EP1742009B1 - Ignition device comprising an explosive composition for thermal ignition using a laser source - Google Patents

Ignition device comprising an explosive composition for thermal ignition using a laser source Download PDF

Info

Publication number
EP1742009B1
EP1742009B1 EP06002905A EP06002905A EP1742009B1 EP 1742009 B1 EP1742009 B1 EP 1742009B1 EP 06002905 A EP06002905 A EP 06002905A EP 06002905 A EP06002905 A EP 06002905A EP 1742009 B1 EP1742009 B1 EP 1742009B1
Authority
EP
European Patent Office
Prior art keywords
optical
composition
metal
initiator
energetic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06002905A
Other languages
German (de)
French (fr)
Other versions
EP1742009A1 (en
Inventor
Moulard Henry
Auguste Ritter
Jean-Marie Brodbeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut Franco Allemand de Recherches de Saint Louis ISL
Original Assignee
Institut Franco Allemand de Recherches de Saint Louis ISL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Franco Allemand de Recherches de Saint Louis ISL filed Critical Institut Franco Allemand de Recherches de Saint Louis ISL
Publication of EP1742009A1 publication Critical patent/EP1742009A1/en
Application granted granted Critical
Publication of EP1742009B1 publication Critical patent/EP1742009B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B3/00Blasting cartridges, i.e. case and explosive
    • F42B3/10Initiators therefor
    • F42B3/113Initiators therefor activated by optical means, e.g. laser, flashlight
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B33/00Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
    • C06B33/08Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide with a nitrated organic compound
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C7/00Non-electric detonators; Blasting caps; Primers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/04Arrangements for ignition
    • F42D1/043Connectors for detonating cords and ignition tubes, e.g. Nonel tubes

Definitions

  • the present invention relates to the use of an energy composition in an optical detonator (initiator comprising an explosive) or an optical igniter (initiator comprising a pyrotechnic composition).
  • the energy composition disposed in the first stage of the detonator is a mixture comprising the secondary explosive and the carbon black powder which is used as an optical dopant (it absorbs the radiation emitted by the laser sources and transmits to the secondary explosive the thermal energy necessary for it to reach its critical temperature).
  • the effectiveness of the carbon black is considerably reduced.
  • the validation of a detonator for such an application requires the performance of tests after a thermal cycle that corresponds to the cycle suffered in connection with this application has been imposed.
  • the imposed thermal cycle corresponds to a rise at a temperature of 100 ° C maintained for 5 hours and then a cooling at room temperature.
  • the laser source used is a laser diode
  • the ignition of the secondary explosive mixed with 1% by weight of carbon black has take place when a power of 0.1 W is sufficient if the detonator has not undergone this cycle.
  • a first solution overcoming the disadvantage relating to the need to have a powerful laser source to be able to ignite a detonator subjected to severe climatic conditions has been described in the application FR 2,831,659 and consists in introducing into the first stage of the detonator, between the secondary explosive and the optical focusing interface, a redox pyrotechnic composition which, absorbing in the infrared, is the seat of an oxidation-reduction reaction which releases the energy required for the priming of the secondary explosive.
  • the pyrotechnic composition used (ZPP composition) is very sensitive to friction and electrostatic discharges.
  • the present invention aims to allow the initiation of an optical initiator (detonator or igniter) by a low power laser source, without having the aforementioned drawbacks of the prior art initiators.
  • the initiator comprises an energetic composition formed of a mixture comprising at least one secondary explosive and a metal in the form of a powder, this metal acting as optical dopant.
  • Such a composition makes it possible to have a priming of the main composition of the initiator (secondary explosive in the case of a detonator, pyrotechnic composition in the case of an igniter) even with a a low-power laser source, for example with a laser diode with a power of 1 W, and this by reducing the risks associated with the manipulation of the main composition.
  • the initiator secondary explosive in the case of a detonator, pyrotechnic composition in the case of an igniter
  • a low-power laser source for example with a laser diode with a power of 1 W
  • the energy composition 1 used in the present invention is formed of a mixture comprising at least one secondary explosive and a metal which is in powder form and acting as an optical dopant.
  • the energy composition 1 is disposed in a cavity of an optical initiator 2, 3 and is in contact with an optical focusing interface 4 which closes this cavity and which makes it possible to transmit infrared radiation to the energy composition 1 emitted by a source of laser radiation and transmitted from the source to the optical focusing interface 4 by an optical fiber 5 which is connected by a first end to the laser radiation source, and by its second end to the optical interface of focus 4.
  • the metal used has the property of absorbing the infrared light emitted by the laser source and, because it is intimately mixed homogeneously with the secondary explosive, it transmits thereto, by thermal conduction, the heat that it has accumulated, which thus allows the initiation of the reaction of the secondary explosive.
  • the latter has a thermal diffusivity of at least 10 -5 m 2 .s -1 , and preferably at least equal to 5.10 -5 m 2 .s -1 , or even at least equal to 9.10 -5 m 2 ⁇ s -1 , the thermal diffusivity being defined by the ratio of the thermal conductivity on the product of the capacity calorific value by the density of the metal in question.
  • the metal used can be aluminum (9.8 ⁇ 10 -5 m 2 ⁇ s -1 ), an aluminum alloy (Al 2 O 4 'dural' with a diffusivity of 4.5 ⁇ 10 -5 m 2 ⁇ s -1 ), tungsten (6.8 ⁇ 10 -5 m 2 ⁇ s -1 ), copper (11.7 ⁇ 10 -5 m 2 ⁇ s -1 ), magnesium or a magnesium alloy (11.7 ⁇ 10 -5 m 2) . s -1 ), or even nickel, zirconium or titanium.
  • Aluminum is preferred because of the value of its thermal diffusivity and its low cost.
  • the metal Since the metal is used for its physical properties of infrared light absorption and heat transfer, and not for its chemical properties (as in aluminized explosives), a small amount is sufficient. It thus represents at most 10% by weight of the energy composition 1, preferably at most 5% by mass, or even on the order of 1% by mass. The higher the metal content, the shorter the initiation time of the energy composition 1, however, beyond 5% by weight, for applications where a very short initiation time is not necessary, the composition energy 1 becomes unnecessarily sensitive to standard safety tests (impact, friction, electrostatic discharge).
  • the secondary explosive used in the energy composition 1 may be, for example, octogen, hexogen or hexanitrostilbene.
  • This energy composition 1 may comprise several secondary explosives, for example octogen with hexanitrostilbene, the latter having the property of having a relatively low sensitivity to friction.
  • the secondary explosive is preferably a powder whose particle size is less than 6 microns (preferably less than 3 microns).
  • the metal is finely divided and its average particle size is less than 6 microns, and preferably less than 2 microns, or even 1 micron, which corresponds to the wavelength of the emitted laser light.
  • the energy composition 1 used in the present invention is compressed in the cavity at a high loading density, preferably greater than 80% of the theoretical maximum density associated with composition 1.
  • a dispersing agent which makes it possible to avoid the formation of agglomerates (for example isopropanol) and which will then be removed by drying.
  • the energy composition 1 may comprise an inert polymeric binder or wax (preferably representing at most 5% by weight of the composition) in order to reduce its sensitivity during standard safety tests for mechanical aggression. It is also possible to add graphite to benefit from its lubricating properties and also to increase the safety of implementation of the energy composition 1.
  • the mixing of the secondary explosive with the metal must be particularly homogeneous in order to ensure the priming reliability and reproducibility of the reaction time of the optical initiator 2,3.
  • the diameter of the laser spot at the output of the optical focusing interface 4 is close to the diameter of the optical fiber 5 (the diameter can be reduced to 50 ⁇ m) and the absorption thickness is of the same order of magnitude.
  • an optical detonator 2 has two stages: the laser source initiates by heating a main energy composition (a composition essentially comprising a secondary explosive or a mixture of secondary explosives) disposed in the cavity 10 of the first stage, the very strong degradation reaction that follows to initiate the detonation of a secondary explosive 6 disposed in the cavity 11 of the second stage, or by a process transition blast - detonation, either by a transition process shock - detonation (depending on the configuration of detonator 2 and the characteristics of secondary explosives used in the first and second stages).
  • a main energy composition a composition essentially comprising a secondary explosive or a mixture of secondary explosives
  • the figure 1 illustrates a detonator 2 in which the main energy composition is formed by the energy composition 1 used in the present invention.
  • Tests were carried out using a 1 W diode connected to the optical interface 4 by an optical fiber having a diameter of 62.5 ⁇ m as a laser source in order to validate the composition 1 used in the present invention for space applications where the decisive criterion is the level of the ignition threshold (given the importance of saving energy in this area).
  • the composition 1 was loaded into the cavity of the first stage at a density close to 1.7 g.cm -3 , and the detonator 2 underwent a thermal cycle of 5 hours at 100 ° C. followed by a cooling at room temperature.
  • composition 1 comprised octogen having an average particle size of 2.5 ⁇ m and 1% by weight of aluminum having a mean particle size of 5 ⁇ m; and in a second detonator, composition 1 comprised octogen having an average particle size of 2.5 ⁇ m and 1% by weight of aluminum having a mean particle size of 160 nm.
  • the ignition threshold was 110 mW.
  • Tests have also been carried out using a compact Nd-YAG solid laser source capable of delivering a power density of 3 MW.cm -2 (100 times greater than the 1 W laser diode) in order to validate the composition 1 used in the present invention.
  • the present invention for military domains where the decisive criterion is the response time of the detonator and its reproducibility (to allow a sequenced priming of several military heads).
  • the laser source used in such applications may be a solid laser delivering sufficient energy so that the ignition threshold is not a problem.
  • the composition 1 was loaded into the cavity of the first stage at a density close to 1.7 g.cm -3 , and the detonator was subjected to a thermal cycle of 5 hours at 100 ° C.
  • the composition 1 had octogen having an average particle size of 2.5 microns and 1 mass% of aluminum having a mean particle size of 5 microns; and in a second detonator, the composition comprised octogen having an average particle size of 2.5 ⁇ m and 1% by weight of aluminum having a mean particle size of 160 nm.
  • the dispersion of the response time is about 10 ⁇ s (compared with 30 ⁇ s for an energy composition comprising a secondary explosive mixed with carbon black), and for the second test, the dispersion is less at 2 ⁇ s, the detonator operating time being 41 ⁇ s.
  • the aluminum has a smaller particle size (or slightly higher) to 1 micron.
  • the figure 2 illustrates a detonator 2 in which the energy composition 1 used in the present invention is disposed in the form of a thin layer between the optical focusing interface 4 and a main energy composition 7 (a composition essentially comprising a secondary-octogenous explosive, hexogen, hexanitrostilbene ... - or a mixture of secondary explosives, without optical dopant) which is disposed in the same cavity 10 as the energy composition 1 used in the present invention, the energy released by the degradation of the energy composition 1 used in the present invention to initiate the main energy composition 7.
  • a main energy composition 7 a composition essentially comprising a secondary-octogenous explosive, hexogen, hexanitrostilbene ... - or a mixture of secondary explosives, without optical dopant
  • the figure 3 illustrates the use of an energy composition 1 used in the present invention in an optical igniter 3.
  • an optical igniter 3 is at one stage: the laser source initiates by heating a main energy composition (a composition comprising essentially a redox pyrotechnic composition) disposed in the cavity 12 of the igniter 3, the combustion reaction of which releases heat in the form of radiation, hot solid particles and a little hot gas, which allows the combustion of a external composition (a propellant powder loaded inside the body of a pyromechanism such as an actuator, a cylinder ..., or a solid propellant block loaded inside the hull of a rocket engine).
  • a main energy composition a composition comprising essentially a redox pyrotechnic composition
  • the figure 3 illustrates an igniter 3 in which the energy composition 1 used in the present invention is disposed in the form of a thin layer between the optical focusing interface 4 and a main energy composition 8 (a composition essentially comprising a pyrotechnic composition) which is disposed in the same cavity 12 as the energy composition 1 used in the present invention, the energy released by the degradation of the energy composition 1 used in the present invention for initiating the main energy composition 8.
  • a main energy composition 8 a composition essentially comprising a pyrotechnic composition
  • the pyrotechnic composition 8 (a mixture of a finely divided reducing agent with an inorganic oxidant) can be, for example, the ZPP composition (essentially a mixture of zirconium and potassium perchlorate) or the BNP composition (essentially a boron mixture). and potassium nitrate).
  • the energy composition 1 used in the present invention has a very low sensitivity to friction and electrostatic discharges, it is possible to use pyrotechnic compositions 8 for safety, that is to say having sensitivities to friction and reduced electrostatic discharges.
  • a main pyrotechnic composition 8 may be, for example, the BNP or a ZPP optimized to be safety (zirconium larger particle size).

Abstract

The hexanitrostilbene explosive composition (1) comprises metal (1 mass%) such as aluminum, tungsten or its alloy, copper, and magnesium or its alloy. The metal has a thermal diffusion of 9.10 -> 5>m 2>s -> 1>, and an average granulometry of lower than 1 mu m. The explosive is in the form of powder. An independent claim is included for an optical initiator.

Description

La présente invention concerne l'utilisation d'une composition énergétique dans un détonateur optique (initiateur comportant un explosif) ou un inflammateur optique (initiateur comportant une composition pyrotechnique).The present invention relates to the use of an energy composition in an optical detonator (initiator comprising an explosive) or an optical igniter (initiator comprising a pyrotechnic composition).

Les sources laser utilisées dans les détonateurs, notamment pour des applications militaires ou spatiales, doivent être robustes, de faible encombrement et à coût maîtrisé. Ces sources sont soit des lasers solides du type Nd-YAG (pour les applications militaires) qui délivrent une densité de puissance de l'ordre de 3 MW.cm-2, soit des diodes laser en général de puissance de 1 W (pour les applications spatiales) qui délivrent une densité de puissance de l'ordre de 20 kW.cm-2, ce qui est trop faible pour permettre un amorçage direct de la détonation d'explosif secondaire qui nécessite la délivrance d'une densité de puissance de l'ordre du GW.cm-2.Laser sources used in detonators, especially for military or space applications, must be robust, compact and cost-controlled. These sources are either Nd-YAG type solid lasers (for military applications) which deliver a power density of the order of 3 MW.cm -2 , or laser diodes generally of 1 W power (for space applications) which deliver a power density of the order of 20 kW.cm -2 , which is too low to allow a direct priming of the secondary explosive detonation that requires the delivery of a power density of order of GW.cm -2 .

Toutefois, ces densités de puissance délivrées permettent une élévation de température de l'explosif secondaire du premier étage du détonateur jusqu'à ce qu'il atteigne sa température de décomposition auto-entretenue à partir de laquelle la réaction de dégradation très vive qui s'en suit permet d'initier la détonation de l'explosif secondaire du second étage, soit par un processus de transition déflagration ― détonation, soit par un processus de transition choc ― détonation (selon la configuration du détonateur et les caractéristiques des explosifs secondaires utilisés). Cependant, comme les explosifs secondaires n'absorbent pas la lumière émise dans le proche infrarouge par les sources laser, la composition énergétique disposée dans le premier étage du détonateur est un mélange comprenant l'explosif secondaire et de la poudre de noir de carbone qui est utilisé comme dopant optique (il absorbe le rayonnement émis par les sources laser et transmet à l'explosif secondaire l'énergie thermique nécessaire pour qu'il atteigne sa température critique).However, these power densities delivered allow a temperature rise of the secondary explosive of the first stage of the detonator until it reaches its self-sustaining decomposition temperature from which the very sharp degradation reaction which In the following, it is possible to initiate the detonation of the secondary explosive of the second stage, either by a deflagration-detonation transition process, or by a shock-detonation transition process (depending on the configuration of the detonator and the characteristics of the secondary explosives used). . However, since the secondary explosives do not absorb the light emitted in the near infrared by the laser sources, the energy composition disposed in the first stage of the detonator is a mixture comprising the secondary explosive and the carbon black powder which is used as an optical dopant (it absorbs the radiation emitted by the laser sources and transmits to the secondary explosive the thermal energy necessary for it to reach its critical temperature).

Cependant, pour les applications impliquant que le détonateur soit soumis à des conditions climatiques extrêmes, l'efficacité du noir de carbone est considérablement diminuée. La validation d'un détonateur pour une telle application nécessite la réalisation de tests après qu'un cycle thermique qui correspond au cycle subi en relation avec cette application lui ait été imposé. Ainsi, par exemple pour le domaine spatial, le cycle thermique imposé correspond à une montée à une température de 100°C maintenue pendant 5 heures puis à un refroidissement à température ambiante. Or après un tel cycle, quand la source laser utilisée est une diode laser, même lorsque cette dernière est utilisée à sa puissance maximale de 1 W, l'amorçage de l'explosif secondaire mélangé avec 1% massique de noir de carbone n'a pas lieu alors qu'une puissance de 0,1 W suffit si le détonateur n'a pas subi ce cycle.However, for applications involving the detonator being subjected to extreme weather conditions, the effectiveness of the carbon black is considerably reduced. The validation of a detonator for such an application requires the performance of tests after a thermal cycle that corresponds to the cycle suffered in connection with this application has been imposed. Thus, for example for the space domain, the imposed thermal cycle corresponds to a rise at a temperature of 100 ° C maintained for 5 hours and then a cooling at room temperature. But after such a cycle, when the laser source used is a laser diode, even when the latter is used at its maximum power of 1 W, the ignition of the secondary explosive mixed with 1% by weight of carbon black has take place when a power of 0.1 W is sufficient if the detonator has not undergone this cycle.

Une première solution palliant l'inconvénient relatif à la nécessité d'avoir une source laser puissante pour pouvoir amorcer un détonateur soumis à des conditions climatiques sévères a été décrite dans la demande FR 2 831 659 et consiste à introduire dans le premier étage du détonateur, entre l'explosif secondaire et l'interface optique de focalisation, une composition pyrotechnique redox qui, absorbant dans l'infrarouge, est le siège d'une réaction d'oxydoréduction dégageant l'énergie thermique nécessaire pour l'amorçage de l'explosif secondaire. Cependant, en général, la composition pyrotechnique utilisée (composition ZPP) est très sensible à la friction et aux décharges électrostatiques.A first solution overcoming the disadvantage relating to the need to have a powerful laser source to be able to ignite a detonator subjected to severe climatic conditions has been described in the application FR 2,831,659 and consists in introducing into the first stage of the detonator, between the secondary explosive and the optical focusing interface, a redox pyrotechnic composition which, absorbing in the infrared, is the seat of an oxidation-reduction reaction which releases the energy required for the priming of the secondary explosive. However, in general, the pyrotechnic composition used (ZPP composition) is very sensitive to friction and electrostatic discharges.

De même, dans le domaine des inflammateurs optiques, afin d'avoir une fiabilité dans l'amorçage de la composition pyrotechnique redox quand la source laser utilisée est une diode laser (notamment de 1 W), il est nécessaire d'utiliser des compositions pyrotechniques dont l'agent réducteur présente une très fine granulométrie (typiquement entre 1 et 2 µm). Cependant cette granulométrie confère à la composition pyrotechnique redox une extrême sensibilité à la friction et aux décharges électrostatiques, ce qui rend sa fabrication et sa manipulation dangereuses.Similarly, in the field of optical igniters, in order to have reliability in the priming of the pyrotechnic redox composition when the laser source used is a laser diode (in particular 1 W), it is necessary to use pyrotechnic compositions whose reducing agent has a very fine particle size (typically between 1 and 2 microns). However, this particle size gives the pyrotechnic redox composition extreme sensitivity to friction and electrostatic discharge, which makes its manufacture and handling dangerous.

La présente invention vise à permettre l'amorçage d'un initiateur optique (détonateur ou inflammateur) par une source laser de faible puissance, sans avoir les inconvénients précités des initiateurs de l'art antérieur.The present invention aims to allow the initiation of an optical initiator (detonator or igniter) by a low power laser source, without having the aforementioned drawbacks of the prior art initiators.

Selon l'invention, l'initiateur comprend une composition énergétique formée d'un mélange comprenant au moins un explosif secondaire et un métal se présentant sous forme de poudre, ce métal agissant comme dopant optique.According to the invention, the initiator comprises an energetic composition formed of a mixture comprising at least one secondary explosive and a metal in the form of a powder, this metal acting as optical dopant.

Une telle composition permet d'avoir un amorçage de la composition principale de l'initiateur (explosif secondaire dans le cas d'un détonateur, composition pyrotechnique dans le cas d'un inflammateur) même avec une source laser de faible puissance, par exemple avec une diode laser d'une puissance de 1 W, et ceci en réduisant les risques liés à la manipulation de la composition principale.Such a composition makes it possible to have a priming of the main composition of the initiator (secondary explosive in the case of a detonator, pyrotechnic composition in the case of an igniter) even with a a low-power laser source, for example with a laser diode with a power of 1 W, and this by reducing the risks associated with the manipulation of the main composition.

D'autres avantages et particularités de la présente invention apparaîtront dans les modes de réalisation donnés à titre d'exemples non limitatifs et illustrés par les dessins mis en annexe.

  • La figure 1 est une vue en coupe d'un détonateur optique dont la cavité du premier étage comprend une composition énergétique utilisée dans la présente invention qui forme la composition principale du détonateur,
  • La figure 2 est une vue en coupe d'un détonateur optique dont la cavité du premier étage comprend une composition énergétique utilisée dans la présente invention et une composition principale formée par un explosif secondaire, et
  • La figure 3 est une vue en coupe d'un inflammateur optique dont la cavité comprend une composition énergétique utilisée dans la présente invention et une composition principale formée par une composition pyrotechnique.
Other advantages and features of the present invention will appear in the embodiments given as non-limiting examples and illustrated by the drawings attached.
  • The figure 1 is a sectional view of an optical detonator whose first-stage cavity comprises an energetic composition used in the present invention which forms the main composition of the detonator,
  • The figure 2 is a sectional view of an optical detonator whose first-stage cavity comprises an energetic composition used in the present invention and a principal composition formed by a secondary explosive, and
  • The figure 3 is a sectional view of an optical igniter whose cavity comprises an energy composition used in the present invention and a main composition formed by a pyrotechnic composition.

La composition énergétique 1 utilisée dans la présente invention est formée d'un mélange comprenant au moins un explosif secondaire et un métal qui se présente sous forme de poudre et agissant comme un dopant optique.The energy composition 1 used in the present invention is formed of a mixture comprising at least one secondary explosive and a metal which is in powder form and acting as an optical dopant.

Comme on peut le voir aux figures 1 à 3, en utilisation, la composition énergétique 1 est disposées dans une cavité d'un initiateur optique 2,3 et elle est en contact avec une interface optique de focalisation 4 qui obture cette cavité et qui permet de transmettre à la composition énergétique 1 le rayonnement infrarouge émis par une source de rayonnement laser et transmis de la source à l'interface optique de focalisation 4 par une fibre optique 5 qui est raccordée par une première extrémité à la source de rayonnement laser, et par sa deuxième extrémité à l'interface optique de focalisation 4.As can be seen at Figures 1 to 3 in use, the energy composition 1 is disposed in a cavity of an optical initiator 2, 3 and is in contact with an optical focusing interface 4 which closes this cavity and which makes it possible to transmit infrared radiation to the energy composition 1 emitted by a source of laser radiation and transmitted from the source to the optical focusing interface 4 by an optical fiber 5 which is connected by a first end to the laser radiation source, and by its second end to the optical interface of focus 4.

Le métal utilisé possède la propriété d'absorber la lumière infrarouge émise par la source laser et, du fait qu'il soit intimement mélangé de façon homogène avec l'explosif secondaire, il transmet à ce dernier, par conduction thermique, la chaleur qu'il a accumulé, ce qui permet ainsi l'amorçage de la réaction de l'explosif secondaire.The metal used has the property of absorbing the infrared light emitted by the laser source and, because it is intimately mixed homogeneously with the secondary explosive, it transmits thereto, by thermal conduction, the heat that it has accumulated, which thus allows the initiation of the reaction of the secondary explosive.

De préférence, afin d'avoir un chauffage efficace de l'explosif secondaire par le métal, ce dernier a une diffusivité thermique au moins égale à 10-5 m2.s-1, et de préférence au moins égale à 5.10-5 m2.s-1, voire au moins égale à 9.10-5 m2.s-1, la diffusivité thermique étant définie par le rapport de la conductivité thermique sur le produit de la capacité calorifique par la masse volumique du métal considéré. Ainsi, le métal utilisé peut être de l'aluminium (9,8.10-5 m2.s-1), un alliage d'aluminium (Al2024 « dural » avec une diffusivité de 4,5.10-5 m2.s-1), du tungstène (6,8.10-5 m2.s-1), du cuivre (11,7.10-5 m2.s-1), du magnésium ou un alliage de magnésium (11,7.10-5 m2.s-1), voire du nickel, du zirconium ou du titane. L'aluminium est préféré vu la valeur de sa diffusivité thermique et son faible coût.Preferably, in order to have effective heating of the secondary explosive by the metal, the latter has a thermal diffusivity of at least 10 -5 m 2 .s -1 , and preferably at least equal to 5.10 -5 m 2 .s -1 , or even at least equal to 9.10 -5 m 2 · s -1 , the thermal diffusivity being defined by the ratio of the thermal conductivity on the product of the capacity calorific value by the density of the metal in question. Thus, the metal used can be aluminum (9.8 × 10 -5 m 2 · s -1 ), an aluminum alloy (Al 2 O 4 'dural' with a diffusivity of 4.5 × 10 -5 m 2 · s -1 ), tungsten (6.8 × 10 -5 m 2 · s -1 ), copper (11.7 × 10 -5 m 2 · s -1 ), magnesium or a magnesium alloy (11.7 × 10 -5 m 2) . s -1 ), or even nickel, zirconium or titanium. Aluminum is preferred because of the value of its thermal diffusivity and its low cost.

Le métal étant utilisé pour ses propriétés physiques d'absorption de la lumière infrarouge et de transfert thermique, et non pour ses propriétés chimiques (comme dans les explosifs aluminisés), une faible quantité suffit. Il représente ainsi au plus 10% massique de la composition énergétique 1, de préférence au plus 5% massique, voire de l'ordre de 1 % massique. Plus la teneur en métal est importante plus le temps d'initiation de la composition énergétique 1 est court, cependant, au-delà de 5% massique, pour les applications où un temps d'initiation très court n'est pas nécessaire, la composition énergétique 1 devient inutilement sensible aux épreuves standard de sécurité (impact, friction, décharges électrostatiques).Since the metal is used for its physical properties of infrared light absorption and heat transfer, and not for its chemical properties (as in aluminized explosives), a small amount is sufficient. It thus represents at most 10% by weight of the energy composition 1, preferably at most 5% by mass, or even on the order of 1% by mass. The higher the metal content, the shorter the initiation time of the energy composition 1, however, beyond 5% by weight, for applications where a very short initiation time is not necessary, the composition energy 1 becomes unnecessarily sensitive to standard safety tests (impact, friction, electrostatic discharge).

L'explosif secondaire utilisé dans la composition énergétique 1 peut être, par exemple, de l'octogène, de l'hexogène ou de l'hexanitrostilbène. Cette composition énergétique 1 peut comprendre plusieurs explosifs secondaires, par exemple de l'octogène avec de l'hexanitrostilbène, ce dernier ayant la propriété d'avoir une sensibilité à la friction relativement faible.The secondary explosive used in the energy composition 1 may be, for example, octogen, hexogen or hexanitrostilbene. This energy composition 1 may comprise several secondary explosives, for example octogen with hexanitrostilbene, the latter having the property of having a relatively low sensitivity to friction.

Il est par ailleurs préférable d'avoir une grande surface spécifique de contact entre l'explosif secondaire et le métal afin d'avoir de grandes vitesses de montée en température de l'explosif secondaire, et donc d'avoir un temps de réaction de l'initiateur optique 2,3 court et reproductible. Ainsi, l'explosif secondaire est de préférence une poudre dont la granulométrie est inférieure à 6 µm (de préférence inférieure à 3 µm). De même, le métal est finement divisé et sa granulométrie moyenne est inférieure à 6 µm, et de préférence inférieure à 2 µm, voire à 1 µm, ce qui correspond à la longueur d'onde de la lumière laser émise.It is also preferable to have a large specific surface of contact between the secondary explosive and the metal in order to have high rates of temperature rise of the secondary explosive, and therefore to have a reaction time of 2.3 short and reproducible optical initiator. Thus, the secondary explosive is preferably a powder whose particle size is less than 6 microns (preferably less than 3 microns). Similarly, the metal is finely divided and its average particle size is less than 6 microns, and preferably less than 2 microns, or even 1 micron, which corresponds to the wavelength of the emitted laser light.

Egalement afin de réduire le temps de fonctionnement de l'initiateur 2,3 (ainsi que de réduire le seuil nécessaire de la densité de puissance délivrée par la source laser pour initier la décomposition de la composition énergétique 1), la composition énergétique 1 utilisée dans la présente invention est comprimée dans la cavité à une densité de chargement élevée, de préférence supérieure à 80% de la densité maximum théorique associée à la composition 1.Also in order to reduce the operating time of the initiator 2,3 (as well as to reduce the necessary threshold of the power density delivered by the laser source to initiate the decomposition of the energy composition 1), the energy composition 1 used in the present invention is compressed in the cavity at a high loading density, preferably greater than 80% of the theoretical maximum density associated with composition 1.

Afin de faciliter l'opération de mélange de la composition énergétique 1, il est préférable qu'elle soit réalisée mécaniquement par voie humide en ajoutant un agent dispersant qui permet d'éviter la création d'agglomérats (par exemple de l'isopropanol) et qui sera éliminé ensuite par séchage.In order to facilitate the mixing operation of the energy composition 1, it is preferable that it be mechanically carried out wet by adding a dispersing agent which makes it possible to avoid the formation of agglomerates (for example isopropanol) and which will then be removed by drying.

Il est également possible que la composition énergétique 1 comprenne un liant polymérique inerte ou de la cire (représentant, de préférence, au plus 5% massique de la composition) afin de réduire sa sensibilité lors des épreuves standard de sécurité aux agressions mécaniques. Il est également possible d'ajouter du graphite pour bénéficier de ses propriétés lubrifiantes et aussi accroître la sécurité de mise en oeuvre de la composition énergétique 1. En outre, le mélange de l'explosif secondaire avec le métal doit être particulièrement homogène afin d'assurer la fiabilité d'amorçage et de rendre reproductible le temps de réaction de l'initiateur optique 2,3. Ceci est d'autant plus vrai que la région efficace de la cavité dans laquelle peut se produire l'absorption du rayonnement par le métal est très limitée : le diamètre de la tache laser en sortie de l'interface optique de focalisation 4 est voisin du diamètre de la fibre optique 5 (le diamètre peut être réduit à 50 µm) et l'épaisseur d'absorption est du même ordre de grandeur.It is also possible for the energy composition 1 to comprise an inert polymeric binder or wax (preferably representing at most 5% by weight of the composition) in order to reduce its sensitivity during standard safety tests for mechanical aggression. It is also possible to add graphite to benefit from its lubricating properties and also to increase the safety of implementation of the energy composition 1. In addition, the mixing of the secondary explosive with the metal must be particularly homogeneous in order to ensure the priming reliability and reproducibility of the reaction time of the optical initiator 2,3. This is all the more true since the effective region of the cavity in which radiation absorption by the metal can occur is very limited: the diameter of the laser spot at the output of the optical focusing interface 4 is close to the diameter of the optical fiber 5 (the diameter can be reduced to 50 μm) and the absorption thickness is of the same order of magnitude.

Les figures 1 et 2 illustrent l'emploi d'une telle composition énergétique 1 dans un détonateur optique 2. De façon classique un détonateur optique 2 est à deux étages : la source laser initie par chauffage une composition énergétique principale (une composition comprenant essentiellement un explosif secondaire ou un mélange d'explosifs secondaires) disposée dans la cavité 10 du premier étage dont la réaction de dégradation très vive qui s'en suit permet d'initier la détonation d'un explosif secondaire 6 disposé dans la cavité 11 du second étage, soit par un processus de transition déflagration ― détonation, soit par un processus de transition choc ― détonation (selon la configuration du détonateur 2 et les caractéristiques des explosifs secondaires utilisés dans les premier et second étages).The Figures 1 and 2 illustrate the use of such an energy composition 1 in an optical detonator 2. Conventionally an optical detonator 2 has two stages: the laser source initiates by heating a main energy composition (a composition essentially comprising a secondary explosive or a mixture of secondary explosives) disposed in the cavity 10 of the first stage, the very strong degradation reaction that follows to initiate the detonation of a secondary explosive 6 disposed in the cavity 11 of the second stage, or by a process transition blast - detonation, either by a transition process shock - detonation (depending on the configuration of detonator 2 and the characteristics of secondary explosives used in the first and second stages).

La figure 1 illustre un détonateur 2 dans lequel la composition énergétique principale est formée par la composition énergétique 1 utilisée dans la présente invention.The figure 1 illustrates a detonator 2 in which the main energy composition is formed by the energy composition 1 used in the present invention.

Des essais ont été réalisés en utilisant comme source laser une diode 1 W reliée à l'interface optique 4 par une fibre optique 5 de diamètre de 62,5 µm afin de valider la composition 1 utilisée dans la présente invention pour les applications spatiales où le critère décisif est le niveau du seuil d'allumage (vu l'importance de l'économie d'énergie dans ce domaine). Dans ces essais, la composition 1 a été chargée dans la cavité du premier étage à une densité voisine de 1,7 g.cm-3, et le détonateur 2 a subi un cycle thermique de 5 heures à 100°C suivi d'un refroidissement à température ambiante. Dans un premier détonateur, la composition 1 comportait de l'octogène ayant une granulométrie moyenne de 2,5 µm et 1 % massique d'aluminium ayant une granulométrie moyenne de 5 µm ; et dans un second détonateur, la composition 1 comportait de l'octogène ayant une granulométrie moyenne de 2,5 µm et 1% massique d'aluminium ayant une granulométrie moyenne de 160 nm. Pour les deux essais, le seuil d'allumage a été de 110 mW. Ces essais démontrent l'efficacité de l'aluminium finement divisé comme dopant optique, même dans des faibles proportions massiques. Ce seuil d'allumage très faible permet d'avoir une importante marge de fonctionnement pour un allumage fiable, la diode pouvant délivrer 1 W.Tests were carried out using a 1 W diode connected to the optical interface 4 by an optical fiber having a diameter of 62.5 μm as a laser source in order to validate the composition 1 used in the present invention for space applications where the decisive criterion is the level of the ignition threshold (given the importance of saving energy in this area). In these tests, the composition 1 was loaded into the cavity of the first stage at a density close to 1.7 g.cm -3 , and the detonator 2 underwent a thermal cycle of 5 hours at 100 ° C. followed by a cooling at room temperature. In a first detonator, composition 1 comprised octogen having an average particle size of 2.5 μm and 1% by weight of aluminum having a mean particle size of 5 μm; and in a second detonator, composition 1 comprised octogen having an average particle size of 2.5 μm and 1% by weight of aluminum having a mean particle size of 160 nm. For both tests, the ignition threshold was 110 mW. These tests demonstrate the effectiveness of finely divided aluminum as an optical dopant, even in low mass proportions. This very low ignition threshold makes it possible to have a large operating margin for reliable ignition, since the diode can deliver 1 W.

Des essais ont également été réalisés en utilisant une source laser solide Nd-YAG compacte capable de délivrer une densité de puissance de 3 MW.cm-2 (100 fois supérieure à la diode laser 1 W) afin de valider la composition 1 utilisée dans la présente invention pour les domaines militaires où le critère décisif est le temps de réponse du détonateur et sa reproductibilité (afin de permettre un amorçage séquencé de plusieurs têtes militaires). La source laser utilisée dans de telles applications peut être un laser solide délivrant suffisamment d'énergie pour que le seuil d'allumage ne pose pas de problème. Pour ces essais la composition 1 a été chargée dans la cavité du premier étage à une densité voisine de 1,7 g.cm-3, et le détonateur a subi un cycle thermique de 5 heures à 100°C suivi d'un refroidissement à température ambiante. Dans un premier détonateur, la composition 1 comportait de l'octogène ayant une granulométrie moyenne de 2,5 µm et 1% massique d'aluminium ayant une granulométrie moyenne de 5 µm ; et dans un second détonateur, la composition comportait de l'octogène ayant une granulométrie moyenne de 2,5 µm et 1% massique d'aluminium ayant une granulométrie moyenne de 160 nm. Pour le premier essai, la dispersion du temps de réponse est d'environ 10 µs (à comparer avec les 30 µs pour une composition énergétique comportant un explosif secondaire mélangé à du noir de carbone), et pour le second essai, la dispersion est inférieure à 2 µs, le temps de fonctionnement du détonateur étant de 41 µs. Ainsi, pour satisfaire aux exigences de reproductibilité du temps de fonctionnement, il est nécessaire que l'aluminium ait une granulométrie inférieure (ou très légèrement supérieure) à 1 µm.Tests have also been carried out using a compact Nd-YAG solid laser source capable of delivering a power density of 3 MW.cm -2 (100 times greater than the 1 W laser diode) in order to validate the composition 1 used in the present invention. the present invention for military domains where the decisive criterion is the response time of the detonator and its reproducibility (to allow a sequenced priming of several military heads). The laser source used in such applications may be a solid laser delivering sufficient energy so that the ignition threshold is not a problem. For these tests, the composition 1 was loaded into the cavity of the first stage at a density close to 1.7 g.cm -3 , and the detonator was subjected to a thermal cycle of 5 hours at 100 ° C. followed by a cooling at ambient temperature. Initially detonator, the composition 1 had octogen having an average particle size of 2.5 microns and 1 mass% of aluminum having a mean particle size of 5 microns; and in a second detonator, the composition comprised octogen having an average particle size of 2.5 μm and 1% by weight of aluminum having a mean particle size of 160 nm. For the first test, the dispersion of the response time is about 10 μs (compared with 30 μs for an energy composition comprising a secondary explosive mixed with carbon black), and for the second test, the dispersion is less at 2 μs, the detonator operating time being 41 μs. Thus, to meet the requirements of reproducibility of the operating time, it is necessary that the aluminum has a smaller particle size (or slightly higher) to 1 micron.

La figure 2 illustre un détonateur 2 dans lequel la composition énergétique 1 utilisée dans la présente invention est disposée sous la forme d'une fine couche entre l'interface optique de focalisation 4 et une composition énergétique principale 7 (une composition comprenant essentiellement un explosif secondaire - octogène, hexogène, hexanitrostilbène... - ou un mélange d'explosifs secondaires, sans dopant optique) qui est disposée dans la même cavité 10 que la composition énergétique 1 utilisée dans la présente invention, l'énergie libérée par la dégradation de la composition énergétique 1 utilisée dans la présente invention permettant d'initier la composition énergétique principale 7.The figure 2 illustrates a detonator 2 in which the energy composition 1 used in the present invention is disposed in the form of a thin layer between the optical focusing interface 4 and a main energy composition 7 (a composition essentially comprising a secondary-octogenous explosive, hexogen, hexanitrostilbene ... - or a mixture of secondary explosives, without optical dopant) which is disposed in the same cavity 10 as the energy composition 1 used in the present invention, the energy released by the degradation of the energy composition 1 used in the present invention to initiate the main energy composition 7.

Les bons résultats donnés par ce mode de réalisation particulier sont une conséquence de la faible épaisseur de la région efficace de la cavité. Cela permet d'économiser le coût présenté par la mise en oeuvre da la composition énergétique 1 utilisée dans la présente invention. Cela permet également d'utiliser comme explosif secondaire dans la composition énergétique principale 7 un explosif très insensible à l'allumage laser et de haute sécurité, comme par exemple l'hexanitrostilbène ou d'autres explosifs secondaires à très haute température de décomposition.The good results given by this particular embodiment are a consequence of the small thickness of the effective region of the cavity. This saves the cost of implementing the energy composition 1 used in the present invention. This also makes it possible to use as secondary explosive in the main energy composition 7 an explosive very insensitive to laser ignition and high security, such as hexanitrostilbene or other secondary explosives with very high decomposition temperature.

La figure 3 illustre l'emploi d'une composition énergétique 1 utilisée dans la présente invention dans un inflammateur optique 3. De façon classique un inflammateur optique 3 est à un étage : la source laser initie par chauffage une composition énergétique principale (une composition comprenant essentiellement une composition pyrotechnique redox) disposée dans la cavité 12 de l'inflammateur 3 dont la réaction de combustion libère de la chaleur sous forme de rayonnement, de particules solides chaudes et d'un peu de gaz chaud, ce qui permet la combustion d'une composition externe (une poudre propulsive chargée à l'intérieur du corps d'un pyromécanisme tel qu'un actionneur, un vérin..., ou un bloc de propergol solide chargé à l'intérieur de la coque d'un moteur fusée).The figure 3 illustrates the use of an energy composition 1 used in the present invention in an optical igniter 3. Conventionally an optical igniter 3 is at one stage: the laser source initiates by heating a main energy composition (a composition comprising essentially a redox pyrotechnic composition) disposed in the cavity 12 of the igniter 3, the combustion reaction of which releases heat in the form of radiation, hot solid particles and a little hot gas, which allows the combustion of a external composition (a propellant powder loaded inside the body of a pyromechanism such as an actuator, a cylinder ..., or a solid propellant block loaded inside the hull of a rocket engine).

La figure 3 illustre un inflammateur 3 dans lequel la composition énergétique 1 utilisée dans la présente invention est disposée sous la forme d'une fine couche entre l'interface optique de focalisation 4 et une composition énergétique principale 8 (une composition comprenant essentiellement une composition pyrotechnique) qui est disposée dans la même cavité 12 que la composition énergétique 1 utilisée dans la présente invention, l'énergie libérée par la dégradation de la composition énergétique 1 utilisée dans la présente invention permettant d'initier la composition énergétique principale 8.The figure 3 illustrates an igniter 3 in which the energy composition 1 used in the present invention is disposed in the form of a thin layer between the optical focusing interface 4 and a main energy composition 8 (a composition essentially comprising a pyrotechnic composition) which is disposed in the same cavity 12 as the energy composition 1 used in the present invention, the energy released by the degradation of the energy composition 1 used in the present invention for initiating the main energy composition 8.

La composition pyrotechnique 8 (un mélange d'un agent réducteur finement divisé avec un oxydant minéral) peut être, par exemple, la composition ZPP (essentiellement un mélange de zirconium et de perchlorate de potassium) ou la composition BNP (essentiellement un mélange de bore et de nitrate de potassium).The pyrotechnic composition 8 (a mixture of a finely divided reducing agent with an inorganic oxidant) can be, for example, the ZPP composition (essentially a mixture of zirconium and potassium perchlorate) or the BNP composition (essentially a boron mixture). and potassium nitrate).

Du fait que la composition énergétique 1 utilisée dans la présente invention présente une très faible sensibilité à la friction et aux décharges électrostatiques, il est possible d'utiliser des compositions pyrotechniques 8 de sécurité, c'est à dire ayant des sensibilités à la friction et aux décharges électrostatiques réduites. Une telle composition pyrotechnique principale 8 peut être, par exemple, la BNP ou encore une ZPP optimisée pour être de sécurité (zirconium de granulométrie plus importante).Since the energy composition 1 used in the present invention has a very low sensitivity to friction and electrostatic discharges, it is possible to use pyrotechnic compositions 8 for safety, that is to say having sensitivities to friction and reduced electrostatic discharges. Such a main pyrotechnic composition 8 may be, for example, the BNP or a ZPP optimized to be safety (zirconium larger particle size).

Claims (12)

  1. Optical initiator (2, 3) comprising an optical fibre (5) that is connected by a first end to a laser radiation source and by second end to an optical focussing interface (4) closing off a cavity in which there is disposed an energetic composition (4) that is in contact with the interface (4) and is formed from a mixture comprising at least one secondary explosive and an optical dopant in the form of powder, characterised in that the optical dopant is a metal and in that the laser radiation source is capable of generating a low power density such as a laser diode able to deliver 1 W, allowing the weak initiation of the energetic composition (1) after having undergone thermal cycles.
  2. Optical initiator (2, 3) according to claim 1, characterised in that the metal has a thermal diffusivity of at least 10-5m2.s-1, and preferably at least 5.10-5m2.s-1, or even at least 9.10-5m2, s-1.
  3. Optical initiator (2, 3) according to claim 1 or 2, characterised in that the metal is aluminium or an aluminium alloy, or tungsten, or copper, or magnesium, or a magnesium alloy.
  4. Optical initiator (2, 3) according to one of claims 1 to 3, characterised in that the metal has a mean granulometry of less than 6 µm, and preferably less than 2 µm, or even less than 1 µm.
  5. Optical initiator (2, 3) according to one of claims 1 to 4, characterised in that the metal represents no more than 10% by weight of the composition, preferably no more than 5% by weight, or even around 1% by weight.
  6. Optical initiator (2, 3) according to one of claims 1 to 5, characterised in that the secondary explosive is octogen or hexogen or hexanitrostilbene.
  7. Optical initiator (2, 3) according to one of claims 1 to 6, characterised in that the mixture comprises at least two secondary explosives including hexanitrostilbene.
  8. Optical initiator (2, 3) according to one of claims 1 to 7, characterised in that the secondary explosive is a powder the granulometry of which is less than 3 µm.
  9. Optical initiator (2, 3) according to one of claims 1 to 8, characterised in that the energetic composition (1) optically doped by a metal is compressed at a loading density greater than 80% of its theoretical maximum density.
  10. Optical initiator (2, 3) according to claims 1 to 9, characterised in that it is formed by an optical detonator (2), the energetic composition (1) optically doped by a metal being the principal energetic composition of the first stage of the detonator (2).
  11. Optical initiator (2, 3) according to one of claims 1 to 9, characterised in that it forms an optical detonator (2), the energetic composition (1) optically doped by a metal being disposed between the optical focussing interface (4) and a principal energetic composition (7) that comprises essentially a secondary explosive and is disposed in the same cavity as the doped energetic composition (1).
  12. Optical initiator (2, 3) according to one of claims 1 to 9, characterised in that it forms an optical igniter (3), the energetic composition (1) optically doped by a metal being disposed between the optical focussing interface (4) and a principal energetic composition (8) that comprises essentially a pyrotechnic composition and is disposed in the same cavity as the doped energetic composition (1).
EP06002905A 2005-07-05 2006-02-14 Ignition device comprising an explosive composition for thermal ignition using a laser source Active EP1742009B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0507158A FR2888234B1 (en) 2005-07-05 2005-07-05 OPTICALLY DOPED ENERGETIC COMPOSITION

Publications (2)

Publication Number Publication Date
EP1742009A1 EP1742009A1 (en) 2007-01-10
EP1742009B1 true EP1742009B1 (en) 2012-01-18

Family

ID=36269711

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06002905A Active EP1742009B1 (en) 2005-07-05 2006-02-14 Ignition device comprising an explosive composition for thermal ignition using a laser source

Country Status (8)

Country Link
US (1) US7784403B2 (en)
EP (1) EP1742009B1 (en)
AT (1) ATE542101T1 (en)
CA (1) CA2542472C (en)
DE (1) DE06002905T1 (en)
ES (1) ES2279741T3 (en)
FR (1) FR2888234B1 (en)
NO (1) NO339580B1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2914056B1 (en) 2007-03-21 2010-03-12 Nexter Munitions OPTO PYROTECHNIC INITIATOR
US8161880B2 (en) * 2009-12-21 2012-04-24 Halliburton Energy Services, Inc. Deflagration to detonation transition device
FR2959809B1 (en) * 2010-05-10 2013-07-05 Saint Louis Inst FIRING DEVICE FOR AN INITIATOR
FR2960541B1 (en) 2010-05-31 2012-05-04 Nexter Munitions SECURED DETONATOR
FR2978762B1 (en) 2011-08-01 2013-08-02 Nexter Munitions SECURITY DETONATOR
RU2522611C2 (en) * 2012-10-18 2014-07-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Light sensitive explosive composition
FR3005500B1 (en) 2013-05-07 2017-12-22 Commissariat Energie Atomique OPTO-PYROTECHNIC INITIATOR ENHANCED
US10883805B2 (en) * 2018-02-15 2021-01-05 The United States Of America, As Represented By The Secretary Of The Navy Systems and methods for modifying and enhancing explosives by irradiating a reaction zone
CN110632705B (en) * 2019-05-23 2021-06-04 中航光电科技股份有限公司 Optical fiber connector socket for ignition detonation
CN114286884A (en) * 2019-08-13 2022-04-05 狩猎巨人公司 Power explosive-filling ignition device
CN112299936B (en) * 2020-11-06 2021-09-17 西南科技大学 Preparation method and application of photo-thermal material for explosive laser detonation
CN114353600B (en) * 2022-01-17 2024-01-16 中北大学 Spacer type high-safety small-size laser detonation device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1457461A (en) * 1965-08-13 1966-01-24 Aquitaine Petrole New explosive composition
US3528864A (en) * 1965-09-21 1970-09-15 Us Navy High impulse explosives containing tungsten
FR1590593A (en) * 1968-05-17 1970-04-20
US4316412A (en) * 1979-06-05 1982-02-23 The United States Of America As Represented By The United States Department Of Energy Low voltage nonprimary explosive detonator
SE462092B (en) * 1988-10-17 1990-05-07 Nitro Nobel Ab INITIATIVE ELEMENT FOR PRIMARY EXTENSION FREE EXPLOSION CAPS
US4989515A (en) * 1989-08-08 1991-02-05 The United States Of America As Represented By The United States Department Of Energy Ignitor with stable low-energy thermite igniting system
GB2242010B (en) * 1990-03-15 1993-10-13 Ici Plc Low energy fuse
WO1999000343A1 (en) * 1997-06-30 1999-01-07 The Ensign-Bickford Company Laser-ignitable ignition composition and initiator devices and assemblies comprising the same
DE69835969T2 (en) * 1997-11-07 2007-06-14 Toray Industries, Inc. Direct writable planographic precursor and method for making planographic printing plates
DE19837839A1 (en) * 1998-08-20 2000-02-24 Dynamit Nobel Ag Detonator for explosive material for vehicle airbag or seatbelt tensioner, has laser diode with transparent housing in direct contact with explosive material
JP2000318331A (en) * 1999-05-13 2000-11-21 Fuji Photo Film Co Ltd Heat-sensitive lithographic printing plate
US6887324B2 (en) * 2001-02-09 2005-05-03 Alliant Techsystems Inc. Reformulation of composition C-4 explosive
FR2831659B1 (en) * 2001-10-26 2004-04-09 Saint Louis Inst LOW ENERGY OPTICAL DETONATOR
JP4405246B2 (en) * 2003-11-27 2010-01-27 スリーエム イノベイティブ プロパティズ カンパニー Manufacturing method of semiconductor chip

Also Published As

Publication number Publication date
FR2888234B1 (en) 2008-05-02
US7784403B2 (en) 2010-08-31
CA2542472C (en) 2013-02-05
NO339580B1 (en) 2017-01-09
DE06002905T1 (en) 2007-08-09
ES2279741T1 (en) 2007-09-01
ES2279741T3 (en) 2012-05-18
ATE542101T1 (en) 2012-02-15
NO20063102L (en) 2007-01-08
CA2542472A1 (en) 2007-01-05
FR2888234A1 (en) 2007-01-12
EP1742009A1 (en) 2007-01-10
US20070113941A1 (en) 2007-05-24

Similar Documents

Publication Publication Date Title
EP1742009B1 (en) Ignition device comprising an explosive composition for thermal ignition using a laser source
EP1306643B1 (en) Low energy optical detonator
US20040011235A1 (en) Infra-red emitting decoy flare
FR2827377A1 (en) IGNITION DEVICE FOR PYROTECHNIC MICROCHARGES
EP0468838B1 (en) Ignition system for a pyrotechnical composition
EP1748972B1 (en) Dosable pyrotechnic composition usable in the form of a thermal fuse for a gas generator and a gas generator comprising a compound containing said composition
EP0267058B1 (en) "anti-firedamp" pyrotechnical composition for short-delay detonators
FR2599361A1 (en) Pyrotechnic composition for an igniter and safety electrical ignition device, igniter and ignition device thus obtained
EP0296962A1 (en) Initiator for a pyrotechnic generator
EP0663376B1 (en) Incendiary composition and incendiary projectile dispersing such a composition
EP3663703A1 (en) Penetrative warhead
FR2669724A1 (en) Laser detonator operating by sheet (plate) projection effect
Hafenrichter et al. Fast laser diode ignition of confined CP and BNCP
EP2554529B1 (en) Security detonator
EP2386819B1 (en) Firing device for an initiator
FR2692346A1 (en) Optical detonator for low-energy pyrotechnical generator - has pyrotechnic charge set off by optical system, e.g. with optical fibre, aperture or lens and triggered by laser beam, etc.
EP2827091B1 (en) Electrical initiator having two operating modes
EP1809980B1 (en) Method of producing an electro-pyrotechnic interface between an electrothermal bridge and a primary composition inside an initiator, and initiator thus obtained
FR2633283A1 (en) Use of a metallothermic heating composition for heating fragments of metal with a high melting point in an incendiary shot charge
FR2666646A1 (en) Incendiary body, especially shell, missile or bomb, comprising an incendiary case-shot charge
EP1099926B1 (en) Dual mode explosive warhead for use against conventional targets and against tactical ballistic missiles
EP2615077B1 (en) Activation of energetic compositions by magnetic mixing
FR2874255A1 (en) Electric gunpowder igniter for tube weapon, has ignition wires whose composition comprises predetermined mass percent of titanium and connected to current source through their ends using two electrical connections
BE522201A (en)
FR2922874A1 (en) Container e.g. lithium ion battery container, pressurizing method for e.g. chemical reactor field, involves thermo-initiating pyrotechnical charge, generating gas by combustion of charge, and pressurizing container under action of gas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

GBC Gb: translation of claims filed (gb section 78(7)/1977)
REG Reference to a national code

Ref country code: SE

Ref legal event code: TRCL

17P Request for examination filed

Effective date: 20070214

TCNL Nl: translation of patent claims filed
DET De: translation of patent claims
AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20101118

RTI1 Title (correction)

Free format text: IGNITION DEVICE COMPRISING AN EXPLOSIVE COMPOSITION FOR THERMAL IGNITION USING A LASER SOURCE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRODBECK, JEAN-MARIE

Inventor name: RITTER, AUGUSTE

Inventor name: HENRY MOULARD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 542101

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120215

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006027109

Country of ref document: DE

Effective date: 20120315

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOHEST AG

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2279741

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120518

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120518

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120418

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: INSTITUT FRANCO-ALLEMAND DE RECHERCHES DE SAINT-L

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120419

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120518

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 542101

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

26N No opposition filed

Effective date: 20121019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006027109

Country of ref document: DE

Effective date: 20121019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060214

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160830

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160830

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160825

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170215

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230220

Year of fee payment: 18

Ref country code: CH

Payment date: 20230307

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230223

Year of fee payment: 18

Ref country code: GB

Payment date: 20230220

Year of fee payment: 18

Ref country code: DE

Payment date: 20230216

Year of fee payment: 18