EP1727921B1 - Structural element for aircraft engineering exhibiting a variation of performance characteristics - Google Patents

Structural element for aircraft engineering exhibiting a variation of performance characteristics Download PDF

Info

Publication number
EP1727921B1
EP1727921B1 EP05743083A EP05743083A EP1727921B1 EP 1727921 B1 EP1727921 B1 EP 1727921B1 EP 05743083 A EP05743083 A EP 05743083A EP 05743083 A EP05743083 A EP 05743083A EP 1727921 B1 EP1727921 B1 EP 1727921B1
Authority
EP
European Patent Office
Prior art keywords
mpa
structural member
zones
sub
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05743083A
Other languages
German (de)
French (fr)
Other versions
EP1727921A2 (en
Inventor
Philippe Lequeu
David Dumont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Alcan Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcan Rhenalu SAS filed Critical Alcan Rhenalu SAS
Publication of EP1727921A2 publication Critical patent/EP1727921A2/en
Application granted granted Critical
Publication of EP1727921B1 publication Critical patent/EP1727921B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/40Arrangements of controlling or monitoring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices

Definitions

  • the present invention relates to wrought products and structural elements, especially for aircraft construction, heat-treated aluminum alloy. It relates in particular to so-called long products, ie products having a length significantly greater than the other dimensions, typically at least twice as long as they are wide, and of a length typically of at least 5 meters. . These products can be rolled products (such as thin sheets, medium sheets, thick sheets), spun products (such as bars, profiles, tubes or wires), and forged products.
  • Very large aircraft have unique construction problems.
  • the assembly of structural elements becomes increasingly critical, firstly as a cost factor (riveting is a very expensive process), secondly as a generator of discontinuities in the properties of assembled parts.
  • structural elements can be prepared by integral machining in thick plates; these structural elements can then integrate into a single piece (called monolithic) different functions such as the wing skin function and the stiffener function. It is also possible, and at the same time, to enlarge the dimension of the monolithic structural elements. This poses new manufacturing problems of these parts by rolling, spinning, forging or molding, because it is more difficult to ensure homogeneous properties in very large parts.
  • the patent EP 0 630 986 discloses a method of manufacturing structurally hardened aluminum alloy sheets having a continuous variation of the use properties, wherein the final income is made in a specific structure furnace comprising a hot chamber and a cold room, connected by a heat pump. This process made it possible to obtain small pieces with a length of about one meter in alloy 7010, one end of which is in the T651 state and the other in the T7451 state, by an isochronous tempering treatment.
  • the problem addressed by the present invention is to develop a method for the manufacture of structural elements, in particular for aircraft construction, having a variation of the use properties, which allows the production of very long parts, and which is sufficiently controllable, stable and reproducible under the stringent quality assurance and process control conditions that are commonly required by the aviation industry.
  • Yet another object of the present invention is an aircraft comprising at least one wing which integrates at least one structural element according to the present invention, characterized in that the segment P 1 is located close to the fuselage, and the segment P 2 close to the geometric end of the wing, opposite the fuselage.
  • the figure 1 schematically shows the evolution of the static mechanical properties (curve 1), for example the tensile or compressive strength, and dynamic (curve 2), for example the damage tolerance, in the length of a panel of wing according to the invention.
  • curve 2 shows the mechanical strength in a structural element with a length of 34 meters according to the invention.
  • the static mechanical characteristics ie the breaking strength R m , the yield stress R p0,2, and the elongation at break A, are determined by a tensile test according to EN 10002-1 standard, the location and direction of specimen collection being defined in EN 485-1.
  • the tenacity K IC was measured according to the ASTM E 399 standard.
  • the curve R is determined according to ASTM standard 561. From the curve R, the critical stress intensity factor K C is calculated, that is to say the intensity factor that causes the instability of the crack.
  • the stress intensity factor K CO is also calculated by assigning to the critical load the initial length of the crack at the beginning of the monotonic loading.
  • K app denotes the K CO corresponding to the test piece used to perform the R curve test.
  • the resistance to exfoliating corrosion was determined according to the EXCO test described in the ASTM G34 standard. Unless otherwise specified, the definitions of the standard European EN 12258-1 apply.
  • sheet metal is used here for rolled products of any thickness.
  • machining includes any material removal process such as turning, milling, drilling, reaming, tapping, EDM, grinding, polishing, chemical machining.
  • spun product also includes products that have been drawn after spinning, for example by cold drawing through a die. It also includes drawn products.
  • structural element refers to an element used in mechanical engineering for which the static and / or dynamic mechanical characteristics are of particular importance for the performance and integrity of the structure, and for which a calculation of the structure is usually prescribed or performed. It is typically a mechanical part whose failure is likely to endanger the safety of said construction, its users, its users or others.
  • these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames), wings (such as wing skin), stiffeners (stiffeners), ribs (ribs) and spars) and empennage including horizontal stabilizers and vertical stabilizers horizontal or vertical stabilizers, as well as floor beams, seat tracks and doors.
  • fuselage such as fuselage skin (fuselage skin in English
  • stiffeners or stringers such as fuselage skin
  • bulkheads fuselage (circumferential frames)
  • wings such as wing skin
  • stiffeners stiffeners (stiffeners), ribs (ribs) and spars
  • empennage including horizontal stabilizers and vertical stabilizers horizontal or vertical stabilizers, as well as floor beams, seat tracks and doors.
  • monolithic structural element refers to a structural element which has been obtained from a single piece of semi-finished product, rolled, forged or molded, without assembly, such as riveting, welding, gluing, with another room.
  • the problem is solved by a method in which in an oven which preferably has an internal length greater than the length of the workpiece, the temperature is kept substantially constant over at least two furnace zones of a furnace. length of at least one meter.
  • a temperature profile can be obtained by subdividing the oven along its length into several thermal zones.
  • the invention is applicable to all long metal products, that is to say having a dimension (called length) significantly larger than the other two (width, thickness).
  • the length is the largest dimension of the product. Typically, in the context of the present invention, the length is at least twice as large as the other two dimensions. In particularly advantageous embodiments, it is five or even ten times larger than the other two dimensions. It usually coincides with the long direction of manufacture (rolling or spinning direction); in some cases, it may be different.
  • the products according to the invention may be rolled products (such as sheets or plates), spun products (such as bars, tubes or profiles), forged products; these products can be raw or machined.
  • extreme property segments of a product is understood to mean the two segments showing the greatest difference in properties. Depending on the embodiments chosen, these segments may be close to the two “geometric ends” (or “geometrical ends") of the product, or elsewhere: the present invention also makes it possible to manufacture parts in which at least one of the two segments showing the greatest difference in properties are closer to the geometric medium than to the geometrical end of the part.
  • zone of an oven means the smallest thermal unit over the length of the oven characterized by a substantially constant temperature, that is to say by a temperature variation parallel to the axis of the oven which is low. compared to the temperature difference that characterizes the temperature profile of the oven over its entire length.
  • Such an oven zone is characterized by heating and control means which make it possible to maintain the temperature at a substantially constant value within said zone.
  • the variation of the temperature around the set temperature must not exceed ⁇ 5 ° C, and preferably does not exceed. ⁇ 4 ° C. In a preferred embodiment, this difference does not exceed ⁇ 3 ° C.
  • the difference should not exceed ⁇ 2 ° C.
  • the temperature should be as constant as possible. In any case, the variation of the temperature around the set temperature inside a zone must be lower than the temperature difference between the hottest oven zone and the coldest oven zone. .
  • zones can form a "zone group", that is, a thermal unit within which the temperature is substantially constant, or follows a controlled thermal profile.
  • a zone group that is, a thermal unit within which the temperature is substantially constant, or follows a controlled thermal profile.
  • two groups of thermal zones can be formed, each comprising three furnace zones (having the successive numbers 1, 2, 3, 7, 8 and 9), separated by a central zone group comprising a controlled thermal profile and obtained via three oven zones (bearing the successive numbers 4, 5 and 6).
  • a group of zones may have only one oven zone.
  • the minimum temperature difference that leads to differences in industrially exploitable properties between two segments with extreme properties of the product according to the invention is five degrees.
  • a difference of at least ten degrees is preferred.
  • the difference in temperature can be much greater, up to 80 ° C, or even up to 100 ° C, or even more, but this can cause problems of temperature control and its profile parallel to the axis of the oven, and this especially in the case of relatively small parts. If one wants to obtain returned states, the difference in temperature will not exceed typically fifty degrees.
  • a temperature difference greater than fifty degrees can advantageously be used to manufacture a part of which one of the segments with extreme properties is in a state close to a state T3 or T4.
  • an oven having a plurality of contiguous furnace zones is used in the present invention.
  • plurality is meant at least two, and preferably at least three furnace zones.
  • a partition between two contiguous zones, as proposed in the patent EP 0 630 986 is neither necessary nor useful. It does not allow to exercise sufficient control over the temperature between two zones.
  • the use of a heat pump that connects the cold room to the hot room, as proposed in EP 0 630 986 makes the thermal profile inside the oven too unstable.
  • a good control of the thermal profile inside the furnace is essential to be able to manufacture structural elements in a manner compatible with the requirements of quality assurance of aeronautical products.
  • the furnace comprises at least three furnace zones with a unit length of at least one meter.
  • the inventors use a furnace with a total length of thirty-six meters with thirty oven zones of substantially identical length, adjustable independently of each other.
  • these thirty furnace zones are grouped so as to form a reduced number of groups of thermal zones, for example three to five.
  • the method according to the invention comprises the preparation of a corrected piece of aluminum alloy with a hardening, a dissolution, quenching, possibly traction with a permanent elongation of at least 0.5%, a treatment of income in a controlled thermal profile oven.
  • Said tempering treatment in a thermal profile furnace may comprise, for at least one of the groups of thermal zones that make up the controlled thermal profile, one or more, typically two or three, temperature stages, or a more or less continuous ramp of no net temperature.
  • the tempering treatment in the controlled thermal profile oven is preceded or followed by another step of treatment of income in a homogeneous oven (which can be the same oven, adjusted so as to obtain a uniform temperature in all its zones , or another oven).
  • Such a final homogenous furnace income is particularly useful when aiming to obtain a state suitable for an income shaping operation; in this case, the homogeneous final income allows the formation of income.
  • a room may incur an income in the controlled thermal gradient oven, then at least one shaping or machining operation, and then a treatment step in a homogeneous oven.
  • the process according to the invention can be used to form semi-finished products of any structurally hardened alloy, such as 2xxx, 4xxx, 6xxx and 7xxx series aluminum alloys, as well as 8xxx series hardening alloys. containing lithium.
  • the method according to the invention can, in the case of Al-Zn-Cu-Mg alloys (series 7xxx), be used to have one of the segments with extreme properties in a state close to T6, and another segment with properties extremes close to T74 or T73.
  • the method according to the invention can be used to obtain on one of the segments with extreme properties a state close to T3 or T4, and on the other segment with extreme properties a state close to T6 or T8.
  • the alloy comprises between 6 and 15% of zinc, between 1 and 3% of copper and between 1.5 and 3.5% of magnesium.
  • the zinc content is at least 7%, and is preferably between 8 and 13%, and even more preferably between 8.5 and 11%.
  • the copper content is advantageously between 1.3 and 2.1%, and the magnesium content between 1.8 and 2.7%.
  • alloys including 7449, 7349 and 7056, make it possible to obtain both a very high mechanical strength (for example in the T651 or T7951 state) and a very high toughness (for example in the T76 state, T7651 or T74, or in the T7451, T73 or T7351 state), while maintaining in the two states corresponding to the two extreme property segments of the product, as well as in the intermediate zones, a compromise between acceptable strength and toughness and resistance to exfoliating corrosion (EXCO test) maintained at a good level (EA).
  • EXCO test acceptable strength and toughness and resistance to exfoliating corrosion
  • a product made of 2xxx alloy (such as 2024 or 2023) on one segment or a geometrical end (P 1 ) is tempered at about 120 ° C, and on another segment or the other geometric end (P 2 ) a peak income of mechanical strength (T851 state) at about 190 ° C.
  • the segment or geometric end that is not worn at the peak of mechanical strength (ie P 1 ) is tempered at about 100 ° C (or 80 ° C); it is an under-income state.
  • an income at peak strength (state T651) at about 120 ° C. is carried out. and on another segment or the other geometric end an overflow (state T7651, T7451 or T7351) in two stages at 120 ° C and 150 ° C - 165 ° C.
  • a 6xxx alloy product (such as 6056 or 6156) is made on a segment or a geometrical end. returned to the peak of mechanical strength (T651 state) at about 190 ° C, and on another segment or the other end geometric over-income (T7851 state) in two stages.
  • the metal parts obtained by the process according to the invention can be used as a structural element in the aeronautical construction.
  • These structural elements can be bi-functional or multi-functional, that is to say, bring together in a single piece of monolithic different functionalities that the methods according to the prior art could only bring together the assembly of different parts.
  • These structural elements may also allow a simpler and lighter construction and manufacture of aircraft, particularly aircraft of very large cargo or passenger capacity.
  • a specific advantage of the process according to the invention is that in each segment with extreme properties, the optimal properties targeted in a well-controlled length of the product are obtained.
  • the designer of the aircraft knows exactly how long the product will have the optimal properties recommended and guaranteed.
  • the method according to the invention is used to manufacture structural elements which do not have a continuous variation of properties over their entire length, but which have at least two zones in which the mechanical properties ( or some of them) are constant over a certain length of the product.
  • this zone has a length of at least one meter, and preferably at least two meters.
  • Another specific advantage of the method according to the invention is the precise control of the properties in the transition segment P 1,2 between two groups of segments P 1 and P 2 (there may be two or more, depending on the number of groups of thermal zones), P 1 and P 2 being segments with extreme properties.
  • the designer of the aircraft does not need, in the transition segment, maximum properties for one or other of the properties (or groups of properties) to be optimized, for example the breaking strength. in the long direction R m (L) and the toughness K IC (LT) . But it does require a certain compromise between these properties or groups of properties, because in this transition segment, the structural element plays a structural role and must meet precise specifications.
  • the method according to the invention makes it possible to heat-treat long structural parts or elements. Most often, their section perpendicular to the length is substantially constant along their length, but it may be otherwise. Similarly, the parts can be straight or not; for example, slightly curved forged structural elements can be processed. The method could be used also for processing molded parts, but long molded parts are very rare and difficult to manufacture.
  • the length of the piece is at least 5 meters or better still at least 7 meters, but a length of at least 15 meters or even at least 25 meters is preferred to take full advantage of possibilities to create several functionalized segments distributed over the length of the room.
  • Structural elements with at least two segments P 1 and P 2 have thus been produced in which the length F P1 and F P2 (expressed as a percentage of the total length of the workpiece L) of the at least two segments P 1 and P 2 is such that F P1 > 25% and F P2 > 25% and preferably F P1 > 30% and F P2 > 30%. In other embodiments, F P1 > 35% and F P2 > 30%, or F P1 > 40% and F P2 > 30%.
  • Structural elements according to the invention can be advantageously used in aeronautical construction.
  • a large-capacity airplane comprising at least one wing comprising at least one structural element according to the invention, characterized in that the segment P 1 is located close to the fuselage, and the segment P 2 close to the geometrical end of the wing (see figure 1 ).
  • said wing panels have a length of at least 15 meters, and preferably at least 25 meters. As described in the example below, the inventors made wing panels more than 30 meters long.
  • Said parts and structural elements may be monolithic.
  • the method according to the invention also makes it possible to heat-treat parts or structural elements that are not monolithic but assembled from at least two rolled or forged pieces or semi-finished products (preferably in hardening aluminum alloys). structural), for example by welding, riveting or gluing. It is also conceivable that in such an assembly, one or more of the parts are made from a base material that is not an aluminum alloy.
  • the sheets and profiles are in the T351 state, and the assembly is performed by laser welding (Laser Beam Welding, LBW), friction welding (Friction Stir Welding, FSW) or Electron Beam Welding (EBW).
  • the Applicant has found that it may be preferable to treat such a welded assembly after welding by the method according to the invention, instead of treating the semi-finished products (sheets and profiles) intended to constitute said assembly before welding, because an improvement in the mechanical strength and the corrosion resistance of the welded joint is obtained.
  • This effect is significant when the welded joint is spread over a large length of the structural element (for example substantially parallel to the long direction of the product).
  • a sheet 36 meters long, 2.5 meters wide and 30 mm thick was manufactured by hot rolling a rolling plate.
  • the composition of the alloy was: Zn 9.1%, Mg 1.89%, Cu 1.57%, Fe 0.06%, Si 0.03%, Ti 0.03%, Zr 0.11%, other items ⁇ 0.01 each.
  • the rolling plate was homogenized for 14 hours at 475 ° C.
  • the inlet temperature to the hot mill was 428 ° C
  • the outlet temperature of the hot rolled sheet was 401 ° C.
  • the sheet was put into solution, quenched and quenched under the following conditions: hold for 6 hours at 471 ° C, quench in water at a temperature between about 15 and 16 ° C, then controlled pull with permanent elongation about 2.5%
  • the sheet was trimmed to give a sheet of 34 meters long. It was positioned in length in an oven consisting of 30 zones with a unit length of 1200 mm. For all tempering temperatures, the variation around the setpoint did not exceed ⁇ 3 ° C.
  • the treatment of income consisted of a first step of homogeneous treatment at 120 ° C for 6 hours ("first step"), immediately followed by a second step during which a geometric end of 18 meters (called Z 1 , corresponding to 15 furnace zones) was treated for 15 hours at 155 ° C ("second stage", preceded by an adjustment period of about 1 hour), while the other geometric end of 10.8 meters (called Z 2 , corresponding to 9 furnace zones) was maintained for 16 hours at 120 ° C.
  • the transition zone between these two ends corresponded to 7.2 meters (called Z 1.2 , corresponding to 6 furnace zones).
  • the sheet was subjected to a third step of income, namely a homogeneous income consisting of a rise in temperature at 148 ° C for 1:30, followed by maintenance at 150 ° C for 15h hours.
  • This third step was intended to simulate an income shaping operation or income after shaping the structural element.
  • Table 1 summarizes the static mechanical characteristics obtained by a tensile test. These are averages obtained from measurements made at mid-thickness and at different locations spread across the width of the sheet. There was no significant variation in properties in the width of the sheet. It should be noted that for R p0.2 in the L and TL directions, the values were also measured by a compression test; they are shown in Table 1 in parentheses.
  • K IC and K app toughness results are shown in Table 2.
  • Such a sheet of 34 meters length can be used as a wing panel for cargo or passenger planes of very large capacity.
  • the geometric end X of the sheet (corresponds to high K IC toughness, the static mechanical resistance being lower) is positioned on the fuselage side, and the geometric end Z of the sheet (corresponds to a high static mechanical resistance , toughness K IC being lower) corresponds to the geometrical end of the wing.
  • the set-point, sheet and air temperatures in the furnace zones for the second tempering stage are shown in Table 3.
  • the temperature profile is shown during the tempering step at 120 ° C. and 155 ° C. ° C in the stationary thermal state.
  • the temperature of the sheet was measured using forty thermocouples; the values given in Table 3 were measured at mid-width.
  • Table 3 Oven area Set temperature [° C] Sheet temperature [° C] Air temperature [° C] 1 120 3 120 120.5 6 120 120.8 120.8 9 120 124.4 124.3 10 123 125.9 126.7 11 129 129.9 129.7 14 147 147.7 148.3 16 155 157.2 156.6 17 155 156.8 156.6 18 155 155.3 154.9 22 155 155.1 154.8 30 155

Abstract

The invention relates to a method for producing a part made of aluminium alloy with structural hardening consisting a) in melting a semifinished extruded or forged rolled stock followed by water quenching, b) in optionally carrying out a controlled drawing with a permanent stretching which is equal to or greater than 5 % and c) in tempering. Said invention is characterised in that at least one tempering operation is carried out in a controlled thermal gradient linear furnace comprising at least two areas or groups of areas (Z<SUB>1</SUB>, Z<SUB>2</SUB>) at initial temperatures (T<SUB>1</SUB>, T<SUB>2</SUB>) in which the variation of each temperature T<SUB>1</SUB>, T<SUB>2</SUB>) around a specified temperature is equal or less than 5 °C through the length of said areas or the groups of areas, the difference between the specified temperatures of the initial temperatures T1 and T2 is equal or greater than 5 °C and said areas or the groups of areas are dividable by a transition area or group of areas (Z<SUB>1</SUB>,<SUB>2</SUB>) inside of which the initial temperature varies from T1 to T2 and a length which is parallel to the axis of the linear furnace of each at least two areas or the groups of areas Z<SUB>1</SUB> and Z<SUB>2</SUB> is equal to or greater than 1 meter.<SUP/>

Description

Domaine technique de l'inventionTechnical field of the invention

La présente invention concerne les produits corroyés et les éléments de structure, notamment pour construction aéronautique, en alliage d'aluminium à traitement thermique. Elle concerne notamment les produits dit longs, c'est-à-dire les produits présentant une longueur significativement plus grande que les autres dimensions, typiquement au moins deux fois plus longues que larges, et d'une longueur typiquement d'au moins 5 mètres. Ces produits peuvent être des produits laminés (tels que des tôles minces, tôles moyennes, tôles épaisses), des produits filés (tels que des barres, profilés, tubes ou fils), et des produits forgés.The present invention relates to wrought products and structural elements, especially for aircraft construction, heat-treated aluminum alloy. It relates in particular to so-called long products, ie products having a length significantly greater than the other dimensions, typically at least twice as long as they are wide, and of a length typically of at least 5 meters. . These products can be rolled products (such as thin sheets, medium sheets, thick sheets), spun products (such as bars, profiles, tubes or wires), and forged products.

Etat de la techniqueState of the art

Les avions de très grande taille présentent des problèmes de construction tout à fait particuliers. A titre d'exemple, l'assemblage des éléments structuraux devient de plus en plus critique, d'une part en tant que facteur de coût (le rivetage est un procédé très coûteux), d'autre part en tant que générateur de discontinuités dans les propriétés des pièces assemblées.
Pour minimiser les assemblages, on peut préparer des éléments de structure par usinage intégral dans des tôles épaisses ; ces éléments de structures peuvent alors intégrer en une seule pièce (dite monolithique) différentes fonctions telles que la fonction de peau de voilure et la fonction de raidisseur. On peut également, et parallèlement, agrandir la dimension des éléments de structure monolithiques. Cela pose de nouveaux problèmes de fabrication de ces pièces par laminage, filage, forgeage ou moulage, car il est plus difficile de garantir des propriétés homogènes dans des pièces de très grande taille.
Very large aircraft have unique construction problems. For example, the assembly of structural elements becomes increasingly critical, firstly as a cost factor (riveting is a very expensive process), secondly as a generator of discontinuities in the properties of assembled parts.
To minimize the assemblies, structural elements can be prepared by integral machining in thick plates; these structural elements can then integrate into a single piece (called monolithic) different functions such as the wing skin function and the stiffener function. It is also possible, and at the same time, to enlarge the dimension of the monolithic structural elements. This poses new manufacturing problems of these parts by rolling, spinning, forging or molding, because it is more difficult to ensure homogeneous properties in very large parts.

Il a été évoqué également de préparer des pièces monolithiques présentant une variation contrôlée de propriétés, ce qui permet, en théorie, de mieux adapter les propriétés des pièces aux besoins du constructeur. A ce titre, le brevet EP 0 630 986 (Pechiney Rhenalu ) décrit un procédé de fabrication de tôles en alliage d'aluminium à durcissement structural présentant une variation continue des propriétés d'emploi, dans lequel le revenu final est effectué dans un four de structure spécifique comprenant une chambre chaude et une chambre froide, reliées par une pompe à chaleur. Ce procédé a permis d'obtenir des petites pièces d'une longueur d'environ un mètre en alliage 7010 dont une extrémité se trouve à l'état T651 et l'autre à l'état T7451, par un traitement de revenu isochrone. Ce procédé n'a jamais été développé à l'échelle industrielle, car il est difficile à contrôler d'une manière compatible avec les exigences de qualité que pose le domaine de la construction aéronautique ; ces difficultés augmentent avec la taille des pièces, sachant que c'est en particulier pour les très grandes pièces que le concepteur souhaiterait pouvoir intégrer deux ou plusieurs fonctionnalités par le biais d'une variation continue des propriétés d'emploi. Un autre problème que pose ce procédé pour l'exemple décrit dans le brevet cité est que les durées optimales des traitements T651 et T7451 sont différentes. Encore un autre problème est qu'un produit en 7010 à l'état T7451 est obtenu typiquement par un traitement de revenu à deux paliers, alors que l'état T651 est obtenu par un traitement de revenu à simple palier.It was also mentioned to prepare monolithic pieces having a controlled variation of properties, which makes it possible in theory to better adapt the properties of the parts to the needs of the manufacturer. As such, the patent EP 0 630 986 (Pechiney Rhenalu ) discloses a method of manufacturing structurally hardened aluminum alloy sheets having a continuous variation of the use properties, wherein the final income is made in a specific structure furnace comprising a hot chamber and a cold room, connected by a heat pump. This process made it possible to obtain small pieces with a length of about one meter in alloy 7010, one end of which is in the T651 state and the other in the T7451 state, by an isochronous tempering treatment. This process has never been developed on an industrial scale because it is difficult to control in a manner compatible with the quality requirements of the field of aeronautical construction; these difficulties increase with the size of the parts, knowing that it is particularly for the very large parts that the designer would like to be able to integrate two or more functionalities by means of a continuous variation of the properties of use. Another problem with this method for the example described in the cited patent is that the optimal durations of the T651 and T7451 treatments are different. Yet another problem is that a 7010 product in the T7451 state is typically obtained by a two-stage income treatment, while the T651 state is obtained by a single-stage income treatment.

Le problème auquel répond la présente invention est de développer un procédé pour la fabrication d'éléments de structure, notamment pour construction aéronautique, présentant une variation des propriétés d'emploi, qui permet la réalisation de pièces de très grande longueur, et qui est suffisamment contrôlable, stable et reproductible dans les conditions strictes d'assurance de la qualité et de maîtrise des procédés qui sont couramment exigées par l'industrie aéronautique.The problem addressed by the present invention is to develop a method for the manufacture of structural elements, in particular for aircraft construction, having a variation of the use properties, which allows the production of very long parts, and which is sufficiently controllable, stable and reproducible under the stringent quality assurance and process control conditions that are commonly required by the aviation industry.

Objet de l'inventionObject of the invention

Un premier objet de la présente invention est un procédé de fabrication d'une pièce en alliage d'aluminium à durcissement structural, comprenant :

  1. a) la mise en solution d'un demi-produit laminé, filé ou forgé, suivie d'une trempe,
  2. b) éventuellement la traction contrôlée avec un allongement permanent d'au moins 0,5%,
  3. c) le traitement de revenu,
caractérisé en ce qu'au moins une étape dudit traitement de revenu est effectuée dans un four à profil thermique contrôlé dans la longueur, ledit four comportant au moins deux zones ou groupes de zones Z1, Z2 avec des températures initiales T1, T2, dans lesquelles la variation de la température autour de la température de consigne de chacune des températures T1 et T2 ne dépasse pas ± 5°C (préférentiellement ± 4°C, et encore plus préférentiellement ± 3°C) sur la longueur desdites zones ou groupes de zones, la différence entre les températures de consigne des températures initiales T1 et T2 étant supérieure ou égale à 5°C (préférentiellement comprise entre 10°C et 80°C, plus préférentiellement entre 10°C et 50°C, et encore plus préférentiellement entre 20°C et 40°C), et lesdites zones ou groupes de zones pouvant être séparées par une zone ou groupe de zones Z1,2 dit de transition à l'intérieur de laquelle ou duquel la température initiale varie de T1 à T2,
et caractérisé en ce que la longueur parallèle à l'axe du four de chacune desdites au moins deux zones ou groupes de zones Z1 et Z2 est d'au moins un mètre (et préférentiellement d'au moins deux mètres).A first object of the present invention is a method of manufacturing a structural hardening aluminum alloy part, comprising:
  1. a) dissolving a semi-finished product rolled, spun or forged, followed by quenching,
  2. b) optionally controlled traction with a permanent elongation of at least 0.5%,
  3. (c) the income treatment,
characterized in that at least one step of said tempering treatment is carried out in a controlled temperature profile furnace in length, said furnace comprising at least two zones or groups of zones Z 1 , Z 2 with initial temperatures T 1 , T 2 , in which the variation of the temperature around the set temperature of each of the temperatures T 1 and T 2 does not exceed ± 5 ° C (preferably ± 4 ° C, and even more preferably ± 3 ° C) over the length said zones or groups of zones, the difference between the set temperatures of the initial temperatures T 1 and T 2 being greater than or equal to 5 ° C (preferably between 10 ° C and 80 ° C, more preferably between 10 ° C and 50 ° C). ° C, and even more preferably between 20 ° C and 40 ° C), and said zones or groups of zones can be separated by a zone or group of zones Z 1,2 said transition within which or which the temperatur e initial varies from T 1 to T 2 ,
and characterized in that the length parallel to the furnace axis of each of said at least two zones or groups of zones Z 1 and Z 2 is at least one meter (and preferably at least two meters).

Un deuxième objet de la présente invention est un élément de structure monolithique selon des revendications en alliage d'aluminium à durcissement structural ayant une longueur L plus grande que la largeur B et l'épaisseur E, notamment pour construction aéronautique,
ledit élément de structure monolithique étant caractérisé en ce qu'au moins deux segments P1 et P2 situées sur une longueur différente dudit élément de structure possèdent des propriétés mécaniques (mesurée à mi-épaisseur) sélectionnées dans le groupe formé de :

  • a) P1 : KIC(L-T) > 38 NPa√m et P2 : Rm(L) > 580 MPa
    (et préférentiellement > 590 MPa, et encore plus préférentiellement > 600 MPa).
  • b) P1 : KIC(L-T) > 40 MPa√m et P2 : Rm(L) > 580 MPa
    (et préférentiellement > 590 MPa).
  • c) P1 : KIC(L-T) > 41 MPa√m et P2 : Rm(L) > 580 MPa
    (et préférentiellement > 590 MPa).
  • d) P1 : KIC(L-T) > 42 MPa√m et P2 : Rm(L) > 590 MPa.
  • e) P1 : KIC(L-T) > 39 MPa√m et P2 : Rm(L) > 580 MPa et P2 : Rm(TL) > 550 MPa.
  • f) P1 : KIC(L-T) > 39 MPa√m et P2 : Rm(L) > 580 MPa et P2 : Rp0,2(L) > 550 MPa,
  • i) P1 : KIC(L-T) > 39 MPa√m et P1 : Rm(L) > 530 MPa, et P2 : Rm(L) > 580 MPa.
  • j) P1 : KIC(L-T) > 40 NTa√m et P1 : Rm(L) > 540 MPa, et P2 : Rm(L) > 590 MPa.
  • k) P1 : Kapp(L-T)(CCT406) > 125 MPa√m et P2 : Rm(L) > 590 MPa.
A second object of the present invention is a monolithic structural element according to claims of structural hardening aluminum alloy having a length L greater than the width B and the thickness E, in particular for aircraft construction,
said monolithic structure element being characterized in that at least two segments P 1 and P 2 located on a different length of said structural element have mechanical properties (measured at mid-thickness) selected from the group consisting of:
  • a) P 1 : K IC (LT) > 38 NPa√m and P 2 : R m (L)> 580 MPa
    (and preferentially> 590 MPa, and even more preferentially> 600 MPa).
  • b) P 1 : K IC (LT) > 40 MPa√m and P 2 : R m (L)> 580 MPa
    (and preferentially> 590 MPa).
  • c) P 1 : K IC (LT) > 41 MPa√m and P 2 : R m (L)> 580 MPa
    (and preferentially> 590 MPa).
  • d) P 1 : K IC (LT) > 42 MPa√m and P 2 : R m (L)> 590 MPa.
  • e) P 1 : K IC (LT) > 39 MPa√m and P 2 : R m (L)> 580 MPa and P 2 : R m (TL)> 550 MPa.
  • f) P 1 : K IC (LT) > 39 MPa√m and P 2 : R m (L)> 580 MPa and P 2 : R p0.2 (L)> 550 MPa,
  • i) P 1 : K IC (LT) > 39 MPa√m and P 1 : R m (L)> 530 MPa, and P 2 : R m (L)> 580 MPa.
  • j) P 1 : K IC (LT) > 40 NTa√m and P 1 : R m (L)> 540 MPa, and P 2 : R m (L)> 590 MPa.
  • k) P 1 : K app (LT) (CCT406) > 125 MPa√m and P2: R m (L)> 590 MPa.

Encore un autre objet de la présente invention est un avion comprenant au moins une aile qui intègre au moins un élément de structure selon la présente invention, caractérisé en ce que le segment P1 se situe proche du fuselage, et le segment P2 proche de l'extrémité géométrique de l'aile, à l'opposé du fuselage.Yet another object of the present invention is an aircraft comprising at least one wing which integrates at least one structural element according to the present invention, characterized in that the segment P 1 is located close to the fuselage, and the segment P 2 close to the geometric end of the wing, opposite the fuselage.

Description des figuresDescription of figures

La figure 1 montre de manière schématique l'évolution des propriétés mécaniques statiques (courbe 1), par exemple la résistance à la traction ou à la compression, et dynamiques (courbe 2), par exemple la tolérance aux dommages, dans la longueur d'un panneau de voilure selon l'invention.
La figure 2 montre la résistance mécanique dans un élément de structure d'une longueur de 34 mètres selon l'invention.
The figure 1 schematically shows the evolution of the static mechanical properties (curve 1), for example the tensile or compressive strength, and dynamic (curve 2), for example the damage tolerance, in the length of a panel of wing according to the invention.
The figure 2 shows the mechanical strength in a structural element with a length of 34 meters according to the invention.

Description de l'inventionDescription of the invention a) Terminologiea) Terminology

Sauf mention contraire, toutes les indications relatives à la composition chimique des alliages sont exprimées en pourcent massique. Par conséquent, dans une expression mathématique, « 0,4 Zn » signifie : 0,4 fois la teneur en zinc, exprimée en pourcent massique ; cela s'applique mutatis mutandis aux autres éléments chimiques. La désignation des alliages suit les règles de The Aluminum Association, connues de l'homme du métier. Les états métallurgiques sont définis dans la norme européenne EN 515. La composition chimique d'alliages d'aluminium normalisés est définie par exemple dans la norme EN 573-3. Sauf mention contraire, les caractéristiques mécaniques statiques, c'est-à-dire la résistance à la rupture Rm, la limite élastique Rp0,2, et l'allongement à la rupture A, sont déterminées par un essai de traction selon la norme EN 10002-1, l'endroit et le sens du prélèvement des éprouvettes étant définis dans la norme EN 485-1. La ténacité KIC a été mesurée selon la norme ASTM E 399. La courbe R est déterminée selon la norme ASTM 561. A partir de la courbe R, on calcule le facteur d'intensité de contrainte critique KC , c'est à dire le facteur d'intensité qui provoque l'instabilité de la fissure. On calcule également le facteur d'intensité de contrainte KCO, en affectant à la charge critique la longueur initiale de la fissure, au début du chargement monotone. Ces deux valeurs sont calculées pour une éprouvette de forme voulue. Kapp désigne le KCO correspondant à l'éprouvette ayant servi à faire le test de courbe R. La résistance à la corrosion exfoliante a été déterminée selon l'essai EXCO décrit dans la norme ASTM G34.
Sauf mention contraire, les définitions de la norme européenne EN 12258-1 s'appliquent. Le terme « tôle » est utilisé ici pour des produits laminés de toute épaisseur.
Unless stated otherwise, all the information relating to the chemical composition of the alloys is expressed in percent by weight. Therefore, in a mathematical expression, "0.4 Zn" means: 0.4 times the zinc content, expressed in mass percent; this applies mutatis mutandis to other chemical elements. The designation of the alloys follows the rules of The Aluminum Association, known to the skilled person. The metallurgical states are defined in the European standard EN 515. The chemical composition of standardized aluminum alloys is defined for example in the standard EN 573-3. Unless otherwise stated, the static mechanical characteristics, ie the breaking strength R m , the yield stress R p0,2, and the elongation at break A, are determined by a tensile test according to EN 10002-1 standard, the location and direction of specimen collection being defined in EN 485-1. The tenacity K IC was measured according to the ASTM E 399 standard. The curve R is determined according to ASTM standard 561. From the curve R, the critical stress intensity factor K C is calculated, that is to say the intensity factor that causes the instability of the crack. The stress intensity factor K CO is also calculated by assigning to the critical load the initial length of the crack at the beginning of the monotonic loading. These two values are calculated for a specimen of the desired shape. K app denotes the K CO corresponding to the test piece used to perform the R curve test. The resistance to exfoliating corrosion was determined according to the EXCO test described in the ASTM G34 standard.
Unless otherwise specified, the definitions of the standard European EN 12258-1 apply. The term "sheet metal" is used here for rolled products of any thickness.

Le terme « usinage » comprend tout procédé d'enlèvement de matière tel que le tournage, le fraisage, le perçage, l'alésage, le taraudage, l'électroérosion, la rectification, le polissage, l'usinage chimique.
Le terme « produit filé » comprend également les produits qui ont été étirés après filage, par exemple par étirage à froid à travers une filière. Il comprend également les produits tréfilés.
Le terme « élément de structure » se réfère à un élément utilisé en construction mécanique pour lequel les caractéristiques mécaniques statiques et / ou dynamiques ont une importance particulière pour la performance et l'intégrité de la structure, et pour lequel un calcul de la structure est généralement prescrit ou effectué. Il s'agit typiquement d'une pièce mécanique dont la défaillance est susceptible de mettre en danger la sécurité de ladite construction, de ses utilisateurs, de ses usagers ou d'autrui.
The term "machining" includes any material removal process such as turning, milling, drilling, reaming, tapping, EDM, grinding, polishing, chemical machining.
The term "spun product" also includes products that have been drawn after spinning, for example by cold drawing through a die. It also includes drawn products.
The term "structural element" refers to an element used in mechanical engineering for which the static and / or dynamic mechanical characteristics are of particular importance for the performance and integrity of the structure, and for which a calculation of the structure is usually prescribed or performed. It is typically a mechanical part whose failure is likely to endanger the safety of said construction, its users, its users or others.

Pour un avion, ces éléments de structure comprennent notamment les éléments qui composent le fuselage (tels que la peau de fuselage (fuselage skin en anglais), les raidisseurs ou lisses de fuselage (stringers), les cloisons étanches (bulkheads), les cadres de fuselage (circumferential frames), les ailes (tels que la peau de voilure (wing skin), les raidisseurs (stringers ou stiffeners), les nervures (ribs) et longerons (spars)) et l'empennage composé notamment de stabilisateurs horizontaux et verticaux (horizontal or vertical stabilisers), ainsi que les profilés de plancher (floor beams), les rails de sièges (seat tracks) et les portes.For an aircraft, these structural elements include the elements that make up the fuselage (such as fuselage skin (fuselage skin in English), stiffeners or stringers, bulkheads, fuselage (circumferential frames), wings (such as wing skin), stiffeners (stiffeners), ribs (ribs) and spars) and empennage including horizontal stabilizers and vertical stabilizers horizontal or vertical stabilizers, as well as floor beams, seat tracks and doors.

Le terme « élément de structure monolithique » se réfère à un élément de structure qui a été obtenu à partir d'une seule pièce de demi-produit laminé, filé, forgé ou moulé, sans assemblage, tel que rivetage, soudage, collage, avec une autre pièce.The term "monolithic structural element" refers to a structural element which has been obtained from a single piece of semi-finished product, rolled, forged or molded, without assembly, such as riveting, welding, gluing, with another room.

b) Description détaillée de l'inventionb) Detailed description of the invention

Selon l'invention, le problème est résolu par un procédé dans lequel dans un four qui a de préférence une longueur intérieure supérieure à la longueur de la pièce à traiter, la température est gardée sensiblement constante sur au moins deux zones de four d'une longueur d'au moins un mètre. Un tel profil de température peut être obtenu en subdivisant le four selon sa longueur en plusieurs zones thermiques.According to the invention, the problem is solved by a method in which in an oven which preferably has an internal length greater than the length of the workpiece, the temperature is kept substantially constant over at least two furnace zones of a furnace. length of at least one meter. Such a temperature profile can be obtained by subdividing the oven along its length into several thermal zones.

L'invention est applicable à tous les produits métalliques longs, c'est-à-dire présentant une dimension (appelée longueur) significativement plus grande que les deux autres (largeur, épaisseur). La longueur est la plus grande dimension du produit. Typiquement, dans le cadre de la présente invention, la longueur est au moins deux fois plus grande que les deux autres dimensions. Dans des modes de réalisation particulièrement avantageuses, elle est cinq ou même dix fois plus grande que les deux autres dimensions. Elle coïncide habituellement avec le sens long de fabrication (direction de laminage ou de filage) ; dans certains cas, elle peut être différente. Les produits selon l'invention peuvent être des produits laminés (tels que les tôles ou tôles fortes), des produits filés (tels que les barres, tubes ou profilés), des produits forgés; ces produits peuvent être bruts de fabrication ou usinés.The invention is applicable to all long metal products, that is to say having a dimension (called length) significantly larger than the other two (width, thickness). The length is the largest dimension of the product. Typically, in the context of the present invention, the length is at least twice as large as the other two dimensions. In particularly advantageous embodiments, it is five or even ten times larger than the other two dimensions. It usually coincides with the long direction of manufacture (rolling or spinning direction); in some cases, it may be different. The products according to the invention may be rolled products (such as sheets or plates), spun products (such as bars, tubes or profiles), forged products; these products can be raw or machined.

On entend ici par « segments à propriétés extrêmes » d'un produit les deux segments montrant la plus forte différence de propriétés. En fonction des modes de réalisation choisis, ces segments peuvent se situer proche des deux « extrémités au sens géométrique » (ou « extrémités géométriques ») du produit, ou ailleurs : la présente invention permet aussi de fabriquer des pièces dans lesquelles au moins un des deux segments montrant la plus forte différence de propriétés se situe plus proche du milieu géométrique que de l'extrémité géométrique de la pièce.The term "extreme property segments" of a product is understood to mean the two segments showing the greatest difference in properties. Depending on the embodiments chosen, these segments may be close to the two "geometric ends" (or "geometrical ends") of the product, or elsewhere: the present invention also makes it possible to manufacture parts in which at least one of the two segments showing the greatest difference in properties are closer to the geometric medium than to the geometrical end of the part.

On entend ici par « zone » d'un four la plus petite unité thermique sur la longueur du four caractérisée par une température sensiblement constante, c'est-à-dire par une variation de température parallèle à l'axe du four qui est faible comparée à la différence de température qui caractérise le profil de température du four sur la totalité de sa longueur. Une telle zone de four est caractérisée par des moyens de chauffage et de contrôle qui permettent de maintenir la température à une valeur sensiblement constante à l'intérieure de ladite zone. A l'intérieur d'une telle zone, la variation de la température autour de la température de consigne ne doit pas dépasser ± 5°C, et préférentiellement ne dépasse pas. ± 4°C. Dans un mode de réalisation préféré, cet écart ne dépasse pas ± 3°C. Pour certains produits, l'écart ne doit pas dépasser ± 2°C. Dans les autres directions du four, la température doit être aussi constante que possible. En tout état de cause, la variation de la température autour de la température de consigne à l'intérieur d'une zone doit être plus faible que la différence de température entre la zone de four la plus chaude et la zone de four la plus froide.Here the term "zone" of an oven means the smallest thermal unit over the length of the oven characterized by a substantially constant temperature, that is to say by a temperature variation parallel to the axis of the oven which is low. compared to the temperature difference that characterizes the temperature profile of the oven over its entire length. Such an oven zone is characterized by heating and control means which make it possible to maintain the temperature at a substantially constant value within said zone. Within such an area, the variation of the temperature around the set temperature must not exceed ± 5 ° C, and preferably does not exceed. ± 4 ° C. In a preferred embodiment, this difference does not exceed ± 3 ° C. For some products, the difference should not exceed ± 2 ° C. In other directions of the oven, the temperature should be as constant as possible. In any case, the variation of the temperature around the set temperature inside a zone must be lower than the temperature difference between the hottest oven zone and the coldest oven zone. .

Plusieurs zones contiguës peuvent former un « groupe de zones », c'est-à-dire une unité thermique à l'intérieur de la quelle la température est sensiblement constante, ou suit un profil thermique contrôlé. A titre d'exemple, dans un four comprenant 9 zones de four (numérotées de 1 à 9), on peut former deux groupes de zones thermiques comprenant chacune trois zones de four (ayant les numéros successifs 1, 2, 3, 7, 8 et 9), séparées par un groupe de zones central comportant un profil thermique contrôlé et obtenu par l'intermédiaire de trois zones de four (portant les numéros successifs 4, 5 et 6). Tel que le terme « groupe de zones » est utilisé dans le cadre du présent brevet, un groupe de zones peut ne comporter qu'une seule zone de four.Several contiguous zones can form a "zone group", that is, a thermal unit within which the temperature is substantially constant, or follows a controlled thermal profile. For example, in a furnace comprising 9 furnace zones (numbered from 1 to 9), two groups of thermal zones can be formed, each comprising three furnace zones (having the successive numbers 1, 2, 3, 7, 8 and 9), separated by a central zone group comprising a controlled thermal profile and obtained via three oven zones (bearing the successive numbers 4, 5 and 6). As the term "zone group" is used in the context of this patent, a group of zones may have only one oven zone.

Selon les constations de la demanderesse, la différence de température minimale qui conduit à des différences de propriétés industriellement exploitables entre deux segments à propriétés extrêmes du produit selon l'invention est de cinq degrés. Une différence d'au moins dix degrés est préférée. La différence de température peut être beaucoup plus importante, jusqu'à 80°C, voire jusqu'à 100°C, ou même davantage, mais cela peut poser des problèmes de contrôle de la température et de son profil parallèle à l'axe du four, et ceci notamment dans le cas des pièces relativement petites. Si l'on veut obtenir des états revenus, la différence de température ne dépassera typiquement pas cinquante degrés. Une différence de température supérieure à cinquante degrés peut être utilisée avantageusement pour fabriquer une pièce dont un des segments à propriétés extrêmes se trouve dans un état voisin d'un état T3 ou T4. Pour les alliages de type Al-Zn-Cu-Mg (série 7xxx), une différence de température relativement faible (par exemple entre dix et environ trente degrés) permet d'obtenir des effets exploitables pour des pièces utilisables en construction aéronautique, alors que pour les alliages de type Al-Cu (série 2xxx), on utilise avantageusement une différence de température plus grande, par exemple comprise entre cinquante et cent degrés, ou même plus.According to the findings of the applicant, the minimum temperature difference that leads to differences in industrially exploitable properties between two segments with extreme properties of the product according to the invention is five degrees. A difference of at least ten degrees is preferred. The difference in temperature can be much greater, up to 80 ° C, or even up to 100 ° C, or even more, but this can cause problems of temperature control and its profile parallel to the axis of the oven, and this especially in the case of relatively small parts. If one wants to obtain returned states, the difference in temperature will not exceed typically fifty degrees. A temperature difference greater than fifty degrees can advantageously be used to manufacture a part of which one of the segments with extreme properties is in a state close to a state T3 or T4. For alloys of Al-Zn-Cu-Mg type (series 7xxx), a relatively small temperature difference (for example between ten and about thirty degrees) makes it possible to obtain exploitable effects for parts that can be used in aeronautical construction, while for alloys of the Al-Cu type (2xxx series), a greater temperature difference is advantageously used, for example between fifty and one hundred degrees, or even more.

La demanderesse a constaté que ce n'est pas uniquement la différence de températures entre deux segments à propriétés extrêmes qui compte, mais aussi la maîtrise de la température entre les segments à propriétés extrêmes. C'est pourquoi on utilise dans la présente invention un four comportant une pluralité de zones de four contiguës. On entend par pluralité au moins deux, et préférentiellement au moins trois zones de four. Une cloison entre deux zones contiguës, telle que proposée dans le brevet EP 0 630 986 , n'est ni nécessaire ni utile. Elle ne permet pas d'exercer une maîtrise suffisante sur la température entre deux zones. De même, l'usage d'une pompe à chaleur qui relie la chambre froide à la chambre chaude, comme proposé dans EP 0 630 986 , rend le profil thermique à l'intérieur du four trop instable. Dans le cadre de la présente invention, une bonne maîtrise du profil thermique à l'intérieur du four est indispensable pour pouvoir fabriquer des éléments de structure d'une manière compatible avec les exigences d'assurance qualité des produits aéronautiques.The Applicant has found that it is not only the temperature difference between two segments with extreme properties that counts, but also the temperature control between the segments with extreme properties. Therefore, an oven having a plurality of contiguous furnace zones is used in the present invention. By plurality is meant at least two, and preferably at least three furnace zones. A partition between two contiguous zones, as proposed in the patent EP 0 630 986 , is neither necessary nor useful. It does not allow to exercise sufficient control over the temperature between two zones. Similarly, the use of a heat pump that connects the cold room to the hot room, as proposed in EP 0 630 986 , makes the thermal profile inside the oven too unstable. In the context of the present invention, a good control of the thermal profile inside the furnace is essential to be able to manufacture structural elements in a manner compatible with the requirements of quality assurance of aeronautical products.

Dans ce but, il est nécessaire de pouvoir contrôler, et préférable de pouvoir régler, la température dans chaque zone de four. Dans une réalisation avantageuse de la présente invention, le four comporte au moins trois zones de four d'une longueur unitaire d'au moins un mètre. A titre d'exemple, pour fabriquer des éléments de structure d'une longueur d'environ trente-quatre mètres, les inventeurs utilisent un four d'une longueur totale de trente-six mètres avec trente zones de four de longueur sensiblement identique, réglables indépendamment les unes des autres. Avantageusement, ces trente zones de four sont groupées de manière à former un nombre réduit de groupes de zones thermiques, par exemple trois à cinq.For this purpose, it is necessary to be able to control, and preferable to adjust, the temperature in each oven zone. In an advantageous embodiment of the present invention, the furnace comprises at least three furnace zones with a unit length of at least one meter. For example, to manufacture structural elements of a length of about thirty-four meters, the inventors use a furnace with a total length of thirty-six meters with thirty oven zones of substantially identical length, adjustable independently of each other. Advantageously, these thirty furnace zones are grouped so as to form a reduced number of groups of thermal zones, for example three to five.

Le procédé selon l'invention comprend l'élaboration d'une pièce corroyée en alliage d'aluminium à durcissement structural, une mise en solution, trempe, éventuellement traction avec un allongement permanent d'au moins 0,5%, un traitement de revenu dans un four à profil thermique contrôlé. Ledit traitement de revenu dans un four à profil thermique peut comporter, pour au moins un des groupes de zones thermiques qui composent le profil thermique contrôlé, un ou plusieurs, typiquement deux ou trois, paliers de température, ou une rampe plus ou moins continue de température sans palier net. Optionnellement, le traitement de revenu dans le four à profil thermique contrôlé est précédé ou suivi d'une autre étape de traitement de revenu dans un four homogène (qui peut être le même four, réglé de manière à obtenir une température homogène dans toutes ses zones, ou un autre four). Un tel revenu final en four homogène est particulièrement utile lorsque l'on vise à obtenir un état apte à une opération de formage au revenu ; le revenu final homogène permet dans ce cas le formage au revenu. Par ailleurs, une pièce peut subir un revenu dans le four à gradient thermique contrôlé, puis au moins une opération de mise en forme ou d'usinage, et ensuite une étape de traitement de revenu dans un four homogène.The method according to the invention comprises the preparation of a corrected piece of aluminum alloy with a hardening, a dissolution, quenching, possibly traction with a permanent elongation of at least 0.5%, a treatment of income in a controlled thermal profile oven. Said tempering treatment in a thermal profile furnace may comprise, for at least one of the groups of thermal zones that make up the controlled thermal profile, one or more, typically two or three, temperature stages, or a more or less continuous ramp of no net temperature. Optionally, the tempering treatment in the controlled thermal profile oven is preceded or followed by another step of treatment of income in a homogeneous oven (which can be the same oven, adjusted so as to obtain a uniform temperature in all its zones , or another oven). Such a final homogenous furnace income is particularly useful when aiming to obtain a state suitable for an income shaping operation; in this case, the homogeneous final income allows the formation of income. In addition, a room may incur an income in the controlled thermal gradient oven, then at least one shaping or machining operation, and then a treatment step in a homogeneous oven.

L'invention permet de réaliser un élément de structure monolithique en alliage d'aluminium à durcissement structural ayant une longueur L plus grande que la largeur B et l'épaisseur E, notamment pour construction aéronautique, ledit élément de structure monolithique étant caractérisé en ce qu'au moins deux segments P1 et P2 situées sur une longueur différente dudit élément de structure possèdent des propriétés physiques (mesurées à mi-épaisseur) sélectionnées dans le groupe formé de :

  • a) P1 : KIC(L-T) > 38 MPa√m et P2 : Rm(L) > 580 MPa
    (et préférentiellement > 590 MPa, et encore plus préférentiellement > 600 MPa).
  • b) P1 : KIC(L-T) > 40 MPa√m et P2 : Rm(L) > 580 MPa
    (et préférentiellement > 590 MPa).
  • c) P1 : KIC(L-T) > 41 MPa√m et P2 : Rm(L) > 580 MPa
    (et préférentiellement > 590 MPa).
  • d) P1 : KIC(L-T) > 42 MPa√m et P2 : Rm(L) > 590 MPa.
  • e) P1 : KIC(L-T) > 39 MPa√m et P2 : Rm(L) > 580 MPa et P2 : Rm(TL) > 550 MPa.
  • f) P1 : KIC(L-T)> 39 MPa√m et P2 : Rm(L) > 580 MPa et P2 : Rp0,2(L) > 550 MPa,
  • i) P1 : KIC(L-T) > 39 NPa√m et P1 : Rm(L) > 530 MPa, et P2 : Rm(L) > 580 MPa.
  • j) P1 : KIC(L-T) > 40 MPa√m et P1 : Rm(L) > 540 MPa, et P2 : Rm(L) > 590 MPa.
  • k) P1 : Kapp(L-T)(CCT406) > 125 MPa√m et P2 : Rm(L) > 590 MPa.
The invention makes it possible to produce a structurally hardened aluminum alloy monolithic structure element having a length L greater than the width B and the thickness E, in particular for aircraft construction, said element having a monolithic structure being characterized in that at least two segments P 1 and P 2 located on a different length of said structural element have physical properties (measured at mid-thickness) selected from the group consisting of:
  • a) P 1 : K IC (LT) > 38 MPa√m and P 2 : R m (L)> 580 MPa
    (and preferentially> 590 MPa, and even more preferentially> 600 MPa).
  • b) P 1 : K IC (LT) > 40 MPa√m and P 2 : R m (L)> 580 MPa
    (and preferentially> 590 MPa).
  • c) P 1 : K IC (LT) > 41 MPa√m and P 2 : R m (L)> 580 MPa
    (and preferentially> 590 MPa).
  • d) P 1 : K IC (LT) > 42 MPa√m and P 2 : R m (L)> 590 MPa.
  • e) P 1 : K IC (LT) > 39 MPa√m and P 2 : R m (L)> 580 MPa and P 2 : R m (TL)> 550 MPa.
  • f) P 1 : K IC (LT) > 39 MPa√m and P 2 : R m (L)> 580 MPa and P 2 : R p0.2 (L)> 550 MPa,
  • i) P 1 : K IC (LT) > 39 NPa√m and P 1 : R m (L)> 530 MPa, and P 2 : R m (L)> 580 MPa.
  • j) P 1 : K IC (LT) > 40 MPa√m and P 1 : R m (L)> 540 MPa, and P 2 : R m (L)> 590 MPa.
  • k) P 1 : K app (LT) (CCT406) > 125 MPa√m and P2: R m (L)> 590 MPa.

Il est préféré que le procédé soit conduit de manière à ce que l'allongement à rupture A(L) soit supérieur à 9%, et préférentiellement > 10%, dans les segments P1 et P2. Cela est avantageux notamment lorsque les pièces doivent subir des opérations de mise en forme après revenu. De même, il est préférable que A(L) soit supérieur à 9% en dehors de ces segments P1 et P2. On peut obtenir des demi-produits caractérisés en ce qu'ils possèdent deux segments P1 et P2 dans lesquels (mesuré à mi-épaisseur)

  1. a) Rp0.2, mesuré dans le sens L ou dans le sens LT, présente un écart Rp0.2(P2) - Rp0.2(P1) d'au moins 50 MPa et préférentiellement au moins > 75 MPa, et / ou
  2. b) Rp0.2, mesuré dans le sens TC, présente un écart Rp0.2(P2) - Rp0.2(P1) d'au moins 30 MPa et préférentiellement d'au moins 50 MPa, et / ou
  3. c) KIC, mesuré dans le sens L-T, présente un écart KIC(P1) - KIC(P2) d'au moins 5 MPa√m et préférentiellement d'au moins 7 MPa√m, et / ou
  4. d) Kapp, mesuré dans le sens L-T, présente un écart Kapp(P1) - Kapp(P2) d'au moins 10 MPa√m et préférentiellement d'au moins 15 MPa√m.
It is preferred that the process be conducted in such a way that the elongation at break A (L) is greater than 9%, and preferably> 10%, in the P 1 and P 2 segments. This is advantageous especially when the parts must undergo formatting operations after income. Likewise, it is preferable for A (L) to be greater than 9% outside these P 1 and P 2 segments. Semi-finished products characterized in that they have two segments P 1 and P 2 in which (measured at mid-thickness) can be obtained
  1. a) R p0.2 , measured in direction L or in direction LT, has a deviation R p0.2 (P2) - R p0 . 2 (P1) of at least 50 MPa and preferably at least> 75 MPa, and / or
  2. b) R p0.2 , measured in the TC direction, has a deviation R p0.2 (P2) -R p0.2 (P1) of at least 30 MPa and preferably at least 50 MPa, and / or
  3. c) K IC , measured in the LT direction, has a difference K IC (P1) -K IC (P2) of at least 5 MPa√m and preferably at least 7 MPa√m, and / or
  4. d) K app , measured in the LT direction, has a K app (P1) - K app (P2) difference of at least 10 MPa√m and preferably at least 15 MPa√m.

Le procédé selon l'invention peut être utilisé pour élaborer des demi-produits en tout alliage à durcissement structural, tel que les alliages d'aluminium des séries 2xxx, 4xxx, 6xxx et 7xxx, ainsi que les alliages à durcissement structural de la série 8xxx contenant du lithium.The process according to the invention can be used to form semi-finished products of any structurally hardened alloy, such as 2xxx, 4xxx, 6xxx and 7xxx series aluminum alloys, as well as 8xxx series hardening alloys. containing lithium.

Le procédé selon l'invention peut, dans le cas des alliages de type Al-Zn-Cu-Mg (série 7xxx), être utilisé pour avoir un des segments à propriétés extrêmes dans un état proche de T6, et un autre segment à propriétés extrêmes proche de l'état T74 ou T73.
Dans les alliages de la série 2xxx, de la série 6xxx ainsi que dans les alliages de la série 8xxx qui contiennent du lithium, le procédé selon l'invention peut être utilisé pour obtenir sur un des segments à propriétés extrêmes un état proche de T3 ou T4, et sur l'autre segment à propriétés extrêmes un état proche de T6 ou T8.
The method according to the invention can, in the case of Al-Zn-Cu-Mg alloys (series 7xxx), be used to have one of the segments with extreme properties in a state close to T6, and another segment with properties extremes close to T74 or T73.
In alloys of the 2xxx series, the 6xxx series as well as in the 8xxx series alloys which contain lithium, the method according to the invention can be used to obtain on one of the segments with extreme properties a state close to T3 or T4, and on the other segment with extreme properties a state close to T6 or T8.

Dans une réalisation avantageuse de l'invention, l'alliage comprend entre 6 et 15 % de zinc, entre 1 et 3% de cuivre et entre 1,5 et 3,5 % de magnésium. Dans d'autres réalisations avantageuses, la teneur en zinc est d'au moins 7%, et se situe préférentiellement entre 8 et 13%, et encore plus préférentiellement entre 8,5 et 11%. La teneur en cuivre se situe avantageusement entre 1,3 et 2,1 %, et la teneur en magnésium entre 1,8 et 2,7%. Ces alliages, dont le 7449, le 7349 et le 7056, permettent d'obtenir à la fois une très haute résistance mécanique (par exemple à l'état T651 ou T7951) et une très forte ténacité (par exemple à l'état T76, T7651 ou T74, ou à l'état T7451, T73 ou T7351), tout en conservant dans les deux états correspondants aux deux segments à propriétés extrêmes du produit, ainsi que dans les zones intermédiaires, un compromis entre résistance mécanique et ténacité acceptables et une résistance à la corrosion exfoliante (essai EXCO) maintenue à un bon niveau (EA).In an advantageous embodiment of the invention, the alloy comprises between 6 and 15% of zinc, between 1 and 3% of copper and between 1.5 and 3.5% of magnesium. In other advantageous embodiments, the zinc content is at least 7%, and is preferably between 8 and 13%, and even more preferably between 8.5 and 11%. The copper content is advantageously between 1.3 and 2.1%, and the magnesium content between 1.8 and 2.7%. These alloys, including 7449, 7349 and 7056, make it possible to obtain both a very high mechanical strength (for example in the T651 or T7951 state) and a very high toughness (for example in the T76 state, T7651 or T74, or in the T7451, T73 or T7351 state), while maintaining in the two states corresponding to the two extreme property segments of the product, as well as in the intermediate zones, a compromise between acceptable strength and toughness and resistance to exfoliating corrosion (EXCO test) maintained at a good level (EA).

Dans une réalisation avantageuse de la présente invention, on effectue sur une tôle, un profilé ou une pièce forgée mise en solution, trempée et tractionnée, un revenu en deux étapes :

  • Une première étape homogène à une température comprise entre 115°C et 125°C pour une durée comprise entre 2 et 12 heures,
  • une deuxième étape pendant laquelle un segment ou une extrémité géométrique est traité à une température comprise entre 115°C et 125°C, alors qu'un autre segment ou l'autre extrémité est traité à une température comprise entre 150°C et 160°C, les deux pour une durée comprise entre 8 et 24 heures.
Ce revenu convient notamment aux produits en alliage 7xxx, et notamment en alliage 7349, 7449 ou 7056.In an advantageous embodiment of the present invention, it is carried out on a sheet metal, a profiled or a piece of forging put in solution, tempered and tractionned, a revenue in two steps:
  • A first homogeneous step at a temperature of between 115 ° C. and 125 ° C. for a duration of between 2 and 12 hours,
  • a second step during which a segment or a geometric end is treated at a temperature between 115 ° C and 125 ° C, while another segment or the other end is treated at a temperature between 150 ° C and 160 ° C, both for a period of between 8 and 24 hours.
This income is particularly suitable for 7xxx alloy products, including 7349, 7449 or 7056 alloys.

Dans une autre réalisation avantageuse de la présente invention, on effectue sur un produit en alliage 2xxx (tel que le 2024 ou le 2023) sur un segment ou une extrémité géométrique (P1) un revenu à environ 120°C, et sur un autre segment ou l'autre extrémité géométrique (P2) un revenu au pic de résistance mécanique (état T851) à environ 190°C. Dans une variante de ce mode de réalisation, le segment ou l'extrémité géométrique qui n'est pas porté au pic de résistance mécanique (i.e. P1) subit un revenu à environ 100°C (ou 80°C) ; c'est un état sous-revenu.In another advantageous embodiment of the present invention, a product made of 2xxx alloy (such as 2024 or 2023) on one segment or a geometrical end (P 1 ) is tempered at about 120 ° C, and on another segment or the other geometric end (P 2 ) a peak income of mechanical strength (T851 state) at about 190 ° C. In a variant of this embodiment, the segment or geometric end that is not worn at the peak of mechanical strength (ie P 1 ) is tempered at about 100 ° C (or 80 ° C); it is an under-income state.

Dans une autre réalisation avantageuse, on effectue sur un produit en alliage 7xxx (tel que le 7349, le 7449 ou le 7056) sur un segment ou une extrémité géométrique un revenu au pic de résistance mécanique (état T651) à environ 120°C, et sur un autre segment ou l'autre extrémité géométrique un sur-revenu (état T7651, T7451 ou T7351) en deux paliers à 120°C et 150°C - 165°C.In another advantageous embodiment, on a 7xxx alloy product (such as 7349, 7449 or 7056), on a segment or a geometrical end, an income at peak strength (state T651) at about 120 ° C. is carried out. and on another segment or the other geometric end an overflow (state T7651, T7451 or T7351) in two stages at 120 ° C and 150 ° C - 165 ° C.

Dans encore une autre réalisation avantageuse, on effectue sur un produit en alliage 6xxx (tel que le 6056 ou le 6156) sur un segment ou une extrémité géométrique un revenu au pic de résistance mécanique (état T651) à environ 190°C, et sur un autre segment ou l'autre extrémité géométrique un sur-revenu (état T7851) en deux paliers.In yet another advantageous embodiment, a 6xxx alloy product (such as 6056 or 6156) is made on a segment or a geometrical end. returned to the peak of mechanical strength (T651 state) at about 190 ° C, and on another segment or the other end geometric over-income (T7851 state) in two stages.

Les pièces métalliques obtenues par le procédé selon l'invention peuvent être utilisées comme élément de structure dans la construction aéronautique. Ces éléments de structure peuvent être bi-fonctionnels ou multi-fonctionnels, c'est-à-dire réunir en une seule pièce monolithique des fonctionnalités différentes que les procédés selon l'art antérieur ne pouvaient réunir que par l'assemblage de pièces différentes. Ces éléments de structure peuvent aussi permettre une construction et une fabrication plus simple et allégée d'avions, notamment d'avions de très grande capacité de fret ou de passagers.The metal parts obtained by the process according to the invention can be used as a structural element in the aeronautical construction. These structural elements can be bi-functional or multi-functional, that is to say, bring together in a single piece of monolithic different functionalities that the methods according to the prior art could only bring together the assembly of different parts. These structural elements may also allow a simpler and lighter construction and manufacture of aircraft, particularly aircraft of very large cargo or passenger capacity.

Un avantage spécifique du procédé selon l'invention est que dans chaque segment à propriétés extrêmes, on obtient les propriétés optimales visées dans une longueur bien contrôlée du produit. Le concepteur de l'avion sait donc exactement sur quelle longueur le produit aura les propriétés optimales préconisées et garanties. Dans un mode de réalisation particulièrement préféré, le procédé selon l'invention est utilisé pour fabriquer des éléments de structure qui n'ont pas une variation continue de propriétés sur toute leur longueur, mais qui ont au moins deux zones dans lesquelles les propriétés mécaniques (ou certaines d'entre elles) sont constantes sur une certaine longueur du produit. Dans une réalisation avantageuse de l'invention, cette zone a une longueur d'au moins un mètre, et préférentiellement d'au moins deux mètres. Un tel produit, ainsi que son utilisation comme élément de structure dans une aile d'avion, est montré schématiquement sur la figure 1.A specific advantage of the process according to the invention is that in each segment with extreme properties, the optimal properties targeted in a well-controlled length of the product are obtained. The designer of the aircraft knows exactly how long the product will have the optimal properties recommended and guaranteed. In a particularly preferred embodiment, the method according to the invention is used to manufacture structural elements which do not have a continuous variation of properties over their entire length, but which have at least two zones in which the mechanical properties ( or some of them) are constant over a certain length of the product. In an advantageous embodiment of the invention, this zone has a length of at least one meter, and preferably at least two meters. Such a product, as well as its use as a structural element in an aircraft wing, is schematically shown on the figure 1 .

Un autre avantage spécifique du procédé selon l'invention est le contrôle précis des propriétés dans le segment de transition P1,2 entre deux groupes de segments P1 et P2 (il peut y en avoir deux ou plus, en fonction du nombre de groupes de zones thermiques), P1 et P2 pouvant être des segments à propriétés extrêmes. En effet, le concepteur de l'avion n'a pas besoin, dans le segment de transition, de propriétés maximales pour l'une ou l'autre des propriétés (ou groupes de propriétés) à optimiser, par exemple la résistance à la rupture au sens long Rm(L) et la ténacité KIC(L-T). Mais il exige néanmoins un certain compromis entre ces propriétés ou groupes de propriétés, car dans ce segment de transition, l'élément de structure joue bien un rôle structural et doit répondre à des spécifications précises.Another specific advantage of the method according to the invention is the precise control of the properties in the transition segment P 1,2 between two groups of segments P 1 and P 2 (there may be two or more, depending on the number of groups of thermal zones), P 1 and P 2 being segments with extreme properties. Indeed, the designer of the aircraft does not need, in the transition segment, maximum properties for one or other of the properties (or groups of properties) to be optimized, for example the breaking strength. in the long direction R m (L) and the toughness K IC (LT) . But it does require a certain compromise between these properties or groups of properties, because in this transition segment, the structural element plays a structural role and must meet precise specifications.

Les éléments de structure selon l'invention sont notamment :

  • des panneaux de voilure (en anglais : upper (top) or lower (bottom) wing (skin) panels) ;
  • des raidisseurs de voilure (en anglais : upper or lower wing stringers)
  • des longerons de voilure (en anglais : wing spars) ;
  • des lissesde fuselage (en anglais : fuselage stiffeners) ;
  • des panneaux de jonction (en anglais : butt straps), notamment pour des panneaux de voilure (upper and lower wing butt straps) ;
  • des panneaux de fuselage (en anglais : fuselage panels).
The structural elements according to the invention are in particular:
  • wing panels (in English: upper (top) or lower (bottom) wing (skin) panels);
  • wing stiffeners (in English: upper or lower wing stringers)
  • wing spars (in English: wing spars);
  • fuselage beams (in English: fuselage stiffeners);
  • butt straps, especially for upper and lower wing butt straps;
  • fuselage panels (in English: fuselage panels).

Le procédé selon l'invention permet de traiter thermiquement des pièces ou éléments de structure longs. Le plus souvent, leur section perpendiculaire à la longueur est sensiblement constante sur leur longueur, mais cela peut en être autrement. De même, les pièces peuvent être droites ou non ; on peut par exemple traiter des éléments de structure forgés légèrement galbés. Le procédé pourrait être utilisé également pour traiter des pièces moulées, mais des pièces moulées longues sont très rares et difficiles à fabriquer. Dans une réalisation préférée, la longueur de la pièce est d'au moins 5 mètres ou mieux d'au moins 7 mètres, mais on préfère une longueur d'au moins 15 mètres, voire d'au moins 25 mètres, pour profiter pleinement des possibilités de créer plusieurs segments fonctionnalisés répartis sur la longueur de la pièce. On a ainsi réalisé des éléments de structure avec au moins deux segments P1 et P2 dans lesquels la longueur FP1 et FP2 (exprimée en pourcents de la longueur totale de la pièce L) desdites au moins deux segments P1 et P2 est telle que FP1 > 25% et FP2 > 25% et préférentiellement FP1 > 30% et FP2 > 30%. Dans d'autres réalisations, FP1 > 35% et FP2 > 30%, ou FP1 > 40% et FP2 > 30%.The method according to the invention makes it possible to heat-treat long structural parts or elements. Most often, their section perpendicular to the length is substantially constant along their length, but it may be otherwise. Similarly, the parts can be straight or not; for example, slightly curved forged structural elements can be processed. The method could be used also for processing molded parts, but long molded parts are very rare and difficult to manufacture. In a preferred embodiment, the length of the piece is at least 5 meters or better still at least 7 meters, but a length of at least 15 meters or even at least 25 meters is preferred to take full advantage of possibilities to create several functionalized segments distributed over the length of the room. Structural elements with at least two segments P 1 and P 2 have thus been produced in which the length F P1 and F P2 (expressed as a percentage of the total length of the workpiece L) of the at least two segments P 1 and P 2 is such that F P1 > 25% and F P2 > 25% and preferably F P1 > 30% and F P2 > 30%. In other embodiments, F P1 > 35% and F P2 > 30%, or F P1 > 40% and F P2 > 30%.

Des éléments de structure selon l'invention peuvent être utilisés avantageusement en construction aéronautique. A titre d'exemple, on peut construire un avion de grande capacité comprenant au moins une aile comprenant au moins un élément de structure selon l'invention, caractérisé en ce que le segment P1 se situe proche du fuselage, et le segment P2 proche de l'extrémité géométrique de l'aile (voir figure 1). Dans une réalisation avantageuse, lesdits panneaux de voilure ont une longueur d'au moins 15 mètres, et préférentiellement d'au moins 25 mètres. Comme décrit dans l'exemple ci-dessous, les inventeurs ont réalisé des panneaux de voilure de plus que 30 mètres de long.Structural elements according to the invention can be advantageously used in aeronautical construction. By way of example, it is possible to construct a large-capacity airplane comprising at least one wing comprising at least one structural element according to the invention, characterized in that the segment P 1 is located close to the fuselage, and the segment P 2 close to the geometrical end of the wing (see figure 1 ). In an advantageous embodiment, said wing panels have a length of at least 15 meters, and preferably at least 25 meters. As described in the example below, the inventors made wing panels more than 30 meters long.

Lesdites pièces et éléments de structure peuvent être monolithiques. Le procédé selon l'invention permet également de traiter thermiquement des pièces ou éléments de structure qui ne sont pas monolithiques mais assemblées à partir d'au moins deux pièces ou demi-produits laminés, filés ou forgés (préférentiellement en alliage d'aluminium à durcissement structural), par exemple par soudage, rivetage ou collage. Il est également envisageable que dans un tel assemblage, une ou plusieurs des pièces soient fabriquées à partir d'un matériau de base qui n'est pas un alliage d'aluminium.Said parts and structural elements may be monolithic. The method according to the invention also makes it possible to heat-treat parts or structural elements that are not monolithic but assembled from at least two rolled or forged pieces or semi-finished products (preferably in hardening aluminum alloys). structural), for example by welding, riveting or gluing. It is also conceivable that in such an assembly, one or more of the parts are made from a base material that is not an aluminum alloy.

Dans ce mode de réalisation, on peut par exemple fabriquer d'abord un assemblage entre au moins une tôle en alliage d'aluminium à durcissement structural et au moins un profilé en alliage d'aluminium à durcissement structural par rivetage, soudage ou collage, ledit assemblage étant ensuite traité par le procédé selon l'invention. Dans une réalisation avantageuse de cette variante du procédé selon l'invention, les tôles et profilés sont à l'état T351, et l'assemblage est réalisé par soudage laser (Laser Beam Welding, LBW), soudage par friction (Friction Stir Welding, FSW) ou soudage par faisceau d'électrons (Electron Beam Welding, EBW). La demanderesse a constaté qu'il peut s'avérer préférable de traiter un tel assemblage soudé après soudage par le procédé selon l'invention, au lieu de traiter les demi-produits (tôles et profilés) destinés à constituer ledit assemblage avant soudage, car on obtient une amélioration de la résistance mécanique et de la résistance à la corrosion du joint soudé. Cet effet est significatif lorsque le joint soudé s'étale sur une grande longueur de l'élément structural (par exemple sensiblement parallèle au sens long du produit).In this embodiment, it is possible for example to first manufacture an assembly between at least one sheet of structural hardening aluminum alloy and at least one structural hardening aluminum alloy section by riveting, welding or gluing, said assembly being subsequently treated by the process according to the invention. In an advantageous embodiment of this variant of the method according to the invention, the sheets and profiles are in the T351 state, and the assembly is performed by laser welding (Laser Beam Welding, LBW), friction welding (Friction Stir Welding, FSW) or Electron Beam Welding (EBW). The Applicant has found that it may be preferable to treat such a welded assembly after welding by the method according to the invention, instead of treating the semi-finished products (sheets and profiles) intended to constitute said assembly before welding, because an improvement in the mechanical strength and the corrosion resistance of the welded joint is obtained. This effect is significant when the welded joint is spread over a large length of the structural element (for example substantially parallel to the long direction of the product).

L'invention sera mieux comprise à l'aide de l'exemple suivant, qui n'a toutefois pas de caractère limitatif.The invention will be better understood with the aid of the following example, which however does not have a limiting character.

Exemple :Example:

On a fabriqué une tôle d'une longueur de 36 mètres, d'une largeur de 2,5 mètres et d'une épaisseur de 30 mm par laminage à chaud d'une plaque de laminage.
La composition de l'alliage était :
Zn 9,1%, Mg 1,89%, Cu 1,57%, Fe 0,06%, Si 0,03%, Ti 0,03%, Zr 0,11%,
autres elements < 0,01 chacun.
La plaque de laminage a été homogénéisée pendant 14 heures à 475°C. La température d'entrée au laminoir à chaud était de 428°C, la température de sortie de la tôle laminée à chaud était de 401 °C. La tôle a été mise en solution, trempée et tractionnée dans les conditions suivantes : maintien pendant 6 heures à 471°C, trempe dans de l'eau à une température comprise entre environ 15 et 16 °C, puis traction contrôlée avec un allongement permanent d'environ 2,5% La tôle a été éboutée pour donner une tôle d'une longueur de 34 mètres. Elle a été positionnée en longueur dans un four constitué de 30 zones d'une longueur unitaire de 1200 mm. Pour toutes les températures de revenu, la variation autour de la valeur de consigne ne dépassait pas ± 3°C.
A sheet 36 meters long, 2.5 meters wide and 30 mm thick was manufactured by hot rolling a rolling plate.
The composition of the alloy was:
Zn 9.1%, Mg 1.89%, Cu 1.57%, Fe 0.06%, Si 0.03%, Ti 0.03%, Zr 0.11%,
other items <0.01 each.
The rolling plate was homogenized for 14 hours at 475 ° C. The inlet temperature to the hot mill was 428 ° C, the outlet temperature of the hot rolled sheet was 401 ° C. The sheet was put into solution, quenched and quenched under the following conditions: hold for 6 hours at 471 ° C, quench in water at a temperature between about 15 and 16 ° C, then controlled pull with permanent elongation about 2.5% The sheet was trimmed to give a sheet of 34 meters long. It was positioned in length in an oven consisting of 30 zones with a unit length of 1200 mm. For all tempering temperatures, the variation around the setpoint did not exceed ± 3 ° C.

Le traitement de revenu consistait en une première étape de traitement homogène à 120°C pendant 6 heures (« premier palier »), immédiatement suivie d'une deuxième étape au cours de laquelle une extrémité géométrique de 18 mètres (appelée Z1, correspondant à 15 zones de four) a été traitée pendant 15 heures à 155°C (« deuxième palier », précédé d'un période d'ajustement d'environ 1 heure), alors que l'autre extrémité géométrique de 10,8 mètres (appelée Z2, correspondant à 9 zones de four) a été maintenue pendant 16 heures à 120°C. La zone de transition entre ces deux extrémités correspondait à 7,2 mètres (appelée Z1,2, correspondant à 6 zones de four).The treatment of income consisted of a first step of homogeneous treatment at 120 ° C for 6 hours ("first step"), immediately followed by a second step during which a geometric end of 18 meters (called Z 1 , corresponding to 15 furnace zones) was treated for 15 hours at 155 ° C ("second stage", preceded by an adjustment period of about 1 hour), while the other geometric end of 10.8 meters (called Z 2 , corresponding to 9 furnace zones) was maintained for 16 hours at 120 ° C. The transition zone between these two ends corresponded to 7.2 meters (called Z 1.2 , corresponding to 6 furnace zones).

Après cette deuxième étape, la conductivité électrique de la tôle a été mesurée à différents endroits :

  • Segment P1 : comprise entre 18,2 et 19,5 MS/m.
  • Segment P2 : comprise entre 22,5 et 23,5 MS/m
  • Segment P1,2 : comprise entre 18,2 et 23,6 MS/m
After this second step, the electrical conductivity of the sheet was measured in different places:
  • Segment P 1 : between 18.2 and 19.5 MS / m.
  • P 2 segment: between 22.5 and 23.5 MS / m
  • Segment P 1.2 : between 18.2 and 23.6 MS / m

Ensuite, la tôle a été soumise à une troisième étape de revenu, à savoir un revenu homogène consistant en une montée en température à 148°C pendant 1h30, suivie d'un maintient à 150°C pendant 15h heures. Cette troisième étape était destinée à simuler une opération de formage au revenu ou un revenu après mise en forme de l'élément de structure.Then, the sheet was subjected to a third step of income, namely a homogeneous income consisting of a rise in temperature at 148 ° C for 1:30, followed by maintenance at 150 ° C for 15h hours. This third step was intended to simulate an income shaping operation or income after shaping the structural element.

La tôle a été découpée et caractérisée. Le tableau 1 résume les caractéristiques mécaniques statiques obtenues par un essai de traction. Ce sont des moyennes obtenues à partir de mesures effectuées à mi-épaisseur et à différents endroits répartis sur la largeur de la tôle. On n'a pas constaté de variation significative de propriétés dans la largeur de la tôle. A noter que pour Rp0.2 dans les sens L et TL, on a mesuré également les valeurs par un essai en compression ; elles sont indiquées dans le tableau 1 entre parenthèses. Tableau 1 Position [mm] dans la longueur d'un panneau de 34 m Sens L (long) Sens TL Sens TC (travers-long) (travers-court) Rm Rp0,2 A Rm Rp0,2 A Rm Rp0,2 A [MPa] [MPa] [%] [MPa] [MPa] [%] [MPa] [MPa] [%] 0 (P1) 561 517 13,5 550 506 12,5 550 495 8,5 (509) (519) 13600 (P1) 565 522 13,5 553 511 12,5 548 502 8,5 (513) (528) 16000 (P1) 556 509 13,5 547 501 12,5 540 500 8,5 (500) (514) 18400 (P1,2) 566 523 13,5 559 519 12,5 546 498 7,5 (527) (538) 20800 (P1,2) 612 587 12,0 598 575 11,5 590 545 7,0 (573) (593) 25600 (P2) 621 598 12,5 607 585 11,5 595 554 6,5 (590) (605) 34000 (P2) 624 602 12,1 608 586 11,5 599 558 6,1 (594) (607) The sheet has been cut and characterized. Table 1 summarizes the static mechanical characteristics obtained by a tensile test. These are averages obtained from measurements made at mid-thickness and at different locations spread across the width of the sheet. There was no significant variation in properties in the width of the sheet. It should be noted that for R p0.2 in the L and TL directions, the values were also measured by a compression test; they are shown in Table 1 in parentheses. Table 1 Position [mm] in the length of a 34 m panel L sense (long) TL direction TC sense (Through-long) (Through-short) R m R p0,2 AT R m R p0,2 AT R m R p0,2 AT [MPa] [MPa] [%] [MPa] [MPa] [%] [MPa] [MPa] [%] 0 (P 1 ) 561 517 13.5 550 506 12.5 550 495 8.5 (509) (519) 13600 (P 1 ) 565 522 13.5 553 511 12.5 548 502 8.5 (513) (528) 16000 (P 1 ) 556 509 13.5 547 501 12.5 540 500 8.5 (500) (514) 18400 (P 1.2 ) 566 523 13.5 559 519 12.5 546 498 7.5 (527) (538) 20800 (P 1.2 ) 612 587 12.0 598 575 11.5 590 545 7.0 (573) (593) 25600 (P 2 ) 621 598 12.5 607 585 11.5 595 554 6.5 (590) (605) 34000 (P 2 ) 624 602 12.1 608 586 11.5 599 558 6.1 (594) (607)

Les résultats de ténacité KIC et de Kapp (ce dernier obtenu avec une éprouvette de type CT127 et avec une éprouvette de type CCT406) sont indiqués au tableau 2. Tableau 2 Position [mm] dans la longueur d'un panneau de 34 m KIC(L-T) KIC(T-L) Kapp(L-T) Iapp(L-T) [MPa√m] [MPa√m] (CT127) (CCT406) [MPa√m] [MPa√m] 0 (P1) 43,8 36,1 106 132 13600 (P1) 45,8 38,1 108 - 16000 (P1) 46,7 37,3 99 - 18400 (P1,2) 43 ,0 34,2 102 - 20800 (P1,2) 39,4 32,9 88 - 25600 (P2) 36,1 34,9 89 34000 (P2) 34,9 29,1 94 110 The K IC and K app toughness results (the latter obtained with a CT127 type specimen and with a CCT406 type specimen) are shown in Table 2. Table 2 Position [mm] in the length of a 34 m panel K IC (LT) K IC (TL) K app (LT) I app (LT) [MPa m] [MPa m] (CT127) (CCT406) [MPa m] [MPa m] 0 (P 1 ) 43.8 36.1 106 132 13600 (P 1 ) 45.8 38.1 108 - 16000 (P 1 ) 46.7 37.3 99 - 18400 (P 1.2 ) 43, 0 34.2 102 - 20800 (P 1.2 ) 39.4 32.9 88 - 25600 (P 2 ) 36.1 34.9 89 34000 (P 2 ) 34.9 29.1 94 110

Une telle tôle d'une longueur de 34 mètres peut être utilisée comme panneau de voilure pour des avions cargo ou passagers de très grande capacité. Pour cette utilisation, l'extrémité géométrique X de la tôle (correspond à ténacité KIC élevée, la résistance mécanique statique étant plus faible) est positionnée côté fuselage, et l'extrémité géométrique Z de la tôle (correspond à une résistance mécanique statique élevée, la ténacité KIC étant plus faible) correspond à l'extrémité géométrique de l'aile.Such a sheet of 34 meters length can be used as a wing panel for cargo or passenger planes of very large capacity. For this use, the geometric end X of the sheet (corresponds to high K IC toughness, the static mechanical resistance being lower) is positioned on the fuselage side, and the geometric end Z of the sheet (corresponds to a high static mechanical resistance , toughness K IC being lower) corresponds to the geometrical end of the wing.

Les températures de consigne, de la tôle et de l'air dans les zones du four pour la deuxième étape de revenu sont montrées sur le tableau 3. On a représenté le profil de température pendant l'étape de revenu à 120°C et 155°C à l'état thermique stationnaire. La température de la tôle a été mesurée à l'aide d'une quarantaine de thermocouples ; les valeurs données dans le tableau 3 ont été mesurées à mi-largeur. Tableau 3 Zone de four Température de consigne [°C] Température de la tôle [°C] Température de l'air [°C] 1 120 3 120 120,5 6 120 120,8 120,8 9 120 124,4 124,3 10 123 125,9 126,7 11 129 129,9 129,7 14 147 147,7 148,3 16 155 157,2 156,6 17 155 156,8 156,6 18 155 155,3 154,9 22 155 155,1 154,8 30 155 The set-point, sheet and air temperatures in the furnace zones for the second tempering stage are shown in Table 3. The temperature profile is shown during the tempering step at 120 ° C. and 155 ° C. ° C in the stationary thermal state. The temperature of the sheet was measured using forty thermocouples; the values given in Table 3 were measured at mid-width. Table 3 Oven area Set temperature [° C] Sheet temperature [° C] Air temperature [° C] 1 120 3 120 120.5 6 120 120.8 120.8 9 120 124.4 124.3 10 123 125.9 126.7 11 129 129.9 129.7 14 147 147.7 148.3 16 155 157.2 156.6 17 155 156.8 156.6 18 155 155.3 154.9 22 155 155.1 154.8 30 155

Claims (27)

  1. Process for manufacturing an aluminium alloy part with structural hardening, comprising:
    a) solution heat treatment of a semi-finished rolled, extruded or forged product, followed by quenching,
    b) possibly controlled tension with permanent elongation of at least 0.5%,
    c) annealing treatment,
    characterised in that at least one step of the said annealing treatment is conducted in a furnace with a controlled temperature profile comprising at least two zones or groups of zones Z1, Z2 with initial temperatures T1 and T2 in which the temperature variation around the set temperature for each of the temperatures T1 and T2 does not exceed ± 5°C within the length of the said zones or groups of zones, the difference between the set values of the initial temperatures T1 and T2 being greater than or equal to. 5°C, and the said zones or groups of zones possibly being separated by a zone or a group of zones Z1,2. called the transition group, within which the initial temperature varies from T1 to T2,
    and characterised in that the length parallel to the axis of the furnace of each of the said at least two zones or groups of zones Z1 and Z2 is at least one meter.
  2. Process according to claim 1, wherein the temperature variation around the set temperature for each of the temperatures T1 and T2 does not exceed ± 4°C and even better ± 3°C within the length of the said at least two zones or groups of zones Z1 and 22.
  3. Process according to either claim 1 or 2, wherein the difference between the set temperatures T1 and T2 is between 10°C and 80°C, and preferably between 10°C and 50°C and even more preferably between 20 and 40 °C.
  4. Process according to any one of claims 1 to 3, wherein the temperature in at least one of the zones or groups of zones Z1 or Z2 varies as a function of time according to at least two temperature plateaux, or according to a temperature ramp with no plateau.
  5. Process according to any one of claims 1 to 4, wherein the said annealing treatment in a furnace with controlled temperature profile is followed by at least one forming or machining operation and an annealing treatment step in a homogeneous furnace.
  6. Process according to any one of claims 1 to 5, wherein the said annealing treatment in a furnace with a controlled temperature profile is preceded by an annealing treatment step in a homogeneous furnace.
  7. Process according to any one of claims 1 to 6, wherein the length of the part is at least 5 meters and preferably at least 7 meters, more preferably at least 15 meters and even more preferably at least 25 meters.
  8. Process according to any one of claims 1 to 7, wherein the said aluminium alloy part with structural hardening is monolithic.
  9. Process according to any one of claims 1 to 7, wherein said aluminium alloy part with structural hardening is assembled starting from at least two aluminium alloy parts with structural hardening.
  10. Process according to claim 9, wherein assembly is made by riveting, bonding, laser beam welding, friction stir welding or electron beam welding.
  11. Process according to any one of claims 1 to 10, wherein said annealing treatment comprises a first homogeneous step at a temperature between 115°C and 125°C for a duration of between 2 and 12 hours, a second step during which one end is treated at a temperature between 115°C and 125°C, while the other end is treated at a temperature between 150°C and 160°C, both for a duration of between 8 and 24 hours.
  12. Monolithic structural member made of an aluminium alloy with structural hardening with a length L greater than its width B and thickness E, particularly for aeronautical construction,
    the said monolithic structural member being characterised in that at least two segments P1 and P2 of at least one meter located on a different length of the said structural member have physical properties (measured at mid-thickness) selected from the group formed of:
    a) P1: KIC(L-T) > 38 MPa√m and P2: Rm(L) > 580 MPa
    (and preferably > 590 MPa and even better > 600 MPa
    b) P1: KIC(L-T) > 40 MPa√m and P2: Rm(L) > 580 MPa
    (and preferably > 590 MPa)
    c) P1: KIC(L-T) > 41 MPa√m and P2: Rm(L) > 580 MPa
    (and preferably > 590 MPa)
    d) P1: KIC(L-T) > 42 MPa√m and P2: Rm(L) > 590 MPa
    e) P1: KIC(L-T) > 39 MPa√m and P2: Rm(L) > 580 MPa
    and P2: Rm(TL) > 550 MPa
    f) P1: KIC(L-T) > 39 MPa√m and P2: Rm(L) > 580 MPa
    and P2: Rp0.2(L) > 550 MPa
    i) P1: KIC(L-T) > 39 MPa√m and P1: Rm(L) > 530 MPa, and P2: Rm(L) > 580 MPa
    j) P1: KIC(L-T) > 40 MPa√m and P1: Rm(L) > 540 MPa, and P2: Rm(L) > 590 MPa
    k) P1 : Kapp(L-T) (CCT406) > 125 MPa√m and P2 : Rm(L) > 590 MPa.
  13. Structural member according to claim 12, wherein A(L) > 9% (and preferably > 10%) in segments P1 and P2.
  14. Structural member according to claim 13, characterised in that A(L) > 9% outside segments P1 and P2.
  15. Structural member according to claim 12, wherein the length FP1 and FP2 (expressed as a percent of the length L) of the said at least two segments P1 and P2 is such that FP1 > 25% and FP2 > 25% and preferably FP1 > 30% and FP2 > 30%.
  16. Structural member according to claim 15, wherein FP1 > 35% and FP2 > 30%.
  17. Structural member according to claim 16, wherein FP1 > 40% and FP2 > 30%.
  18. Structural member according to one of claims 12 to 17, wherein the said alloy comprises between 6. and 15% of zinc, between 1 and 3% of copper and between 1.5 and 3.5% of magnesium.
  19. Structural member according to claim 18, wherein the zinc content is higher than 7%.
  20. Structural member according to claim 18, wherein the zinc content is between 8 and 13%, and preferentially between 8,5 and 11%.
  21. Structural member according to claim 20, wherein the copper content is between 1.3 and 2.1%.
  22. Structural member according to claim 21, wherein the magnesium content is between 1.8 and 2.7%.
  23. Structural member according to any one of claims 12 to 22, wherein the length of the part is at least 7 meters, and preferably at least 15 meters, and even more preferably at least 25 meters.
  24. Monolithic structural member according to claim 12, made of an aluminium alloy with structural hardening with a length L greater than its width B and thickness E, particularly for aeronautical construction,
    wherein said monolithic structural member is made of an Al-Cu type alloy and wherein it comprises at least two segments P1 and P2 located on a different length of the said structural member wherein one is in a T8 temper and the other is in an under-aged temper.
  25. Monolithic structural member according to claim 12, made of an aluminium alloy with structural hardening with a length L greater than its width B and thickness E, particularly for aeronautical construction,
    said monolithic structural member being characterised in that it comprises two segments P1 and P2 wherein:
    a) Rp0.2, determined in the L direction or in the LT direction, has a difference p0.2(P2) - Rp0.2(P1) of at least 50 MPa and preferably of at least > 75 MPa, and / or
    b) Rp0.2 determined in the ST direction, has a difference Rp0.2(P2) - Rp0.2(P1) of at least 30 MPa and preferably at least 50 MPa, and / or
    c) KIC, measured in the L-T direction, has a difference KIC(P1) - KIC(P2) of at least 5 MPa√m and preferably of at least 7 MPa√m, and / or
    d) Kapp, measured in the L-T direction, has a difference Kapp(P1) - Kapp(P2) of at least 10 Mpa√m and preferably of at least 15 MPa√m.
  26. Use of a structural member according to any one of claims 12 to 25 for making an aircraft wing panel, wing stringers, wing spars, fuselage stiffeners, fuselage panels or butt straps.
  27. Aircraft comprising at least one wing panel made from a structural member according to any one of claims 12 to 25, characterised in that segment P1 is located close to the fuselage, and segment P2 is close to the geometric tip of the wing.
EP05743083A 2004-03-23 2005-03-21 Structural element for aircraft engineering exhibiting a variation of performance characteristics Not-in-force EP1727921B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0402971A FR2868084B1 (en) 2004-03-23 2004-03-23 STRUCTURAL ELEMENT FOR AERONAUTICAL CONSTRUCTION HAVING A VARIATION OF JOB PROPERTIES
PCT/FR2005/000681 WO2005098072A2 (en) 2004-03-23 2005-03-21 Structural element for aircraft engineering exhibiting a variation of performance characteristics

Publications (2)

Publication Number Publication Date
EP1727921A2 EP1727921A2 (en) 2006-12-06
EP1727921B1 true EP1727921B1 (en) 2008-05-14

Family

ID=34944905

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05743083A Not-in-force EP1727921B1 (en) 2004-03-23 2005-03-21 Structural element for aircraft engineering exhibiting a variation of performance characteristics

Country Status (9)

Country Link
EP (1) EP1727921B1 (en)
CN (1) CN100507066C (en)
AT (1) ATE395444T1 (en)
BR (1) BRPI0507940B1 (en)
CA (1) CA2560672C (en)
DE (1) DE602005006764D1 (en)
ES (1) ES2307180T3 (en)
FR (1) FR2868084B1 (en)
WO (1) WO2005098072A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11180839B2 (en) 2017-10-26 2021-11-23 Ut-Battelle, Llc Heat treatments for high temperature cast aluminum alloys
US11220729B2 (en) 2016-05-20 2022-01-11 Ut-Battelle, Llc Aluminum alloy compositions and methods of making and using the same
US11242587B2 (en) 2017-05-12 2022-02-08 Ut-Battelle, Llc Aluminum alloy compositions and methods of making and using the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2894857B1 (en) 2005-12-16 2009-05-15 Alcan Rhenalu Sa PROCESS FOR MANUFACTURING SEMI-PRODUCTS COMPRISING TWO ALUMINUM ALLOYS
WO2007106772A2 (en) * 2006-03-13 2007-09-20 Alcoa Inc. Method and process of non-isothermal aging for aluminum alloys
FR2900160B1 (en) * 2006-04-21 2008-05-30 Alcan Rhenalu Sa METHOD FOR MANUFACTURING A STRUCTURAL ELEMENT FOR AERONAUTICAL CONSTRUCTION COMPRISING A DIFFERENTIAL NUT
EP2193214B1 (en) * 2007-10-04 2018-01-10 Aleris Rolled Products Germany GmbH A method for manufacturing a wrought metal plate product having a gradient in engineering properties
FR2945464B1 (en) * 2009-05-13 2012-03-23 Alcan Rhenalu PROCESS FOR WELDING ASSEMBLY OF ALUMINUM ALLOY PARTS.
CA2788143C (en) 2010-01-29 2015-05-05 Tata Steel Nederland Technology B.V. Process for the heat treatment of metal strip material, and strip material produced in that way
DE102010000292B4 (en) * 2010-02-03 2014-02-13 Thyssenkrupp Steel Europe Ag Metal strip made of steel with different mechanical properties
JP5776874B2 (en) * 2011-02-14 2015-09-09 住友電気工業株式会社 Magnesium alloy rolled material, magnesium alloy member, and method for producing magnesium alloy rolled material
FR2997706B1 (en) * 2012-11-08 2014-11-07 Constellium France METHOD FOR MANUFACTURING A VARIABLE THICKNESS STRUCTURE ELEMENT FOR AERONAUTICAL CONSTRUCTION

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518351A (en) * 1982-03-22 1985-05-21 Mellen Sr Robert H Method of providing a dynamic temperature gradient
FR2707092B1 (en) * 1993-06-28 1995-08-25 Pechiney Rhenalu Metallurgical product in Al alloy with structural hardening having a continuous variation in the properties of use in a given direction and a method and device for obtaining the same.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11220729B2 (en) 2016-05-20 2022-01-11 Ut-Battelle, Llc Aluminum alloy compositions and methods of making and using the same
US11242587B2 (en) 2017-05-12 2022-02-08 Ut-Battelle, Llc Aluminum alloy compositions and methods of making and using the same
US11180839B2 (en) 2017-10-26 2021-11-23 Ut-Battelle, Llc Heat treatments for high temperature cast aluminum alloys

Also Published As

Publication number Publication date
CN1930317A (en) 2007-03-14
EP1727921A2 (en) 2006-12-06
FR2868084B1 (en) 2006-05-26
WO2005098072A3 (en) 2006-05-04
CA2560672A1 (en) 2005-10-20
DE602005006764D1 (en) 2008-06-26
BRPI0507940B1 (en) 2018-04-17
ES2307180T3 (en) 2008-11-16
BRPI0507940A (en) 2007-07-17
FR2868084A1 (en) 2005-09-30
WO2005098072A2 (en) 2005-10-20
CA2560672C (en) 2012-07-17
ATE395444T1 (en) 2008-05-15
CN100507066C (en) 2009-07-01

Similar Documents

Publication Publication Date Title
EP1727921B1 (en) Structural element for aircraft engineering exhibiting a variation of performance characteristics
EP2010689B1 (en) Method for fabrication of a structural element for aeronautical construction including a differential work hardening
EP2766503B1 (en) Improved method for processing sheet metal made of an al-cu-li alloy
EP1799391B1 (en) Welded structural element comprising at least two aluminium alloy parts which have different metallurgical states, and method of producing such a element
EP2449142B1 (en) Aluminium-copper-lithium alloy with improved mechanical resistance and toughness
EP2917380B1 (en) Method for manufacturing a structural element having a variable thickness for aircraft production
EP2984195B1 (en) Process of manufacturing a rolled al-cu-li sheet with improved formability and corrosion resistance
EP2429752B1 (en) Method of assembling parts made of an aluminum alloy by welding, comprising cold deformation followed by the post-welding tempering of the entire welded area ; corresponding assembly
CA2528614C (en) Products made from al/zn/mg/cu alloys with improved compromise between static mechanical properties and tolerance to damage
FR2907467A1 (en) PROCESS FOR MANUFACTURING ALUMINUM ALLOY PRODUCTS OF THE AA2000 SERIES AND PRODUCTS MANUFACTURED THEREBY
CA2743353C (en) Products made of an aluminium-copper-lithium alloy
EP3011068B1 (en) Extrados structural element made from an aluminium copper lithium alloy
FR2907796A1 (en) ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME
EP1231290A1 (en) Method for making a high strength, wrought AlZnMgCu alloy product
EP2569456B1 (en) Aluminum-copper-lithium alloy for lower surface element
FR2878258A1 (en) PROCESS FOR THERMALLY TREATING AN ALUMINUM ALLOY PIECE
EP3526358B1 (en) Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications
EP1544315B1 (en) Wrought product in the form of a rolled plate and structural part for aircraft in Al-Zn-Cu-Mg alloy
EP3052669B1 (en) Underwing sheet metal with improved damage tolerance properties
US20050217770A1 (en) Structural member for aeronautical construction with a variation of usage properties
EP1573080B1 (en) Method for making structural elements by machining thick plates
FR2848480A1 (en) Aluminum alloy aeronautical structural element fabrication involves machining of thick sheets
EP3610047B1 (en) Aluminium-copper-lithium alloy products
CA3001519C (en) Thin sheets made from aluminium-magnesium-zirconium alloys for aerospace applications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060725

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005006764

Country of ref document: DE

Date of ref document: 20080626

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ALCAN RHENALU

Free format text: ALCAN RHENALU#7, PLACE DU CHANCELIER ADENAUER#75116 PARIS (FR) -TRANSFER TO- ALCAN RHENALU#17, PLACE DES REFLETS LA DEFENSE 2#92400 COURBEVOIE (FR)

Ref country code: CH

Ref legal event code: NV

Representative=s name: WILLIAM BLANC & CIE CONSEILS EN PROPRIETE INDUSTRI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2307180

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080914

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080814

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081014

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080814

BERE Be: lapsed

Owner name: ALCAN RHENALU

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: ALCAN RHENALU

Free format text: ALCAN RHENALU#17, PLACE DES REFLETS LA DEFENSE 2#92400 COURBEVOIE (FR) -TRANSFER TO- ALCAN RHENALU#17, PLACE DES REFLETS LA DEFENSE 2#92400 COURBEVOIE (FR)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NOVAGRAAF SWITZERLAND SA;CHEMIN DE L'ECHO 3;1213 ONEX (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM FRANCE, FR

Effective date: 20111123

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: CONSTELLIUM FRANCE SAS

Free format text: ALCAN RHENALU#17, PLACE DES REFLETS LA DEFENSE 2#92400 COURBEVOIE (FR) -TRANSFER TO- CONSTELLIUM FRANCE SAS#40-44, RUE WASHINGTON#75008 PARIS (FR)

Ref country code: CH

Ref legal event code: NV

Representative=s name: NOVAGRAAF INTERNATIONAL SA

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005006764

Country of ref document: DE

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005006764

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005006764

Country of ref document: DE

Owner name: CONSTELLIUM FRANCE, FR

Free format text: FORMER OWNER: ALCAN RHENALU, COURBEVOIE, FR

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005006764

Country of ref document: DE

Representative=s name: BEETZ & PARTNER PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005006764

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Effective date: 20120622

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005006764

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: ALCAN RHENALU, COURBEVOIE, FR

Effective date: 20120622

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005006764

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

Effective date: 20120622

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CONSTELLIUM FRANCE

Effective date: 20130205

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: CONSTELLIUM ISSOIRE, FR

Effective date: 20150915

Ref country code: FR

Ref legal event code: CA

Effective date: 20150915

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE SAS, FR

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005006764

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602005006764

Country of ref document: DE

Owner name: CONSTELLIUM ISSOIRE, FR

Free format text: FORMER OWNER: CONSTELLIUM FRANCE, PARIS, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 602005006764

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: CONSTELLIUM ISSOIRE

Effective date: 20161010

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170324

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170328

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180321

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200327

Year of fee payment: 16

Ref country code: GB

Payment date: 20200327

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200325

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200401

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005006764

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210321

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001