EP1722172A1 - Wärmetauscherelement und Heizanlage mit so einem Wärmetauscherelement - Google Patents

Wärmetauscherelement und Heizanlage mit so einem Wärmetauscherelement Download PDF

Info

Publication number
EP1722172A1
EP1722172A1 EP06076027A EP06076027A EP1722172A1 EP 1722172 A1 EP1722172 A1 EP 1722172A1 EP 06076027 A EP06076027 A EP 06076027A EP 06076027 A EP06076027 A EP 06076027A EP 1722172 A1 EP1722172 A1 EP 1722172A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
water
exchanger element
flue gas
pins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06076027A
Other languages
English (en)
French (fr)
Other versions
EP1722172B1 (de
Inventor
Pouwel Jelte Gelderloos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Remeha BV
Original Assignee
Remeha BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Remeha BV filed Critical Remeha BV
Publication of EP1722172A1 publication Critical patent/EP1722172A1/de
Application granted granted Critical
Publication of EP1722172B1 publication Critical patent/EP1722172B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0026Guiding means in combustion gas channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/26Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle forming an integral body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/001Guiding means
    • F24H9/0015Guiding means in water channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/022Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being wires or pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels

Definitions

  • the invention relates to a heat exchanger element intended for a central heating boiler, which heat exchanger element is designed as a monocasting from substantially aluminum, the heat exchanger element being provided with walls which bound a water-carrying channel, and with at least one wall which bounds at least one flue gas draft to which a burner can be connected, at least one wall which bounds the at least one flue gas draft being water-cooled in that it also forms a boundary of the water-carrying channel, while one said at least one water-cooled wall is provided with heat exchanging surface enlarging pins and/or fins which extend in the respective flue gas draft.
  • Such a heat exchanger element is known from European patent application EP-A-0 889 292 .
  • the heat exchanger element described therein is particularly intended for great outputs and is thereto provided with several flue gas drafts.
  • applicant has marketed central heating boilers with heat exchanger elements with a single flue gas draft. These heat exchanger elements are known as type indications W21C Eco and W28C Eco.
  • the known heat exchanger elements have a weight of approximately 0.4 kg/kW. For a heat exchanger element of approximately 25 kW, which is a customary output for a normal house, the weight is therefore approximately 10 kg. Moreover, the known heat exchanger element with such an output has a water-carrying channel with a content of approximately 2.1 litres. This is, inter alia, the result of the fact that with the known heat exchanger elements, the burner is completely surrounded by heat exchanging surface and associated water channel.
  • the known heat exchanger element is already relatively small for a boiler with such an output, it must be established that in particular when the boiler is used for heating not only central heating water but also tap water, the efficiency can be improved still further, and a still more rapid heating of the tap water is desired.
  • the heat exchanger element of the type described in the opening paragraph is characterized in that the cross-sectional surface of a pin and/or fin mentioned is smaller than 25 mm 2 .
  • pins and/or fins with such a small cross-sectional surface because the pins and/or fins had to have a length of at least 25 mm, this being so because the flue gas draft is to have a particular width for discharging sufficient flue gas and because this width is to be completely filled with the heat exchanging surface enlarging pins and/or fins.
  • Pins with such a length need to have quite a large cross-sectional surface in connection with casting technique requirements.
  • the known pins for instance, have a length of 25 mm and a diameter of 8 mm.
  • the pins and/or fins with the smaller cross-section is that, with the heat exchanging surface remaining the same, the global wall surface, i.e. the dimensions of the wall that bears the pins, can be considerably smaller. This therefore leads to a smaller surface to be cooled with water. As a result thereof, the water-carrying channel will have a smaller content, which also leads to a smaller heat capacity of the heat exchanger element.
  • a so-called heat sink is known, which is provided with pins with a diameter leading to a cross-sectional surface in the claimed range of the present invention.
  • the known pins have a diameter of 2 mm and, hence, a cross-sectional surface of 3.2 mm 2 .
  • a heat sink is a device utilized in electronic equipment, such as computers, for cooling electronic components accommodated therein.
  • the heat sink shown in the US publication comprises a first base plate and a number of pins extending away from this base plate, and a second base plate and a number of pins extending away from this second base plate.
  • the two plates After having been manufactured separately in a casting process, the two plates are interconnected.
  • the known heat sink is therefore not a monocasting. Judging by the diameters of the pins mentioned in the text, and the drawings, which represent reality three times enlarged, the dimensions of the base plates are approximately 3,3 * 2.5 cm.
  • the separate base plates with pins are releasing, and can therefore be manufactured through die-casting. With die-casting, the mold is of metal and can be heated, so that the so-called cold flow occurs much less rapidly. Furthermore, the base plate is relatively thick, so that at there, virtually no cooling of casting material occurs.
  • the liquid metal can be supplied under excess pressure. This is contrary to a heat exchanger element for a central heating boiler.
  • the heat exchanger designed as monocasting is not-releasing. As a result, a mold and cores manufactured from sand, and which are lost after the casting process, have to be utilized. This excludes the possibility of casting under excess pressure. Furthermore, heating a sand cast mold is not possible.
  • the liquid metal will have to run, from one filling point, through the cavities for forming the thin-walled water channels to, only after that, flow into the cavities for forming the pins.
  • the dimensions of an exemplary embodiment of the present invention are in the range of, for instance, 20 ⁇ 50 cm, which is not comparable to the dimensions of the known heat sink.
  • the freedom of choice of metal that can be used for casting a central heating heat exchanger element is much more limited than the freedom of choice for a heat sink. The fact is that in the central heating heat exchanger element, in use, there is an environment of flue gases and water vapour which leads to the formation of highly corrosive acids.
  • the water content of the water-carrying channel can be reduced still further by reducing to less than 10 mm, for instance less than 8 mm, the distance between the wall which bounds, on the one side, the water-carrying channel and, on the other side, an outside of the heat exchanger element, and the wall which bounds, on the one side, the water-carrying channel and, on the other side, the flue gas draft.
  • a heat exchanger element with an output of 28 kW can be provided, with the water-carrying channel having a water content of 0.83 liter instead of the 2.1 litres for 25 kW that was customary heretofore. That is to say, 0.031/kW instead of 0.0841/kW which was customary heretofore. Also this dramatic reduction of water to be heated leads to a smaller heat capacity of the heat exchanger element and, hence, to a quicker heating.
  • a problem that may arise as a result of the smaller dimensions of the water-carrying channel is that the heat exchanging surface of the wall that forms the boundary between the water-carrying channel and the flue gas draft on the water-side, is insufficient. According to a further elaboration of the invention, this problem can be solved by providing the respective wall with water-side heat exchanging surface enlarging pins and/or fins.
  • An improvement of the efficiency and a more rapid heating of tap water can be provided by a heating boiler provided with a central heating heat exchanger element with a water-carrying channel, while the heating boiler is also provided with a tap water heat exchanger that can be connected to an outlet of the water-carrying channel and an inlet of the water-carrying channel, a pump being provided for transporting the water through the central heating heat exchanger element and the tap water heat exchanger, while the central heating heat exchanger element, the tap water heat exchanger, the burner the pump have been/are adjusted to each other such that, with tap water in use, the difference between the supply temperature, i.e.
  • the temperature of the water coming from the water-carrying channel, that is led to the tap water heat exchanger, and the return water temperature, i.e. the temperature of the water coming from the tap water heat exchanger that is led into the inlet of the water-carrying channel, is higher than 25°C, and preferably higher than 30°C.
  • This is preferably effected by maintaining the central heating side flow rate low.
  • the average temperature of the central heating heat exchanger element is much lower.
  • the supply water temperature was, for instance, 70°C, and the return water temperature 50°C.
  • the average temperature across the central heating heat exchanger element was therefore 60°C.
  • the return water temperature is reduced to, for instance, 30°C, the average temperature of the central heating heat exchanger element is 50°C.
  • the central heating heat exchanger element which, generally, is maintained at approximately 30°C, needs only heat up 20 degrees instead of 30 degrees. It will be clear that this leads to a considerably acceleration of the required heating up time, so that hot tap water is available more rapidly.
  • the flue gases can cool down further so that an increased condensation of the flue gases is possible, which results in a better efficiency.
  • the lower return water temperature is, in particular, achieved by reducing the central heating side flow rate, i.e. the flow rate in the water-carrying channel of the central heating heat exchanger element. Also as a result of the limited water flow through the central heating heat exchanger element, the heat transfer coefficient in the water-carrying channel will decrease. As a result thereof, the presence of the water-side pins and/or fins mentioned hereinabove may be required for compensating for this lower heat transfer coefficient.
  • the exemplary embodiment of a central heating heat exchanger element 1 shown in Figs. 1- 3 is a one-piece monocasting from substantially aluminum.
  • the heat exchanger element 1 is provided with a number of walls 2. At least one of these walls 2 bounds a flue gas draft 3, a few of these walls bound a water-carrying channel 4, and at least one wall bounds both the flue gas draft 3 and the water-carrying channel 4, and are therefore water-cooled.
  • a burner 5 (see Fig. 2) can be connected to the flue gas draft 3.
  • three of the walls 2 bounding the flue gas draft are water-cooled in that the water-carrying channel 4 extends therealong.
  • the water channel has a U-shaped configuration, which is clearly visible in Fig. 3.
  • the water flows from an inlet 6 to an outlet 7 while, each time, travelling a U-shaped path and, thus, flowing in a zig-zag manner around the flue gas draft 3 in upward direction from the inlet 6 to the outlet 7.
  • the walls 2 are provided, on the side of the flue gas draft 3, with heat exchanging surface enlarging pins and/or fins 8.
  • the pins and/or fins 8 have a cross-sectional surface that is smaller than 25 mm 2 .
  • the pins 8 In the part 3a of the flue gas draft where the walls 2 extend parallel to each other, which, in the present exemplary embodiment, is the lower portion, the pins 8 have a length of approximately 15 mm.
  • the pins 8 Preferably, have a cross-sectional surface of 20 mm 2 or less. They can have a circular cross-section with a diameter of approximately 4 mm, a square cross-section, with the sides having a length of approximately 4 mm, or an ellipsoid or fin-shaped cross-section with a mentioned cross-sectional surface.
  • the flue gas draft 3 is of widened design for forming a burn out space 3b (see Fig. 3).
  • the burn out space 3b is very compact and the exemplary embodiment shown is particularly suitable for cooperation with a high-performance burner 5 with a compact burn out space.
  • the length of the pins 8 is smaller on an upstream side 3b of the flue gas draft 3, to which the burner 5 can be fitted, than the length of the pins 5 on a downstream side 3a of the flue gas draft 3.
  • the ends of the relatively short pins 8 are therefore close to the water-carrying channel 4, so that the risk of these ends overheating is reduced to a minimum.
  • the length of the pins and/or fins 8 increases in the widened part 3b forming the burn out space of the flue gas draft 3, according as the pins and/or fins 8 are arranged further downstream of the burner.
  • the present exemplary embodiment shows a heat exchanger element with an output of approximately 25 kW.
  • the weight of the heat exchanger element per kW to provide is less than 0.20 kg/kW.
  • the weight is only 0.16 kg/kW.
  • the water-carrying channel 4 has a volume smaller than 1 litre. In the present exemplary embodiment, the water volume is even only 0.9 litre.
  • This limited volume is, inter alia, achieved in that the distance between the wall 9 which bounds, on the one side, the water-carrying channel 4 and, on the other side, the outside of the heat exchanger element 1 and the wall 2, which bounds, on the one side, the water-carrying channel and, on the other side, the flue gas draft, is smaller than 10 mm, preferably smaller than 8 mm.
  • the flue gases flow from the top to the bottom through the flue gas draft 3, and the water to be heated flows from the bottom, via the already described U-shaped zig-zag path, to the top.
  • the heat exchanger element 1 is preferably manufactured by means of a casting process, such as, for instance, sand casting or die-casting. Preferably, use is then made of one water-side core for forming the water channel and one flue gas side core for forming the flue gas channel.
  • the water-side core has substantially a shape as represented in Fig. 3.
  • a burner 5 is to be fitted on the heat exchanger element, while, for the present exemplary embodiment, preferably, a high-performance burner 5 is used.
  • This high-performance burner 5 is schematically represented, in part, in Fig. 2.
  • a flue gas discharge is connected, extending in upward direction.
  • Fig. 4 shows a schematic exemplary embodiment of a heating boiler 11 connected to a central heating water pipe system 12.
  • the central heating heat exchanger element 14 of the heating boiler 11 can also be connected, via a valve assembly 15, to a tap water heat exchanger 16.
  • a valve assembly 15 to a tap water heat exchanger 16.
  • the weight of the central heating heat exchanger element 14 according to the invention is so limited, and as, furthermore, the water content of the water-carrying channel 4 is so limited, the heat capacity of the central heating heat exchanger element 14 is particularly limited. This leads to a very rapid heating of the heat exchanger element 14 when the burner 17 is switched on. In particular with tap water in use, such a rapid heating is of great importance for realizing a good convenience time, for preventing a temperature dip from occurring when tapping hot tap water, and for realizing a high efficiency.
  • This efficiency can even be further increased by adjusting to each other the pump 18, provided for transporting water through the central heating heat exchanger element 14 and the tap water heat exchanger 16, the central heating heat exchanger element 14, the tap water heat exchanger 16 and the burner, in a manner such that the difference between supply water temperature and the return water temperature is greater than 25°C and, more particularly, greater than 30°C.
  • This is preferably effected by maintaining the central heating side flow rate, i.e. the flow rate in the water-carrying channel of the central heating heat exchanger element, low.
  • the temperature of the supply water that is led from the central heating heat exchanger element to the tap water heat exchanger is then in the range of 65 to 90°C, more particularly approximately 70°C, and when, for instance, the return water temperature is approximately 30°C, the average temperature of the central heating heat exchanger element is lower than was customary heretofore.
  • the return water temperature is 50°C
  • the supply temperature is approximately 70°C. Due to this lower average temperature, heating the central heating heat exchanger element requires less heat, which, with the tap water in use, results in a rapid response. Due to the low return water temperature, the flue gases can be cooled further, and in a condensing manner, which, with the tap water in use, results in a better efficiency.
  • heat exchanging surface enlarging pins 10 are provided in the water-carrying channel 4.
  • water-side pins 10 can also be designed as fins and they can also have, instead of a circular cross-section, a square, rectangular or other cross-section.
  • the great temperature difference between the supply water temperature and return water temperature has the advantages described not only with the heat exchanger element, but leads to the described advantages with any type of heating boiler provided with a central heating heat exchanger element which can be connected to a tap water heat exchanger. It will be clear that the combination of the new heat exchanger element described herein, and an embodiment of a heating boiler with tap water heat exchanger with the great ⁇ T between supply water temperature and return water temperature, leads to particularly rapid heating of tap water with tap water in use in combination with a high efficiency.
EP06076027.9A 2005-05-10 2006-05-09 Wärmetauscherelement und Heizanlage mit so einem Wärmetauscherelement Active EP1722172B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL1029004A NL1029004C2 (nl) 2005-05-10 2005-05-10 Warmtewisselaarelement alsmede een verwarmingsstelsel voorzien van een dergelijk warmtewisselaarelement.

Publications (2)

Publication Number Publication Date
EP1722172A1 true EP1722172A1 (de) 2006-11-15
EP1722172B1 EP1722172B1 (de) 2018-09-19

Family

ID=35709136

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06076027.9A Active EP1722172B1 (de) 2005-05-10 2006-05-09 Wärmetauscherelement und Heizanlage mit so einem Wärmetauscherelement

Country Status (2)

Country Link
EP (1) EP1722172B1 (de)
NL (1) NL1029004C2 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009053248A1 (en) * 2007-10-25 2009-04-30 Bekaert Combust. Technol. B.V. Metallic porous body incorporated by casting into a heat exchanger
WO2009053247A1 (en) * 2007-10-25 2009-04-30 Bekaert Combust. Technol. B.V. Heat exchanger element with a combustion chamber for a low co and nox emission combustor
WO2010037719A2 (en) * 2008-10-03 2010-04-08 Bekaert Combust. Technol. B.V. High efficiency heat exchanger element
NL2010442C2 (en) * 2013-03-12 2014-09-16 Dejatech Ges B V Heat exchanger and body therefore, and a method for forming a heat exchanger body.
CN104792193B (zh) * 2015-04-30 2016-07-06 樊付辉 一种扁平型冷凝式热交换器
WO2017074185A1 (en) 2015-10-28 2017-05-04 Remeha B.V. Enamel powder and enamel slurry for producing an enamel coating on a metallic substrate, method for manufacturing an enamel slurry and use of the enamel coating for heat exchangers
EP3173723A1 (de) 2015-11-25 2017-05-31 Daikin Industries, Limited Wärmetauscher
US11313585B2 (en) * 2015-11-25 2022-04-26 Daikin Industries, Ltd. Heat exchanger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2000268A (en) * 1977-06-09 1979-01-04 Ass Eng Ltd Improvements in or relating to heat exchangers
FR2495744A1 (fr) * 1980-12-10 1982-06-11 Staiger Ewald Chaudiere de chauffage pouvant adapter la longueur du trajet des gaz chauds a la puissance du bruleur et a la qualite de la cheminee
EP0608030A1 (de) 1993-01-19 1994-07-27 N.V. Radson-Alutherm Dreiweg Kombi-Kessel
DE4421671A1 (de) * 1994-06-23 1996-01-04 Broetje August Gmbh & Co Wärmetauscher, insbesondere für einen gasbeheizten Heizkessel
EP0794392A1 (de) 1996-03-08 1997-09-10 Dejatech B.V. Gegossener,leichtmetallender,im wesentlichen zylindrischer Wärmetaucher
EP0843135A1 (de) * 1996-07-17 1998-05-20 Holding J.H. Deckers N.V. Gliederheizkessel und Heizgerät mit so einem Kessel
US5829514A (en) 1997-10-29 1998-11-03 Eastman Kodak Company Bonded cast, pin-finned heat sink and method of manufacture
EP0889292A1 (de) 1997-07-02 1999-01-07 Remeha Fabrieken B.V. Wärmetauscher und Zentralheizungskessel mit so einem Wärmetauscher

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2000268A (en) * 1977-06-09 1979-01-04 Ass Eng Ltd Improvements in or relating to heat exchangers
FR2495744A1 (fr) * 1980-12-10 1982-06-11 Staiger Ewald Chaudiere de chauffage pouvant adapter la longueur du trajet des gaz chauds a la puissance du bruleur et a la qualite de la cheminee
EP0608030A1 (de) 1993-01-19 1994-07-27 N.V. Radson-Alutherm Dreiweg Kombi-Kessel
DE4421671A1 (de) * 1994-06-23 1996-01-04 Broetje August Gmbh & Co Wärmetauscher, insbesondere für einen gasbeheizten Heizkessel
EP0794392A1 (de) 1996-03-08 1997-09-10 Dejatech B.V. Gegossener,leichtmetallender,im wesentlichen zylindrischer Wärmetaucher
EP0843135A1 (de) * 1996-07-17 1998-05-20 Holding J.H. Deckers N.V. Gliederheizkessel und Heizgerät mit so einem Kessel
EP0889292A1 (de) 1997-07-02 1999-01-07 Remeha Fabrieken B.V. Wärmetauscher und Zentralheizungskessel mit so einem Wärmetauscher
US5829514A (en) 1997-10-29 1998-11-03 Eastman Kodak Company Bonded cast, pin-finned heat sink and method of manufacture

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009053248A1 (en) * 2007-10-25 2009-04-30 Bekaert Combust. Technol. B.V. Metallic porous body incorporated by casting into a heat exchanger
WO2009053247A1 (en) * 2007-10-25 2009-04-30 Bekaert Combust. Technol. B.V. Heat exchanger element with a combustion chamber for a low co and nox emission combustor
CN101836051B (zh) * 2007-10-25 2013-07-31 贝卡尔特燃烧技术股份有限公司 热交换器元件及其制造方法和包含该元件的供暖锅炉
US8726851B2 (en) 2007-10-25 2014-05-20 Bekaert Combustion Technology B.V. Heat exchanger element with a combustion chamber for a low CO and NOx emission combustor
WO2010037719A2 (en) * 2008-10-03 2010-04-08 Bekaert Combust. Technol. B.V. High efficiency heat exchanger element
WO2010037719A3 (en) * 2008-10-03 2010-09-10 Bekaert Combust. Technol. B.V. High efficiency heat exchanger element
EP2778559A1 (de) * 2013-03-12 2014-09-17 Dejatech Holding B.V. Wärmetauscher und Körper und ein Verfahren zur Herstellung eines Wärmetauscherkörpers
CN104048527A (zh) * 2013-03-12 2014-09-17 德扬技术控股有限公司 热交换器及其本体以及用于形成热交换器本体的方法
NL2010442C2 (en) * 2013-03-12 2014-09-16 Dejatech Ges B V Heat exchanger and body therefore, and a method for forming a heat exchanger body.
CN104048527B (zh) * 2013-03-12 2019-05-07 德扬技术控股有限公司 热交换器及其本体以及用于形成热交换器本体的方法
CN104792193B (zh) * 2015-04-30 2016-07-06 樊付辉 一种扁平型冷凝式热交换器
WO2017074185A1 (en) 2015-10-28 2017-05-04 Remeha B.V. Enamel powder and enamel slurry for producing an enamel coating on a metallic substrate, method for manufacturing an enamel slurry and use of the enamel coating for heat exchangers
EP3173723A1 (de) 2015-11-25 2017-05-31 Daikin Industries, Limited Wärmetauscher
WO2017090594A1 (en) 2015-11-25 2017-06-01 Daikin Industries, Ltd. Heat exchanger
CN108351185A (zh) * 2015-11-25 2018-07-31 大金工业株式会社 热交换器
US10852032B2 (en) 2015-11-25 2020-12-01 Daikin Industries, Ltd. Heat exchanger
US11313585B2 (en) * 2015-11-25 2022-04-26 Daikin Industries, Ltd. Heat exchanger

Also Published As

Publication number Publication date
NL1029004C2 (nl) 2006-11-13
EP1722172B1 (de) 2018-09-19

Similar Documents

Publication Publication Date Title
US7784434B2 (en) Heat exchange element and heating system provided with such heat exchange element
EP1722172B1 (de) Wärmetauscherelement und Heizanlage mit so einem Wärmetauscherelement
US8757103B2 (en) Heat exchanger
JP4776032B2 (ja) 熱交換器
JP2010169326A (ja) 多管式熱交換器
CN106461338A (zh) 交通工具热交换管和包括此类管的交通工具散热器
KR102139270B1 (ko) 열풍 오븐
EP0889292B1 (de) Wärmetauscher und Zentralheizungskessel mit so einem Wärmetauscher
JP2003201923A (ja) 排気熱交換装置
EP3465058B1 (de) Niedertemperatur-radiator
CN107024130A (zh) 换热器扁管、换热器及其制造方法
CN209166189U (zh) 一种倾斜折流挡板管壳式换热器
KR20080107024A (ko) 열교환기
JP2009186110A (ja) 熱交換器
CN109496115A (zh) 一种局部自调节的微通道换热器
CN104807359A (zh) 内置多级喷流管式翅片换热管及其制造工艺
JP2004332996A (ja) 流体冷却器
JP2005016866A (ja) 熱交換器
KR101692349B1 (ko) 바디 유닛 및 그 바디를 포함하는 열교환기
KR100473982B1 (ko) 열교환기용 헤더 파이프의 유체 가이드 구조
JP2013231557A (ja) 排気用熱交換器
JP3133086U (ja) 簡易冷却装置
EP1099915A1 (de) Wärmetauscher mit mindenstens zwei nebeneinanderliegenden Abschnitten
JP2000186801A (ja) シザース部の配管構造
RU2264586C1 (ru) Двухконтурный нагревательный прибор для центральных систем отопления

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070105

17Q First examination report despatched

Effective date: 20070215

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602006056357

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F24H0009000000

Ipc: F24H0001280000

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 3/02 20060101ALI20180221BHEP

Ipc: F28F 3/12 20060101ALI20180221BHEP

Ipc: F24H 9/00 20060101ALI20180221BHEP

Ipc: F24H 1/28 20060101AFI20180221BHEP

INTG Intention to grant announced

Effective date: 20180305

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20180712

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006056357

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1043688

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181220

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1043688

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006056357

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

26N No opposition filed

Effective date: 20190620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220519

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220524

Year of fee payment: 17

Ref country code: GB

Payment date: 20220519

Year of fee payment: 17

Ref country code: FR

Payment date: 20220523

Year of fee payment: 17

Ref country code: DE

Payment date: 20220519

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220429

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006056357

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230601