EP1722177A2 - Kühl- und/oder Gefriergerät sowie Verfahren zur Steuerung desselben - Google Patents

Kühl- und/oder Gefriergerät sowie Verfahren zur Steuerung desselben Download PDF

Info

Publication number
EP1722177A2
EP1722177A2 EP06009670A EP06009670A EP1722177A2 EP 1722177 A2 EP1722177 A2 EP 1722177A2 EP 06009670 A EP06009670 A EP 06009670A EP 06009670 A EP06009670 A EP 06009670A EP 1722177 A2 EP1722177 A2 EP 1722177A2
Authority
EP
European Patent Office
Prior art keywords
freezer
refrigerator
capillary tube
evaporator
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06009670A
Other languages
English (en)
French (fr)
Inventor
Matthias Wiest
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liebherr Hausgeraete Ochsenhausen GmbH
Original Assignee
Liebherr Hausgeraete Ochsenhausen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr Hausgeraete Ochsenhausen GmbH filed Critical Liebherr Hausgeraete Ochsenhausen GmbH
Publication of EP1722177A2 publication Critical patent/EP1722177A2/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/01Heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/10Sensors measuring the temperature of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/122Sensors measuring the inside temperature of freezer compartments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/14Sensors measuring the temperature outside the refrigerator or freezer

Definitions

  • the present invention relates to a refrigerator and / or freezer with a refrigerant circuit having a compressor, a condenser, at least one capillary tube and at least one evaporator, and a control device for controlling the refrigerant flow through the refrigerant circuit.
  • the invention further relates to a method for controlling such a refrigerator and / or freezer, wherein detects at least one operating and / or environmental parameters of the refrigerator and / or freezer and depending on the detected operating and / or environmental parameters of the refrigerant flow through the Refrigerant circuit is controlled.
  • valves such as mono- or bistable solenoid valves
  • thermostatic valves or motorized valves are regularly used.
  • the shows DE 36 01 817 A1 a control device for the refrigerant flow to the evaporator of such a refrigerant circuit having an actuatable by an electric servomotor expansion valve.
  • the DE 33 24 590 C2 shows an electromagnetic switching valve, by means of which the refrigerant flow can be selectively directed to a freezer compartment evaporator or a refrigerator compartment evaporator of a refrigerator and / or freezer.
  • the problem with such valves for controlling the flow of refrigerant is on the one hand the moving valve body.
  • valves result in relatively high component costs.
  • the present invention seeks to remedy this situation. It is an object of the invention to provide an improved refrigerator and / or freezer and an improved method for controlling such a refrigerator and / or freezer, avoid the disadvantages of the prior art and further develop the latter in an advantageous manner. Preferably should be achieved with simple means improved control of the refrigerant flow with reduced risk of leakage, which operates noise-free.
  • this object is achieved by a refrigerator and / or freezer according to claim 1.
  • the object is achieved by a method according to claim 16.
  • Preferred embodiments of the invention are the subject of the dependent claims.
  • the invention it is therefore proposed to control the flow of refrigerant by heating the capillary tube by means of a heating device and thereby to bring the refrigerant flowing through the capillary tube to evaporate.
  • the invention is based on the recognition that steam generated in the capillary tube can significantly reduce the flow of the refrigerant through the capillary tube or, if appropriate, completely prevent it. The stronger the evaporation produced in the capillary tube, the lower the remaining refrigerant flow through the capillary tube.
  • the control of the refrigerant flow can completely dispense with flow control and switching valves.
  • the control of the refrigerant flow can be accomplished solely by the heating of the capillary tube or more capillary tubes and the evaporation of the refrigerant therein. This eliminates additional joints in the refrigerant circuit, as would be required for the installation of valves. Accordingly, the risk of leakage can be reduced. In addition, the switching noises normally arising in valves are eliminated.
  • the control of the refrigerant flow can be carried out completely noise-free. In addition, lower costs can be achieved compared to a valve solution because the heater is significantly cheaper compared to the relatively expensive valves.
  • control of the refrigerant flow can also be done by a combination of flow control and switching valves on the one hand and the heating of the capillary tube or more capillary tubes on the other. This can possibly achieve a greater variability of control options.
  • control valves has significant advantages in terms of cost, the risk of leakage and noise.
  • the heating device is arranged at the downstream end portion of the respective capillary tube. If the capillary tube is heated at its end immediately before the injection point, a particularly efficient control of the refrigerant flow can be achieved.
  • the heating device is arranged at the upstream end portion of the respective capillary tube. Surprisingly, the refrigerant flow can be controlled extremely precisely by heating the inlet section of the capillary tube.
  • the heater itself can basically be designed differently. According to an advantageous embodiment of the invention, a resistance heating with relatively small power can be used, which sits on the respective capillary tube.
  • the heating power introduced into the capillary tube and / or the temperature of the capillary tube can be changed at least in several stages, in particular continuously.
  • a continuous control of the refrigerant flow through the refrigerant circuit is optionally achievable. If the capillary tube is heated only slightly beyond the point at which steam is formed, a remaining flow of refrigerant can still pass through the capillary tube. If, on the other hand, the capillary tube is heated more and more and accordingly the formation of steam is increasingly intensified, less and less refrigerant can pass through the capillary tube.
  • the heating device is designed to be infinitely temperature controllable for this purpose and controlled accordingly by the control device, which may have a temperature controller or control module for this purpose. Alternatively or additionally, it may also be provided to change the length of the heated capillary tube section, for example, by connecting additional heating elements and thereby to influence the formation of steam.
  • the heating power of the heating device can be controlled as a function of various operating parameters of the refrigerator and / or freezer.
  • an evaporator temperature, a refrigerator compartment temperature, a freezer compartment temperature and / or the ambient temperature of the refrigerator and / or freezer is detected by means of at least one temperature sensor.
  • the control device controls the heating device as a function of the detected temperature in order to control the refrigerant flow accordingly.
  • the duty cycle of the compressor of the refrigerant circuit can be detected as an operating parameter and the heating device can be controlled as a function of the detected duty cycle.
  • the device may have a freezer compartment evaporator and a refrigerated compartment evaporator, which are advantageously connected in series such that the refrigerant first circulates through the freezer compartment evaporator and then flows through the refrigerated compartment evaporator.
  • the cooling circuit can also be configured such that the refrigerant first the cooling part evaporator and then flows through the freezer compartment evaporator.
  • two separate capillary tubes and respective associated heating devices are provided.
  • the two capillary tubes are connected in parallel to each other.
  • the amount of refrigerant flowing into the cooling part evaporator can be controlled in a suitable manner to achieve the desired temperature of the cooling part.
  • the effluent from the refrigerator evaporator refrigerant is then fed directly into the Gefiertsteilverdampfer.
  • a refrigerator and / or freezer 1 is drawn, the device body 2 is closed by a continuous door 3.
  • the interior of the device body 2 is divided into a freezer compartment 4 and a cooling compartment 5, wherein in the illustrated embodiment, the freezer compartment 4 is closed by an inner door 6.
  • storage shelves 7 and a drawer-like vegetable extract 8 are arranged in a conventional manner.
  • the freezer compartment 4 is cooled by a freezer compartment evaporator 9, which can enclose the freezer compartment 4 on five sides.
  • the refrigerating compartment 5 is cooled by a refrigerating compartment evaporator 10, which extends on the rear wall of the refrigerating compartment 5.
  • the freezer compartment evaporator 9 and the refrigerated compartment evaporator 10 are part of a refrigerant circuit 11, which moreover comprises a compressor 12, a condenser 13 and upstream of the two evaporators 9 and 10 a capillary tube 14.
  • the freezer compartment evaporator 9 is arranged upstream of the refrigerating compartment evaporator 10.
  • the two evaporators 9 and 10 are connected in series one behind the other, so that the refrigerant flowing out of the freezer evaporator 9 is conducted into the refrigerated part evaporator 10. Only upstream of the upstream Gefrierteilverdampfers 9, a capillary tube 14 is provided.
  • the capillary tube 14 is provided with a heater 16, the heating elements of each of which can heat the downstream end portion of the respective capillary tube 14 and 15.
  • the heater 16 may advantageously also be arranged at the upstream end of the capillary tube, whereby a very precise control of the refrigerant passage can be achieved.
  • the heating device 16 may be a simple resistance heating element and is advantageously infinitely variable in temperature.
  • the heating device 16 can be controlled by a temperature control module of an electronic control device 18, which controls the operation of the compressor 12, moreover.
  • the refrigerant coming from the condenser initially flows into the capillary tube 14 arranged in front of the freezer compartment evaporator 9. If this is not heated, the refrigerant flows in the usual manner into the freezer compartment evaporator 9. The refrigerant exiting from the freezer compartment evaporator 9 then flows to the refrigerated compartment evaporator 10. If, however, the freezer compartment 9 upstream capillary tube 14 is heated by the heater 16 and generates steam in the capillary tube 14, the refrigerant passage through the capillary tube 14 is optionally reduced to zero. As a result, undercooling of the cooling part can be prevented.
  • the amount of refrigerant is correspondingly reduced by heating the capillary tube 14, the remaining amount of refrigerant entering the freezer evaporator 9 is vaporized there and applied, so to speak, so that further cooling of the refrigerated part evaporator 10 is prevented or correspondingly reduced.
  • the control device 18 may be connected to a plurality of temperature sensors 21 and 22, which measure the refrigerator compartment evaporator temperature or the refrigerator compartment temperature and / or the ambient temperature. Depending on the detected temperatures, the control device 18 controls the heating device 16 and the compressor 12.
  • the control device 18 for controlling the heating device 16 and thus the control of the refrigerant inlet in the Gefrierteilverdampfer 9 next to thedeteilverdampfer- or cooling compartment temperature, which is detected by the temperature sensor 21, only consider a further operating or environmental size. This may be the ambient temperature, which, as shown in Fig. 2, can be detected with an ambient temperature sensor 22. Alternatively or additionally, however, the freezer compartment evaporator or freezer compartment temperature can also be used as the second operating variable. In this case, the controller 18 would include a corresponding freezer temperature sensor. Alternatively or additionally, however, it would also be possible to control the heating device 16 as a function of the relative duty cycle of the compressor 12.
  • the refrigerant circuit 11 also includes the refrigerated compartment evaporators 10 and freezer evaporators 9, which are connected in series with one another, but in this embodiment the refrigerating compartment evaporator 10 is arranged upstream of the freezer evaporator 9.
  • the refrigerant circuit 11 also includes a compressor 12 and a condenser 13.
  • two capillary tubes 14 and 15 and heaters 16 and 17 associated therewith are used to control the flow of refrigerant through the two evaporators 9 and 10 in this embodiment.
  • the first capillary tube 14 is connected directly upstream of the refrigerating compartment evaporator 10. Upstream of said capillary tube 14, the refrigerant line branches.
  • a bypass line running around the refrigerating compartment evaporator 10 branches off and leads to the parallel-connected capillary tube 15, to which the second heating device 17 is assigned.
  • the capillary tube 15 opens into the freezer compartment evaporator 9, as shown in FIG. 3.
  • the two heaters 16 and 17 are also controlled by the control device 18 here. This is connected to temperature sensors 20 and 21, by means of which the temperatures in the refrigerator compartment and freezer or the refrigerator compartment and freezer compartment evaporator are detected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

Kühl- und/oder Gefriergerät (1) mit einem Kältemittelkreis, der einen Kompressor (12), einen Kondensator (13), zumindest ein Kapillarrohr (14) sowie zumindest einen Verdampfer (9,10) aufweist, und einer Steuereinrichtung (18) zur Steuerung des Kältemittelstroms durch den Kältemittelkreis. Ein Verfahren zur Steuerung eines solchen Kühl- und/oder Gefriergeräts (1), beim dem zumindest ein Betriebs- und/oder Umgebungsparameter des Kühl- und/oder Gefriergeräts erfasst und in Abhängigkeit des erfassten Betriebs- und/oder Umgebungsparameters (21,22) der Kältemittelstrom durch den Kältemittelkreis gesteuert wird. Es wird vorgeschlagen, den Kältemittelstrom dadurch zu steuern, dass das Kapillarrohr (14) mittels einer Heizvorrichtung (16) beheizt wird und hierdurch das durch das Kapillarrohr (14) strömende Kältemittel zur Verdampfung zu bringen. In dem Kapillarrohr (14) erzeugter Dampf kann den Durchfluss des Kältemittels durch das Kapillarrohr (14) deutlich vermindern bzw. gegebenenfalls komplett unterbinden. Je stärker die in dem Kapillarrohr erzeugte Verdampfung ist, desto geringer ist der verbleibende Kältemittelstrom durch das Kapillarrohr hindurch.

Description

  • Die vorliegende Erfindung betrifft ein Kühl- und/oder Gefriergerät mit einem Kältemittelkreis, der einen Kompressor, einen Kondensator, zumindest ein Kapillarrohr sowie zumindest einen Verdampfer aufweist, und einer Steuereinrichtung zur Steuerung des Kältemittelstroms durch den Kältemittelkreis.
  • Die Erfindung betrifft weiterhin ein Verfahren zur Steuerung eines solchen Kühl- und/oder Gefriergeräts, beim dem zumindest ein Betriebs- und/oder Umgebungsparameter des Kühl- und/oder Gefriergeräts erfasst und in Abhängigkeit des erfassten Betriebs- und/oder Umgebungsparameters der Kältemittelstrom durch den Kältemittelkreis gesteuert wird.
  • Zur Steuerung des Kältemittelstroms durch den Kältemittelkreis von Kühl- und/oder Gefriergeräten werden regelmäßig Ventile wie beispielsweise mono- oder bistabile Magnetventile, thermostatische Ventile oder auch motorisch betriebene Ventile eingesetzt. Beispielsweise zeigt die DE 36 01 817 A1 eine Regelvorrichtung für den Kältemittelzustrom zum Verdampfer eines solchen Kältemittelkreises, die ein von einem elektrischen Stellmotor betätigbares Expansionsventil aufweist. Die DE 33 24 590 C2 hingegen zeigt ein elektromagnetisches Schaltventil, mit Hilfe dessen der Kältemittelstrom wahlweise zu einem Gefrierfachverdampfer oder einem Kühlfachverdampfer eines Kühl- und/oder Gefriergeräts geleitet werden kann. Problematisch an solchen Ventilen zur Steuerung des Kältemittelstroms ist zum einen der bewegte Ventilkörper. Dieser kann zu Funktionssteuerungen oder unerwünschten Geräuschen führen. Weiterhin problematisch sind an solchen Ventilen die zusätzlichen Verbindungsstellen, die durch den Einbau der Ventile in den Kältemittelkreis bedingt sind. Diese sind zum einen kostenaufwendig und bergen zudem ein potentielles Leckrisiko. Zudem ergeben sich durch die Ventile relativ hohe Bauteilkosten.
  • Hier will die vorliegende Erfindung Abhilfe schaffen. Ihr liegt die Aufgabe zugrunde, ein verbessertes Kühl- und/oder Gefriergerät sowie ein verbessertes Verfahren zur Steuerung eines solchen Kühl- und/oder Gefriergeräts zu schaffen, die Nachteile des Standes der Technik vermeiden und letzteren in vorteilhafter Weise weiterbilden. Vorzugsweise soll mit einfachen Mitteln eine verbesserte Steuerung des Kältemittelstroms mit verringerter Leckagegefahr erreicht werden, die geräuschfrei arbeitet.
  • Erfindungsgemäß wird diese Aufgabe durch ein Kühl- und/oder Gefriergerät nach Anspruch 1 gelöst. In verfahrenstechnischer Hinsicht wird die Aufgabe durch ein Verfahren gemäß Anspruch 16 gelöst. Bevorzugte Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Erfindungsgemäß wird also vorgeschlagen, den Kältemittelstrom dadurch zu steuern, dass das Kapillarrohr mittels einer Heizvorrichtung beheizt wird und hierdurch das durch das Kapillarrohr strömende Kältemittel zur Verdampfung zu bringen. Die Erfindung beruht auf der Erkenntnis, dass in dem Kapillarrohr erzeugter Dampf den Durchfluß des Kältemittels durch das Kapillarrohr deutlich vermindern bzw. gegebenenfalls komplett unterbinden kann. Je stärker die in dem Kapillarrohr erzeugte Verdampfung ist, desto geringer ist der verbleibende Kältemittelstrom durch das Kapillarrohr hindurch.
  • In Weiterbildung der Erfindung kann die Steuerung des Kältemittelstroms gänzlich auf Stromregel- und schaltventile verzichten. Die Steuerung des Kältemittelstroms kann ausschließlich durch die Beheizung des Kapillarrohres bzw. mehrerer Kapillarrohre und die Verdampfung des Kältemittels darin bewerkstelligt werden. Hierdurch entfallen zusätzliche Verbindungsstellen im Kältemittelkreis, wie sie für den Einbau von Ventilen erforderlich wären. Dementsprechend kann die Leckagegefahr verringert werden. Zudem entfallen die bei Ventilen üblicherweise entstehenden Schaltgeräusche. Die Steuerung des Kältemittelstroms kann gänzlich geräuschfrei durchgeführt werden. Zudem können im Vergleich zu einer Ventillösung geringere Kosten erreicht werden, da die Heizvorrichtung im Vergleich zu den relativ teuren Ventilen deutlich billiger ist.
  • In alternativer Weiterbildung der Erfindung kann die Steuerung des Kältemittelstroms auch durch eine Kombination von Stromregel- und Schaltventilen einerseits und der Beheizung des Kapillarrohres bzw. mehrerer Kapillarrohre andererseits erfolgen. Hierdurch lässt sich ggf. eine größere Variabilität der Steuerungsmöglichkeiten erreichen. Die zuvor beschriebene Ausführungsmöglichkeit unter gänzlichem Verzicht auf Steuerventile besitzt jedoch deutliche Vorteile hinsichtlich der Kosten, der Leckagegefahr und der Geräuschbildung.
  • Nach einer vorteilhaften Ausführung der Erfindung ist die Heizvorrichtung am stromabseitigen Endabschnitt des jeweiligen Kapillarrohres angeordnet. Wird das Kapillarrohr an seinem Ende unmittelbar vor der Einspritzstelle aufgeheizt, kann eine besonders effiziente Steuerung des Kältemittelstroms erreicht werden.
  • In alternativer Ausführung der Erfindung ist die Heizvorrichtung am stromaufseitigen Endabschnitt des jeweiligen Kapillarrohres angeordnet. Überraschenderweise lässt sich bereits durch Aufheizung des Eintrittsabschnitts des Kapillarrohres der Kältemittelstrom äußerst präzise steuern.
  • Die Heizvorrichtung selbst kann grundsätzlich verschieden ausgebildet sein. Nach einer vorteilhaften Ausführung der Erfindung kann eine Widerstandsheizung mit relativ kleiner Leistung Verwendung finden, die auf dem jeweiligen Kapillarrohr sitzt.
  • Vorzugsweise kann die in das Kapillarrohr eingebrachte Heizleistung und/oder die Temperatur des Kapillarrohres zumindest in mehreren Stufen, insbesondere stufenlos verändert werden. Hierdurch ist gegebenenfalls eine stufenlose Steuerung des Kältemittelstroms durch den Kältemittelkreis erreichbar. Wird das Kapillarrohr nur leicht über den Punkt hinaus erhitzt, an dem eine Dampfbildung erfolgt, kann noch ein verbleibender Kältemittelstrom durch das Kapillarrohr hindurchtreten. Wird hingegen das Kapillarrohr immer stärker erhitzt und dementsprechend die Dampfbildung immer weiter verstärkt, kann immer weniger Kältemittel durch das Kapillarrohr hindurchtreten.
  • In Weiterbildung der Erfindung ist hierzu die Heizvorrichtung stufenlos temperatursteuerbar ausgebildet und von der Steuereinrichtung, die hierzu einen Temperaturregler bzw. -Steuerbaustein aufweisen kann, entsprechend ansteuerbar. Alternativ oder zusätzlich kann auch vorgesehen sein, die Länge des beheizten Kapillarrohrabschnitts beispielsweise durch Zuschalten weiterer Heizelemente zu verändern und hierdurch die Dampfbildung zu beeinflussen.
  • Die Heizleistung der Heizvorrichtung kann in Abhängigkeit verschiedener Betriebsparameter des Kühl - und/oder Gefriergeräts gesteuert werden. Vorzugsweise wird mittels zumindest eines Temperaturfühlers eine Verdampfertemperatur, eine Kühlfachtemperatur, eine Gefrierfachtemperatur und/oder die Umgebungstemperatur des Kühl- und/oder Gefriergeräts erfasst. Die Steuereinrichtung steuert die Heizvorrichtung in Abhängigkeit der erfassten Temperatur an, um den Kältemittelstrom entsprechend zu steuern. Alternativ oder zusätzlich kann als Betriebsparameter auch die Einschaltdauer des Kompressors des Kältemittelkreises erfasst und die Heizvorrichtung in Abhängigkeit der erfassten Einschaltdauer angesteuert werden.
  • Besonders vorteilhaft lässt sich die Steuerung des Kältemittelstroms durch Aufheizen des Kapillarrohres und Dampferzeugung im Kapillarrohr bei Kühl- und/oder Gefriergeräten mit unterschiedlichen Temperaturzonen einsetzen, insbesondere wenn für die entsprechenden Temperaturzonen verschiedene Verdampfer vorgesehen sind. Beispielsweise kann das Gerät einen Gefrierfachverdampfer sowie einen Kühlfachverdampfer aufweisen, die vorteilhafterweise derart hintereinander geschaltet sind, dass das Kältemittel zunächst durch den Gefrierfachverdampfer zirkuliert und sodann durch den Kühlfachverdampfer strömt.
  • Insbesondere ist bei der genannten Anordnung, bei der das Kältemittel zunächst durch den Gefrierfachverdampfer und sodann durch den Kühlfachverdampfer strömt, nur ein einziges Kapillarrohr mit einer diesem zugeordneten Heizvorrichtung vorgesehen. Durch die Beheizung des stromauf des Gefrierfachverdampfers vorgesehenen Kapillarrohres kann die in den Gefrierfachverdampfer eintretende Kältemittelmenge bei Bedarf reduziert werden, wodurch ggf. die Kältemittelmenge vollständig im Gefrierfachverdampfer sozusagen verbraucht wird und der nachgeschaltete Kühlteilverdampfer keine weitere Kühlung erfährt. Bei einer solchen Minimallösung, die äußerst kostengünstig herzustellen ist, besteht im Stand der Technik regelmäßig die Problematik, dass je nach Umgebungstemperatur entweder das Gefrierfach nicht kalt genug oder der Kühlteil zu kalt betrieben wird. Diese Problematik kann durch die Beheizung des dem Gefrierteilverdampfers vorgeschalteten Kapillarrohres in einfacher Weise behoben werden.
  • Durch gezieltes Herbeiführen eines Kältemittelmangels und entsprechende Laufzeiten kann eine gewünschte Temperaturdifferenz zwischen dem Kühlfach und dem Gefrierfach hergestellt werden. Gegenüber der heutigen Winterschaltung mit Lampenschaltung bzw. Heizung im Geräteinnenraum hat diese Lösung den Vorteil, dass kein Aufheizen des Innenraums notwendig ist, wodurch energetische Vorteile entstehen und Nachteile für die eingelagerten Lebensmittel vermieden werden.
  • Nach einer weiteren vorteilhaften Ausführung der Erfindung kann der Kühlkreis auch derart konfiguriert sein, dass das Kältemittel zunächst den Kühlteilverdampfer und sodann den Gefrierteilverdampfer durchströmt. In diesem Falle sind vorteilhafterweise zwei separate Kapillarrohre und jeweils zugehörige Heizvorrichtungen vorgesehen. Vorteilhafterweise sind hierbei die beiden Kapillarrohre zueinander parallel geschaltet. Über das eine Kapillarrohr, das unmittelbar dem Kühlteilverdampfer vorgeschaltet ist, bzw. der Beheizung dieses Kapillarrohres, kann die in den Kühlteilverdampfer strömende Kältemittelmenge in geeigneter Weise gesteuert werden, um die gewünschte Temperatur des Kühlteils zu erreichen. Das aus dem Kühlteilverdampfer ausströmende Kältemittel wird sodann unmittelbar in den Gefrierteilverdampfer geführt. Da die hierdurch erreichbare Kälteleistung für den Gefrierteilverdampfer jedoch nicht ausreichend sein wird, kann über das parallel geschaltete Kapillarrohr zusätzliches Kältemittel in den Gefrierteilverdampfer geführt werden. Das genannte parallel geschaltete Kapillarrohr greift das Kältemittel stromauf des anderen Kapillarrohres ab. Durch Beheizung des parallel geschalteten Kapillarrohres kann hierbei die durch den Gefrierteilverdampfer strömende Kältemittelmenge fein justiert werden.
  • Die Erfindung wird nachfolgend anhand eines bevorzugten Ausführungsbeispiels und zugehöriger Zeichnungen näher erläutert. In den Zeichnungen zeigen:
  • Fig. 1:
    eine schematische Schnittansicht eines Kühl- und/oder Gefriergeräts, dessen Gefrierfach mit einem Gefrierfachverdampfer und dessen Kühlfach mit einem Kühlfachverdampfer gekühlt werden,
    Fig. 2:
    eine schematische Darstellung des Kältemittelkreises des Kühl- und/oder Gefriergeräts aus Fig. 1, und
    Fig.3:
    eine schematische Darstellung eines Kältemittelkreises des Kühlund/oder Gefriergeräts aus Fig. 1 nach einer weiteren bevorzugten Ausführung der Erfindung.
  • In der Fig. 1 ist ein Kühl- und/oder Gefriergerät 1 gezeichnet, dessen Gerätekorpus 2 von einer durchgehenden Gerätetür 3 verschließbar ist. Der Innenraum des Gerätekorpus 2 ist unterteilt in ein Gefrierfach 4 sowie ein Kühlfach 5, wobei in der gezeichneten Ausführung das Gefrierfach 4 durch eine Innentür 6 verschließbar ist. In dem Kühlfach 5 sind in an sich bekannter Weise Abstellböden 7 sowie ein schubladenartiger Gemüseauszug 8 angeordnet.
  • Das Gefrierfach 4 wird von einem Gefrierfachverdampfer 9 gekühlt, der das Gefrierfach 4 auf fünf Seiten umschließen kann. Das Kühlfach 5 wird hingegen von einem Kühlfachverdampfer 10 gekühlt, der sich an der Rückwand des Kühlfachs 5 erstreckt.
  • Wie Fig. 2 zeigt, sind der Gefrierfachverdampfer 9 und der Kühlfachverdampfer 10 Teil eines Kältemittelkreises 11, der darüber hinaus einen Kompressor 12, einen Kondensator 13 sowie stromauf der beiden Verdampfer 9 und 10 ein Kapillarrohr 14 umfasst. In der gezeichneten Ausführung ist dabei der Gefrierfachverdampfer 9 stromauf des Kühlfachverdampfers 10 angeordnet. Wie Fig. 2 zeigt, sind dabei die beiden Verdampfer 9 und 10 in Serie hintereinander geschaltet, so dass das aus dem Gefrierteilverdampfer 9 ausströmende Kältemittel in den Kühlteilverdampfer 10 geführt wird. Lediglich stromauf des stromauf angeordneten Gefrierteilverdampfers 9 ist ein Kapillarrohr 14 vorgesehen.
  • Das Kapillarrohr 14 ist mit einer Heizvorrichtung 16 versehen, deren Heizelemente jeweils den stromabseitigen Endabschnitt des jeweiligen Kapillarrohres 14 und 15 aufheizen können. Nach der gezeichneten Ausführung nach Fig. 2 kann die Heizvorrichtung 16 vorteilhafterweise auch am stromaufseitigen Ende des Kapillarrohres angeordnet sein, wodurch sich ein sehr präzises Steuern des Kältemitteldurchtritts erreichen lässt. Die Heizvorrichtung 16 kann ein einfaches Widerstandsheizelement sein und ist vorteilhafterweise stufenlos temperaturregelbar. Hierzu ist die Heizvorrichtung 16 von einem Temperatursteuerbaustein einer elektronischen Steuereinrichtung 18 ansteuerbar, die im Übrigen auch den Betrieb des Kompressors 12 steuert.
  • In der gezeichneten Ausführungsform strömt das aus dem Kondensator kommende Kältemittel zunächst in das vor dem Gefrierfachverdampfer 9 angeordnete Kapillarrohr 14. Wird dieses nicht beheizt, strömt das Kältemittel in üblicher Weise in den Gefrierfachverdampfer 9. Das aus dem Gefrierfachverdampfer 9 austretende Kältemittel strömt sodann zu dem Kühlfachverdampfer 10. Wird hingegen das dem Gefrierfachverdampfer 9 vorgeschaltete Kapillarrohr 14 durch die Heizvorrichtung 16 aufgeheizt und Dampf in dem Kapillarrohr 14 erzeugt, verringert sich der Kältemitteldurchtritt durch das Kapillarrohr 14 gegebenenfalls gegen Null. Hierdurch kann ein Unterkühlen des Kühlteiles verhindert werden. Wird die Kältemittelmenge durch Beheizen des Kapillarrohres 14 entsprechend verringert, wird die verbleibende, in den Gefrierteilverdampfer 9 eintretende Kältemittelmenge dort verdampft und sozusagen aufgebracht, so dass ein weiteres Abkühlen des Kühlteilverdampfers 10 verhindert bzw. entsprechend vermindert wird.
  • Wie Fig. 2 zeigt, kann die Steuereinrichtung 18 mit mehreren Temperaturfühlern 21 und 22 verbunden sein, die die Kühlfach-Verdampfertemperatur bzw. die Kühlfachtemperatur und/oder die Umgebungstemperatur messen. In Abhängigkeit der erfassten Temperaturen steuert die Steuereinrichtung 18 die Heizvorrichtung 16 sowie den Kompressor 12 an. Vorteilhafterweise braucht die Steuereinrichtung 18 für die Ansteuerung der Heizvorrichtung 16 und damit die Steuerung des Kältemitteleintritts in den Gefrierteilverdampfer 9 neben der Kühlteilverdampfer- bzw. Kühlfachtemperatur, die von dem Temperaturfühler 21 erfasst wird, lediglich eine weitere Betriebs- oder Umgebungsgröße berücksichtigen. Dies kann die Umgebungstemperatur sein, die, wie in Fig. 2 gezeichnet, mit einem Umgebungstemperaturfühler 22 erfasst werden kann. Alternativ oder zusätzlich kann als zweite Betriebsgröße allerdings auch die Gefrierteilverdampfer- bzw. Gefrierfachtemperatur herangezogen werden. In diesem Falle würde die Steuereinrichtung 18 einen entsprechenden Gefrierteiltemperaturfühler umfassen. Alternativ oder zusätzlich wäre es jedoch auch möglich, die Heizvorrichtung 16 in Abhängigkeit der relativen Einschaltdauer des Kompressors 12 anzusteuern.
  • Eine alternative Ausführungsform der Erfindung zeigt Fig. 3. Hier umfasst der Kältemittelkreis 11 ebenfalls die zueinander in Serie geschalteten Kühlfachverdampfer 10 und Gefrierfachverdampfer 9, wobei bei dieser Ausführung jedoch der Kühlfachverdampfer 10 stromauf des Gefrierfachverdampfers 9 angeordnet ist. Der Kältemittelkreis 11 umfasst selbstverständlich auch hier einen Kompressor 12 und einen Kondensator 13.
  • Wie Fig. 3 zeigt, werden zur Steuerung des Kältemitteldurchflusses durch die beiden Verdampfer 9 und 10 in dieser Ausführungsform zwei Kapillarrohre 14 und 15 sowie diesen zugeordnete Heizvorrichtungen 16 und 17 verwendet. Das erste Kapillarrohr 14 ist unmittelbar dem Kühlfachverdampfer 10 vorgeschaltet. Stromauf des genannten Kapillarrohres 14 verzweigt sich die Kältemittelleitung. An dem Verteilerpunkt 18 zweigt eine um den Kühlfachverdampfer 10 herumführende Bypassleitung ab und führt zu dem parallel geschalteten Kapillarrohr 15, dem die zweite Heizvorrichtung 17 zugeordnet ist. Das Kapillarrohr 15 mündet in den Gefrierfachverdampfer 9, wie Fig. 3 zeigt.
  • Bei dieser Konfiguration des Kühlmittelkreises 11 lässt sich eine präzise Steuerung des gewünschten Temperaturunterschieds der beiden Verdampfer erreichen: Über die Beheizung des Kapillarrohres 14 mit der Heizvorrichtung 16 lässt sich exakt der Kältemittelstrom steuern, der in den Kühlfachverdampfer 10 eintreten soll. Der aus dem Kühlfachverdampfer 10 austretende Kältemittelstrom durchströmt sodann den Gefrierfachverdampfer 9. Reicht dieser Kältemittelstrom zur Kühlung des Gefrierfachverdampfers 9 auf die gewünschte Temperatur nicht aus, was regelmäßig der Fall sein wird, wird über das parallel geschaltete Kapillarrohr 15 zusätzliches Kältemittel in den Gefrierfachverdampfer 9 geführt. Die hierbei zugeführte Kältemittelmenge kann durch die Beheizung des Kapillarrohres 15 über die zweite Heizvorrichtung 17 exakt gesteuert werden.
  • Die beiden Heizvorrichtungen 16 und 17 werden auch hier von der Steuereinrichtung 18 angesteuert. Diese ist mit Temperaturfühlern 20 und 21 verbunden, mittels derer die Temperaturen im Kühlfach und Gefrierfach bzw. der Kühlfach- und Gefrierfachverdampfer erfasst werden.

Claims (18)

  1. Kühl- und/oder Gefriergerät mit einem Kühlmittelkreis (11), der einen Kompressor (12), einen Kondensator (13), zumindest ein Kapillarrohr (14, 15) sowie zumindest einen Verdampfer (9, 10) aufweist, und einer Steuereinrichtung (16, 17, 18) zur Steuerung des Kältemittelstroms durch den Kältemittelkreis (11),
    dadurch gekennzeichnet,
    dass die Steuereinrichtung eine Heizvorrichtung (16, 17) zur Beheizung des zumindest einen Kapillarrohres (14, 15) und Dampferzeugung in dem Kapillarrohr (14, 15) aufweist, durch die der Kältemittelstrom durch den Kältemittelkreis (11) steuerbar ist.
  2. Kühl- und/oder Gefriergerät nach dem vorhergehenden Anspruch, wobei die Steuereinrichtung (18) und/oder der Kältemittelkreis (11) frei von Stromregel- und- schaltventilen ausgebildet ist.
  3. Kühl- und/oder Gefriergerät nach Anspruch 1, wobei der Kältemittelkreis (11) zur Steuerung des Kältemittelstroms zusätzlich zu den beheizbaren Kapillarrohren Stromregel- und/oder -schaltventile aufweist.
  4. Kühl- und/oder Gefriergerät nach einem der vorhergehenden Ansprüche, wobei die Heizvorrichtung (16, 17) an einem stromabseitigen Endabschnitt des Kapillarrohres (14, 15) angeordnet ist.
  5. Kühl- und/oder Gefriergerät nach einem der Ansprüche 1 bis 3, wobei die Heizvorrichtung (16, 17) an einem stromaufseitigen Einlassabschnitt des Kapillarrohres (14, 15) angeordnet ist.
  6. Kühl- und/oder Gefriergerät nach einem der vorhergehenden Ansprüche, wobei die Heizvorrichtung (16, 17) vorzugsweise stufenlos temperatursteuerbar ausgebildet ist und die Steuereinrichtung (18) zur Ansteuerung der Heizvorrichtung (16, 17) einen Temperatursteuerbaustein aufweist.
  7. Kühl- und/oder Gefriergerät nach einem der vorhergehenden Ansprüche, wobei zumindest ein Temperaturfühler (20, 21, 22) zur Erfassung einer Verdampfertemperatur, einer Gefrierfachtemperatur, einer Kühlfachtemperatur und/oder einer Umgebungstemperatur vorgesehen ist und die Steuereinrichtung (18) die Heizvorrichtung (16, 17) in Abhängigkeit der erfassten Temperatur ansteuert.
  8. Kühl- und/oder Gefriergerät nach einem der vorhergehenden Ansprüche, wobei eine Betriebszeiterfassungseinrichtung zur Erfassung der Betriebszeit des Kompressors (12) vorgesehen ist und die Steuereinrichtung (18) die Heizvorrichtung (16, 17) in Abhängigkeit der erfassten Betriebszeiten des Kompressors (12) ansteuert.
  9. Kühl- und/oder Gefriergerät nach einem der vorhergehenden Ansprüche, wobei mehrere Verdampfer (9, 10), insbesondere ein Kühlfachverdampfer (10) und ein Gefrierfachverdampfer (9), vorgesehen sind, die in Serie hintereinander geschaltet sind.
  10. Kühl- und/oder Gefriergerät nach dem vorhergehenden Anspruch, wobei der Gefrierfachverdampfer (9) in dem Kältemittelkreis (11) stromauf des Kühlfachverdampfers (10) angeordnet ist.
  11. Kühl- und/oder Gefriergerät nach dem vorhergehenden Anspruch, wobei dem Gefrierfachverdampfer (9) und dem Kühlfachverdampfer (10) lediglich ein Kapillarrohr (14) zugeordnet ist, das stromauf des Gefrierfachverdampfers (9) angeordnet ist und durch eine Heizvorrichtung (16) beheizbar ist.
  12. Kühl- und/oder Gefriergerät nach dem vorhergehenden Anspruch, wobei die Steuereinrichtung die Heizvorrichtung (16) des nur einen Kapillarrohres (14) in Abhängigkeit des Signals eines Kühlfach- oder Kühlfachverdampfer-Temperatursensors (21) sowie nur einer weiteren erfassten Betriebsgröße ansteuert, wobei die zusätzliche Betriebsgröße aus der folgenden Gruppe ausgewählt ist: Gefrierfach- oder Gefrierfachverdampfertemperatur, Umgebungstemperatur und relative Einschaltdauer des Kompressors (12).
  13. Kühl- und/oder Gefriergerät nach Anspruch 9, wobei der Gefrierfachverdampfer (9) in dem Kältemittelkreis (11) stromab des Kühlfachverdampfers (10) angeordnet ist.
  14. Kühl- und/oder Gefriergerät nach dem vorhergehenden Anspruch, wobei den beiden Verdampfern (9, 10) zwei Kapillarrohre (14, 15) zugeordnet sind, die zueinander parallel geschaltet sind und zustromseitig beide mit einem Verzweigungspunkt (18) verbunden sind, der stromauf des Kühlfachverdampfers (10) und stromab des Kondensators (13) angeordnet ist, wobei das eine Kapillarrohr (14) unmittelbar in den Kühlfachverdampfer (10) mündet und das andere Kapillarrohr (15) unmittelbar in den Gefrierfachverdampfer (9) mündet.
  15. Kühl- und/oder Gefriergerät nach dem vorhergehenden Anspruch, wobei den beiden Kapillarrohren (14, 15) jeweils eine Heizvorrichtung (16, 17) zugeordnet ist, wobei die Steuereinrichtung (18) die beiden Heizvorrichtungen (16, 17) in Abhängigkeit der Signale eines Kühlfach- oder Kühlfachverdampfer-Temperatursensors (21) und eines Gefrierfach- oder Gefrierfachverdampfer-Temperatursensors (20) ansteuert.
  16. Verfahren zur Steuerung eines Kühl- und/oder Gefriergeräts (1), das einen Kältemittelkreis (11) mit einem Kompressor (12), einem Kondensator (13), einem Kapillarrohr (14, 15) und einem Verdampfer (9, 10) aufweist, wobei zumindest ein Betriebs- und/oder Umgebungsparameter des Kühl- und/oder Gefriergeräts (1) erfasst und in Abhängigkeit des erfassten Betriebs- und/oder Umgebungsparameter der Kältemittelstrom durch den Kältemittelkreis (11) gesteuert wird,
    dadurch gekennzeichnet,
    dass der Kältemittelstrom durch den Kältemittelkreis (11) dadurch gesteuert wird, dass das Kapillarrohr (14, 15) mit einer Heizvorrichtung (16, 17) aufgeheizt und durch das Kapillarrohr (14, 15) strömendes Kältemittel in dem Kapillarrohr (14, 15) zur Verdampfung gebracht wird.
  17. Verfahren nach dem vorhergehenden Anspruch, wobei als Betriebsparameter des Kühl- und/oder Gefriergeräts (1) eine Verdampfertemperatur, eine Gefrierfachtemperatur, eine Kühlfachtemperatur und/oder eine Umgebungstemperatur erfasst wird und die Heizleistung und/oder die Heizdauer der Heizvorrichtung (16, 17) in Abhängigkeit der erfassten Verdampfertemperatur, Kühlfachtemperatur, Gefrierfachtemperatur und/oder Umgebungstemperatur gesteuert wird.
  18. Verfahren nach einem der beiden vorhergehenden Ansprüche, wobei als Betriebsparameter des Kühl- und/oder Gefriergeräts (1) eine Einschaltdauer des Kompressors (12) erfasst wird und die Heizleistung und/oder die Heizdauer der Heizvorrichtung (16, 17) in Abhängigkeit der erfassten Einschaltdauer des Kompressors (12) gesteuert wird.
EP06009670A 2005-05-11 2006-05-10 Kühl- und/oder Gefriergerät sowie Verfahren zur Steuerung desselben Withdrawn EP1722177A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202005007488 2005-05-11
DE102005045585A DE102005045585A1 (de) 2005-05-11 2005-09-23 Kühl- und/oder Gefriergerät sowie Verfahren zur Steuerung desselben

Publications (1)

Publication Number Publication Date
EP1722177A2 true EP1722177A2 (de) 2006-11-15

Family

ID=36940023

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06009670A Withdrawn EP1722177A2 (de) 2005-05-11 2006-05-10 Kühl- und/oder Gefriergerät sowie Verfahren zur Steuerung desselben

Country Status (7)

Country Link
US (1) US20060266077A1 (de)
EP (1) EP1722177A2 (de)
KR (1) KR100769750B1 (de)
CN (1) CN1865817B (de)
CA (1) CA2546030A1 (de)
DE (1) DE102005045585A1 (de)
RU (1) RU2006115867A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008119808A1 (en) * 2007-04-02 2008-10-09 Arcelik Anonim Sirketi A cooling device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202007017691U1 (de) * 2007-10-08 2009-02-26 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
DE102008042909A1 (de) * 2008-10-16 2010-04-22 BSH Bosch und Siemens Hausgeräte GmbH Kühl- und/oder Gefriergerät sowie Verfahren zur Regelung eines solchen Kühl- und/oder Gefriergerätes
KR200482028Y1 (ko) * 2012-06-07 2016-12-07 주식회사 대유위니아 냉장고
KR20140115837A (ko) * 2013-03-22 2014-10-01 엘지전자 주식회사 냉장고
US9441866B2 (en) 2013-09-04 2016-09-13 Whirlpool Corporation Variable expansion device with thermal choking for a refrigeration system
WO2015045355A1 (ja) * 2013-09-27 2015-04-02 パナソニックヘルスケア株式会社 冷凍装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2515212A (en) * 1947-07-24 1950-07-18 Nash Kelvinator Corp Refrigerating apparatus
US2844945A (en) * 1951-09-19 1958-07-29 Muffly Glenn Reversible refrigerating systems
US2641113A (en) * 1952-01-10 1953-06-09 Gen Electric Freezer evaporator, including check valve in header
US2791101A (en) * 1954-02-23 1957-05-07 Philco Corp Plural temperature refrigerator
US2914925A (en) * 1956-04-24 1959-12-01 American Motors Corp Refrigerant control means for maintaining multiple temperatures
DE1079082B (de) * 1956-05-10 1960-04-07 Whirlpool Co Temperaturregeleinrichtung fuer Kaelteerzeuger
DE1151261B (de) * 1957-07-01 1963-07-11 Electrolux Ab Vorrichtung bei einem Kuehlschrank zur Regelung der Temperatur einer Kuehl-kammer unabhaengig von den Temperaturen in den uebrigen Kuehlkammern
DE2433331A1 (de) * 1974-07-11 1976-01-29 Bosch Siemens Hausgeraete Kuehlmoebel, insbesondere zweitemperaturen-kuehlschrank, mit einem einzigen motorkompressoraggregat
JPS5295366A (en) 1976-02-07 1977-08-10 Toshiba Corp Freez-refrigerator
JPS5915782A (ja) * 1982-07-19 1984-01-26 株式会社東芝 冷蔵庫の温度制御装置
DE3601817A1 (de) * 1986-01-22 1987-07-23 Egelhof Fa Otto Regelvorrichtung fuer den kaeltemittelzustrom zum verdampfer von kaelteanlagen oder waermepumpen sowie im kaeltemittelstrom angeordnete expansionsventile
JPH071128B2 (ja) * 1987-02-27 1995-01-11 株式会社東芝 冷蔵庫用冷凍サイクル
JPH03247963A (ja) * 1990-02-27 1991-11-06 Ebara Corp 低温冷凍機
DE4020537A1 (de) * 1990-06-28 1992-01-02 Bauknecht Hausgeraete Mehrtemperaturen-kuehlmoebel, z.b. kuehl-gefrierkombination
KR0181522B1 (ko) * 1992-07-08 1999-05-01 김광호 발효기능을 구비한 냉장고시스템
JPH085208A (ja) * 1994-06-23 1996-01-12 Hoshizaki Electric Co Ltd キャピラリチューブを備えた冷凍回路
JP2002350012A (ja) 2001-05-28 2002-12-04 Hoshizaki Electric Co Ltd 冷凍回路
KR100638103B1 (ko) * 2002-11-06 2006-10-25 삼성전자주식회사 냉각 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008119808A1 (en) * 2007-04-02 2008-10-09 Arcelik Anonim Sirketi A cooling device

Also Published As

Publication number Publication date
CN1865817B (zh) 2011-04-20
RU2006115867A (ru) 2007-11-27
CA2546030A1 (en) 2006-11-11
KR100769750B1 (ko) 2007-10-23
DE102005045585A1 (de) 2006-11-16
KR20060116749A (ko) 2006-11-15
CN1865817A (zh) 2006-11-22
US20060266077A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
EP1722177A2 (de) Kühl- und/oder Gefriergerät sowie Verfahren zur Steuerung desselben
EP2126482B1 (de) Kühlmöbel mit zwei thermisch voneinander getrennten fächern
EP1876402A2 (de) Wärmepumpe mit einer Temperiereinrichtung
DE69913066T2 (de) Schaltventil für Kühlgerät zur Steuerung der Kühlmittelströmung
EP3601906B1 (de) Kältegerät und betriebsverfahren dafür
EP3584512B1 (de) Prüfkammer und verfahren
EP2645018A2 (de) Kühl- und/oder Gefriergerät
DE102008054935A1 (de) Kältegerät mit einer Abtauheizung
EP1040303B1 (de) Kältegerät
DE102008047818A1 (de) Kühl-und/oder Gefriergerät sowie Verfahren zum Betreiben eines Kühl-und/oder Gefriergerätes
EP2376852B1 (de) Kältegerät mit mehreren fächern
DE10053422A1 (de) Kältegerät mit Abtau-Automatik
EP3126763B1 (de) Haushaltsgerät mit einer schwenkbaren klappe und verfahren zum betreiben eines haushaltsgerätes mit einer schwenkbaren klappe
EP1813897A2 (de) Verfahren zur Regelung eines Kühlgerätes
EP0703421B1 (de) Kühlmöbel mit wenigstens zwei Fächern unterschiedlicher Temperatur
DE102015211963A1 (de) Kältegerät
DE102017208225A1 (de) Verfahren zur Regelung eines Kältemittelparameters auf der Hochdruckseite eines einen Kältemittelkreislauf durchströmenden Kältemittels, Kälteanlage für ein Fahrzeug sowie beheizbarer Niederdruck-Sammler für die Kälteanlage
DE19756861A1 (de) Kältegerät
DE102008044386A1 (de) Kältegerät und Verfahren zum Betreiben eines Kältegeräts
EP2230476A2 (de) Temperaturregelung für einen Mikrostrukturverdampfer zur Kühlung von Flüssigkeiten
DE102013007802A1 (de) Kühl-und/oder Gefriergerät
DE202008005337U1 (de) Kühl- und/oder Gefriergerät
DE102021207251A1 (de) Kältegerät mit einer Anti-Kondensationsheizung und Verfahren zum Betrieb eines Kältegeräts mit einer Anti-Kondensationsheizung
EP4168723B1 (de) Kältegerät mit einem saugrohr-wärmetauscher und verfahren zum betrieb eines kältegeräts mit einem saugrohr-wärmetauscher
EP2126486B1 (de) Kältegerät

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111201