EP1729001B1 - Méthode d'estimation par un filtre non-linéaire adaptatif de la richesse dans un cylindre d'un moteur à combustion - Google Patents

Méthode d'estimation par un filtre non-linéaire adaptatif de la richesse dans un cylindre d'un moteur à combustion Download PDF

Info

Publication number
EP1729001B1
EP1729001B1 EP06290558A EP06290558A EP1729001B1 EP 1729001 B1 EP1729001 B1 EP 1729001B1 EP 06290558 A EP06290558 A EP 06290558A EP 06290558 A EP06290558 A EP 06290558A EP 1729001 B1 EP1729001 B1 EP 1729001B1
Authority
EP
European Patent Office
Prior art keywords
air
richness
cylinders
exhaust
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06290558A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1729001A1 (fr
Inventor
Jonathan Chauvin
Philippe Moulin
Gilles Corde
Nicolas Petit
Pierre Rouchon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP1729001A1 publication Critical patent/EP1729001A1/fr
Application granted granted Critical
Publication of EP1729001B1 publication Critical patent/EP1729001B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1415Controller structures or design using a state feedback or a state space representation
    • F02D2041/1416Observer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/143Controller structures or design the control loop including a non-linear model or compensator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1431Controller structures or design the system including an input-output delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio

Definitions

  • the present invention relates to a method for estimating the fuel richness of each cylinder of an internal combustion engine injection, from a measurement of the wealth downstream of the collector and an adaptive nonlinear filter.
  • the knowledge of wealth characterized by the ratio of the mass of fuel on the air mass, is important for all vehicles, whether they are petrol engines because it conditions a good combustion of the mixture when it is close of 1, or for vehicles with diesel engines for which the interest of the knowledge of the wealth is different since they work with poor mixture (wealth lower than 1).
  • catalysts using a NOx trap lose their effectiveness over time. In order to return to optimum efficiency, the richness must be kept close to 1 for a few seconds, then return to normal operation at a lean mixture. Depollution by DeNOx catalysis therefore requires precise control of the cylinder-by-cylinder richness.
  • a probe placed at the outlet of the turbine (turbocharged engine) and upstream of the NOx trap, gives a measure of the average richness by the exhaust process. This measurement, being very filtered and noisy, is used for the control of the masses injected into the cylinders during the phases of richness equal to 1, each cylinder then receiving the same mass of fuel.
  • An engine control can thus, from the reconstructed wealth, adapt the fuel masses injected into each of the cylinders so that the wealth is balanced in all the cylinders.
  • the object of the present invention is to model the exhaust process more finely so as, on the one hand, to dispense with the identification step, and on the other hand to bring more robustness to the wealth estimation model. , and this for all operating points of the engine.
  • the invention also makes it possible to perform a measurement every 6 ° of rotation of the crankshaft and thus to have a high frequency information of the measurement of richness, without falling into the measurement noise.
  • the physical model may comprise at least the following three types of variables: the total mass of gas in the exhaust manifold ( M T ), the fresh air mass in the exhaust manifold ( M air ) and the riches in each cylinder ( ⁇ i ).
  • This mode can then comprise at least the two following types of output data: the total mass of gas in the exhaust manifold ( M T ) and the mass flow rates leaving said cylinders ( d i ).
  • the measured richness ( ⁇ ) can be estimated as a function of the total mass of gas in the exhaust manifold ( M T ) and the fresh air mass in the exhaust manifold ( M air ).
  • the estimation of the value of the richness in each of the cylinders may then comprise a real-time correction of the estimate of the total mass of gas in the exhaust manifold ( M T ), the estimation of the mass of the fresh air in the exhaust manifold ( M air ) and estimating the value of the richness in each of the cylinders ( ⁇ i ).
  • the method can be applied to an engine control to adapt the fuel masses injected into each of the cylinders to adjust the richness in all the cylinders.
  • the composition of the exhaust gas depends on the amount of fuel and air introduced into the combustion chamber, the fuel composition and the development of the combustion.
  • the richness probe measures the concentration of O 2 inside a diffusion chamber, connected to the exhaust pipe by a diffusion barrier made of porous materials. This configuration may induce differences depending on the location of the chosen probe, in particular because of temperature variations and / or pressures in the vicinity of the richness probe.
  • the measured wealth ( ⁇ ) is connected to the mass of air (or to the air flow) around the probe and to the total mass ( or at the total rate).
  • the model is based on a three-gas approach: air, fuel and flue gas.
  • the lean mixture richness formula is used in the estimator, at the level of integration of richness in equation (7), neglecting a very small portion of the air ( ⁇ 3%).
  • the invention is not limited to this mode, in fact, the formula is continuous in the vicinity of a richness equal to 1, and its inversion does not pose a problem for rich mixtures.
  • AMESim is a 0D modeling software, particularly well suited to thermal and hydraulic phenomena. It allows to model volumes, behaviors or restrictions.
  • the basic tubing, restriction and volume modeling blocks are described in the AMESim "Thermal Pneumatic Library" user manual. Standard equations are used to calculate a flow through a restriction and energy and mass conservations. In addition, the model takes into account gas inertia, which is important for studying the dynamics of gas composition.
  • a unique real-time physical model is defined for modeling the overall system, that is to say the entire path of the exhaust gases, from the cylinders to the downstream exhaust from the turbine, through the collector.
  • the exhaust manifold is modeled according to a volume in which there is conservation of the mass. It is assumed that the temperature is substantially constant, and determined from an abacus function of the load and the engine speed.
  • Model to determine the flow passing through the turbine model of the turbine
  • the turbine is modeled according to a flow passing through a flow restriction.
  • the flow rate in the turbine is generally given by mapping (abacus) as a function of the turbine speed and the upstream / downstream pressure ratio of the turbine.
  • the parameters of the function f are optimized by correlation with the mapping of the turbine.
  • the first equation contains an unknown: M T.
  • the second contains two: M air and ⁇ i . This leads to the additional assumptions described below.
  • the unknowns of the physical model are ultimately M T , M air and ⁇ i .
  • the output data of the physical model is M T and d i .
  • the physical model (5) is non-linear, and it is impossible to solve such a system in real time. It is therefore necessary to use an estimator, rather than seeking to directly calculate the unknowns of the system.
  • the choice of the estimator according to the invention is based on the fact that the structure of the system is linear as a function of the wealth in the cylinders ⁇ i (the air mass variation is linear as a function of ⁇ i ).
  • a particularly suitable technique is to use an adaptive filter.
  • the method according to the invention proposes to construct an estimator based on an adaptive filter. This estimator ultimately allows an estimation of the cylinder to cylinder richness from the measurement of wealth by the sensor located behind the turbine.
  • the principle of the estimator is to converge the physical model (5), and consequently the riches ⁇ i towards reality.
  • the model (5) outputs M T and M Air , and we also have input parameters Y.
  • the estimator therefore compares the output values of the RTM model with the input values, then make the appropriate corrections.
  • L 1 , L 2 , L ⁇ are adjustment parameters, making it possible to control the speed of convergence of the solution to the three unknowns. These are strictly positive real parameters. These parameters are set manually to obtain a good compromise between the speed of convergence and the low sensitivity to measurement noise.
  • the estimator thus constructed makes it possible to correct in real time M T , M air and ⁇ , from a first value of M T provided by the RTM model and from the measurement of richness made by the probe.
  • the system (8) is numerically solved in real time, the calculator using an explicit Euler discretization, well known to those skilled in the art.
  • the 4 cylinders are successively unbalanced by introducing 80 ⁇ s of injection into the cylinder, and the cylinder 1 and 4 are unbalanced in the same way.
  • the Figures 2A and 2B show below the wealth of references ⁇ i ref AMESIM data by a function of time (T) and above the results of the estimator ( ⁇ i) in function of time (T).
  • the four curves correspond to each of the four cylinders.
  • the performance of the estimator based on the adaptive filter is very good. However, there is a slight difference in phase, due to the inertia of the gas which is not taken into account in the present model. It is therefore proposed to complete the model and the estimator by an estimator of the exhaust delay time.
  • the estimator implemented as described above does not allow the estimation method to take into account the delay time between the cylinder exhaust and the signal acquired by the probe.
  • the delay time comes from several sources: transport time in the pipes and through the volumes, dead time of the measuring probe.
  • the penalty is given by ⁇ . If there is a positive variation in the estimated wealth value for cylinder 2, then the delay time between the estimator and the measurements is positive. If there is a variation on cylinder 3, the delay is negative and the penalty is negative. A variation of the cylinder 4 can be considered as a consequence of a positive or negative delay.
  • the delay D applied to the output variables of the RTM model is an additive delay, it is computed by least squares by minimizing J k .
  • the criterion J k is controlled to zero by a PI (Proportional Integral) controller on the delay of the estimator.
  • PI Proportional Integral
  • FIGS. 4A and 4B illustrate the cylinder-to-cylinder richness estimate by the estimator previously described at 1500rpm average load. These figures show up the wealth of references ⁇ i ref versus time (T) and below the results of the estimator ( ⁇ i) in function of time (T). The four curves correspond to each of the four cylinders.
  • the present invention relates to an estimation method comprising the construction of an estimator, making it possible, from the measurement of the richness of the probe ( ⁇ ) and the total mass of gas information inside the collector ( M T ), to estimate the wealth at the output of the four cylinders ( ⁇ i ).
  • the estimator thus produced is efficient, and above all does not require any additional adjustment in the case of change of the operating point. No identification phase is necessary, only a measurement and model noise adjustment must be made once and only once.
  • a delay time controller is put in parallel with the estimator, making it possible to reset the delay time following a step of injection time on a cylinder. This allows optimal calibration of the estimator, for example before a rich phase equal to 1.
  • the invention also makes it possible to perform a measurement every 6 ° of rotation of the crankshaft and thus to have a high frequency information of the measurement of richness, without falling into the measurement noise.
  • the high frequency representation makes it possible to take into account the pulsating effect of the system.
  • the modeled system is periodic and makes it possible to obtain an estimator with a better dynamics: one anticipates the pulsation of the escapement.
  • the invention makes it possible to reduce the calculation time by a factor of about 80 compared to the previous methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Silencers (AREA)
  • Testing Of Engines (AREA)
EP06290558A 2005-05-30 2006-04-03 Méthode d'estimation par un filtre non-linéaire adaptatif de la richesse dans un cylindre d'un moteur à combustion Expired - Fee Related EP1729001B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0505442A FR2886345B1 (fr) 2005-05-30 2005-05-30 Methode d'estimation par un filtre non-lineaire adaptatif de la richesse dans un cylindre d'un moteur a combustion

Publications (2)

Publication Number Publication Date
EP1729001A1 EP1729001A1 (fr) 2006-12-06
EP1729001B1 true EP1729001B1 (fr) 2008-03-26

Family

ID=35058371

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06290558A Expired - Fee Related EP1729001B1 (fr) 2005-05-30 2006-04-03 Méthode d'estimation par un filtre non-linéaire adaptatif de la richesse dans un cylindre d'un moteur à combustion

Country Status (5)

Country Link
US (1) US7483782B2 (ja)
EP (1) EP1729001B1 (ja)
JP (1) JP4964503B2 (ja)
DE (1) DE602006000790T2 (ja)
FR (1) FR2886345B1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2886346B1 (fr) * 2005-05-30 2010-08-27 Inst Francais Du Petrole Methode d'estimation par un filtre de kalman etendu de la richesse dans un cylindre d'un moteur a combustion
DE102005057975A1 (de) * 2005-12-05 2007-06-06 Robert Bosch Gmbh Verfahren zur zylinderindividuellen Steuerung der Kraftstoff- und/oder Luftmenge einer Brennkraftmaschine
DE102007021283A1 (de) * 2007-05-07 2008-11-13 Continental Automotive Gmbh Verfahren und Vorrichtung zur Ermittlung des Verbrennungs-Lambdawerts einer Brennkraftmaschine
JP4697201B2 (ja) * 2007-07-19 2011-06-08 トヨタ自動車株式会社 内燃機関の異常検出装置
DE102008001569B4 (de) * 2008-04-04 2021-03-18 Robert Bosch Gmbh Verfahren und Vorrichtung zur Adaption eines Dynamikmodells einer Abgassonde
EP2339153B1 (en) * 2009-12-23 2019-10-16 FPT Motorenforschung AG Method and apparatus for measuring and controlling the egr rate in a combustion engine
US7987840B2 (en) * 2010-04-14 2011-08-02 Ford Global Technologies, Llc Delay compensated air/fuel control of an internal combustion engine of a vehicle
EP2687709A4 (en) * 2011-03-16 2017-01-11 Toyota Jidosha Kabushiki Kaisha Internal combustion engine control apparatus
JP2013253593A (ja) * 2012-05-11 2013-12-19 Denso Corp 内燃機関の気筒別空燃比制御装置
US9291526B2 (en) 2012-11-12 2016-03-22 Kerdea Technologies, Inc. Oxygen sensing method and system
US10030593B2 (en) * 2014-05-29 2018-07-24 Cummins Inc. System and method for detecting air fuel ratio imbalance
JP6800799B2 (ja) 2017-04-05 2020-12-16 オムロン株式会社 制御装置、制御プログラム、制御システム、および、制御方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4903668A (en) * 1987-07-29 1990-02-27 Toyota Jidosha Kabushiki Kaisha Fuel injection system of an internal combustion engine
JP2705165B2 (ja) * 1988-12-09 1998-01-26 トヨタ自動車株式会社 多気筒内燃機関の燃料噴射量制御装置
US5535135A (en) * 1993-08-24 1996-07-09 Motorola, Inc. State estimator based exhaust gas chemistry measurement system and method
US5600056A (en) * 1994-06-20 1997-02-04 Honda Giken Kogyo Kabushiki Kaisha Air/fuel ratio detection system for multicylinder internal combustion engine
JP3149714B2 (ja) * 1994-12-28 2001-03-26 日産自動車株式会社 内燃機関の触媒劣化診断装置
EP0724073B1 (en) * 1995-01-27 2005-11-16 Matsushita Electric Industrial Co., Ltd. Air-fuel ratio control system
US5715796A (en) * 1995-02-24 1998-02-10 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system having function of after-start lean-burn control for internal combustion engines
JP3749971B2 (ja) * 1995-02-27 2006-03-01 本田技研工業株式会社 内燃機関の燃料噴射制御装置
JP3729295B2 (ja) * 1996-08-29 2005-12-21 本田技研工業株式会社 内燃機関の空燃比制御装置
JP3340058B2 (ja) * 1997-08-29 2002-10-28 本田技研工業株式会社 多気筒エンジンの空燃比制御装置
JP3304844B2 (ja) * 1997-08-29 2002-07-22 本田技研工業株式会社 プラントの制御装置
JP3304845B2 (ja) * 1997-08-29 2002-07-22 本田技研工業株式会社 プラントの制御装置
JPH1185719A (ja) * 1997-09-03 1999-03-30 Matsushita Electric Ind Co Ltd パラメータ推定装置
FR2773847B1 (fr) * 1998-01-19 2000-03-24 Sagem Dispositif d'estimation de richesse de systeme d'injection pour moteur a combustion interne
JP3842528B2 (ja) * 2000-07-07 2006-11-08 株式会社日立製作所 内燃機関の空燃比フィードバック制御装置
JP3960106B2 (ja) * 2001-07-12 2007-08-15 日産自動車株式会社 エンジンの空燃比制御装置
FR2834314B1 (fr) 2001-12-31 2005-01-07 Peugeot Citroen Automobiles Sa Procede d'estimation de la richesse en carburant d'un melange combustible consomme par un moteur a injection, utilisable quel que soit le regime moteur
US6882929B2 (en) * 2002-05-15 2005-04-19 Caterpillar Inc NOx emission-control system using a virtual sensor
JP4144405B2 (ja) * 2003-04-02 2008-09-03 日産自動車株式会社 排気後処理装置の劣化判定装置
JP4357863B2 (ja) * 2003-04-14 2009-11-04 株式会社デンソー 多気筒内燃機関の気筒別空燃比算出装置
JP4314573B2 (ja) * 2003-07-30 2009-08-19 株式会社デンソー 多気筒内燃機関の気筒別空燃比算出装置
FR2867232B1 (fr) 2004-03-05 2006-05-05 Inst Francais Du Petrole Methode d'estimation de la richesse en carburant dans un cylindre d'un moteur a combustion
US7015725B1 (en) * 2004-12-06 2006-03-21 Faraday Technology Corp. Delay-locked loop device capable of anti-false-locking
JP4420288B2 (ja) * 2005-04-25 2010-02-24 株式会社デンソー 内燃機関の気筒別空燃比制御装置
FR2886346B1 (fr) 2005-05-30 2010-08-27 Inst Francais Du Petrole Methode d'estimation par un filtre de kalman etendu de la richesse dans un cylindre d'un moteur a combustion

Also Published As

Publication number Publication date
US20060271271A1 (en) 2006-11-30
FR2886345A1 (fr) 2006-12-01
US7483782B2 (en) 2009-01-27
DE602006000790T2 (de) 2008-07-10
JP2006336644A (ja) 2006-12-14
DE602006000790D1 (de) 2008-05-08
JP4964503B2 (ja) 2012-07-04
EP1729001A1 (fr) 2006-12-06
FR2886345B1 (fr) 2010-08-27

Similar Documents

Publication Publication Date Title
EP1729001B1 (fr) Méthode d'estimation par un filtre non-linéaire adaptatif de la richesse dans un cylindre d'un moteur à combustion
EP1571318B1 (fr) Methode d'estimation de la richesse en carburant dans un cylindre d'un moteur a combustion
EP1729000B1 (fr) Méthode d'estimation par un filtre de Kalman étendu de la richesse dans un cylindre d'un moteur à combustion
FR3065990A1 (fr) Procede de reactualisation d’une dynamique d’adaptation d’une valeur de richesse a une consigne dans un moteur
EP2148979B1 (fr) Procede de controle de combustion d'un moteur diesel
FR3074524A1 (fr) Systeme et procede de commande d'un moteur a combustion interne muni d'un systeme de post traitement des gaz d'echappement de type a catalyse selective
EP1931868B1 (fr) Methode d'estimation du regime instantane produit par chacun des cylindres d'un moteur a combustion interne
WO2010112719A1 (fr) Systeme et procede de commande pour l'estimation du debit de gaz d'echappement recycles dans un moteur a combustion interne
EP3060784A1 (fr) Système et procédé d'estimation du débit d'oxydes d'azotes dans les gaz d'échappement d'un moteur à combustion interne pour véhicule automobile
EP2195519B1 (fr) Estimation de parametres d'etat d'un moteur par mesure de la pression interne d'un cylindre
EP1890024A1 (fr) Determination d'un debut de combustion dans un moteur a combustion interne
EP2829711A1 (fr) Procédé et dispositif pour la détermination de la concentration des gaz d'échappement recirculant à l'entrée du répartiteur d'admission d'un moteur thermique
FR2835281A1 (fr) Procede d'estimation de la masse d'air admise dans une chambre de combustion d'un moteur, et vehicule de mise en oeuvre
FR2898936A1 (fr) Procede d'estimation de la richesse d'un melange air/carburant
EP1662121A1 (fr) Procédé de régulation d'un système d'admission d'un moteur à combustion interne et véhicule automobile pour la mise en oeuvre du procédé
EP2507491B1 (fr) Système et procédé d'estimation de la masse de particules stockées dans un filtre a particules de véhicule automobile
EP1647692A1 (fr) Procédé de régulation d'un système d'admission d'un moteur à combustion interne et véhicule automobile mettant en oeuvre ce procédé
WO2014095052A1 (fr) Procédé de détermination du débit d'air recycle et de la quantité d'oxygène disponible a l'entrée d'un cylindre d'un moteur a combustion interne
WO2008043952A2 (fr) Systeme de determination du debit massique d'oxydes d'azote emis dans les gaz d'echappement d'un moteur a combustion interne
EP2811140A1 (fr) Système et procédé de détermination de la fraction massique de gaz frais dans le collecteur d'admission d'un moteur à combustion interne de véhicule automobile
EP0639704A1 (fr) Procédé de calcul de la masse d'air admise dans un moteur à combustion interne
FR2936015A1 (fr) Estimation de variables d'etat d'un moteur a combustion interne.
FR2999648A1 (fr) Procede de determination de la concentration en oxydes d'azote a la sortie d'un moteur a combustion interne
FR2909762A1 (fr) Systeme et procede de determination du bruit de combustion dans au moins un cylindre de moteur a combustion interne
WO2008043953A1 (fr) Systeme de determination du debit massique d'oxydes d'azote emis dans les gaz d'echappement d'un moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070606

AKX Designation fees paid

Designated state(s): DE GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602006000790

Country of ref document: DE

Date of ref document: 20080508

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081230

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006000790

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, FR

Effective date: 20110331

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006000790

Country of ref document: DE

Owner name: IFP ENERGIES NOUVELLES, FR

Free format text: FORMER OWNER: INSTITUT FRANCAIS DU PETROLE, RUEIL-MALMAISON, HAUTS-DE-SEINE, FR

Effective date: 20110331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110421

Year of fee payment: 6

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160426

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160429

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006000790

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170403