EP1730394B1 - Process for controlling and regulating an internal combustion engine - Google Patents

Process for controlling and regulating an internal combustion engine Download PDF

Info

Publication number
EP1730394B1
EP1730394B1 EP05857300A EP05857300A EP1730394B1 EP 1730394 B1 EP1730394 B1 EP 1730394B1 EP 05857300 A EP05857300 A EP 05857300A EP 05857300 A EP05857300 A EP 05857300A EP 1730394 B1 EP1730394 B1 EP 1730394B1
Authority
EP
European Patent Office
Prior art keywords
injection
injector
deviation
dtsb
dtse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05857300A
Other languages
German (de)
French (fr)
Other versions
EP1730394A1 (en
Inventor
Albert Kloos
Michael Willmann
Günther Schmidt
Ralf Speetzen
Stefan Müller
Andreas Kunz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP1730394A1 publication Critical patent/EP1730394A1/en
Application granted granted Critical
Publication of EP1730394B1 publication Critical patent/EP1730394B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2055Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit with means for determining actual opening or closing time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections

Definitions

  • the invention relates to a method for controlling and regulating an internal combustion engine according to the preamble of claim 1.
  • the start of injection and the end of injection significantly determine the quality of the combustion and the composition of the exhaust gas. To comply with the legal limits, these two parameters are usually controlled by an electronic control unit.
  • an electronic control unit In practice occurs in an internal combustion engine with a common rail system, the problem that there is a time offset between the start of energization of the injector, the needle stroke of the injector and the actual injection start. The same applies to the end of injection.
  • the object of the invention is for an internal combustion engine with a common rail injection system including individual storage as in DE 43 44 190 A1 to design a test method for the injector.
  • the invention provides a method for control and regulation in which an injection end deviation is calculated from a desired injection end and the measured actual injection end and an injection start deviation from a desired injection start and the virtual actual injection start is determined. Thereafter, an injector is evaluated based on the injection end deviation and the start of injection deviation and the further control and regulation of the internal combustion engine is based on the injector evaluation.
  • an injection end tolerance band is selected and it is checked whether the injection end deviation lies within the injection end tolerance band.
  • a start of injection tolerance band is selected and also checked whether the injection start deviation is within the tolerance band. The selection of the respective tolerance band as well as its limit values takes place as a function of the operating state of the internal combustion engine.
  • the injector is then rated as error-free if the injection end deviation and the start of injection deviation lie within the respective tolerance band. Are these outside the respective Tolerance band, the injector is rated as faulty. Depending on the location of the start of injection deviation or injection end deviation to an evaluation threshold, it is then determined whether the injector is deactivated or the parameters of the injector, in particular energization start and energization duration are adjusted.
  • the individual properties of the injectors can be determined over their lifetime. Based on the knowledge of these individual properties, the injectors can then be assimilated, i. H. their injection behavior is identical. The better knowledge of the injectors makes it possible to optimize their potential for use in terms of a reduction in consumption and emission reduction. For the maintenance of the internal combustion engine, this means that the maintenance intervals can be extended. In addition, a targeted diagnosis with maintenance suggestions for the service personnel can be issued.
  • FIG. 1 shows a system diagram of an electronically controlled internal combustion engine 1.
  • the fuel is injected via a common rail system comprising the following components: Pumps 3 with a suction throttle for conveying the fuel from a fuel tank 2, a rail 6, single memory. 8 and injectors 7 for injecting the fuel into the combustion chambers of the internal combustion engine 1.
  • a common rail system is the hydraulic resistance of the individual memory 8 and the supply lines adapted accordingly.
  • the rail 6 comprises a storage volume or is designed only as a simple line.
  • the operation of the internal combustion engine 1 is controlled by an electronic control unit (ADEC) 4.
  • the electronic control unit 4 includes the usual components of a microcomputer system, such as a microprocessor, I / O devices, buffers and memory devices (EEPROM, RAM). In the memory modules relevant for the operation of the internal combustion engine 1 operating data in maps / curves are applied. About this calculates the electronic control unit 4 from the input variables, the output variables.
  • FIG. 1 the following input variables are exemplarily shown: a rail pressure pCR, which is measured by means of a rail pressure sensor 5, a speed signal nMOT of the internal combustion engine 1, pressure signals pE (i) of the individual memory 8 and an input variable E.
  • the input quantity E is, for example, the charge air pressure a turbocharger and the temperatures of the coolant / lubricant and the fuel subsumes.
  • FIG. 1 are shown as outputs of the electronic control unit 4, a signal ADV for controlling the pump 3 with the suction throttle and an output size A.
  • the output variable A is representative of the other control signals for controlling and regulating the internal combustion engine 1, for example, a current start BB and a current end BE.
  • an injector characteristic is shown.
  • the energizing duration BD is plotted on the ordinate an injection qV.
  • the injector characteristic curve is used to calculate a calculated injection quantity Energizing duration BD assigned.
  • the injection quantity qV (A) is assigned an operating point A and, correspondingly, the energizing duration BD (A).
  • dashed lines two limit lines are shown.
  • the operating point A changes over the life of the injector. The causes for this are the magnetic changes of the magnetic circuit, the hydraulic changes, z. B. Change of the throttle cross-section, and the mechanical changes, eg. B. wear.
  • the changes of the operating point A are indicated in the figure with corresponding arrows, resulting z. B. a new operating point A1.
  • FIG. 3 For example, several pressure profiles are shown.
  • the abscissa indicates the crankshaft angle Phi or the equivalent time.
  • the measured pressure pE (i) of a single memory is plotted.
  • a desired spray course with the points A; B and C is shown as a solid line.
  • a dashed line with the points D, E and F a first actual injection profile is shown.
  • a dot-dash line with the points A, G, H and J a second actual injection profile is shown.
  • a pre- and post-injection was omitted for reasons of clarity in the respective spray progressions.
  • the reference character TBSB designates an injection start tolerance band with the limit values GW3 and GW4.
  • the reference symbol TBSE determines an injection end tolerance band with the associated limit values GM1 and GW2.
  • an ordinal parallel line according to the evaluation threshold BWGW.
  • the electronic control unit outputs an energization start BB and a current end BE for the injector. This period corresponds to the energizing duration BD.
  • the pressure curve pE (i) of the individual memory the actual injection end can be recognized without any doubt.
  • the pressure value pE (SE) includes the point E and the associated time value tE (dashed line).
  • the associated virtual injection start can be calculated via a mathematical function, here the point D with the time value tD.
  • a mathematical function here the point D with the time value tD.
  • a time tSE (IST) is calculated from the current end BE to the measured end of injection, here time tE.
  • a time tSB (IST) is calculated from the start of energization BB until the virtual start of injection, time tD.
  • an injection end deviation dtSE is calculated from the desired injection profile and the first actual injection profile. This deviation corresponds to FIG. 3 the distance of the points E and B.
  • a start of injection deviation dtSB is calculated. This corresponds to the difference between the two points D and A.
  • the injection end tolerance band TBSE is selected as a function of operating parameters of the internal combustion engine.
  • Operating parameters of the internal combustion engine are to be understood as meaning the rail pressure, the speed of the internal combustion engine, the fuel temperature and the energizing duration BD.
  • the injection end tolerance band TBSB is selected and it is checked whether the start of injection deviation dtSB lies within the tolerance band with the limit values GW3 and GW4. In FIG.
  • the injection start deviation dtSB (points A, D) is also within the associated tolerance band. Since both the injection end deviation dtSE and the start of injection deviation dtSB lie within the respective tolerance band, the injector is rated as error-free.
  • FIG. 4 a program flowchart of the method is shown as a subroutine.
  • the FIG. 4 consists of subfigures 4A and 4B.
  • the subroutine can be both time-controlled and event-driven, if z. B. a high exhaust gas temperature dispersion is detected.
  • S1 it is checked whether a stationary operating state exists.
  • a stationary operating condition is z. B. at a constant speed. If it is determined at S1 that there is an unsteady state, a corresponding waiting loop is run through with S2. Is the query included? S1 positive, an injector to be evaluated is selected at S3.
  • a mode MOD is selected. The operating mode is specified by the operator.
  • the pre- and post-injection is deactivated for the evaluation of the injector, step S5. Thereafter, at S6, the energization start BB is retarded in the sense of smaller crankshaft angles before top dead center. In addition, the energizing duration BD is adjusted.
  • the injector including the pre, main and post injection is evaluated.
  • the injection end SE is detected. From the injection end SE and the current end BE, a time tSE (IST) is calculated.
  • a virtual injection start SBv is determined from the injection end SE.
  • a time tSB (IST) is determined at S10 from the start of energization BB and the virtual start of injection SBV.
  • an injection start deviation dtSB and an injection end deviation dtSE are calculated from the respective target / actual comparison.
  • the injection end tolerance band TBSE and the start of injection tolerance band TBSB are calculated at S12.
  • test at S15 indicates that the injection end deviation is outside the tolerance band

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

In a process for controlling and regulating an internal combustion engine (1) having a common rail system, including individual accumulators (8), an injection end deviation and an injection beginning deviation are determined by comparison between the set and real values of the injection end and injection beginning. An injector (7) is then evaluated on the basis of these deviations, and the internal combustion engine is subsequently controlled and regulated on the basis of the injector evaluation.

Description

Die Erfindung betrifft ein Verfahren zur Steuerung und Regelung einer Brennkraftmaschine nach dem Oberbegriff von Anspruch 1.The invention relates to a method for controlling and regulating an internal combustion engine according to the preamble of claim 1.

Bei einer Brennkraftmaschine bestimmen der Einspritzbeginn und das Einspritzende maßgeblich die Güte der Verbrennung und die Zusammensetzung des Abgases. Um die gesetzlichen Grenzwerte einzuhalten, werden diese beiden Kenngrößen üblicherweise von einem elektronischen Steuergerät geregelt. In der Praxis tritt bei einer Brennkraftmaschine mit einem Common-Rail-System das Problem auf, dass zwischen dem Bestromungsbeginn des Injektors, dem Nadelhub des Injektors und dem tatsächlichen Einspritzbeginn ein zeitlicher Versatz besteht. Für das Einspritzende gilt Entsprechendes.In an internal combustion engine, the start of injection and the end of injection significantly determine the quality of the combustion and the composition of the exhaust gas. To comply with the legal limits, these two parameters are usually controlled by an electronic control unit. In practice occurs in an internal combustion engine with a common rail system, the problem that there is a time offset between the start of energization of the injector, the needle stroke of the injector and the actual injection start. The same applies to the end of injection.

Aus der DE 198 50 221 C1 ist ein Prüfverfahren für einen Injektor bekannt. Bei diesem werden für den Injektor verschiedene Betriebspunkte ermittelt, indem bei konstantem Eingangsdruck der Druck am Injektor-Ausgang variiert wird. Der Injektor ist fehlerfrei, wenn die Betriebspunkte innerhalb eines zulässigen Bereichs eines Prüfkennfelds liegen. Das Prüfverfahren wird auf einem Injektor-Prüfstand angewendet. Dieses ist nicht verwendbar, wenn der Injektor in einer Brennkraftmaschine bereits eingebaut ist.From the DE 198 50 221 C1 is a test method for an injector known. In this, different operating points are determined for the injector by varying the pressure at the injector outlet with a constant inlet pressure. The injector is faultless if the operating points are within a permissible range of a test chart. The test method is used on an injector test bench. This is not usable if the injector is already installed in an internal combustion engine.

Aus der nicht vorveröffentlichten deutschen Patentanmeldung mit dem amtlichen Aktenzeichen DE 103 44 181.6 ist ein Verfahren zur Steuerung und Regelung einer Brennkraftmaschine bekannt, bei dem aus dem Druckverlauf in einem Einzelspeicher eines Common-Rail-Systems das Spritzende detektiert wird. Aus dem gemessenen Spritzende wird danach über eine mathematische Funktion ein virtueller Spritzbeginn berechnet. Die Veränderungen der Injektoreigenschaften über dessen Lebensdauer sind bei diesem Verfahren jedoch nicht berücksichtigt.From the not previously published German patent application with the official file number DE 103 44 181.6 a method for controlling and regulating an internal combustion engine is known in which the injection end is detected from the pressure profile in a single memory of a common rail system. From the measured injection end is then a mathematical Function calculates a virtual injection start. However, changes in injector properties over its lifetime are not included in this procedure.

Aufgabe der Erfindung ist es für eine Brennkraftmaschine mit einem Common-Rail-Einspritzsystem einschließlich Einzelspeichern wie in DE 43 44 190 A1 ein Prüfverfahren für den Injektor zu entwerfen.The object of the invention is for an internal combustion engine with a common rail injection system including individual storage as in DE 43 44 190 A1 to design a test method for the injector.

Die Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Die vorteilhaften Ausgestaltungen sind in den Unteransprüchen dargestellt.The object is solved by the features of claim 1. The advantageous embodiments are shown in the subclaims.

Die Erfindung sieht ein Verfahren zur Steuerung und Regelung vor, bei dem eine Spritzende-Abweichung aus einem Soll-Spritzende und dem gemessenen Ist-Spritzende berechnet wird und eine Spritzbeginn-Abweichung aus einem Soll-Spritzbeginn und dem virtuellen Ist-Spritzbeginn bestimmt wird. Danach wird ein Injektor anhand der Spritzende-Abweichung sowie der Spritzbeginn-Abweichung bewertet und die weitere Steuerung und Regelung der Brennkraftmaschine erfolgt auf Grundlage der Injektor-Bewertung. Zur Bewertung des Injektors ist vorgesehen, dass ein Spritzende-Toleranzband ausgewählt wird und geprüft wird, ob die Spritzende-Abweichung innerhalb des Spritzende-Toleranzbandes liegt. Ergänzend wird ein Spritzbeginn-Toleranzband ausgewählt und ebenfalls geprüft, ob die Spritzbeginn-Abweichung innerhalb des Toleranzbandes liegt. Die Auswahl des jeweiligen Toleranzbandes sowie dessen Grenzwerte, erfolgt in Abhängigkeit des Betriebszustands der Brennkraftmaschine Der Injektor wird dann als fehlerfrei bewertet, wenn die Spritzende-Abweichung und die Spritzbeginn-Abweichung innerhalb des jeweiligen Toleranzbandes liegen. Liegen diese außerhalb des jeweiligen Toleranzbandes, so wird der Injektor als fehlerbehaftet bewertet. In Abhängigkeit der Lage der Spritzbeginn-Abweichung oder Spritzende-Abweichung zu einem Bewertungs-Grenzwert wird danach festgelegt, ob der Injektor deaktiviert wird oder die Parameter des Injektors, insbesondere Bestromungs-Beginn und Bestromungs-Dauer, angepasst werden.The invention provides a method for control and regulation in which an injection end deviation is calculated from a desired injection end and the measured actual injection end and an injection start deviation from a desired injection start and the virtual actual injection start is determined. Thereafter, an injector is evaluated based on the injection end deviation and the start of injection deviation and the further control and regulation of the internal combustion engine is based on the injector evaluation. In order to evaluate the injector, it is provided that an injection end tolerance band is selected and it is checked whether the injection end deviation lies within the injection end tolerance band. In addition, a start of injection tolerance band is selected and also checked whether the injection start deviation is within the tolerance band. The selection of the respective tolerance band as well as its limit values takes place as a function of the operating state of the internal combustion engine. The injector is then rated as error-free if the injection end deviation and the start of injection deviation lie within the respective tolerance band. Are these outside the respective Tolerance band, the injector is rated as faulty. Depending on the location of the start of injection deviation or injection end deviation to an evaluation threshold, it is then determined whether the injector is deactivated or the parameters of the injector, in particular energization start and energization duration are adjusted.

Durch die Erfindung können die individuellen Eigenschaften der Injektoren über deren Lebenszeit bestimmt werden. Aufgrund der Kenntnis dieser individuellen Eigenschaften können danach die Injektoren gleichgestellt werden, d. h. ihr Einspritz-Verhalten ist identisch. Die bessere Kenntnis der Injektoren gestattet es deren Nutzungs-Potentiale im Sinne einer Verbrauchsreduktion und Emissions-Reduktion zu optimieren. Für die Wartung der Brennkraftmaschine bedeutet dies, dass die Wartungsintervalle verlängert werden können. Ergänzend kann eine gezielte Diagnose mit Wartungsvorschlägen für das Servicepersonal ausgegeben werden.By means of the invention, the individual properties of the injectors can be determined over their lifetime. Based on the knowledge of these individual properties, the injectors can then be assimilated, i. H. their injection behavior is identical. The better knowledge of the injectors makes it possible to optimize their potential for use in terms of a reduction in consumption and emission reduction. For the maintenance of the internal combustion engine, this means that the maintenance intervals can be extended. In addition, a targeted diagnosis with maintenance suggestions for the service personnel can be issued.

In den Zeichnungen ist ein bevorzugtes Ausführungsbeispiel dargestellt. Es zeigen:

Fig. 1
ein Systemschaubild;
Fig. 2
eine Injektor-Kennlinie;
Fig. 3
Druckverläufe;
Fig. 4
einen Programmablaufplan.
In the drawings, a preferred embodiment is shown. Show it:
Fig. 1
a system diagram;
Fig. 2
an injector characteristic;
Fig. 3
Pressure profiles;
Fig. 4
a program schedule.

Die Figur 1 zeigt ein Systemschaubild einer elektronisch gesteuerten Brennkraftmaschine 1. Bei der dargestellten Brennkraftmaschine 1 wird der Kraftstoff über ein Common-Rail-System eingespritzt Dieses umfasst folgende Komponenten: Pumpen 3 mit einer Saugdrossel zur Förderung des Kraftstoffs aus einem Kraftstofftank 2, ein Rail 6, Einzelspeicher 8 und Injektoren 7 zum Einspritzen des Kraftstoffs in die Brennräume der Brennkraftmaschine 1. Bei diesem Common-Rail-System ist der hydraulische Widerstand der Einzelspeicher 8 und der Zulaufleitungen entsprechend angepasst. Für die Erfindung ist es unwesentlich, ob das Rail 6 ein Speichervolumen umfasst oder lediglich als einfache Leitung ausgeführt ist.The FIG. 1 shows a system diagram of an electronically controlled internal combustion engine 1. In the illustrated internal combustion engine 1, the fuel is injected via a common rail system comprising the following components: Pumps 3 with a suction throttle for conveying the fuel from a fuel tank 2, a rail 6, single memory. 8 and injectors 7 for injecting the fuel into the combustion chambers of the internal combustion engine 1. In this common rail system is the hydraulic resistance of the individual memory 8 and the supply lines adapted accordingly. For the invention it is immaterial whether the rail 6 comprises a storage volume or is designed only as a simple line.

Die Betriebsweise der Brennkraftmaschine 1 wird durch ein elektronisches Steuergerät (ADEC) 4 geregelt. Das elektronische Steuergerät 4 beinhaltet die üblichen Bestandteile eines Mikrocomputersystems, beispielsweise einen Mikroprozessor, I/O-Bausteine, Puffer und Speicherbausteine (EEPROM, RAM). In den Speicherbausteinen sind die für den Betrieb der Brennkraftmaschine 1 relevanten Betriebsdaten in Kennfeldern/Kennlinien appliziert. Über diese berechnet das elektronische Steuergerät 4 aus den Eingangsgrößen die Ausgangsgrößen. In Figur 1 sind exemplarisch folgende Eingangsgrößen dargestellt: ein Raildruck pCR, der mittels eines Rail-Drucksensors 5 gemessen wird, ein Drehzahl-Signal nMOT der Brennkraftmaschine 1, Drucksignale pE(i) der Einzelspeicher 8 und eine Eingangsgröße E. Unter der Eingangsgröße E sind beispielsweise der Ladeluftdruck eines Turboladers und die Temperaturen der Kühl-/Schmiermittel und des Kraftstoffs subsumiert.The operation of the internal combustion engine 1 is controlled by an electronic control unit (ADEC) 4. The electronic control unit 4 includes the usual components of a microcomputer system, such as a microprocessor, I / O devices, buffers and memory devices (EEPROM, RAM). In the memory modules relevant for the operation of the internal combustion engine 1 operating data in maps / curves are applied. About this calculates the electronic control unit 4 from the input variables, the output variables. In FIG. 1 the following input variables are exemplarily shown: a rail pressure pCR, which is measured by means of a rail pressure sensor 5, a speed signal nMOT of the internal combustion engine 1, pressure signals pE (i) of the individual memory 8 and an input variable E. The input quantity E is, for example, the charge air pressure a turbocharger and the temperatures of the coolant / lubricant and the fuel subsumes.

In Figur 1 sind als Ausgangsgrößen des elektronischen Steuergeräts 4 ein Signal ADV zur Steuerung der Pumpen 3 mit der Saugdrossel und eine Ausgangsgröße A dargestellt. Die Ausgangsgröße A steht stellvertretend für die weiteren Stellsignale zur Steuerung und Regelung der Brennkraftmaschine 1, beispielsweise ein Bestromungs-Beginn BB und ein Bestromungs-Ende BE.In FIG. 1 are shown as outputs of the electronic control unit 4, a signal ADV for controlling the pump 3 with the suction throttle and an output size A. The output variable A is representative of the other control signals for controlling and regulating the internal combustion engine 1, for example, a current start BB and a current end BE.

In Figur 2 ist eine Injektor-Kennlinie dargestellt. Auf der Abszisse ist hierbei die Bestromungs-Dauer BD und auf der Ordinate eine Einspritzmenge qV aufgetragen. Über die Injektor-Kennlinie wird einer berechneten Einspritzmenge eine Bestromungs-Dauer BD zugeordnet. Beispielsweise wird der Einspritzmenge qV(A) ein Betriebspunkt A und entsprechend die Bestromungs-Dauer BD(A) zugeordnet. Als strichpunktierte Linien sind zwei Grenzwertlinien dargestellt. Der Betriebspunkt A verändert sich über die Lebensdauer des Injektors. Die Ursachen hierfür sind die magnetischen Änderungen des magnetischen Kreises, die hydraulischen Änderungen, z. B. Veränderung des Drosselquerschnitts, und die mechanischen Änderungen, z. B. Verschleiß. Die Veränderungen des Betriebspunkts A sind in der Figur mit entsprechenden Pfeilen bezeichnet, hieraus resultierend z. B. ein neuer Betriebspunkt A1.In FIG. 2 an injector characteristic is shown. On the abscissa here is the energizing duration BD and plotted on the ordinate an injection qV. The injector characteristic curve is used to calculate a calculated injection quantity Energizing duration BD assigned. For example, the injection quantity qV (A) is assigned an operating point A and, correspondingly, the energizing duration BD (A). As dashed lines two limit lines are shown. The operating point A changes over the life of the injector. The causes for this are the magnetic changes of the magnetic circuit, the hydraulic changes, z. B. Change of the throttle cross-section, and the mechanical changes, eg. B. wear. The changes of the operating point A are indicated in the figure with corresponding arrows, resulting z. B. a new operating point A1.

In Figur 3 sind exemplarisch mehrere Druckverläufe dargestellt. Auf der Abszisse ist hierbei der Kurbelwellenwinkel Phi oder als Äquivalent die Zeit aufgetragen. Auf der Ordinate ist der gemessene Druck pE(i) eines Einzelspeichers aufgetragen. Ein Soll-Spritzverlauf mit den Punkten A; B und C ist als durchgezogene Linie dargestellt. Als gestrichelte Linie ist mit den Punkten D, E und F ist ein erster Ist-Spritzverlauf dargestellt. Als strichpunktierte Linie mit den Punkten A, G, H und J ist ein zweiter Ist-Spritzverlauf dargestellt. Eine Vor- und Nacheinspritzung wurde aus Übersichtlichkeitsgründen bei den jeweiligen Spritzverläufen weggelassen. Mit dem Bezugszeichen TBSB ist ein Spritzbeginn-Toleranzband mit den Grenzwerten GW3 und GW4 bezeichnet. Das Bezugszeichen TBSE bestimmt ein Spritzende-Toleranzband mit den dazugehörenden Grenzwerten GM1 und GW2. Ebenfalls in der Figur 3 eingezeichnet ist eine ordinatenparallele Linie, entsprechend dem Bewertungsgrenzwert BWGW.In FIG. 3 For example, several pressure profiles are shown. The abscissa indicates the crankshaft angle Phi or the equivalent time. On the ordinate, the measured pressure pE (i) of a single memory is plotted. A desired spray course with the points A; B and C is shown as a solid line. As a dashed line with the points D, E and F, a first actual injection profile is shown. As a dot-dash line with the points A, G, H and J, a second actual injection profile is shown. A pre- and post-injection was omitted for reasons of clarity in the respective spray progressions. The reference character TBSB designates an injection start tolerance band with the limit values GW3 and GW4. The reference symbol TBSE determines an injection end tolerance band with the associated limit values GM1 and GW2. Also in the FIG. 3 Plotted is an ordinal parallel line, according to the evaluation threshold BWGW.

Das Verfahren gemäß der Erfindung läuft folgendermaßen ab:The process according to the invention proceeds as follows:

Das elektronische Steuergerät gibt einen Bestromungs-Beginn BB und ein Bestromungs-Ende BE für den Injektor aus. Dieser Zeitraum entspricht der Bestromungs-Dauer BD. Aus dem Druckverlauf pE(i) des Einzelspeichers kann zweifelsfrei das Ist-Spritzende erkannt werden. Zum Beispiel gehört zu dem Druckwert pE(SE) der Punkt E und der dazugehörige Zeitwert tE (gestrichelte Linie). Aus diesem Spritzende kann über eine mathematische Funktion der dazugehörende virtuelle Spritzbeginn berechnet werden, hier der Punkt D mit dem Zeitwert tD. Ein derartiges Berechnungsverfahren ist aus der deutschen Patentanmeldung mit dem amtlichen Aktenzeichen DE 103 44 181.6 bekannt. Deren Offenbarungsgehalt gehört zur Offenbarung dieser Anmeldung. Selbstverständlich ist es auch möglich den Spritzbeginn unmittelbar aus den Messwerten des Einzelspeicher-Druckverlaufs zu bestimmen, ohne das Wesen der Erfindung zu verändern. Aus dem ersten Ist-Spritzverlauf wird eine Zeit tSE(IST) vom Bestromungs-Ende BE bis zum gemessenen Spritzende, hier Zeitpunkt tE, berechnet. Für den Spritzbeginn wird eine Zeit tSB(IST) vom Bestromungs-Beginn BB bis zum virtuellen Spritzbeginn, Zeitpunkt tD, berechnet. Danach wird eine Spritzende-Abweichung dtSE aus dem Soll-Spritzverlauf und dem ersten Ist-Spritzverlauf berechnet. Diese Abweichung entspricht in Figur 3 dem Abstand der Punkte E und B. Für den Spritzbeginn wird ebenfalls eine Spritzbeginn-Abweichung dtSB berechnet. Dies entspricht der Differenz der beiden Punkten D und A.The electronic control unit outputs an energization start BB and a current end BE for the injector. This period corresponds to the energizing duration BD. From the pressure curve pE (i) of the individual memory, the actual injection end can be recognized without any doubt. For example, the pressure value pE (SE) includes the point E and the associated time value tE (dashed line). From this injection end, the associated virtual injection start can be calculated via a mathematical function, here the point D with the time value tD. Such a calculation method is known from the German patent application with the official file number DE 103 44 181.6 known. Their disclosure content is part of the disclosure of this application. Of course, it is also possible to determine the start of injection directly from the measured values of the individual storage pressure curve, without changing the essence of the invention. From the first actual injection profile, a time tSE (IST) is calculated from the current end BE to the measured end of injection, here time tE. For the start of injection, a time tSB (IST) is calculated from the start of energization BB until the virtual start of injection, time tD. After that, an injection end deviation dtSE is calculated from the desired injection profile and the first actual injection profile. This deviation corresponds to FIG. 3 the distance of the points E and B. For the start of injection also a start of injection deviation dtSB is calculated. This corresponds to the difference between the two points D and A.

Als nächster Schritt wird in Abhängigkeit von Betriebsparametern der Brennkraftmaschine das Spritzende-Toleranzband TBSE ausgewählt. Unter Betriebsparametern der Brennkraftmaschine sind der Rail Druck, die Drehzahl der Brennkraftmaschine, die Kraftstofftemperatur und die Bestromungs-Dauer BD zu verstehen. Nach Auswahl des Toleranzbandes wird geprüft, ob die Spritzende-Abweichung dtSE innerhalb der beiden Grenzwerte GW1 und GW2 des Spritzende-Toleranzbandes TBSE liegt. In Figur 3 ist dies der Fall im Bezug auf den ersten Ist-Spritzverlauf. Im Anschluss daran wird das Spritzbeginn-Toleranzband TBSB ausgewählt und geprüft, ob die Spritzbeginn-Abweichung dtSB innerhalb des Toleranzbandes mit den Grenzwerte GW3 und GW4 liegt. In Figur 3 liegt die Spritzbeginn-Abweichung dtSB (Punkte A, D) ebenfalls innerhalb des zugehörigen Toleranzbandes. Da sowohl die Spritzende-Abweichung dtSE als auch die Spritzbeginn-Abweichung dtSB innerhalb des jeweiligen Toleranzbandes liegen, wird der Injektor als fehlerfrei bewertet.As the next step, the injection end tolerance band TBSE is selected as a function of operating parameters of the internal combustion engine. Operating parameters of the internal combustion engine are to be understood as meaning the rail pressure, the speed of the internal combustion engine, the fuel temperature and the energizing duration BD. After selecting the tolerance band, it is checked whether the injection end deviation dtSE is within the two limit values GW1 and GW2 of the injection end tolerance band TBSE. In FIG. 3 this is the case with respect to the first actual injection run. Subsequently, the injection start tolerance band TBSB is selected and it is checked whether the start of injection deviation dtSB lies within the tolerance band with the limit values GW3 and GW4. In FIG. 3 the injection start deviation dtSB (points A, D) is also within the associated tolerance band. Since both the injection end deviation dtSE and the start of injection deviation dtSB lie within the respective tolerance band, the injector is rated as error-free.

Beim zweiten Ist-Spritzverlauf (strichpunktierte Linie) liegen sowohl das Spritzende (Punkt H, Zeitpunkt tH) als auch der Spritzbeginn (Punkt G) außerhalb des jeweiligen Toleranzbandes. Als nächsten wird geprüft, ob das Spritzende größer einem Bewertungs-Grenzwert BWGW ist. In Figur 3 liegt der Punkt H innerhalb des Bewertungs-Grenzwerts BWGW. Als Folgereaktion dieser Prüfung wird ein Diagnoseeintrag erstellt, welcher vorsieht, dass beim nächsten Wartungstermin der Injektor getauscht werden soll. Danach werden die Steuerungs-Parameter des Injektors, insbesondere Bestromungs-Beginn und Bestromungs-Dauer, angepasst.In the second actual injection course (dot-dash line) both the injection end (point H, time tH) and the start of injection (point G) are outside the respective tolerance band. Next, it is checked whether the injection end is larger than a judgment threshold BWGW. In FIG. 3 the point H is within the evaluation threshold BWGW. As a consequence of this check, a diagnostic entry is created, which provides that the injector should be exchanged at the next maintenance date. Thereafter, the control parameters of the injector, in particular energization start and energization duration are adjusted.

In der Figur 4 ist ein Programmablaufplan des Verfahrens als Unterprogramm dargestellt. Die Figur 4 besteht aus den Teilfiguren 4A und 4B. Das Unterprogramm kann sowohl zeitgesteuert als auch ereignisgesteuert sein, wenn z. B. eine zu hohe Abgas-Temperaturstreuung festgestellt wird. Bei S1 wird geprüft, ob ein stationärer Betriebszustand vorliegt. Ein stationärer Betriebszustand liegt z. B. bei einer konstanten Drehzahl vor. Wird bei S1 festgestellt, dass ein instationärer Zustand vorliegt, so wird mit S2 eine entsprechende Warteschleife durchlaufen. Ist die Abfrage bei S1 positiv, so wird bei S3 ein zu bewertender Injektor ausgewählt. Bei S4 wird eine Betriebsart MOD ausgewählt. Die Betriebsart wird vom Betreiber vorgegeben. Bei einer Betriebsart MOD1 wird für die Bewertung des Injektors die Vor- und Nacheinspritzung deaktiviert, Schritt S5. Danach wird bei S6 der Bestromungs-Beginn BB nach spät im Sinne von kleineren Kurbelwellenwinkeln vor dem oberen Totpunkt, verstellt. Ergänzend wird die Bestromungs-Dauer BD angepasst. Bei einer Betriebsart MOD2 wird der Injektor einschließlich der Vor-, Haupt- und Nacheinspritzung bewertet. Bei S7 wird das Spritzende SE detektiert. Aus dem Spritzende SE und dem Bestromungs-Ende BE wird eine Zeit tSE(IST) berechnet. Bei S9 wird aus dem Spritzende SE ein virtueller Spritzbeginn SBv bestimmt. Im Anschluss daran wird bei S10 aus dem Bestromungs-Beginn BB und dem virtuellen Spritzbeginn SBV eine Zeit tSB(IST) bestimmt. Bei S11 werden aus dem jeweiligen Soll-Ist-Vergleich eine Spritzbeginn-Abweichung dtSB und eine Spritzende-Abweichung dtSE berechnet.In the FIG. 4 a program flowchart of the method is shown as a subroutine. The FIG. 4 consists of subfigures 4A and 4B. The subroutine can be both time-controlled and event-driven, if z. B. a high exhaust gas temperature dispersion is detected. At S1 it is checked whether a stationary operating state exists. A stationary operating condition is z. B. at a constant speed. If it is determined at S1 that there is an unsteady state, a corresponding waiting loop is run through with S2. Is the query included? S1 positive, an injector to be evaluated is selected at S3. At S4, a mode MOD is selected. The operating mode is specified by the operator. In an operating mode MOD1, the pre- and post-injection is deactivated for the evaluation of the injector, step S5. Thereafter, at S6, the energization start BB is retarded in the sense of smaller crankshaft angles before top dead center. In addition, the energizing duration BD is adjusted. In an operating mode MOD2, the injector including the pre, main and post injection is evaluated. At S7 the injection end SE is detected. From the injection end SE and the current end BE, a time tSE (IST) is calculated. At S9, a virtual injection start SBv is determined from the injection end SE. Following this, a time tSB (IST) is determined at S10 from the start of energization BB and the virtual start of injection SBV. At S11, an injection start deviation dtSB and an injection end deviation dtSE are calculated from the respective target / actual comparison.

In Abhängigkeit von Betriebsparametern der Brennkraftmaschine werden bei S12 das Spritzende-Toleranzband TBSE und das Spritzbeginn-Toleranzband TBSB berechnet. Bei S13 wird geprüft, ob die Spritzbeginn-Abweichung dtSB innerhalb des Toleranzbandes liegt. Ist dies nicht der Fall, so wird der Programmablauf beim Punkt B fortgesetzt. Ergibt die Prüfung bei S13, dass die Spritzbeginn-Abweichung dtSB innerhalb des Spritzbeginn-Toleranzbandes TBSB mit den Grenzwerten GW1 und GW2 liegt, so wird bei S15 geprüft, ob die Spritzende-Abweichung dtSE innerhalb des Spritzende-Toleranzbandes TBSE mit den Grenzwerten GW3 und GW4 liegt. Liegen sowohl die Spritzbeginn-Abweichung als auch die Spritzende Abweichung innerhalb des jeweiligen Toleranzbandes, so wird bei S14 der Injektor als fehlerfrei bewertet und das Unterprogramm beendet.Depending on operating parameters of the internal combustion engine, the injection end tolerance band TBSE and the start of injection tolerance band TBSB are calculated at S12. At S13, it is checked whether the injection start deviation dtSB is within the tolerance band. If this is not the case, the program sequence continues at point B. If the test at S13 shows that the start of injection deviation dtSB lies within the start of injection tolerance band TBSB with the limit values GW1 and GW2, then it is checked at S15 whether the end of injection deviation dtSE is within the injection end tolerance band TBSE with the limit values GW3 and GW4 lies. If both the injection start deviation and the spraying deviation are within the respective tolerance band, the injector is rated as error-free at S14 and the subroutine is ended.

Ergibt die Prüfung bei S15, dass die Spritzende-Abweichung außerhalb des Toleranzbandes liegt, so wird bei S16 geprüft, ob die Spritzbeginn-Abweichung dtSB oder die Spritzende-Abweichung dtSE größer dem Bewertungs-Grenzwert BWGW sind. Ist dies der-Fall, so wird bei S19 ein Diagnoseeintrag veranlasst und bei S20 der entsprechende Injektor deaktiviert. Alternativ kann vorgesehen werden, dass anstelle der Deaktivierung des Injektors die Brennkraftmaschine stillgesetzt wird. Danach ist der Programmablaufplan für diesen Fall beendet. Ergibt die Prüfung bei S16, dass die Spritzende-Abweichung und die Spritzbeginn-Abweichung kleiner als der Bewertungsgrenzwert BWGW sind, so wird bei S17 ein Diagnoseeintrag veranlasst. Der Diagnoseeintrag empfiehlt dem Servicetechniker beim nächsten Wartungstermin den Injektor auszutauschen. Danach werden bei S18 die Steuer-Parameter des Injektors angepasst und das Unterprogramm beendet.If the test at S15 indicates that the injection end deviation is outside the tolerance band, then it is checked in S16 whether the start of injection deviation dtSB or the end of injection deviation dtSE is greater than the evaluation limit value BWGW. If this is the case, a diagnostic entry is initiated at S19 and the corresponding injector is deactivated at S20. Alternatively it can be provided that instead of deactivating the injector, the internal combustion engine is stopped. Thereafter, the program schedule for this case is completed. If the check at S16 shows that the injection end deviation and the start of injection deviation are smaller than the assessment limit value BWGW, a diagnosis entry is initiated at S17. The diagnostics entry recommends that the service technician replace the injector at the next maintenance date. Then, at S18, the control parameters of the injector are adjusted and the subroutine is ended.

Bezugszeichenreference numeral

11
BrennkraftmaschineInternal combustion engine
22
KraftstofftankFuel tank
33
Pumpenpump
44
elektronisches Steuergerät (ADEC)electronic control unit (ADEC)
55
Rail-DrucksensorRail pressure sensor
66
RailRail
77
Injektorinjector
88th
EinzelspeicherSingle memory

Claims (11)

  1. Method for controlling and regulating an internal combustion engine (1) having a common rail system including individual accumulators (8), in which method an actual end of injection (SE(IST)) is detected from the pressure profile (pE(i), i = 1,2 ... n) of the individual accumulators (8), and a virtual actual start of injection (SBv(IST)) is determined,
    characterized
    in that an end of injection deviation (dtSE) is calculated from a setpoint end of injection (SE(SL)) and the actual end of injection (SE(IST)), a start of injection deviation (dtSB) is calculated from a setpoint start of injection (SB(SL)) and the virtual actual start of injection (SBv(IST)), an injector (7) is evaluated on the basis of the end of injection deviation (dtSE) and the start of injection deviation (dtSB), and the further control and regulation of the internal combustion engine (1) takes place on the basis of the injector evaluation.
  2. Method according to Claim 1,
    characterized
    in that an end of injection tolerance band (TBSE) is selected and it is checked whether the end of injection deviation (dtSE) lies within the end of injection tolerance band (TBSE).
  3. Method according to Claim 1,
    characterized
    in that a start of injection tolerance band (TBSB) is selected and it is checked whether the start of injection deviation (dtSB) lies within the start of injection tolerance band (TBSB).
  4. Method according to Claims 2 and 3, characterized
    in that the injector (7) is evaluated as being free of faults if the end of injection deviation (dtSE) and the start of injection deviation (dtSB) lie within the respective tolerance band (TBSE, TBSB).
  5. Method according to Claim 2 or 3, characterized
    in that the injector (7) is evaluated as being faulty if the end of injection deviation (dtSE) lies outside the end of injection tolerance band (TBSE) or the start of injection deviation (dtSB) lies outside the start of injection tolerance band (TBSB).
  6. Method according to Claim 5,
    characterized
    in that, in the case of an injector (7) evaluated as being faulty, it is checked whether the end of injection deviation (dtSE) or the start of injection deviation (dtSB) are greater than an evaluation limit value (BWGW) and, depending on the comparison, either the control parameters of the injector (7) are adapted (dtSE < BWGW; dtSB < BWGW) or the injector (7) is deactivated (dtSE > BWGW; dtSB > BWGW) or the internal combustion engine (1) is deactivated.
  7. Method according to Claim 6,
    characterized
    in that the control parameters of the injector (7) are adapted for every pre-injection, main injection and post-injection and/or multiple injection.
  8. Method according to Claim 6,
    characterized
    in that a diagnostic entry is additionally made.
  9. Method according to one of the preceding claims, characterized
    in that the evaluation of the injector (7) is carried out under steady-state operating conditions of the internal combustion engine (1).
  10. Method according to Claim 9,
    characterized
    in that, for the evaluation of the injector (7), pre-injections and post-injections are deactivated.
  11. Method according to Claim 10,
    characterized
    in that, in the event of deactivation, the control parameters of the injector (7), in particular a start of energization and a duration of energization, are adapted.
EP05857300A 2004-02-12 2005-02-08 Process for controlling and regulating an internal combustion engine Active EP1730394B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004006896A DE102004006896A1 (en) 2004-02-12 2004-02-12 Method for control and regulation of an IC engine with common-rail system uses calculation of injection end and injection begin deviations to evaluate fuel injectors
PCT/EP2005/001226 WO2006094516A1 (en) 2004-02-12 2005-02-08 Process for controlling and regulating an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1730394A1 EP1730394A1 (en) 2006-12-13
EP1730394B1 true EP1730394B1 (en) 2011-07-06

Family

ID=34853442

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05857300A Active EP1730394B1 (en) 2004-02-12 2005-02-08 Process for controlling and regulating an internal combustion engine

Country Status (4)

Country Link
US (1) US7305972B2 (en)
EP (1) EP1730394B1 (en)
DE (1) DE102004006896A1 (en)
WO (1) WO2006094516A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006007365B3 (en) * 2006-02-17 2007-05-31 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine, involves setting of minimum pressurization level from maximum individual accumulator pressure in first step
DE102006034513B3 (en) * 2006-07-26 2007-10-04 Mtu Friedrichshafen Gmbh Detection method for pre-injection in IC engines with common-rail system comprises following pressure change in intermediate storage tanks over fixed interval, detecting end of main injection stage and calculating virtual starting point
DE102006034514B4 (en) * 2006-07-26 2014-01-16 Mtu Friedrichshafen Gmbh Method for controlling an internal combustion engine
EP2031224B1 (en) * 2007-08-31 2018-11-07 Denso Corporation Fuel injection device, fuel injection system, and method for determining malfunction of the same
US8459234B2 (en) * 2007-08-31 2013-06-11 Denso Corporation Fuel injection device, fuel injection system, and method for determining malfunction of the same
JP4462307B2 (en) * 2007-08-31 2010-05-12 株式会社デンソー Fuel injection device and fuel injection system
JP4501975B2 (en) * 2007-08-31 2010-07-14 株式会社デンソー FUEL INJECTION DEVICE AND METHOD FOR MANUFACTURING FUEL INJECTION DEVICE
DE102007045606B3 (en) * 2007-09-25 2009-02-26 Mtu Friedrichshafen Gmbh Method for controlling and regulating internal combustion engine with common rail system, involves filtering individual accumulator pressure within time frame in measuring interval after end of injection of main injection
DE102007053406B3 (en) * 2007-11-09 2009-06-04 Continental Automotive Gmbh Method and device for carrying out both an adaptation and a diagnosis in emission-relevant control devices in a vehicle
JP5383132B2 (en) * 2008-03-28 2014-01-08 株式会社デンソー Fuel pressure sensor mounting structure, fuel pressure detection system, fuel injection device, pressure detection device and pressure accumulation fuel injection device system used therefor
DE102008001412B4 (en) * 2008-04-28 2016-12-15 Robert Bosch Gmbh Method and device for operating an injection valve
DE102008024546B3 (en) * 2008-05-21 2010-01-07 Continental Automotive Gmbh Method for injector-specific adjustment of the injection time of motor vehicles
DE102008002240A1 (en) * 2008-06-05 2009-12-10 Robert Bosch Gmbh Pressure sensor checking method for fuel injection system of diesel internal-combustion engine of motor vehicle, involves determining closing duration of injection valve to switch-over valve from opened condition to closed condition
DE102009056381B4 (en) * 2009-11-30 2014-05-22 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
JP5263280B2 (en) * 2010-12-10 2013-08-14 株式会社デンソー Fuel injection control device
JP5287839B2 (en) * 2010-12-15 2013-09-11 株式会社デンソー Fuel injection characteristic learning device
DE102011080990B3 (en) * 2011-08-16 2013-01-24 Mtu Friedrichshafen Gmbh Common rail system, internal combustion engine and device and method for controlling and / or regulating an internal combustion engine
DE102011085926A1 (en) * 2011-11-08 2013-05-08 Robert Bosch Gmbh Method for operating an internal combustion engine
FR2983530A1 (en) * 2011-12-06 2013-06-07 Renault Sa METHOD FOR DIAGNOSING A DERIVATIVE OF AT LEAST ONE INJECTOR OF A COMMON RAIL FUEL INJECTION SYSTEM
GB2500926B (en) * 2012-04-05 2017-04-26 Gm Global Tech Operations Llc Method of determining injection faults in an internal combustion engine
DE102012015493B4 (en) 2012-08-04 2015-10-15 Mtu Friedrichshafen Gmbh Method for determining at least one actual injection parameter of at least one injector in an internal combustion engine
DE102012021076B4 (en) 2012-10-19 2023-03-30 Rolls-Royce Solutions GmbH Method for determining at least one actual injection parameter of at least one injector in an internal combustion engine and engine control unit
DE102013211731B4 (en) 2013-06-20 2024-06-13 Rolls-Royce Solutions GmbH Method for correcting the injection duration of injectors of an internal combustion engine and control device
DE102013211728A1 (en) * 2013-06-20 2014-12-24 Mtu Friedrichshafen Gmbh Method for correcting the start of injection of injectors of an internal combustion engine and control device for an internal combustion engine
DE102013216255B3 (en) 2013-08-15 2014-11-27 Mtu Friedrichshafen Gmbh Method for injector-specific diagnosis of a fuel injection device and internal combustion engine with a fuel injection device
DE102013221229B4 (en) * 2013-10-18 2017-05-11 Mtu Friedrichshafen Gmbh Method for determining at least one actual injection parameter of at least one injector of an internal combustion engine and internal combustion engine
JP2016133065A (en) * 2015-01-20 2016-07-25 株式会社ケーヒン Fuel injection valve with cylinder pressure sensor
JPWO2016129402A1 (en) 2015-02-09 2017-09-28 日立オートモティブシステムズ株式会社 Control device for fuel injection valve
AT517205B1 (en) 2015-06-23 2016-12-15 Ge Jenbacher Gmbh & Co Og Dual fuel engine
US11014581B2 (en) * 2017-04-28 2021-05-25 Transportation Ip Holdings, Llc Vehicle engine control system
DE102019001677B4 (en) * 2019-03-08 2020-12-10 Mtu Friedrichshafen Gmbh Method for predicting the condition of an injector
DE102019003815B4 (en) 2019-05-29 2021-01-28 Mtu Friedrichshafen Gmbh Method for monitoring an injector for mechanical damage
DE102021206876A1 (en) 2021-06-30 2023-01-05 Robert Bosch Gesellschaft mit beschränkter Haftung Method and device for operating a fuel injector using machine learning methods

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293468A (en) * 1985-10-21 1987-04-28 Honda Motor Co Ltd Fuel injection control device for engine
DE4004107C2 (en) * 1990-02-10 1999-03-25 Bosch Gmbh Robert Method and device for controlling electromagnetic valves of a fuel pump
DE4344190A1 (en) * 1993-12-23 1995-06-29 Orange Gmbh Fuel injector with high pressure fuel accumulator
US5535621A (en) * 1994-03-02 1996-07-16 Ford Motor Company On-board detection of fuel injector malfunction
JP3695046B2 (en) * 1997-02-07 2005-09-14 いすゞ自動車株式会社 Engine fuel injection method and apparatus
DE19740608C2 (en) * 1997-09-16 2003-02-13 Daimler Chrysler Ag Method for determining a fuel injection-related parameter for an internal combustion engine with high-pressure accumulator injection system
JPH11101149A (en) * 1997-09-26 1999-04-13 Isuzu Motors Ltd Fuel injection method and device thereof for engine
DE19757293C2 (en) * 1997-12-22 1999-11-25 Siemens Ag Device for determining the start of injection in a direct injection internal combustion engine
DE19850221C1 (en) 1998-10-31 2000-05-04 Mtu Friedrichshafen Gmbh Method for testing a throttle point, in particular a throttle point of an injector
DE19857971A1 (en) * 1998-12-16 2000-06-21 Bosch Gmbh Robert Controlling an IC engine esp. for IC engine with common rail fuel injection system so that at least one pump delivers fuel in storage
SE514368C2 (en) * 1999-06-01 2001-02-12 Volvo Personvagnar Ab Method and arrangement for diagnosis of sensor in connection with control of an internal combustion engine and use of said arrangement
DE10232356A1 (en) * 2002-07-17 2004-01-29 Robert Bosch Gmbh Method for controlling injectors of a fuel metering system of an internal combustion engine
DE10344181A1 (en) 2003-09-24 2005-04-28 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine
JP2005180217A (en) * 2003-12-16 2005-07-07 Mitsubishi Electric Corp Injector control device for cylinder injection type engine

Also Published As

Publication number Publication date
US7305972B2 (en) 2007-12-11
DE102004006896A1 (en) 2005-09-15
EP1730394A1 (en) 2006-12-13
WO2006094516A1 (en) 2006-09-14
US20060266332A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
EP1730394B1 (en) Process for controlling and regulating an internal combustion engine
DE102007028900B4 (en) Method and device for diagnosing an injection valve of an internal combustion engine that is in communication with a fuel rail
DE102006034514B4 (en) Method for controlling an internal combustion engine
EP2565431B1 (en) Method for monitoring non-return valves in gas supply lines of a gas motor
EP2748450B1 (en) Common rail system, internal combustion engine, and device and method for controlling and/or regulating an internal combustion engine
DE102010013602A1 (en) A method for detecting a malfunction of an electronically controlled fuel injection system of an internal combustion engine
EP1446568B1 (en) Method for controlling an internal combustion engine
DE102012218176A1 (en) Method for operating a fuel injection system
WO2017021183A1 (en) Method for identifying faulty components of a fuel injection system
DE102010043989A1 (en) Adaptation method of an injector of an internal combustion engine
DE102006007365B3 (en) Method for controlling and regulating an internal combustion engine, involves setting of minimum pressurization level from maximum individual accumulator pressure in first step
EP2076667B1 (en) Method and device for monitoring a fuel injection system
DE102010027675B4 (en) Method for detecting faulty components or faulty subsystems of an electronically controlled fuel injection system of an internal combustion engine by evaluating the pressure behavior
DE102014007963A1 (en) Method for operating an internal combustion engine and engine control unit
DE102005026054B4 (en) Method and device for monitoring the functioning of a valve lift adjusting device of an internal combustion engine in a cold start phase
DE102019001677B4 (en) Method for predicting the condition of an injector
DE102005031591A1 (en) Operation method for internal combustion engine, involves determining correction characteristic for each cylinder based on exhaust gas temperature when internal combustion engine is operated in steady state
DE102008024545A1 (en) Method for determining cause of defect in low pressure area of fuel injection system of internal combustion engine of motor vehicle, involves determining actual cause of defect by monitoring reaction of injection system to load step
DE102017004424B4 (en) Procedure for the maintenance of an injector as required
DE102011005981B4 (en) Method for determining a change in a control amount of an injector of an internal combustion engine
DE102010040719A1 (en) Combustion engine controlling method, involves determining regression lines in regions, where characteristics for opening and closing valve are determined from points of intersection of regression lines
DE102016200991A1 (en) Method for fault diagnosis for the pressure sensor and common rail fuel injection control device
DE102008030870A1 (en) Internal combustion engine i.e. common-rail-diesel-internal combustion engine, diagnosis method, involves producing signal, during exceeding of specific failure probability, where signal indicates increased risk of valve, reservoir and pump
EP3976952B1 (en) Method for monitoring an injector for mechanical damage
DE102015200565A1 (en) Method and device for adapting a component of an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060708

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005011601

Country of ref document: DE

Effective date: 20110908

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120411

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005011601

Country of ref document: DE

Effective date: 20120411

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005011601

Country of ref document: DE

Owner name: ROLLS-ROYCE SOLUTIONS GMBH, DE

Free format text: FORMER OWNER: MTU FRIEDRICHSHAFEN GMBH, 88045 FRIEDRICHSHAFEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230220

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230220

Year of fee payment: 19

Ref country code: DE

Payment date: 20230216

Year of fee payment: 19

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529