EP2748450B1 - Common rail system, internal combustion engine, and device and method for controlling and/or regulating an internal combustion engine - Google Patents

Common rail system, internal combustion engine, and device and method for controlling and/or regulating an internal combustion engine Download PDF

Info

Publication number
EP2748450B1
EP2748450B1 EP12746284.4A EP12746284A EP2748450B1 EP 2748450 B1 EP2748450 B1 EP 2748450B1 EP 12746284 A EP12746284 A EP 12746284A EP 2748450 B1 EP2748450 B1 EP 2748450B1
Authority
EP
European Patent Office
Prior art keywords
memory unit
logic
pressure
injector
acr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12746284.4A
Other languages
German (de)
French (fr)
Other versions
EP2748450A1 (en
Inventor
Manuel Boog
Gerald Fast
Robby Gerbeth
Michael Walder
Ralf Speetzen
Jörg REMELE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP2748450A1 publication Critical patent/EP2748450A1/en
Application granted granted Critical
Publication of EP2748450B1 publication Critical patent/EP2748450B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems

Definitions

  • the invention relates to a common rail system for an internal combustion engine according to the preamble of claim 1.
  • a rail is connected via a high pressure guide for fuel injector for injecting the fuel into a working space of an internal combustion engine, wherein the high pressure guide has a high pressure component with a single memory having a pressure measuring device.
  • a pressure determination on an individual memory in a common rail system is possible, for example, in a particularly reliable manner.
  • a system is for example in DE 10 2009 002 793 A1 or in DE 10 2006 034 515 B3 the applicant has been described; The advantages of a common rail system with individual storage come into play.
  • injection start and injection end are regulated as parameters of an electronic device.
  • injection start and injection end are regulated as parameters of an electronic device.
  • the problem arises that there is a time offset between the start of energization of the injector, the needle stroke of the injector and the actual start of injection. The same applies to the injection end.
  • An inaccuracy in the control of the injection start and the injection end ultimately leads to an inaccuracy concerning the amount of fuel supplied to the internal combustion engine.
  • an aforementioned concept can lead to inaccuracies, for example due to injection behavior that varies with the life of the injectors.
  • the invention begins, whose task is to develop a common rail system of the type mentioned.
  • a detection and evaluation of injector sizes with individual memory should be possible in an improved manner.
  • this should be possible in the case of a pressure measuring device.
  • this should also be possible in the case of an aging or an interchanged injector.
  • the object concerning the common rail system is achieved with a common rail system of the type mentioned, in which the features of the characterizing part of claim 1 are provided according to the invention.
  • the pressure measuring device is coupled to a local logic and memory unit which is designed to locally evaluate and store injector data and / or rail data.
  • the invention is based on the consideration that the systems described so far in the prior art of the type described above can still be improved with central electronics. On the one hand, this applies to internal combustion engines with a comparatively small number of cylinders of perhaps 4 to 8 or 10 cylinders. In that case, it has indeed proven to be cost-effective-already locally-at each or every cylinder, to provide a logic and memory unit with a pressure measuring device which is designed, in particular, to locally evaluate and store data of an injector. Moreover, however, the concept of the invention may also be advantageous for engines with high numbers of cylinders, since thereby a more effective data function and safer evaluation or assignment of evaluated data to a particular cylinder is possible. Overall, the concept of the invention makes it possible to store individual data of a high-pressure component such as an injector or a single memory and / or the rail by means of the decentralized electronics thus realized and to carry out an evaluation already locally at the location of the data generation.
  • a high-pressure component such as an injector or a single memory and /
  • individual data such as manufacturer information, acceptance data, settings or other injector-individual data as well as diagnostic data for an injector can be decentrally recorded and stored or already evaluated.
  • the backup functionality for data can be adopted locally, which has advantages in a loss of data in the central electronics.
  • the invention provides a method of the type mentioned, according to the invention in the Characteristics of the characterizing part of claim 15 are provided.
  • the pressure of the individual memory is measured via a pressure measuring device on the individual memory immediately after or before a hydraulic resistance of the high-pressure line and evaluated in a local logic and memory unit, wherein additionally only selected data is given to a bus to the central electronics.
  • the local logic and memory unit can already have an injector model for model-based injector control.
  • an evaluation of injector data can already be carried out locally.
  • the local logic and memory unit also has a diagnostic model for model-based diagnosis and / or evaluation of injector data. This may include, for example, parity equations, observer or parameter estimation techniques.
  • the pressure measuring device is formed in the form of a strain sensor.
  • the expansion sensor can be particularly preferably formed in the form of a strain gauge.
  • a strain gauge is preferably arranged on the outside of the single memory, wherein the individual memory, a hydraulic resistance is arranged upstream or downstream of the integration directly into the high-pressure line.
  • the memory unit can be separated from the logic unit. This has the advantage that different or differently designed storage units can be available for a logic system of locally wedged local electronics in combination with central electronics. In particular, it has proved to be advantageous that, when the logic unit and the memory unit are separated, the memory unit is designed to remain on a high-pressure component.
  • the aforementioned development has proven to be advantageous for the case of a high pressure component in the form of an injector. However, this measure can also prove to be advantageous for a high pressure component in the form of a single memory or a rail.
  • identification data and information and / or diagnostic data relevant to the high-pressure component are always carried along with the high-pressure component and are available; this in a particularly advantageous manner in the memory is replaced with the high-pressure component and can be connected to the local logic unit.
  • the replaceable local memory unit can thus be coupled to the logic system, as it were, with the relevant data for the high-pressure component, such as in the form of an electronic thumbprint.
  • diagnostic data such as aging data, current behavior or the like with a replaced or substitute high-pressure component are available.
  • Fig. 1 shows by way of example a substantially analogous to the aforementioned DE 10 2006 034 515 B3 trained common rail system 100 with an electronically controlled internal combustion engine 1.
  • the common rail system 100 comprises a low-pressure pump 2 for fuel delivery from a fuel tank 3, a suction throttle 4 for determining a volume flow, a high pressure pump 5 to promote the fuel with pressure increase initially in a rail 6.
  • the fuel is further supplied from the rail 6 in a provided for each cylinder of the internal combustion engine 1 single memory 7 for temporarily storing the prestressed fuel and finally into an injector 8 for Injecting the fuel into the cylinder or the combustion chamber of the internal combustion engine 1 further promoted.
  • the fuel in the individual memory 7 is sufficiently biased to ensure sufficient injection into the combustion chamber of the internal combustion engine 1.
  • a feedback of noise in the rail 6 is attenuated with appropriate design of the feed line from the rail 6 to the individual memory 7, d. H. the connecting line from the rail 6 to the individual memory 7 has a correspondingly high hydraulic resistance.
  • This system is controlled by an electronic control unit (ADEC or ECU) of central electronics 9 (with a central logic 11) as well as by a distributed local electronics 12.
  • a locally distributed local electronics 12 comprises a number of locally-at the place of data formation formed logic and memory units ACR, AE, AI which are each connected to a respective sensor 10, 20, 30 directly on site.
  • a local measuring device namely here a rail pressure sensor 10 and a single-reservoir pressure sensor 20 and an optional injector pressure sensor 30, each having a local logic and memory unit ACR, AE and optionally AI distributed decentrally local electronics 12 coupled - namely a rail logic and memory unit ACR and a single storage and injector logic and storage unit AE, AI.
  • a local logic and memory unit ACR, AE optionally AI distributed decentrally local electronics 12 coupled - namely a rail logic and memory unit ACR and a single storage and injector logic and storage unit AE, AI.
  • AI only one can be provided, so that one of both is optional.
  • the present embodiment provides only the single memory logic and memory unit AE, so that the in Fig. 1 shown injector logic and memory unit AI is to be understood as an option.
  • the logic and memory units ACR, AE are each designed to locally evaluate and store measurement data of the common rail system 100.
  • this is concretely the pressure data of a rail pressure pCR on the rail 6 and pressure data of a single accumulator pressure pE on the individual accumulator 7.
  • the evaluated measurement data A (pE) and A (pCR) are respectively output from the output of the local logic and storage units AE, ACR to the electronic control unit ( ADEC or ECU) of the central electronics 9 with the central logic 11 via the input 9.1 forwarded.
  • pressure signal A (pl) of the injector 8 already evaluated by a local logic and memory unit AI to the data bus 13, i. from the output of the local logic and storage units AI the electronic control unit (ADEC or ECU) of the central electronics 9 with the central logic 11 via its input 9.1 forward.
  • the local logic and memory unit AE is arranged integrally with the individual accumulator pressure sensor 20 in the form of a strain gauge on the single accumulator 7.
  • the individual memory 7 may also be formed with the injector 8 in a single housing.
  • the single-reservoir pressure sensor Provide 20 in the form of a strain gauge directly with a local logic and memory unit AE integrated design on the individual memory 7 of the injector.
  • the local logic and storage unit ACR for the rail 6 with the rail pressure sensor 10 is integrated on the rail 6.
  • FIG. 1 Illustrated exemplary embodiment follows a general system, as shown schematically as a block diagram in FIG Fig. 2 is shown.
  • the common rail system 100 provides for an internal combustion engine 1 a combined control of the central electronics 9 and a distributed distributed local electronics 12 before.
  • the distributed distributed local electronics 12 is integrated in a construction of a number of measuring devices M1, M2 ... Mi and a number of directly with the measuring devices in an integrated form accommodated logic and memory units A1 / S1, A2 / S2 ... Ai / Si formed.
  • the measuring device M1, M2 is a pressure measuring device with an integrated memory and logic unit A1 / S1, A2 / S2 for measuring and evaluating an individual accumulator pressure pE and a rail pressure pCR, as described with reference to FIG Fig. 1 explained and work there with AE, ACR are called.
  • the further measuring devices Mi may be of a different type, for example comprising a temperature measuring device or the like, and may likewise each be integrated with a local logic and memory unit Ai / Si.
  • a measuring device M1, M2 to Mi is designed to perform a measurement on the common-rail system 100, for example on a single memory (7 in Fig.1 ), which is listed here as component B1 or on a rail (6 in Fig. 1 ) which is listed here as component B2 or another component Bi of the common rail system 100.
  • a local logic and memory unit A1 / S1, A2 / is present in each case directly at the location of the measuring device M1, M2... S2 ... Ai / Si integrated with the measuring device.
  • the logic and memory unit A1 / S1, A2 / S2... Ai / Si is in each case already capable of evaluating and storing a measurement signal supplied by each of the measuring devices M1, M2 to Mi.
  • diagnostic data D can be distributed individually for each component B, decentralized detected and stored in a memory Si. Particularly in the event of an error, a last set of diagnostic data can be provided in a memory Si -which is designed as a ring memory.
  • a data logger function L over the operating time of a component Bi can be provided in a comparatively simple manner.
  • a injector pressure sensor 30 is additionally or alternatively provided for the individual accumulator pressure sensor 20, which is very similar to a previously discussed local logic and memory unit AE for the individual memory 7 or a local logic and memory unit ACR for the rail 6 read can be.
  • a local logic and memory unit AI can be provided for the injector and the pressure sensor 30 provided on the injector, in the form of a strain gauge. Their interpretation can basically be done on the same principle as for the logic and memory unit AE and ACR.
  • the logic and memory unit AE and / or AI has a memory unit S and a logic unit A, wherein the memory unit S can be separated from the logic unit A.
  • the memory unit S is provided for remaining on the injector or individual memory.
  • the memory unit S of the logic and memory unit AI can be exchanged with the injector 8 and the strain gauge 30 or the memory unit S of the logic and memory unit AE can be exchanged with the individual memory 7 and the strain gauge 20.
  • This may prove necessary in the context of aging of the injector 8 and / or individual memory 7.
  • Similar replacement processes as in the case of an injector 8 can thus take place when an individual accumulator 7 is aging by exchanging the individual accumulator 7 with pressure sensor 20 and accumulator S.
  • a similar replacement process can also be carried out for the rail 6 with pressure sensor 10 and memory S relating to the logic and memory unit ACR; this time by separating the memory S from the logic unit A of the logic and memory unit ACR.
  • a central electronics 9 and the locally distributed local electronics 12-for example, a logic and memory unit AI, AE or ACR with the central logic 11-- takes place in such a way that during operation of the common rail system 100 measurement data how the pressure profile at an injector 8 or at a single memory 7 to the central electronics 9 are passed under evaluation by the logic unit A, d. H. in evaluated form A (pI), A (pE), A (pCR).
  • the corresponding data or data relevant to the pressure history in the memory unit S of the high pressure component - e.g. stored in a memory unit S of the logic and memory unit AE and ACR and AI.
  • a high pressure component e.g. an injector 8 or a single memory 7 exchanged or set to another location, for example to another cylinder of the internal combustion engine
  • this high pressure component takes the relevant relevant for the injection process diagnostic data in the exchanged with memory unit S with. This also applies to a newly used high pressure component.
  • the logic system of locally distributed local electronics 12 and central electronics 9 thus also control and regulating aging-related developments descriptive, characteristic of the high-pressure component, individual measurement data available and can be used to control and regulate the overall system.
  • a time signal given by the central electronic unit 9 to the locally distributed local electronics 12 for initiating an injection process can also take place when high-pressure components are exchanged so that this is matched to the optionally individual properties of the injector 8 or the individual accumulator 7; whereby the individual characteristics can influence the pressure course.
  • the so implemented distributed distributed local electronics 12 from measuring device M1, M2 to Mi and local logic and memory unit A1 / S1, A2 / S2 ... Ai / Si for each of the components Bi has the advantage that comparatively short sensor lines between a sensor the measuring device Mi and a local logic and memory unit Ai / Si possible are.
  • This allows z. B. a high sampling frequency by the local logic and memory unit - namely in Fig.1 the AE, ACR-, which are here with A1 / S1, A2 / S2 designated, nevertheless good signal quality.
  • a reduction in the signal quality (signal-to-noise ratio) due to a longer wiring harness is thus avoided.
  • the present system also allows on the output side of the electronic control unit of the central electronics 9 with the central logic 11 a the same principle following realization of a distributed distributed local electronics 12.
  • This can for example be realized for a power-determining signal vE, the first in a local logic and memory unit Aj / Sj is processed and then supplied via an actuator Mj the component system block Bi.
  • a logic and memory unit Ai / Si, Aj / Sj a corresponding calculation model are stored with which a model-based block control, for. B. injector control or a corresponding diagnostic method is possible.
  • a model-based block control for. B. injector control or a corresponding diagnostic method is possible.
  • the implementation of parity equations, observer systems and parameter estimation methods are conceivable.
  • Signal-based diagnostic methods such as frequency analyzes or the like can also be implemented on the basis of the comparatively small sensor and actuator lines.
  • Rail system 100 to the internal combustion engine 1.
  • the requirement of a precise knowledge of a crank angle, for example for an injector 8, a single memory 7 or a rail 6 is of lower priority than heretofore.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

Die Erfindung betrifft ein Common-Rail-System für eine Brennkraftmaschine gemäß dem Oberbegriff des Anspruchs 1. Mit einem Rail ist über eine Hochdruckführung für Kraftstoff ein Injektor zur Injektion des Kraftstoffs in einen Arbeitsraum einer Brennkraftmaschine verbunden, wobei die Hochdruckführung eine Hochdruckkomponente mit einem Einzelspeicher hat, die eine Druckmesseinrichtung aufweist.The invention relates to a common rail system for an internal combustion engine according to the preamble of claim 1. With a rail is connected via a high pressure guide for fuel injector for injecting the fuel into a working space of an internal combustion engine, wherein the high pressure guide has a high pressure component with a single memory having a pressure measuring device.

Mit einer solchen Druckmesseinrichtung ist beispielsweise in besonders verlässlicher Weise eine Druckbestimmung an einem Einzelspeicher bei einem Common-Rail-System möglich. Ein solches System ist beispielsweise in DE 10 2009 002 793 A1 oder in DE 10 2006 034 515 B3 der Anmelderin beschrieben worden; dabei kommen die Vorteile eines Common-Rail-Systems mit Einzelspeicher zum Tragen.With such a pressure measuring device, a pressure determination on an individual memory in a common rail system is possible, for example, in a particularly reliable manner. Such a system is for example in DE 10 2009 002 793 A1 or in DE 10 2006 034 515 B3 the applicant has been described; The advantages of a common rail system with individual storage come into play.

Darüberhinaus können grundsätzlich auch andere Messeinrichtungen an einer Hochdruckkomponente angeschlossen sein. Insgesamt dient das eingangs genannte System dazu, einen Spritzbeginn und ein Spritzende des Injektors und damit maßgeblich die Güte der Verbrennung und die Zusammensetzung des Abgases bei einer Brennkraftmaschine mit zu beeinflussen. Um die gesetzlichen Grenzwerte einzuhalten, werden unter anderem Spritzbeginn und Spritzende als Kenngrößen von einer elektronischen Einrichtung geregelt. In der Praxis tritt bei einer Brennkraftmaschine mit einem Common-Rail-Systems das Problem auf, dass zwischen dem Bestromungsbeginn des Injektors, dem Nadelhub des Injektors und dem tatsächlichen Spritzbeginn ein zeitlicher Versatz besteht. Für das Spritzende gilt Entsprechendes. Eine Ungenauigkeit in der Regelung des Spritzbeginns und des Spritzendes führt letztendlich zu einer Ungenauigkeit betreffend die der Brennkraftmaschine zugeführten Kraftstoffmenge.In addition, in principle, other measuring devices may be connected to a high-pressure component. Overall, the system mentioned at the beginning serves to initiate the injection and injection end of the injector and thus decisively the quality of the combustion and the composition of the exhaust gas in an internal combustion engine to influence with. In order to comply with the legal limits, among other things injection start and injection end are regulated as parameters of an electronic device. In practice, in an internal combustion engine with a common rail system, the problem arises that there is a time offset between the start of energization of the injector, the needle stroke of the injector and the actual start of injection. The same applies to the injection end. An inaccuracy in the control of the injection start and the injection end ultimately leads to an inaccuracy concerning the amount of fuel supplied to the internal combustion engine.

Trotz genauer Sensorik kann ein vorgenanntes Konzept zu Ungenauigkeiten führen, beispielsweise aufgrund von mit Lebensdauer der Injektoren veränderlichem Einspritzverhalten. Darüberhinaus ist es wünschenswert eine konkrete Diagnose von Ausfallursachen, Störungen oder sonstigen Drifts von Injektoren feststellen und verarbeiten zu können.Despite precise sensor technology, an aforementioned concept can lead to inaccuracies, for example due to injection behavior that varies with the life of the injectors. Moreover, it is desirable to be able to determine and process a concrete diagnosis of causes of failure, malfunctions or other drifts of injectors.

An dieser Stelle setzt die Erfindung an, deren Aufgabe es ist, ein Common-Rail-System der eingangs genannten Art weiterzubilden. Insbesondere soll eine Erfassung und Auswertung von Injektorgrößen mit Einzelspeicher in verbesserter Weise möglich sein. Insbesondere soll dies für den Fall einer Druckmesseinrichtung möglich sein. Insbesondere soll dies auch für den Fall eines alternden oder einen ausgewechselten Injektor möglich sein.At this point, the invention begins, whose task is to develop a common rail system of the type mentioned. In particular, a detection and evaluation of injector sizes with individual memory should be possible in an improved manner. In particular, this should be possible in the case of a pressure measuring device. In particular, this should also be possible in the case of an aging or an interchanged injector.

Die Aufgabe betreffend das Common-Rail-System wird mit einem Common-Rail-System der eingangs genannten Art gelöst, bei dem erfindungsgemäß auch die Merkmale des kennzeichnenden Teils des Anspruchs 1 vorgesehen sind. Insbesondere ist vorgesehen, dass die Druckmesseinrichtung mit einer lokalen Logik und Speichereinheit gekoppelt ist, die ausgebildet ist, Injektordaten und/oder Raildaten lokal auszuwerten und zu speichern.The object concerning the common rail system is achieved with a common rail system of the type mentioned, in which the features of the characterizing part of claim 1 are provided according to the invention. In particular, it is provided that the pressure measuring device is coupled to a local logic and memory unit which is designed to locally evaluate and store injector data and / or rail data.

Die Erfindung geht von der Überlegung aus, dass die bisher im Stand der Technik der eingangs erläuterten Art beschriebenen Systeme mit zentraler Elektronik noch verbesserbar sind. Zum Einen betrifft dies Brennkraftmaschinen mit vergleichsweise kleiner Zylinderzahl von vielleicht 4 bis 8 oder 10 Zylindern. In dem Fall hat es sich in der Tat als kostenrentabel erwiesen -bereits lokal- an jedem oder für jeden Zylinder eine Logik- und Speichereinheit eine Druckmesseinrichtung vorzusehen, die ausgebildet ist insbesondere Daten eines Injektors lokal auszuwerten und zu speichern. Darüberhinaus kann das Konzept der Erfindung jedoch auch für Motoren mit hoher Zylinderzahl vorteilhaft sein, da dadurch eine effektivere Datenfunktion- und sicherere Auswertung bzw. Zuordnung von ausgewerteten Daten zu einem bestimmten Zylinder möglich ist. Insgesamt ermöglicht das Konzept der Erfindung individuelle Daten einer Hochdruckkomponente -wie beispielsweise einem Injektor oder einem Einzelspeicher-- und/oder des Rails mittels der so realisierten dezentralen Elektronik zu speichern und eine Auswertung bereits lokal am Ort der Datenentstehung durchzuführen.The invention is based on the consideration that the systems described so far in the prior art of the type described above can still be improved with central electronics. On the one hand, this applies to internal combustion engines with a comparatively small number of cylinders of perhaps 4 to 8 or 10 cylinders. In that case, it has indeed proven to be cost-effective-already locally-at each or every cylinder, to provide a logic and memory unit with a pressure measuring device which is designed, in particular, to locally evaluate and store data of an injector. Moreover, however, the concept of the invention may also be advantageous for engines with high numbers of cylinders, since thereby a more effective data function and safer evaluation or assignment of evaluated data to a particular cylinder is possible. Overall, the concept of the invention makes it possible to store individual data of a high-pressure component such as an injector or a single memory and / or the rail by means of the decentralized electronics thus realized and to carry out an evaluation already locally at the location of the data generation.

Insbesondere individuelle Daten wie Herstellerinformationen, Abnahmedaten, Einstellungen oder sonstige Injektor-individuelle Daten sowie Diagnosedaten für einen Injektor können so dezentral erfasst und gespeichert werden bzw. bereits ausgewertet werden. Auch kann die Sicherungsfunktionalität für Daten lokal übernommen werden, was bei einem Datenverlust in der zentralen Elektronik Vorteile hat. Insgesamt ergibt sich aufgrund des Konzepts der Erfindung und möglicher Weiterbildungen eine vergleichsweise gute Signalqualität für die lokale Logik- und Speichereinheit am Zylinder- bzw. Injektor bereits aufgrund kurzer Sensorleitungen und einer deshalb möglichen hohen Abtastfrequenz. Eine verrauschte oder reduzierte Signalqualität, die oftmals bei einer Übertragung eines analogen Sensorsignals in längeren Leitungen entsteht, ist dadurch vermieden. Außerdem erfolgt eine effektivere und schnellere Datenübermittlung, da mit dem Konzept einer lokalen Logik- und Speichereinheit zusätzlich zu einer zentralen Logik- und Speichereinheit ein effizienterer Umgang mit Daten ermöglicht ist. Zudem führt dies zu einer Entlastung der zentralen Logik- und Speichereinheit hinsichtlich der Speicher- und Rechenkapazität. Vorteilhaft werden nur ausgewertete Daten von der dezentralen Logik-und Speichereinheit an die zentrale Logik- und Speichereinheit gesendet. Insgesamt ergibt sich so ein reduziertes Datenaufkommen mit Entlastung eines Datenbus, wie z. B. ein CAN-Bus, und auch ein Datenaufkommen verbesserter Qualität auf dem Datenbus.In particular, individual data such as manufacturer information, acceptance data, settings or other injector-individual data as well as diagnostic data for an injector can be decentrally recorded and stored or already evaluated. Also, the backup functionality for data can be adopted locally, which has advantages in a loss of data in the central electronics. Overall, due to the concept of the invention and possible refinements, a comparatively good signal quality for the local logic and memory unit on the cylinder or injector already results on account of short sensor lines and therefore a high sampling frequency which is possible. A noisy or reduced signal quality, which often results in a transmission of an analog sensor signal in longer lines, is thereby avoided. In addition, there is a more effective and faster data transmission, since with the concept of a local logic and memory unit in addition to a central logic and memory unit, a more efficient handling of data is possible. In addition, this leads to a relief of the central logic and memory unit in terms of storage and computing capacity. Advantageously, only evaluated data is sent from the decentralized logic and memory unit to the central logic and memory unit. Overall, this results in a reduced data volume with discharge of a data bus, such. As a CAN bus, and also a data volume of improved quality on the data bus.

Das Konzept der Erfindung führt auch auf eine Brennkraftmaschine des Anspruchs 11 und eine Einrichtung zur Steuerung und/oder Regelung der Brennkraftmaschine gemäß Anspruch 13. Zur Lösung der Aufgabe betreffend das Verfahren sieht die Erfindung ein Verfahren der eingangs genannten Art vor, bei dem erfindungsgemäß auch die Merkmale des kennzeichnenden Teils des Anspruchs 15 vorgesehen sind. Erfindungsgemäß wird der Druck des Einzelspeichers über eine Druckmesseinrichtung am Einzelspeicher unmittelbar nach oder vor einem hydraulischen Widerstand der Hochdruckführung gemessen und in einer lokalen Logik-und Speichereinheit ausgewertet, wobei zusätzlich nur ausgewählte Daten auf einen Bus zur zentralen Elektronik gegeben werden.The concept of the invention also leads to an internal combustion engine of claim 11 and a device for controlling and / or regulating the internal combustion engine according to claim 13. To solve the problem relating to the method, the invention provides a method of the type mentioned, according to the invention in the Characteristics of the characterizing part of claim 15 are provided. According to the invention, the pressure of the individual memory is measured via a pressure measuring device on the individual memory immediately after or before a hydraulic resistance of the high-pressure line and evaluated in a local logic and memory unit, wherein additionally only selected data is given to a bus to the central electronics.

Vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen und geben im Einzelnen weitere vorteilhafte Möglichkeiten an, das oben erläuterte Konzept im Rahmen der Aufgabenstellung sowie weiterer Vorteile zu realisieren.Advantageous developments of the invention can be found in the dependent claims and specify in detail further advantageous possibilities to realize the above-described concept within the scope of the task and other advantages.

Im Rahmen einer bevorzugten Weiterbildung kann die lokale Logik- und Speichereinheit bereits ein Injektormodell zu modellbasierten Injektorregelung aufweisen. So lässt sich bereits teilweise eine Auswertung von Injektordaten lokal vornehmen. Vorteilhaft weist die lokale Logik und Speichereinheit auch ein Diagnosemodell zur modellbasierten Diagnose und/oder Auswertung von Injektordaten auf. Dies kann beispielsweise Paritätsgleichungen, Beobachter- oder Parameterschätzverfahren umfassen.Within the scope of a preferred development, the local logic and memory unit can already have an injector model for model-based injector control. Thus, an evaluation of injector data can already be carried out locally. Advantageously, the local logic and memory unit also has a diagnostic model for model-based diagnosis and / or evaluation of injector data. This may include, for example, parity equations, observer or parameter estimation techniques.

Im Rahmen einer besonders bevorzugten Weiterbildung hat es sich bewährt, die lokale Logik-und Speichereinheit an eine lokale Drucksensorik zu koppeln. Bevorzugt ist die Druckmesseinrichtung in Form eines Dehnungssensors gebildet. Der Dehnungssenor kann besonders bevorzugt in Form eines Dehnungsmessstreifens gebildet sein. Ein Dehnungsmessstreifen ist bevorzugt auf der Außenseite des Einzelspeichers angeordnet, wobei dem Einzelspeicher ein hydraulischer Widerstand unmittelbar zur Integration in die Hochdruckführung vorgeordnet oder nachgeordnet ist. Die Weiterbildung ist insbesondere bei einer Realisierung der Hochdruckführung mit einem Einzelspeicher und hydraulischem Widerstand zum Einzelspeicher mit ausreichend verlässlichen Rohdaten versehbar. Die Rohdaten haben -wie von der Weiterbildung erkannt- bereits eine derart hohe Signalqualität, dass eine lokale Logik- und Speichereinheit mit angemessenem Messaufwand bereits in die Lage versetzt ist, eine signifikante Auswertung vorzunehmen.In a particularly preferred embodiment, it has proven useful to couple the local logic and memory unit to a local pressure sensor. Preferably, the pressure measuring device is formed in the form of a strain sensor. The expansion sensor can be particularly preferably formed in the form of a strain gauge. A strain gauge is preferably arranged on the outside of the single memory, wherein the individual memory, a hydraulic resistance is arranged upstream or downstream of the integration directly into the high-pressure line. The development is providable in particular in a realization of the high-pressure guide with a single memory and hydraulic resistance to the individual memory with sufficiently reliable raw data. As already recognized by the further development, the raw data already have such a high signal quality that a local logic and memory unit with adequate measurement effort is already able to carry out a significant evaluation.

Im Rahmen einer besonders bevorzugten Weiterbildung des Common-Rail-Systems hat es sich bewährt, dass die Speichereinheit von der Logikeinheit trennbar ist. Dies hat den Vorteil, dass für ein Logiksystem einer dezentral verkeilten lokalen Elektronik in Kombination mit einer zentralen Elektronik unterschiedliche bzw. unterschiedlich ausgelegte Speichereinheiten zur Verfügung stehen können. Insbesondere hat es sich als vorteilhaft erwiesen, dass bei einer Trennung von Logikeinheit und Speichereinheit die Speichereinheit zum Verbleib an einer Hochdruckkomponente ausgebildet ist. Insbesondere hat sich die vorgenannte Weiterbildung als vorteilhaft erwiesen für den Fall einer Hochdruckkomponente in Form eines Injektors. Diese Maßnahme kann sich jedoch auch als vorteilhaft für eine Hochdruckkomponente in Form eines Einzelspeichers oder eines Rails erweisen. Im Rahmen dieser Weiterbildung wurde die Problematik erkannt, dass, insbesondere im Falle eines Injektors, gewisse Hochdruckkomponenten einer Alterung unterliegen und damit ihre Eigenschaften -die regelmässig für die Einspritzung relevant sind- verändern können. Derartige Veränderungen können über die lokale Logik- und Speichereinheit festgehalten und abgelegt werden. Dies kann vorteilhaft für ein sich auf die Alterung der Hochdruckkomponente einstellendes adaptives Elektroniksystem mit zentraler Elektronik und dezentral verteilter lokaler Elektronik genutzt werden. Problematisch ist darüber hinaus jedoch, wenn bei einer gealterten Hochdruckkomponente -wie einem Injektor oder einem Einzelspeicher oder gar einem Rail- ein Austausch erforderlich wird. In diesem Fall würden beispielsweise in einem Ringspeicher der lokalen Logik- und Speichereinheit für die Hochdruckkomponente noch diejenigen Daten vorliegen, welche für die gealterte Hochdruckkomponente relevant sind, wenn der Ringspeicher nicht mit ausgetauscht würde. Im Rahmen dieser Weiterbildung wurde erkannt, dass es besonders vorteilhaft ist, wenn für die Hochdruckkomponente relevante Identifikationsdaten und Informations- und/oder Diagnosedaten immer mit der Hochdruckkomponente mitgeführt und zur Verfügung stehen; dies in besonders vorteilhafter Weise im Speicher der mit der Hochdruckkomponente ausgewechselt wird und an die lokale Logikeinheit angeschlossen werden kann. Die auswechselbare lokale Speichereinheit kann also quasi mit den relevanten Daten für die Hochdruckkomponente --etwa in der Form eines elektronischen Daumenabdrucks-- an das Logiksystem angekoppelt werden. So stehen Diagnosedaten wie Alterungsdaten, Stromverhalten oder dergleichen mit einer ausgewechselten oder eingewechselten Hochdruckkomponente zur Verfügung. Im Falle einer Auswechselung der Hochdruckkomponente -beispielsweise im Falle einer Auswechselung des Injektors oder des Einzelspeichers- kann dann dennoch für den vom Austausch betroffenen Zylinder ein auf die ausgetauschte Komponente abgestimmtes Einspritzverhalten adaptiert werden. Beispielsweise hat dies den Vorteil, dass problemlos ein Injektor von einem ersten Zylinder auf einen zweiten Zylinder getauscht werden kann, wobei die ausgetauschte Hochdruckkomponente dabei das für das Einspritzverhalten relevante Datenmaterial mitnimmt.In the context of a particularly preferred development of the common rail system, it has been proven that the memory unit can be separated from the logic unit. This has the advantage that different or differently designed storage units can be available for a logic system of locally wedged local electronics in combination with central electronics. In particular, it has proved to be advantageous that, when the logic unit and the memory unit are separated, the memory unit is designed to remain on a high-pressure component. In particular, the aforementioned development has proven to be advantageous for the case of a high pressure component in the form of an injector. However, this measure can also prove to be advantageous for a high pressure component in the form of a single memory or a rail. In the context of this development, the problem was recognized that, especially in the case of an injector, certain high-pressure components are subject to aging and so that their properties - which are regularly relevant for the injection - can change. Such changes can be recorded and stored via the local logic and memory unit. This can be used to advantage for an adaptive electronic system with central electronics and distributed local electronics which adjusts itself to the aging of the high-pressure component. However, it is also problematic if an exchange is required in the case of an aged high-pressure component such as an injector or an individual storage or even a rail. In this case, for example, in a ring memory of the local logic and memory unit for the high-pressure component would still be those data which are relevant for the aged high-pressure component, if the ring buffer would not be replaced. In the context of this development, it has been recognized that it is particularly advantageous if identification data and information and / or diagnostic data relevant to the high-pressure component are always carried along with the high-pressure component and are available; this in a particularly advantageous manner in the memory is replaced with the high-pressure component and can be connected to the local logic unit. The replaceable local memory unit can thus be coupled to the logic system, as it were, with the relevant data for the high-pressure component, such as in the form of an electronic thumbprint. Thus, diagnostic data such as aging data, current behavior or the like with a replaced or substitute high-pressure component are available. In the case of a replacement of the high-pressure component-for example, in the case of a replacement of the injector or the Einzelspeichers- can then be adapted for the replacement of the affected cylinder injection behavior matched to the replaced component. For example, this has the advantage that an injector can easily be exchanged from a first cylinder to a second cylinder, with the replaced high-pressure component taking along the data material relevant to the injection behavior.

Ausführungsbeispiele der Erfindung werden nun nachfolgend anhand der Zeichnung beschrieben. Diese soll die Ausführungsbeispiele nicht notwendigerweise maßstäblich darstellen, vielmehr ist die Zeichnung, wo zur Erläuterung dienlich, in schematisierter und/oder leicht verzerrter Form ausgeführt. Im Hinblick auf Ergänzungen der aus der Zeichnung unmittelbar erkennbaren Lehren wird auf den einschlägigen Stand der Technik verwiesen. Dabei ist zu berücksichtigen, dass vielfältige Modifikationen und Änderungen betreffend die Form und das Detail einer Ausführungsform vorgenommen werden können, ohne von der allgemeinen Idee der Erfindung abzuweichen. Die in der Beschreibung, in der Zeichnung sowie in den Ansprüchen offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Weiterbildung der Erfindung wesentlich sein. Zudem fallen in den Rahmen der Erfindung alle Kombinationen aus zumindest zwei der in der Beschreibung, der Zeichnung und/oder den Ansprüchen offenbarten Merkmale. Die allgemeine Idee der Erfindung ist nicht beschränkt auf die exakte Form oder das Detail der im folgenden gezeigten und beschriebenen bevorzugten Ausführungsform oder beschränkt auf einen Gegenstand, der eingeschränkt wäre im Vergleich zu dem in den Ansprüchen beanspruchten Gegenstand. Bei angegebenen Bemessungsbereichen sollen auch innerhalb der genannten Grenzen liegende Werte als Grenzwerte offenbart und beliebig einsetzbar und beanspruchbar sein. Der Einfachheit halber sind nachfolgend für identische oder ähnliche Teile oder Teile mit identischer oder ähnlicher Funktion gleiche Bezugszeichen verwendet.Embodiments of the invention will now be described below with reference to the drawing. This is not necessarily to scale the embodiments, but the drawing, where appropriate for explanation, executed in a schematized and / or slightly distorted form. With regard to additions to the teachings directly recognizable from the drawing reference is made to the relevant prior art. It should be noted that various modifications and changes may be made in the form and detail of an embodiment without departing from the general idea of the invention. The in the description, In the drawing and in the claims disclosed features of the invention may be essential both individually and in any combination for the development of the invention. In addition, all combinations of at least two of the features disclosed in the description, the drawings and / or the claims fall within the scope of the invention. The general idea of the invention is not limited to the exact form or detail of the preferred embodiment shown and described below or limited to an article which would be limited in comparison to the subject matter claimed in the claims. For the given design ranges, values within the stated limits should also be disclosed as limit values and be arbitrarily usable and claimable. For simplicity, the same reference numerals are used below for identical or similar parts or parts with identical or similar function.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung der bevorzugten Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt in:

  • Fig. 1 eine schematische Darstellung einer Brennkraftmaschine mit einem Common-Rail-System und einer Hochdruckkomponente mit einem Einzelspeicher sowie mit einer zentralen Elektronik und einer lokalen Logik-und Speichereinheit gemäß einer besonders bevorzugten Ausführungsform;
  • Fig. 2 ein Blockschaltbild eines Verfahrens zur Messdatenermittlung und Auswertung bei einem Common-Rail-System für eine Brennkraftmaschine mit einer zentralen Elektronik und einer lokalen, d. h. dezentral verteilten, Anzahl von Logik-und Speichereinheiten gemäß einer bevorzugten Ausführungsform.
Further advantages, features and details of the invention will become apparent from the following description of the preferred embodiments and from the drawing; this shows in:
  • Fig. 1 a schematic representation of an internal combustion engine with a common rail system and a high pressure component with a single memory and with a central electronics and a local logic and memory unit according to a particularly preferred embodiment;
  • Fig. 2 a block diagram of a method for measuring data acquisition and evaluation in a common rail system for an internal combustion engine having a central electronics and a local, ie distributed decentralized, number of logic and memory units according to a preferred embodiment.

Fig. 1 zeigt beispielhaft ein im Wesentlichen analog zur eingangs genannten DE 10 2006 034 515 B3 ausgebildetes Common-Rail-System 100 mit einer elektronisch gesteuerten Brennkraftmaschine 1. Das Common-Rail-System 100 umfasst eine Niederdruckpumpe 2 zur Kraftstoffförderung aus einem Kraftstofftank 3, eine Saugdrossel 4 zur Festlegung eines Volumenstroms, eine Hochdruckpumpe 5 zur Förderung des Kraftstoffs unter Druckerhöhung zunächst in ein Rail 6. Der Kraftstoff wird vom Rail 6 weiter in einen für jeden Zylinder der Brennkraftmaschine 1 vorgesehenen Einzelspeicher 7 zum Zwischenspeichern des vorgespannten Kraftstoffs gegeben und schließlich in einen Injektor 8 zum Einspritzen des Kraftstoffs in den Zylinder bzw. den Brennraum der Brennkraftmaschine 1 weiter gefördert. Fig. 1 shows by way of example a substantially analogous to the aforementioned DE 10 2006 034 515 B3 trained common rail system 100 with an electronically controlled internal combustion engine 1. The common rail system 100 comprises a low-pressure pump 2 for fuel delivery from a fuel tank 3, a suction throttle 4 for determining a volume flow, a high pressure pump 5 to promote the fuel with pressure increase initially in a rail 6. The fuel is further supplied from the rail 6 in a provided for each cylinder of the internal combustion engine 1 single memory 7 for temporarily storing the prestressed fuel and finally into an injector 8 for Injecting the fuel into the cylinder or the combustion chamber of the internal combustion engine 1 further promoted.

Bei einem hier gezeigten System ist der Kraftstoff im Einzelspeicher 7 ausreichend vorgespannt, um eine ausreichende Einspritzung in den Brennraum der Brennkraftmaschine 1 zu gewährleisten. Auch ist eine Rückkopplung von Störfrequenzen in das Rail 6 mit entsprechender Auslegung der Zulaufleitung vom Rail 6 zum Einzelspeicher 7 gedämpft, d. h. die Verbindungsleitung vom Rail 6 zum Einzelspeicher 7 besitzt einen entsprechend hohen hydraulischen Widerstand. Dieses System wird durch ein elektronisches Steuergerät (ADEC oder ECU) einer zentralen Elektronik 9 (mit einer zentralen Logik 11) als auch durch eine dezentral verteilte, lokale Elektronik 12 geregelt. Eine dezentral verteilte lokale Elektronik 12 umfasst eine Anzahl von jeweils lokal -am Ort der Datenentstehunggebildeten Logik- und Speichereinheiten ACR, AE, AI die jeweils an jeweils einen Sensor 10, 20, 30 unmittelbar vor Ort angeschlossen sind.In a system shown here, the fuel in the individual memory 7 is sufficiently biased to ensure sufficient injection into the combustion chamber of the internal combustion engine 1. Also, a feedback of noise in the rail 6 is attenuated with appropriate design of the feed line from the rail 6 to the individual memory 7, d. H. the connecting line from the rail 6 to the individual memory 7 has a correspondingly high hydraulic resistance. This system is controlled by an electronic control unit (ADEC or ECU) of central electronics 9 (with a central logic 11) as well as by a distributed local electronics 12. A locally distributed local electronics 12 comprises a number of locally-at the place of data formation formed logic and memory units ACR, AE, AI which are each connected to a respective sensor 10, 20, 30 directly on site.

Beispielhaft ist dazu das Common-Rail-System 100 der Fig.1 erläutert. Das elektronische Steuergerät der zentralen Elektronik 9 beinhaltet Bestandteile eines Mikrocomputersystems mit einer zentralen Logik 11 sowie Eingang und Ausgang 9.1, 9.2 des elektronischen Steuergerätes der zentralen Elektronik 9; beispielsweise zur Bildung der zentralen Logik 11 einen Mikroprozessor sowie Puffer und Speicherbausteine (EEPROM, RAM) und I/O Bausteine zur Bildung von Eingang 9.1 und Ausgang 9.2. In den Speicherbausteinen sind die für den Betrieb der Brennkraftmaschine 1 relevanten Betriebsdaten in Kennfeldern/Kennlinien appliziert. Ober diese berechnet das elektronische Steuergerät der zentralen Elektronik 9 in der zentralen Logik 11 aus den am Eingang 9.1 anliegenden Eingangsgrößen EIN die am Ausgang 9.2 anliegenden Ausgangsgrößen AUS. In Fig. 1 sind exemplarisch folgende Eingangsgrößen dargestellt:

  • ein bereits ausgewerteter Raildruck A(pCR), der mittels eines Rail-Drucksensors 10 gemessen und in einer lokalen Logik- und Speichereinheit ACR ausgewertet wurde,
  • ein Drehzahlsignal nMot der Brennkraftmaschine 1,
  • bereits ausgewertete Drucksignale A(pE) der Einzelspeicher 7, wobei Drucksignale pE der Einzelspeicher 7 bereits von diesen vor Ort zugeordneten jeweils lokalen Logik- und Speichereinheiten AE ausgewertet wurden.
By way of example, the common rail system 100 of the Fig.1 explained. The electronic control unit of the central electronics 9 includes components of a microcomputer system with a central logic 11 and input and output 9.1, 9.2 of the electronic control unit of the central electronics 9; For example, to form the central logic 11 a microprocessor and buffers and memory devices (EEPROM, RAM) and I / O devices to form input 9.1 and output 9.2. In the memory modules relevant for the operation of the internal combustion engine 1 operating data in maps / curves are applied. On top of this calculates the electronic control unit of the central electronics 9 in the central logic 11 from the present at the input 9.1 input variables on the output 9.2 applied outputs OUT. In Fig. 1 the following input variables are shown by way of example:
  • an already evaluated rail pressure A (pCR), which was measured by means of a rail pressure sensor 10 and evaluated in a local logic and memory unit ACR,
  • a speed signal nMot of the internal combustion engine 1,
  • already evaluated pressure signals A (pE) of the individual memory 7, wherein pressure signals pE of the individual memory 7 have already been evaluated by these locally assigned respectively local logic and memory units AE.

Darüberhinaus gibt es in der hier beschriebenen Ausführungsform weitere Eingangsgrößen wie beispielsweise den Ladeluftdruck eines Turboladers und die Temperaturen der Kühl-/Schmiermittel und des Kraftstoffes sowie weitere Ausgangsgrößen, die nicht im Einzelnen dargestellt und pauschal unter EIN und AUS zu fassen sind. Konkret ist als Ausgangsgröße des elektronischen Steuergeräts der zentralen Elektronik 9 ein Signal PWM zur Steuerung der Saugdrossel 4 und ein leistungsbestimmendes Signal vE - beispielsweise eine Einspritzmenge zur Darstellung eines Sollmoments bei einer momentenbasierten Regelung- dargestellt. Die Ausgangsgröße AUS steht stellvertretend für die weiteren Stellsignale zur Steuerung und Regelung der Brennkraftmaschine 1.Moreover, there are in the embodiment described here, other input variables such as the charge air pressure of a turbocharger and the temperatures of the coolant / lubricant and the fuel and other output variables that are not in the Individual and flat rate under ON and OFF are to be taken. Specifically, the output of the electronic control unit of the central electronics 9, a signal PWM for controlling the intake throttle 4 and a power-determining signal vE - for example, an injection quantity for representing a desired torque in a torque-based control- shown. The output variable OFF is representative of the further control signals for controlling and regulating the internal combustion engine 1.

Im Unterschied zur vorbekannten Common-Rail-Systemen wie sie zum Beispiel in DE 10 2006 034 515 B3 beschrieben ist, ist vorliegend somit eine lokale Messeinrichtung, nämlich hier ein Rail-Drucksensor 10 und ein Einzelspeicherdrucksensor 20 -und ein als Option zu verstehender Injektordrucksensor 30- jeweils mit einer lokalen Logik- und Speichereinheit ACR , AE -und optional AI- der dezentral verteilten lokalen Elektronik 12 gekoppelt -nämlich einer Rail-Logik- und Speichereinheit ACR und einer Einzelspeicher- und Injektor-Logik- und Speichereinheit AE, AI. Von den Logik- und Speichereinheiten AE, AI kann nur eine vorgesehen sein, sodass eine von beiden optional ist. Die vorliegende Ausführungsform sieht nur die Einzelspeicher-Logik- und Speichereinheit AE vor, sodass die in Fig. 1 gezeigte Injektor-Logik- und Speichereinheit AI als Option zu verstehen ist. Die Logik- und Speichereinheiten ACR, AE sind jeweils ausgebildet, Messdaten des Common-Railsystems 100 lokal auszuwerten und zu speichern.In contrast to the previously known common rail systems such as those in DE 10 2006 034 515 B3 In this case, a local measuring device, namely here a rail pressure sensor 10 and a single-reservoir pressure sensor 20 and an optional injector pressure sensor 30, each having a local logic and memory unit ACR, AE and optionally AI distributed decentrally local electronics 12 coupled - namely a rail logic and memory unit ACR and a single storage and injector logic and storage unit AE, AI. Of the logic and memory units AE, AI only one can be provided, so that one of both is optional. The present embodiment provides only the single memory logic and memory unit AE, so that the in Fig. 1 shown injector logic and memory unit AI is to be understood as an option. The logic and memory units ACR, AE are each designed to locally evaluate and store measurement data of the common rail system 100.

Vorliegend sind das konkret die Druckdaten eines Raildrucks pCR am Rail 6 sowie Druckdaten eines Einzelspeicherdrucks pE am Einzelspeicher 7. Die ausgewerteten Messdaten A(pE) und A(pCR) werden jeweils vom Ausgang der lokalen Logik und Speichereinheiten AE, ACR an das elektronische Steuergerät (ADEC oder ECU) der zentralen Elektronik 9 mit der zentralen Logik 11 über dessen Eingang 9.1 weitergeleitet.In the present case, this is concretely the pressure data of a rail pressure pCR on the rail 6 and pressure data of a single accumulator pressure pE on the individual accumulator 7. The evaluated measurement data A (pE) and A (pCR) are respectively output from the output of the local logic and storage units AE, ACR to the electronic control unit ( ADEC or ECU) of the central electronics 9 with the central logic 11 via the input 9.1 forwarded.

In einer hier nicht gezeigten abgewandelten Ausführungsform ist es auch möglich, von einer lokalen Logik- und Speichereinheiten AI bereits ausgewertete Drucksignal A(pl) des Injektors 8 auf den Datenbus 13 zu geben, d.h. vom Ausgang der lokalen Logik und Speichereinheiten AI das elektronische Steuergerät (ADEC oder ECU) der zentralen Elektronik 9 mit der zentralen Logik 11 über dessen Eingang 9.1 weiterzuleiten.In a modified embodiment, not shown here, it is also possible to apply pressure signal A (pl) of the injector 8 already evaluated by a local logic and memory unit AI to the data bus 13, i. from the output of the local logic and storage units AI the electronic control unit (ADEC or ECU) of the central electronics 9 with the central logic 11 via its input 9.1 forward.

Dem folgend ist die lokale Logik- und Speichereinheit AE integral mit dem Einzelspeicherdrucksensor 20 in Form eines Dehnungsmessstreifens am Einzelspeicher 7 angeordnet. In einer Variante kann der Einzelspeicher 7 auch mit dem Injektor 8 in einem einzigen Gehäuse gebildet sein. Auch in dem Fall ist es vorgesehen, den Einzelspeicherdrucksensor 20 in Form eines Dehnungsmessstreifens direkt mit einer lokalen Logik- und Speichereinheit AE in integrierter Bauweise am Einzelspeicher 7 des Injektors vorzusehen. Analog ist die lokale Logik- und Speichereinheit ACR für das Rail 6 mit dem Raildrucksensor 10 am Rail 6 integriert.In the following, the local logic and memory unit AE is arranged integrally with the individual accumulator pressure sensor 20 in the form of a strain gauge on the single accumulator 7. In a variant, the individual memory 7 may also be formed with the injector 8 in a single housing. Also in the case it is provided, the single-reservoir pressure sensor Provide 20 in the form of a strain gauge directly with a local logic and memory unit AE integrated design on the individual memory 7 of the injector. Analogously, the local logic and storage unit ACR for the rail 6 with the rail pressure sensor 10 is integrated on the rail 6.

Die in Fig. 1 dargestellte beispielhafte Ausführungsform folgt einem generellen System, wie es schematisch als Blockschaltbild in Fig. 2 dargestellt ist. Das Common-Railsystem 100 sieht für eine Brennkraftmaschine 1 eine kombinierte Steuerung aus der zentralen Elektronik 9 und einer dezentralen verteilten lokalen Elektronik 12 vor. Die dezentral verteilte lokale Elektronik 12 ist in integrierter Bauweise aus einer Anzahl von Messeinrichtungen M1, M2 ... Mi und einer Anzahl von unmittelbar mit den Messeinrichtungen in integrierter Form untergebrachten Logik- und Speichereinheiten A1/S1, A2/S2 ... Ai/Si gebildet. Beispielhaft ist wenigstens die Messeinrichtung M1, M2 eine Druckmesseinrichtung mit einer integrierten Speicher- und Logikeinheit A1/S1, A2/S2 zur Messung und Auswertung eines Einzelspeicherdrucks pE und eines Raildrucks pCR, die wie anhand von Fig. 1 erläutert funktionieren und dort mit AE, ACR bezeichnet sind. Die weiteren Messeinrichtungen Mi können anderer Art sein, beispielsweise eine Temperaturmesseinrichtung oder dergleichen umfassen und können ebenso jeweils mit einer lokalen Logik-und Speichereinheit Ai/Si integriert werden.In the Fig. 1 Illustrated exemplary embodiment follows a general system, as shown schematically as a block diagram in FIG Fig. 2 is shown. The common rail system 100 provides for an internal combustion engine 1 a combined control of the central electronics 9 and a distributed distributed local electronics 12 before. The distributed distributed local electronics 12 is integrated in a construction of a number of measuring devices M1, M2 ... Mi and a number of directly with the measuring devices in an integrated form accommodated logic and memory units A1 / S1, A2 / S2 ... Ai / Si formed. By way of example, at least the measuring device M1, M2 is a pressure measuring device with an integrated memory and logic unit A1 / S1, A2 / S2 for measuring and evaluating an individual accumulator pressure pE and a rail pressure pCR, as described with reference to FIG Fig. 1 explained and work there with AE, ACR are called. The further measuring devices Mi may be of a different type, for example comprising a temperature measuring device or the like, and may likewise each be integrated with a local logic and memory unit Ai / Si.

Der Systematik der Fig. 2 ist zu entnehmen, dass eine Messeinrichtung M1, M2 bis Mi ausgelegt ist, eine Messung am Common-Rail-System 100 vorzunehmen, beispielsweise an einem Einzelspeicher (7 in Fig.1), der hier als Komponente B1 aufgeführt ist oder an einem Rail (6 in Fig. 1) der hier als Komponente B2 aufgeführt ist oder einer anderen Komponente Bi des Common-Rail-Systems 100. Vorliegend ist in jedem Fall unmittelbar am Ort der Messeinrichtung M1, M2 ... Mi eine lokale Logik- und Speichereinheit A1/S1, A2/S2 ... Ai/Si mit der Messeinrichtung integriert. Die Logik- und Speichereinheit A1/S1, A2/S2 ... Ai/Si ist jeweils bereits in der Lage, ein von jeder der Messeinrichtungen M1, M2 bis Mi geliefertes Messsignal auszuwerten und zu speichern.The system of the Fig. 2 It can be seen that a measuring device M1, M2 to Mi is designed to perform a measurement on the common-rail system 100, for example on a single memory (7 in Fig.1 ), which is listed here as component B1 or on a rail (6 in Fig. 1 ) which is listed here as component B2 or another component Bi of the common rail system 100. In each case, a local logic and memory unit A1 / S1, A2 / is present in each case directly at the location of the measuring device M1, M2... S2 ... Ai / Si integrated with the measuring device. The logic and memory unit A1 / S1, A2 / S2... Ai / Si is in each case already capable of evaluating and storing a measurement signal supplied by each of the measuring devices M1, M2 to Mi.

Beispielsweise können --im Falle eines Speichers S1 oder S2- Injektor- oder Railindividuelle Daten wie z. B. Herstellerinformation, Abnahmedaten und Einstellungen im lokalen Speicher S1, S2 gespeichert werden und zur weiteren Auswertung durch die Logikeinheit A1, A2 herangezogen werden. Solche und andere Informationen I können für jede der Komponenten Bi des Common-Rail-Systems 100 zur Verfügung stehen. Darüberhinaus können Diagnosedaten D individuell für jeden Komponenten B, dezentral erfasst und in einem Speicher Si gespeichert werden. Insbesondere in einem Fehlerfall kann ein letzter Satz von Diagnosedaten in einen Speicher Si --etwa als Ringspeicher ausgebildet-- bereitgestellt werden. So kann auf vergleichsweise einfache Weise eine Datenlogger-Funktion L über die Betriebszeit einer Komponente Bi zur Verfügung gestellt werden.For example, in the case of a memory S1 or S2 injector or rail individual data such. B. manufacturer information, acceptance data and settings in the local memory S1, S2 are stored and used for further evaluation by the logic unit A1, A2. Such and other information I may be available for each of the components Bi of the common rail system 100. In addition, diagnostic data D can be distributed individually for each component B, decentralized detected and stored in a memory Si. Particularly in the event of an error, a last set of diagnostic data can be provided in a memory Si -which is designed as a ring memory. Thus, a data logger function L over the operating time of a component Bi can be provided in a comparatively simple manner.

In Bezug auf das konkret in Fig. 1 dargestellte System ist im Rahmen einer besonders bevorzugten Weiterbildung zusätzlich oder alternativ zum Einzelspeicherdrucksensor 20 ein Injektordrucksensor 30 vorgesehen, der ganz ähnlich wie eine zuvor erläuterte lokale Logik- und Speichereinheit AE für den Einzelspeicher 7 oder eine lokale Logik- und Speichereinheit ACR für den Rail 6 ausgelesen werden kann. Im Folgenden kann für den Injektor und den am Injektor vorgesehenen Drucksensor 30, in Form eines Dehnungsmessstreifens, eine lokale Logik- und Speichereinheit AI vorgesehen sein. Deren Auslegung kann grundsätzlich nach dem gleichen Prinzip erfolgen wie für die Logik- und Speichereinheit AE und ACR.In terms of specifically in Fig. 1 As shown in a particularly preferred embodiment, a injector pressure sensor 30 is additionally or alternatively provided for the individual accumulator pressure sensor 20, which is very similar to a previously discussed local logic and memory unit AE for the individual memory 7 or a local logic and memory unit ACR for the rail 6 read can be. In the following, a local logic and memory unit AI can be provided for the injector and the pressure sensor 30 provided on the injector, in the form of a strain gauge. Their interpretation can basically be done on the same principle as for the logic and memory unit AE and ACR.

Vorliegend weist die Logik- und Speichereinheit AE und/oder AI eine Speichereinheit S und eine Logikeinheit A auf, wobei die Speichereinheit S von der Logikeinheit A getrennt werden kann. Die Speichereinheit S ist dazu zum Verbleib am injektor bzw. Einzelspeicher vorgesehen. D. h. die Speichereinheit S der Logik- und Speichereinheit AI kann mit dem Injektor 8 und dem Dehnungsmessstreifen 30 ausgewechselt werden bzw. die Speichereinheit S der Logik- und Speichereinheit AE kann mit dem Einzelspeicher 7 und dem Dehnungsmessstreifen 20 ausgewechselt werden. Dies kann sich im Rahmen einer Alterung des Injektors 8 und/oder Einzelspeichers 7 als erforderlich erweisen. Ähnliche Austauschvorgänge wie bei einem Injektor 8 können also bei Alterung eines Einzelspeichers 7 durch Austausch des Einzelspeichers 7 mit Drucksensor 20 und Speicher S erfolgen. Ein ähnlicher Austauschvorgang kann auch für das Rail 6 mit Drucksensor 10 und Speicher S betreffend die Logik- und Speichereinheit ACR erfolgen; diesmal unter Trennung des Speichers S von der Logikeinheit A der Logik- und Speichereinheit ACR.In the present case, the logic and memory unit AE and / or AI has a memory unit S and a logic unit A, wherein the memory unit S can be separated from the logic unit A. The memory unit S is provided for remaining on the injector or individual memory. Ie. the memory unit S of the logic and memory unit AI can be exchanged with the injector 8 and the strain gauge 30 or the memory unit S of the logic and memory unit AE can be exchanged with the individual memory 7 and the strain gauge 20. This may prove necessary in the context of aging of the injector 8 and / or individual memory 7. Similar replacement processes as in the case of an injector 8 can thus take place when an individual accumulator 7 is aging by exchanging the individual accumulator 7 with pressure sensor 20 and accumulator S. A similar replacement process can also be carried out for the rail 6 with pressure sensor 10 and memory S relating to the logic and memory unit ACR; this time by separating the memory S from the logic unit A of the logic and memory unit ACR.

Dies hat den Vorteil, dass mit einer ausgetauschten Hochdruckkomponente, d.h. vorliegend mit einem ausgetauschten Injektor 8 (oder einem ausgetauschten Einzelspeicher 7 oder einem ausgetauschten Rail 6) auch die das Einspritzverhalten mitbestimmenden Daten für Alterungsvorgänge und Stromverhalten der entsprechenden Hochdruckkomponente in den an der Hochdruckkomponente vorhandenen Speicher S mit ausgetauscht bzw. mit eingetauscht werden. D. h. die Hochdruckkomponente wird mit dem dort vorhandenen Sensor 10, 20, 30 und Speicher S an das Logiksystem aus dezentral verteilter lokaler Elektronik 12 und zentraler Elektronik 11 angeschlossen. In dem Fall kann das Logiksystem somit unmittelbar mit den aktuellen Diagnosedaten D der Hochdruckkomponente arbeiten. Das Common-Rail-System 100 erweist sich somit als adaptiv; dies selbst im Falle, dass Hochdruckkomponenten wie ein Injektor 8, ein Einzelspeicher 7 oder ein Rail 6 ausgetauscht werden.This has the advantage that with an exchanged high-pressure component, ie in the present case with an exchanged injector 8 (or an exchanged individual accumulator 7 or an exchanged rail 6), the data influencing the injection behavior for aging processes and current behavior of the corresponding high-pressure component in the memory present at the high-pressure component S with exchanged or exchanged with. Ie. the high-pressure component is with the existing there Sensor 10, 20, 30 and memory S connected to the logic system of locally distributed local electronics 12 and central electronics 11. In that case, the logic system can thus work directly with the current diagnostic data D of the high-pressure component. The common rail system 100 thus proves to be adaptive; This even in the case that high pressure components such as an injector 8, a single memory 7 or a rail 6 are replaced.

Die Kommunikation zwischen einer zentralen Elektronik 9 und der dezentral verteilten lokalen Elektronik 12 -beispielsweise einer Logik- und Speichereinheit AI, AE oder ACR mit der zentralen Logik 11-- erfolgt dabei in der Weise, dass bei Betrieb des Common-Rail-Systems 100 Messdaten wie der Druckverlauf an einem Injektor 8 oder an einem Einzelspeicher 7 an die zentrale Elektronik 9 unter Auswertung durch die Logikeinheit A übergeben werden, d. h. in ausgewerteter Form A(pl), A(pE), A(pCR). Gleichermaßen werden die entsprechenden Daten oder für den Druckverlauf relevante Daten in der Speichereinheit S der Hochdruckkomponente - also z.B. in einer Speichereinheit S der Logik- und Speichereinheit AE und ACR und AI abgelegt.The communication between a central electronics 9 and the locally distributed local electronics 12-for example, a logic and memory unit AI, AE or ACR with the central logic 11-- takes place in such a way that during operation of the common rail system 100 measurement data how the pressure profile at an injector 8 or at a single memory 7 to the central electronics 9 are passed under evaluation by the logic unit A, d. H. in evaluated form A (pI), A (pE), A (pCR). Likewise, the corresponding data or data relevant to the pressure history in the memory unit S of the high pressure component - e.g. stored in a memory unit S of the logic and memory unit AE and ACR and AI.

Wird nun eine Hochdruckkomponente z.B. ein Injektor 8 oder ein Einzelspeicher 7 ausgetauscht oder an einen anderen Ort, beispielsweise an einen anderen Zylinder der Brennkraftmaschine gesetzt, nimmt diese Hochdruckkomponente die relevanten für den Einspritzvorgang maßgeblichen Diagnosedaten in der mit ausgetauschten Speichereinheit S mit. Dies gilt auch für eine neu eingesetzte Hochdruckkomponente. Nach dem Einsetzen stehen dem Logiksystem aus dezentral verteilter lokaler Elektronik 12 und zentraler Elektronik 9 somit zur Steuerung und Regelung auch alterungsbedingte Entwicklungen beschreibende, für die Hochdruckkomponente charakteristische, individuelle Messdaten zur Verfügung und können zur Steuerung und Regelung des Gesamtsystems genutzt werden. Insbesondere kann ein von der zentralen Elektronik 9 an die dezentral verteilte lokale Elektronik 12 gegebenes Zeitsignal zur Initiierung eines Einspritzvorgangs auch beim Austausch von Hochdruckkomponenten so erfolgen, dass dieses auf die gegebenenfalls individuellen Eigenschaften des Injektors 8 oder des Einzelspeichers 7 abgestimmt ist; wobei die individuellen Eigenschaften den Druckverlauf beeinflussen können.If a high pressure component, e.g. an injector 8 or a single memory 7 exchanged or set to another location, for example to another cylinder of the internal combustion engine, this high pressure component takes the relevant relevant for the injection process diagnostic data in the exchanged with memory unit S with. This also applies to a newly used high pressure component. After insertion, the logic system of locally distributed local electronics 12 and central electronics 9 thus also control and regulating aging-related developments descriptive, characteristic of the high-pressure component, individual measurement data available and can be used to control and regulate the overall system. In particular, a time signal given by the central electronic unit 9 to the locally distributed local electronics 12 for initiating an injection process can also take place when high-pressure components are exchanged so that this is matched to the optionally individual properties of the injector 8 or the individual accumulator 7; whereby the individual characteristics can influence the pressure course.

Die so realisierte dezentral verteilte lokale Elektronik 12 aus Messeinrichtung M1, M2 bis Mi und lokaler Logik- und Speichereinheit A1/S1, A2/S2 ... Ai/Si für jede der Komponenten Bi hat den Vorteil, dass vergleichsweise kurze Sensorleitungen zwischen einem Sensor der Messeinrichtung Mi und einer lokalen Logik- und Speichereinheit Ai/Si möglich sind. Dies erlaubt z. B. eine hohe Abtastfrequenz durch die lokale Logik- und Speichereinheit -nämlich in Fig.1 die AE, ACR-, die hier mit A1/S1, A2/S2 bezeichnet sind, bei dennoch guter Signalqualität. Eine Reduzierung der Signalqualität (Signal-Rauschabstand) aufgrund eines längeren Kabelbaums ist damit vermieden. Erst ein ausgewertetes und entsprechend aufbereitetes Signal der dezentral verteilten lokalen Elektronik 12 --wie beispielsweise ein ausgewerteter Einzelspeicherdruck A(pE) oder ein ausgewerteter Raildruck A(pCR)-- werden an die zentrale Elektronik 9, bzw. deren Steuergerät (ECU oder ADEC) gesendet. Dies hat den Vorteil, dass eine Datenlast auf dem Datenbus 13 reduziert ist.The so implemented distributed distributed local electronics 12 from measuring device M1, M2 to Mi and local logic and memory unit A1 / S1, A2 / S2 ... Ai / Si for each of the components Bi has the advantage that comparatively short sensor lines between a sensor the measuring device Mi and a local logic and memory unit Ai / Si possible are. This allows z. B. a high sampling frequency by the local logic and memory unit - namely in Fig.1 the AE, ACR-, which are here with A1 / S1, A2 / S2 designated, nevertheless good signal quality. A reduction in the signal quality (signal-to-noise ratio) due to a longer wiring harness is thus avoided. Only an evaluated and correspondingly processed signal of the locally distributed local electronics 12 - such as an evaluated individual accumulator pressure A (pE) or an evaluated rail pressure A (pCR) - are sent to the central electronics 9, or their control unit (ECU or ADEC) Posted. This has the advantage that a data load on the data bus 13 is reduced.

Umgekehrt ermöglicht das vorliegende System auch auf der Ausgangsseite des elektronischen Steuergeräts der zentralen Elektronik 9 mit der zentralen Logik 11 eine dem gleichen Prinzip folgenden Realisierung einer dezentral verteilten lokalen Elektronik 12. Dies kann beispielsweise auch für ein leistungsbestimmendes Signal vE realisiert werden, das zunächst in einer lokalen Logik- und Speichereinheit Aj/Sj aufbereitet wird und dann über einen Aktuator Mj der Komponente Systembaustein Bi zugeführt wird.Conversely, the present system also allows on the output side of the electronic control unit of the central electronics 9 with the central logic 11 a the same principle following realization of a distributed distributed local electronics 12. This can for example be realized for a power-determining signal vE, the first in a local logic and memory unit Aj / Sj is processed and then supplied via an actuator Mj the component system block Bi.

Beispielsweise kann einer Logik-und Speichereinheit Ai/Si , Aj/Sj ein entsprechendes Rechenmodell hinterlegt werden, mit dem eine modellbasierte Bausteinregelung, z. B. Injektorregelung oder ein entsprechendes Diagnoseverfahren möglich ist. Denkbar sind beispielsweise die Implementierung von Paritätsgleichungen, Beobachtersystemen und Parameterschätzverfahren etc. Auch lassen sich aufgrund den vergleichsweise geringen Sensor- und Aktuatorteitungen signalbasierte Diagnoseverfahren wie Frequenzanalysen oder dergleichen realisieren.For example, a logic and memory unit Ai / Si, Aj / Sj a corresponding calculation model are stored with which a model-based block control, for. B. injector control or a corresponding diagnostic method is possible. For example, the implementation of parity equations, observer systems and parameter estimation methods are conceivable. Signal-based diagnostic methods such as frequency analyzes or the like can also be implemented on the basis of the comparatively small sensor and actuator lines.

Insgesamt lässt sich mit der anhand von Fig. 2 erläuterten allgemeinen Systematik eine zylinderindividuelle Erfassung von Kraftstoffmengen, Einspritzverläufen, Leckagen, Temperaturen, Einspritzzeiten, Spritzbeginn und Spritzende mit höherer Signal- und Auswertequalität sowie zylinderindividuell mit hoher Verlässlichkeit realisieren.Overall, with the basis of Fig. 2 explained general systematics cylinder-specific detection of fuel quantities, injection curves, leaks, temperatures, injection times, start of injection and injection end with higher signal and evaluation quality as well as individual cylinder with high reliability realize.

Eine kombinierte Architektur von elektronischem Steuergerät (ADEC, ECU) -als zentrale Elektronik 9 mit zentraler Logik 11 und dezentral verteilter lokaler Elektronik 12 beispielsweise mit den genannten lokalen Logik- und Speichereinheiten ACR, AE , AI-ermöglicht so eine verbesserte zeitliche Synchronisierung des Common-Rail-Systems 100 auf die Brennkraftmaschine 1. So haben u.a. die zentrale Elektronik 9 und die Injektoren 8 oder das Rail 6, wie sie durch die Komponenten B1, B2, symbolisiert sind, die gleiche Zeitbasis. Das Erfordernis einer genauen Kenntnis eines Kurbelwinkels beispielsweise für einen Injektor 8, einen Einzelspeicher 7 oder ein Rail 6 ist dabei von geringerer Priorität als bisher.A combined architecture of electronic control unit (ADEC, ECU) -as centralized electronic unit 9 with central logic 11 and locally distributed local electronics 12, for example, with the said local logic and storage units ACR, AE, AI-thus enables an improved synchronization of the common time. Rail system 100 to the internal combustion engine 1. Thus, among other things, the central electronics 9 and the injectors 8 or the rail 6, as symbolized by the components B1, B2, the same time base. The requirement of a precise knowledge of a crank angle, for example for an injector 8, a single memory 7 or a rail 6 is of lower priority than heretofore.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
BrennkraftmaschineInternal combustion engine
22
NiederdruckpumpeLow pressure pump
33
KraftstofftankFuel tank
44
Saugdrosselinterphase
55
Hochdruckpumpehigh pressure pump
66
RailRail
77
EinzelspeicherSingle memory
88th
Injektorinjector
99
zentrale Elektronik mit Steuergerät (Advanced Diesel Engine Control oder Electronic Control Unitcentral electronics (with control unit A dvanced D iesel Engine ontrol C or E lectronic C ontrol U nit
9.1, 9.29.1, 9.2
Eingang, Ausgang des elektronischen Steuergeräts der zentralen ElektronikInput, output of the electronic control unit of the central electronics
1010
Rail-DrucksensorRail pressure sensor
1111
zentrale Logik der zentralen Elektronikcentral logic of the central electronics
1212
dezentral verteilte, lokale Elektronikdistributed, local electronics
1313
Datenbusbus
2020
EinzelspeicherdrucksensorSingle accumulator pressure sensor
3030
InjektordrucksensorInjektordrucksensor
100100
Common-Railsystem zur KraftstoffeinspritzungCommon rail system for fuel injection
AEAE
lokale Logik- und Speichereinheit für Einzelspeicherlocal logic and memory unit for individual memories
ACRACR
lokale Logik- und Speichereinheit für Raillocal logic and storage unit for rail
AIAI
lokale Logik- und Speichereinheit für Injektorlocal logic and memory unit for injector
pEpE
EinzelspeicherdruckSingle storage pressure
pIpi
InjektordruckInjektordruck
pCRpCR
Raildruckrail pressure
vEvE
leistungsbestimmendes Signal, beispielsweise eine Einspritzmengepower-determining signal, for example an injection quantity
nMotMot
Drehzahlsignal der BrennkraftmaschineSpeed signal of the internal combustion engine
A(pE)A (PE)
ausgewerteter EinzelspeicherdruckEvaluated individual storage pressure
A(pI)A (pI)
ausgewerteter Injektordruckevaluated injector pressure
A(pCR)A (pCR)
ausgewerteter Raildruckevaluated rail pressure
A1, A2A1, A2
SpeicherStorage
II
Informationeninformation
DD
Diagnosedatendiagnostic data
LL
Datenloggerdata logger
MiWed.
Messeinrichtungmeasuring device
Mjmj
Aktuatoractuator
B1, B2, Bi, BjB1, B2, Bi, Bj
Komponenten des SystemsComponents of the system
S, SiS, Si
Speichereinheitstorage unit
A, AiA, Ai
Logikeinheitlogic unit

Claims (18)

  1. Common rail system (100) for an internal combustion engine (1), having:
    - a rail (6) for fuel, and an injector (8), fluidically connected via a high pressure line, for injecting the fuel into a working space of the internal combustion engine (1), wherein the high pressure line has a high pressure component with an individual accumulator (7), and
    - the high pressure line and/or the rail (6) has a pressure-measuring device (10, 20, 30), characterized in that
    - the pressure-measuring device is coupled to a local logic and memory unit (AE, ACR, AI) of local electronics (12) which are distributed in a decentralized fashion and which are designed to evaluate and store locally measurement data of the pressure-measuring device, in particular injector data and/or rail data, and
    - the pressure-measuring device is connected via a bus to the central electronics (9) with the intermediate connection of the local logic and memory unit (AE, ACR, AI) and the local logic and memory unit (AE, ACR, AI) is configured, in combination with the central electronics (9), to perform open-loop and/or closed-loop control of the common rail system (1) for the internal combustion engine (1).
  2. Common rail system (100) according to Claim 1, characterized in that the pressure-measuring device has a number of pressure sensors (10, 20, 30), wherein in each case one pressure sensor (10, 20, 30) is respectively assigned a local logic and memory unit (AE, ACR, AI), and the number of local logic and memory units is connected to the central electronics (9) via a data bus (13).
  3. Common rail system (100) according to Claim 1 or 2, characterized in that the local logic and memory unit (AE, ACR, AI) has a ring memory which is designed to secure respective last injector data items against a failure, continuously, in particular up to an enable after the failure.
  4. Common rail system (100) according to one of Claims 1 to 3, characterized in that at least a first local logic and memory unit (AE, AI) provides an injector model for model-based injector control, and/or a second local logic and memory unit (ACR) provides a rail model for model-based rail control.
  5. Common rail system (100) according to one of Claims 1 to 4, characterized in that a local logic and memory unit (AE, ACR, AI) provides a diagnostic model for model-based diagnosis and/or evaluation of measurement data, in particular of an individual accumulator (7), of an injector (8) and/or of a rail (6).
  6. Common rail system (100) according to Claim 5, characterized in that the diagnostic model contains one or more of the method components which are selected from the group composed of signal-based or model-based diagnostic methods, in particular parity equations, observer methods or parameter-estimation methods.
  7. Common rail system (100) according to one of Claims 1 to 6, characterized in that the logic and memory unit (AE, ACR, AI) is designed to carry out a signal-based evaluation method and/or diagnostic method, in particular a frequency analysis of a measurement signal.
  8. Common rail system (100) according to one of Claims 1 to 7, characterized in that a pressure sensor (10, 20, 30) is constructed as a strain sensor, in particular in the form of a strain gauge.
  9. Common rail system (100) according to Claim 8, characterized in that a first pressure sensor (AE) is arranged on the outside of a wall of an individual accumulator (7), and/or
    a second pressure sensor is arranged on the outside of a wall of an injector (8), and/or
    a third pressure sensor (ACR) is arranged on the outside of a wall of the rail (6), in particular wherein a hydraulic resistor is arranged immediately upstream of the individual accumulator (7) for integration into the high pressure line, or is arranged immediately downstream thereof.
  10. Common rail system (100) according to one of Claims 1 to 9, characterized in that the high pressure component is constructed in the form of an injector (8) or an individual accumulator (7) or an injector (8) with an integrated individual accumulator (7).
  11. Common rail system (100) according to one of Claims 1 to 10, characterized in that the local logic and memory unit (AE, ACR, AI) has a logic unit (A, Ai, Aj) and a memory unit (S, Si, Sj), wherein the memory unit (S, Si, Sj) can be disconnected from the logic unit (A, Ai, Aj).
  12. Common rail system (100) according to Claim 11, characterized in that when the memory unit (S, Si, Sj) is disconnected from the logic unit (A, Ai, Aj), it is designed to remain at the high pressure component, in particular is designed to be interchangeable with the high pressure component.
  13. Internal combustion engine (1) having a common rail system (100), in particular according to one of Claims 1 to 12, having an electronic device for performing open-loop and/or closed-loop control of the internal combustion engine (1) which has central electronics (9) and a local logic and memory unit (AE, ACR, AI) which are connected via a data bus (13), wherein the central electronics (9) are configured to receive an evaluation signal for measurement data of a pressure sensor (10, 20, 30) which have already been evaluated by the local logic and memory unit (AE, ACR, AI).
  14. Internal combustion engine (1) according to Claim 13, characterized in that a first local logic and memory unit (AE) has a signal input which has signal-conducting connection to a signal output of a pressure sensor (20) at the individual accumulator (7), wherein the pressure sensor (20) is configured to measure the pressure of the individual accumulator (7), and/or
    a second local logic and memory unit (AI) has a signal input which has signal-conducting connection to a signal output of a pressure sensor (30) at an injector (8), wherein the pressure sensor (30) is configured to measure the pressure of the injector (8), and/or
    a third local logic and memory unit (ACR) has a signal input which has signal-conducting connection to a signal output of a pressure sensor (10) at the rail (6), wherein the pressure sensor (10) is configured to measure the pressure of the rail (6).
  15. Device for performing open-loop and/or closed-loop control of an internal combustion engine (1), in particular according to Claim 13 or 14, which device is configured both to perform local processing of measurement data of a pressure-measuring device for the pressure of an individual accumulator (7) and/or injector (8) and/or rail (6) by forming at least one evaluation signal, and to receive centrally the at least one evaluation signal (A(pE), A(pCR)) for measurement data of the pressure-measuring device which have already been evaluated.
  16. Device according to Claim 15, characterized by central electronics (9) with a signal input which is connected via a data bus (13) to form a signal-conducting connection to a signal output of a local logic and memory unit (AE, ACR), wherein the local logic and memory unit (AE, ACR) is coupled to the pressure sensor (10, 20).
  17. Method for performing open-loop and/or closed-loop control of an internal combustion engine (1), having a common rail system (100) according to one of Claims 1 to 12, by means of an electronic device for performing open-loop and/or closed-loop control, wherein during a measurement interval a pressure of the individual accumulator (7) and/or injector (8) and/or rail (6) is detected and stored, and a significant change in the pressure is used to control a start of injection or an end of injection, characterized in that
    - the pressure of the individual accumulator (7) and/or injector (8) and/or rail (6) is measured in each case by means of a pressure sensor (10, 20, 30), in particular at the individual accumulator (7), immediately downstream or upstream of a hydraulic resistor of the high pressure line, and
    - is evaluated in, in each case, a logic and memory unit (AE, ACR, AI), coupled to the pressure sensor (10, 20, 30), of local electronics (12) which are distributed in a decentralized fashion, and
    - only evaluated data are transmitted on the data bus (13) to a logic unit (11) of central electronics (9) of the electronic device.
  18. Method for performing open-loop and/or closed-loop control of an internal combustion engine (1) according to Claim 17, characterized in that when a high pressure component, in particular an individual accumulator (7) and/or an injector (8) and/or a rail (6) is replaced, a memory unit (S, Si, Sj), which can be disconnected from a logic unit (A, Ai, Aj), of the logic and memory unit (AE, ACR, AI) remains at the high pressure component, in particular at the individual memory (7) and/or at the injector (8) and/or at the rail (6).
EP12746284.4A 2011-08-16 2012-08-08 Common rail system, internal combustion engine, and device and method for controlling and/or regulating an internal combustion engine Active EP2748450B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011080990A DE102011080990B3 (en) 2011-08-16 2011-08-16 Common rail system, internal combustion engine and device and method for controlling and / or regulating an internal combustion engine
PCT/EP2012/003379 WO2013023758A1 (en) 2011-08-16 2012-08-08 Common rail system, internal combustion engine, and device and method for controlling and/or regulating an internal combustion engine

Publications (2)

Publication Number Publication Date
EP2748450A1 EP2748450A1 (en) 2014-07-02
EP2748450B1 true EP2748450B1 (en) 2016-06-22

Family

ID=46651457

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12746284.4A Active EP2748450B1 (en) 2011-08-16 2012-08-08 Common rail system, internal combustion engine, and device and method for controlling and/or regulating an internal combustion engine

Country Status (6)

Country Link
US (1) US9617962B2 (en)
EP (1) EP2748450B1 (en)
CN (1) CN103946524B (en)
DE (1) DE102011080990B3 (en)
HK (1) HK1200201A1 (en)
WO (1) WO2013023758A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013003091A1 (en) * 2013-02-25 2014-08-28 Mtu Friedrichshafen Gmbh Gas engine system
DE102013211728A1 (en) * 2013-06-20 2014-12-24 Mtu Friedrichshafen Gmbh Method for correcting the start of injection of injectors of an internal combustion engine and control device for an internal combustion engine
DE102013216255B3 (en) * 2013-08-15 2014-11-27 Mtu Friedrichshafen Gmbh Method for injector-specific diagnosis of a fuel injection device and internal combustion engine with a fuel injection device
KR20170088901A (en) * 2014-11-18 2017-08-02 에프엠피 테크놀로지 지엠비에이치 플루이드 메져먼츠 앤드 프로젝츠 Common-rail injection device and method of injecting a predetermined volume of fuel
FR3042888A1 (en) * 2015-10-26 2017-04-28 Continental Automotive France METHOD FOR AUTOMATICALLY ADAPTING CONDITIONS OF DIAGNOSTIC ESTABLISHMENT BY AN ON-BOARD DIAGNOSTIC SYSTEM
DE102015225279B4 (en) * 2015-12-15 2019-09-12 Mtu Friedrichshafen Gmbh Method and device for the predictive control and / or regulation of an internal combustion engine and internal combustion engine with the device for carrying out the method
JP6947656B2 (en) * 2018-01-25 2021-10-13 トヨタ自動車株式会社 Internal combustion engine control device
DE102021205992A1 (en) * 2021-06-14 2022-12-15 Robert Bosch Gesellschaft mit beschränkter Haftung fuel injection system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10117809A1 (en) * 2001-04-10 2002-10-17 Bosch Gmbh Robert Information detection system for common-rail fuel injection system for IC engine has information for specific fuel injectors provided with information identification data and used for fuel injection control
US6691677B2 (en) 2002-02-15 2004-02-17 Cummins Inc. Fuel delivery device and fuel delivery system
JP4042058B2 (en) * 2003-11-17 2008-02-06 株式会社デンソー Fuel injection device for internal combustion engine
DE102004006896A1 (en) * 2004-02-12 2005-09-15 Mtu Friedrichshafen Gmbh Method for control and regulation of an IC engine with common-rail system uses calculation of injection end and injection begin deviations to evaluate fuel injectors
DE102006034513B3 (en) * 2006-07-26 2007-10-04 Mtu Friedrichshafen Gmbh Detection method for pre-injection in IC engines with common-rail system comprises following pressure change in intermediate storage tanks over fixed interval, detecting end of main injection stage and calculating virtual starting point
DE102006034515B3 (en) * 2006-07-26 2007-05-10 Mtu Friedrichshafen Gmbh Pressure-measuring device for a common-rail system has single-shot reservoirs, chambers and a measuring cell for detecting pressure levels
DE102006059007B3 (en) 2006-12-14 2008-06-19 Mtu Friedrichshafen Gmbh Device for controlling an internal combustion engine
DE102007027943B3 (en) * 2007-06-18 2008-10-16 Mtu Friedrichshafen Gmbh Method for regulating the rail pressure during a start-up procedure
JP4501975B2 (en) * 2007-08-31 2010-07-14 株式会社デンソー FUEL INJECTION DEVICE AND METHOD FOR MANUFACTURING FUEL INJECTION DEVICE
US8459234B2 (en) * 2007-08-31 2013-06-11 Denso Corporation Fuel injection device, fuel injection system, and method for determining malfunction of the same
JP4462307B2 (en) * 2007-08-31 2010-05-12 株式会社デンソー Fuel injection device and fuel injection system
EP2031224B1 (en) * 2007-08-31 2018-11-07 Denso Corporation Fuel injection device, fuel injection system, and method for determining malfunction of the same
DE102007045606B3 (en) * 2007-09-25 2009-02-26 Mtu Friedrichshafen Gmbh Method for controlling and regulating internal combustion engine with common rail system, involves filtering individual accumulator pressure within time frame in measuring interval after end of injection of main injection
JP4420097B2 (en) * 2007-10-02 2010-02-24 株式会社デンソー Injection abnormality detection device and fuel injection system
JP4650566B2 (en) * 2008-12-22 2011-03-16 株式会社デンソー Control system and electronic control device
DE102009002793B4 (en) * 2009-05-04 2011-07-07 MTU Friedrichshafen GmbH, 88045 Common rail fuel injection system and internal combustion engine, electronic device and method for controlling and / or regulating an internal combustion engine
DE102009056381B4 (en) * 2009-11-30 2014-05-22 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine

Also Published As

Publication number Publication date
WO2013023758A1 (en) 2013-02-21
DE102011080990B3 (en) 2013-01-24
US20140209065A1 (en) 2014-07-31
EP2748450A1 (en) 2014-07-02
CN103946524B (en) 2017-02-15
HK1200201A1 (en) 2015-07-31
US9617962B2 (en) 2017-04-11
CN103946524A (en) 2014-07-23

Similar Documents

Publication Publication Date Title
EP2748450B1 (en) Common rail system, internal combustion engine, and device and method for controlling and/or regulating an internal combustion engine
EP1730394B1 (en) Process for controlling and regulating an internal combustion engine
DE102006034514B4 (en) Method for controlling an internal combustion engine
EP1346140B1 (en) Actuator regulation and corresponding method
WO2008129008A2 (en) Method and device for the calibration of fuel injectors
DE102016212263B3 (en) Method and device for determining the injected amount of a fluid in an injection system of a motor vehicle
DE102009056381A1 (en) Method for controlling and regulating an internal combustion engine
DE102010017368A1 (en) Data storage device
DE102009002793A1 (en) Single memory, high pressure component and common rail fuel injection system and internal combustion engine, electronic device and method for controlling and / or regulating an internal combustion engine
EP1664512A1 (en) Method for controlling and regulating an internal combustion engine
DE10006341C2 (en) Control system for an internal combustion engine
DE102006007365B3 (en) Method for controlling and regulating an internal combustion engine, involves setting of minimum pressurization level from maximum individual accumulator pressure in first step
DE19726756A1 (en) System for operating an internal combustion engine, in particular a motor vehicle
DE102014225920B4 (en) Method for operating a diesel engine
DE102008035985B4 (en) Method and device for regulating the fuel pressure in the pressure accumulator of a common rail injection system
EP1505288B1 (en) Method and device for the functional diagnosis of a piezoactuator in the fuel metering system of a combustion engine
DE102006034513B3 (en) Detection method for pre-injection in IC engines with common-rail system comprises following pressure change in intermediate storage tanks over fixed interval, detecting end of main injection stage and calculating virtual starting point
DE102019001677B4 (en) Method for predicting the condition of an injector
EP3449111B1 (en) Method for operating an internal combustion engine, device for the open-loop and/or closed-loop control of an internal combustion engine, injection system and internal combustion engine
DE10303573B4 (en) Method, computer program, storage medium and control and / or regulating device for operating an internal combustion engine, and internal combustion engine, in particular for a motor vehicle
DE102008024545A1 (en) Method for determining cause of defect in low pressure area of fuel injection system of internal combustion engine of motor vehicle, involves determining actual cause of defect by monitoring reaction of injection system to load step
EP3631398B1 (en) Method for monitoring a cylinder pressure sensor
DE102015200565A1 (en) Method and device for adapting a component of an internal combustion engine
EP3976952B1 (en) Method for monitoring an injector for mechanical damage
DE102013221229A1 (en) Method for determining at least one actual injection parameter of at least one injector of an internal combustion engine and internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SPEETZEN, RALF

Inventor name: FAST, GERALD

Inventor name: BOOG, MANUEL

Inventor name: GERBETH, ROBBY

Inventor name: WALDER, MICHAEL

Inventor name: REMELE, JOERG

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 807808

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012007465

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160922

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160923

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161022

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012007465

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160808

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 807808

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012007465

Country of ref document: DE

Owner name: ROLLS-ROYCE SOLUTIONS GMBH, DE

Free format text: FORMER OWNER: MTU FRIEDRICHSHAFEN GMBH, 88045 FRIEDRICHSHAFEN, DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230822

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230824

Year of fee payment: 12

Ref country code: DE

Payment date: 20230821

Year of fee payment: 12