EP1723263B9 - Gesinterter gleitlagerwerkstoff, gleitlagerverbundwerkstoff sowie dessen verwendungen - Google Patents
Gesinterter gleitlagerwerkstoff, gleitlagerverbundwerkstoff sowie dessen verwendungen Download PDFInfo
- Publication number
- EP1723263B9 EP1723263B9 EP05714971A EP05714971A EP1723263B9 EP 1723263 B9 EP1723263 B9 EP 1723263B9 EP 05714971 A EP05714971 A EP 05714971A EP 05714971 A EP05714971 A EP 05714971A EP 1723263 B9 EP1723263 B9 EP 1723263B9
- Authority
- EP
- European Patent Office
- Prior art keywords
- plain bearing
- graphite
- material according
- bearing material
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/06—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
- B22F7/08—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0084—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0089—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with other, not previously mentioned inorganic compounds as the main non-metallic constituent, e.g. sulfides, glass
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/02—Parts of sliding-contact bearings
- F16C33/04—Brasses; Bushes; Linings
- F16C33/06—Sliding surface mainly made of metal
- F16C33/12—Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
- F16C33/121—Use of special materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/10—Alloys based on copper
- F16C2204/12—Alloys based on copper with tin as the next major constituent
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12903—Cu-base component
Definitions
- the invention relates to a sintered sliding bearing material made of a copper alloy.
- the invention also relates to a sliding bearing composite material and to uses of the sliding bearing material or of the sliding bearing composite material.
- a bismuth content of 5 to 25 wt.% Called wherein additionally up to 10 wt.% Tin, bis 1 wt.% Lead, and silver, antimony, zinc, phosphorus or nickel may be included.
- alloys which may be sintered, cast or rolled on a steel spine, showed the best properties when they have 12 to 18 wt% bismuth, 1 to 3% tin and 0.5% lead. In the absence of lead bismuth shares even in the range of 12 to 20 wt.% And tin contents of 1 to 2 wt.% Called.
- the US 2003/0008169 A1 discloses a sintered porous copper alloy bearing material having the composition 1.5 to 15 wt% Sn, 1.5 to 15 wt% Bi, and 1.5 to 20 wt% solid lubricant.
- the sliding bearing material is connected to a steel carrier material.
- a sintered sliding bearing material which is characterized by 10 to 15 wt.% Tin, 0.5 to 10 wt.% Bismuth, 5 to 12 wt.% Graphite and remainder copper, wherein the tin content is> the bismuth content and the graphite has a grain size of 99% ⁇ 40 microns.
- the solution according to the invention is based on the surprising finding that the proportion of bismuth can be significantly reduced if graphite is added and the tin content is increased. Since tin and graphite are cheaper than bismuth, the solution according to the invention can significantly reduce the costs for producing the sliding bearing material. In addition, can be dispensed with lead, which was required according to the prior art, at least at the low bismuth levels. It is thus created a cheaper lead-free material, which has significantly better tribological properties.
- the matrix content namely that of the copper, remains largely unchanged, which has the advantage that the strength remains unchanged compared to the known high-bismuth sliding bearing materials.
- the tin content is always above the bismuth content.
- the graphite which has a grain size at which 99% of the graphite has a grain size of ⁇ 40 ⁇ m, is referred to as f-graphite and is particularly advantageous when a sliding layer provided with the sliding bearing material is exposed to micro-movements.
- p-graphite When it comes to large-scale sliding movements, the so-called p-graphite is preferred, which has a grain size of 100 to 600 microns. A preferred grain size is 100 to 300 ⁇ m. This graphite is called pf graphite.
- Another preferred bismuth range is 8 to 10 wt.%.
- the tin content is preferably> 10 to 13% by weight and more preferably 11 to 13% by weight.
- natural graphite is used for the graphite portion. It is also possible to use synthetic graphite.
- the sliding bearing material can be produced as a solid material.
- the sliding bearing material additionally comprises sintering aids. 1 to 3 wt.% MoS 2 and / or 0.5 to 2 wt.% CuP are suitable and preferred as sintering aids.
- the sliding bearing material can also be applied, for example, to a support material made of steel or bronze. These are in these cases a sliding bearing composite material, wherein the sliding bearing material is sintered onto the carrier material. A sintering aid is not added to the sliding bearing material in this embodiment.
- the sliding bearing material or the sliding bearing composite material is used for dry-running bearings.
- Another preferred use is the use for radial plain bearings, thrust bearings, plain bearing segments, sliding plates, spherical bearings and / or bushings.
- Table 1 (In each case in% by weight) Example no. Cu sn Bi MoS 2 CuP graphite total 1 77.36 12.26 1.89 2.83 0.00 5.66 100.00 2 75.93 12.04 1.85 2.78 0.00 7.41 100.00 3 74.55 11.82 1.82 2.73 0.00 9.09 100.00 4 73.21 11.61 1.79 2.68 0.00 10.71 100.00 5 78,30 12.26 1.89 1.89 0.00 5.66 100.00 6 76.85 12.04 1.85 1.85 0.00 7.41 100.00 7 75.45 11.82 1.82 1.82 0.00 9.09 100.00 8th 74.11 11.61 1.79 1.79 0.00 10.71 100.00 9 78,30 12.26 2.83 0.00 0.94 5.66 100.00 10 76.85 12.04 2.78 0.00 0.93 7.41 100.00 11 75.45 11.82 2.73 0.00 0.91 9.09 100.00 12 74.11 11.61 2.68 0.00 0.89 10.71 100.00 13 79.25 12.26 1.89
- Table 2 (In each case in% by weight) Example no. Cu sn pb MoS 2 CuP graphite total 37 78,30 12.26 2.83 0.00 0.94 5.66 100.00 38 77.78 12.04 1.85 0.00 0.93 7.41 100.00 39 76.85 12.04 1.85 1.85 0.00 7.41 100.00 40 74.55 11.82 1.82 2.73 0.00 9.09 100.00
- FIGS. 1 to 3 the compressive strength and hardness for each of a lead-containing alloy and an alloy according to the invention is shown.
- the number of the alloy according to the invention refers to the numbering in the table. With respect to the alloy according to the invention, four experiments each were carried out. It is clearly too see that the compressive strength and hardness compared to the default values for the lead-containing materials could be increased.
- FIGS. 4 to 11 the oxidation behavior of two inventive sliding bearing materials is shown in comparison to a lead-containing sliding bearing material.
- the oxidation behavior manifests itself in a change in length, which in turn is important for the dimensional accuracy in operation. It can be seen that the oxidation behavior of the investigated materials does not differ significantly from each other.
- FIGS. 12 to 15 the friction coefficients, the wear and the wear rate for two bearing materials according to the invention compared to a lead-containing material are shown. It can be clearly seen that when bismuth is replaced by lead, the coefficients of friction slightly decrease while the wear values do not differ significantly. When the bismuth content is reduced, increases in both the coefficient of friction and in wear can be seen.
- FIGS. 16 to 19 Wear tests are shown, wherein the weight loss and the wear rate for each two sliding bearing materials according to the invention are shown in comparison to a lead-containing sliding bearing material. It can be seen that when lead is replaced by bismuth, significantly better wear values can be achieved. It is also shown that a reduction of the bismuth content leads to higher wear values. From a tribological point of view, the preferred bismuth levels appear to be optimum.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Sliding-Contact Bearings (AREA)
- Powder Metallurgy (AREA)
- Laminated Bodies (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL05714971T PL1723263T3 (pl) | 2004-03-11 | 2005-02-11 | Spiekane tworzywo na łożysko ślizgowe, kompozyt na łożysko ślizgowe oraz jego zastosowania |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004011831A DE102004011831B3 (de) | 2004-03-11 | 2004-03-11 | Gesinterter Gleitlagerwerkstoff, Gleitlagerverbundwerkstoff sowie dessen Verwendungen |
PCT/DE2005/000252 WO2005087958A1 (de) | 2004-03-11 | 2005-02-11 | Gesinterter gleitlagerwerkstoff, gleitlagerverbundwerkstoff sowie dessen verwendungen |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1723263A1 EP1723263A1 (de) | 2006-11-22 |
EP1723263B1 EP1723263B1 (de) | 2010-03-24 |
EP1723263B9 true EP1723263B9 (de) | 2010-09-01 |
Family
ID=34223634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05714971A Not-in-force EP1723263B9 (de) | 2004-03-11 | 2005-02-11 | Gesinterter gleitlagerwerkstoff, gleitlagerverbundwerkstoff sowie dessen verwendungen |
Country Status (8)
Country | Link |
---|---|
US (1) | US20080254316A1 (zh) |
EP (1) | EP1723263B9 (zh) |
JP (1) | JP2007527953A (zh) |
CN (1) | CN101001966A (zh) |
AT (1) | ATE462019T1 (zh) |
DE (3) | DE102004011831B3 (zh) |
PL (1) | PL1723263T3 (zh) |
WO (1) | WO2005087958A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004008631A1 (de) * | 2004-02-21 | 2005-09-08 | Ks Gleitlager Gmbh | Gleitlagerwerkstoff |
DE102007033902B3 (de) * | 2007-07-20 | 2008-12-18 | Federal-Mogul Wiesbaden Gmbh | Bleifreier gesinterter Gleitlagerwerkstoff und Sinterpulver zur Herstellung desselben |
CN101474903B (zh) * | 2009-01-04 | 2012-11-14 | 上海核威实业有限公司 | 铋青铜-钢复合双金属轴承材料及其制造方法 |
DE102009052302A1 (de) * | 2009-11-09 | 2011-05-12 | Dow Corning Gmbh | Lagerelement mit festschmierstoffhaltiger Imprägnierung |
JP6242424B2 (ja) * | 2016-03-30 | 2017-12-06 | 大同メタル工業株式会社 | 銅系摺動部材 |
JP6587571B2 (ja) * | 2016-03-30 | 2019-10-09 | 大同メタル工業株式会社 | 銅系摺動部材 |
DE102016210039A1 (de) * | 2016-06-07 | 2017-12-07 | Wobben Properties Gmbh | Windenergieanlagen-Drehverbindung, Rotorblatt und Windenergieanlage mit selbiger |
JP6938086B2 (ja) * | 2017-09-14 | 2021-09-22 | 大同メタル工業株式会社 | 摺動部材 |
CN110257739B (zh) * | 2019-06-21 | 2020-10-30 | 山东金麒麟股份有限公司 | 一种环保型摩擦材料和闸片及闸片的制备方法 |
JP7219198B2 (ja) | 2019-10-16 | 2023-02-07 | 大豊工業株式会社 | 銅合金摺動材料 |
CN110576181B (zh) * | 2019-10-18 | 2022-09-23 | 镇江伟益五金有限公司 | 一种汽车轮胎模具用的耐磨板制作工艺 |
JP7488527B2 (ja) * | 2019-11-12 | 2024-05-22 | 学校法人 名城大学 | 摺動部品およびその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3576833D1 (de) * | 1985-11-04 | 1990-05-03 | Jpi Transport Prod | Werkstoffe fuer lager. |
GB2352483A (en) * | 1999-07-28 | 2001-01-31 | Federal Mogul Technology Ltd | Manufacture of plain bearings |
JP3458144B2 (ja) * | 2000-02-21 | 2003-10-20 | 帝国カーボン工業株式会社 | 焼結合金製集電子および集電子用焼結合金の製造方法 |
JP3939931B2 (ja) * | 2001-03-23 | 2007-07-04 | 大同メタル工業株式会社 | 銅系複層摺動材料 |
DE10138058A1 (de) * | 2001-08-03 | 2003-02-27 | Federal Mogul Deva Gmbh | Vollmateriallager und Verfahren zu seiner Herstellung |
-
2004
- 2004-03-11 DE DE102004011831A patent/DE102004011831B3/de not_active Expired - Fee Related
-
2005
- 2005-02-11 WO PCT/DE2005/000252 patent/WO2005087958A1/de active Application Filing
- 2005-02-11 PL PL05714971T patent/PL1723263T3/pl unknown
- 2005-02-11 JP JP2007502180A patent/JP2007527953A/ja active Pending
- 2005-02-11 DE DE112005001117T patent/DE112005001117A5/de not_active Withdrawn
- 2005-02-11 AT AT05714971T patent/ATE462019T1/de active
- 2005-02-11 US US10/592,330 patent/US20080254316A1/en not_active Abandoned
- 2005-02-11 EP EP05714971A patent/EP1723263B9/de not_active Not-in-force
- 2005-02-11 CN CNA2005800076175A patent/CN101001966A/zh active Pending
- 2005-02-11 DE DE502005009275T patent/DE502005009275D1/de active Active
Also Published As
Publication number | Publication date |
---|---|
EP1723263A1 (de) | 2006-11-22 |
CN101001966A (zh) | 2007-07-18 |
US20080254316A1 (en) | 2008-10-16 |
JP2007527953A (ja) | 2007-10-04 |
DE502005009275D1 (de) | 2010-05-06 |
PL1723263T3 (pl) | 2010-08-31 |
DE112005001117A5 (de) | 2007-05-24 |
DE102004011831B3 (de) | 2005-03-31 |
ATE462019T1 (de) | 2010-04-15 |
EP1723263B1 (de) | 2010-03-24 |
WO2005087958A1 (de) | 2005-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1723263B1 (de) | Gesinterter gleitlagerwerkstoff, gleitlagerverbundwerkstoff sowie dessen verwendungen | |
EP1717469B1 (de) | Lagerelement | |
DE19808540B4 (de) | Gleitschichtmaterial und Schichtverbundwerkstoff | |
DE112007001514B4 (de) | Abriebbeständige gesinterte Cu-Ni-Sn-Legierung auf Kupferbasis und hieraus hergestelltes (Kugel-)Lager | |
EP0832155B1 (de) | Gleitschichtmaterial | |
EP1866451B1 (de) | Verwendung einer kupfer-zink-legierung | |
EP3255161B1 (de) | Sondermessinglegierung und legierungsprodukt | |
DE602005001976T2 (de) | Bleifreies Lager für Kraftstoffeinspritzpumpe | |
WO1997003299A1 (de) | Gleitlagerwerkstoff und dessen verwendung | |
DE3601569A1 (de) | Verbund-gleitlagerwerkstoff | |
EP1475449B1 (de) | Aluminiumknetlegierung | |
EP2806044A2 (de) | Kupfer-Zink-Legierung, Verfahren zur Herstellung und Verwendung | |
DE102013227187A1 (de) | Gleitlagerwerkstoff und Gleitlager-Verbundwerkstoff mit Zinksulfid und Bariumsulfat | |
EP0217462A1 (de) | Wartungsarmer Gleitlagerwerkstoff | |
EP3286348B1 (de) | Bleifreie sondermessinglegierung sowie sondermessinglegierungsprodukt | |
EP3023456A1 (de) | Gleitlagerelement | |
EP2171109B1 (de) | Bleifreier gesinterter gleitlagerwerkstoff und sinterpulver zur herstellung desselben | |
AT501811A1 (de) | Lagerelement | |
DD296994A5 (de) | Schichtwerkstoff fuer gleitlagerelemente mit antifriktionsschicht aus einem lagerwerkstoff auf aluminiumbasis | |
DE4128941C2 (de) | Aluminiumlagerlegierungen mit ausgezeichneter Ermüdungsbeständigkeit und Beständigkeit gegenüber fressendem Verschleiß | |
DE10213489B4 (de) | Sinterlegierungslager auf Kupferbasis und Motorkraftstoffpumpe | |
DE102018009737A1 (de) | Windkraftanlagengetriebe mit zumindest einem Gleitlager | |
EP0521319A1 (de) | Kupfer-Nickel-Zinn-Legierung, Verfahren zu ihrer Behandlung sowie ihre Verwendung | |
DE69012285T2 (de) | Lager. | |
DE3712108C2 (de) | Zusammengebaute Steuerwelle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060906 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20080728 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 502005009275 Country of ref document: DE Date of ref document: 20100506 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20100324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20100324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100705 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100625 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100724 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100624 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100726 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 |
|
26N | No opposition filed |
Effective date: 20101228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 |
|
BERE | Be: lapsed |
Owner name: FEDERAL-MOGUL DEVA G.M.B.H. Effective date: 20110228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20110211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20111102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005009275 Country of ref document: DE Effective date: 20110901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110211 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: LAPE |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 462019 Country of ref document: AT Kind code of ref document: T Effective date: 20110211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100324 |