cryogenic insulation
DE102005026656A1 (en) * 2004-07-09 2006-02-02 Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg Production of a mineral fiber web with largely upright mineral fibers and use of the resulting waste

Also Published As

Publication number Publication date
ATE479788T1 (en) 2010-09-15
DE102005032785B4 (en) 2009-02-26
DE502006007758D1 (en) 2010-10-14
DE102005032785A1 (en) 2007-01-25
EP1743970A1 (en) 2007-01-17

Similar Documents

Publication Publication Date Title
DE4409416C2 (en) Mineral wool insulation board, its uses and processes for its manufacture
DE10041481B4 (en) Insulating element and method and apparatus for producing an insulating element, in particular a rolling and / or windable insulation web of mineral fibers
DE3824570B4 (en) Device for producing a fibrous web
EP1616985A1 (en) Manufacture of a mineral fibre web with substantially upright fibres
EP1115931B1 (en) Method and device for producing a mineral wool nonwoven fabric
EP1743970B1 (en) Parallelepipedic product of mineral fibres
AT501434B1 (en) VLIESZUFÜHRVORRICHTUNG
EP1559845B1 (en) Process for manufacturing an insulating mat of mineral fibres and insulating mat
EP1708876B1 (en) Method for the production of a web of insulating material and web of insulating material
EP1571247B2 (en) Process for manufacturing mineral wool products, in particular singlelayered and multilayered products
EP1561847B1 (en) Method and apparatus for manufacturing insulating webs or plates from mineral fibers
DE19919004A1 (en) Process and device for producing insulating materials from mineral fibers and insulating element from mineral fibers
DE202021104492U1 (en) Textile web and use of such
WO2000004320A1 (en) Method for producing pipe insulation elements and pipe insulation element
EP1106743B1 (en) Process and device for manufacturing a fibrous insulation web
DE19906734C1 (en) Insulation material, comprising binder and preferably rock wool fibres, contains binder free regions where fibres extend at right angles to material surfaces
DE102004047193A1 (en) Insulation material strip manufacture involves production of mineral fiber fleece which is gathered and cut along the center parallel to outer faces before coating layer is applied to cut surface
DE19860040A1 (en) Process for the production of mineral wool products bound with binder, device for carrying them out, mineral wool product produced thereby and composite mineral wool product produced thereby and use of these products
EP1152094B1 (en) Mineralwool insulating element and its method of production
DE102007046100A1 (en) Method and device for the production of insulating elements
DE19958973C2 (en) Method and device for producing a fiber insulation web
DE102004049063B4 (en) Process for producing an insulating product and insulating product
DE102005002649A1 (en) Manufacturing rolls or slabs of mineral fiber insulation, passes laid mineral fiber into stretching station at right angles to conveying direction, before entry into hardening oven
DE60222691T3 (en) MINERAL FIBER FLEECE
DE102020114549A1 (en) Nonwoven element and manufacturing process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061220

17Q First examination report despatched

Effective date: 20070620

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AXX Extension fees paid

Extension state: HR

Payment date: 20061220

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HERAKLITH GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KNAUF INSULATION GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: HR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006007758

Country of ref document: DE

Date of ref document: 20101014

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101202

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110101

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110103

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101212

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006007758

Country of ref document: DE

Effective date: 20110606

BERE Be: lapsed

Owner name: KNAUF INSULATION GMBH

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100901

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190625

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20190603

Year of fee payment: 14

Ref country code: DE

Payment date: 20190627

Year of fee payment: 14

Ref country code: GB

Payment date: 20190627

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190702

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006007758

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 479788

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200623

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200623

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210101

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200623