EP1716331B1 - Method for synchronizing cylinders in terms of quantities of fuel injection in a heat engine - Google Patents
Method for synchronizing cylinders in terms of quantities of fuel injection in a heat engine Download PDFInfo
- Publication number
- EP1716331B1 EP1716331B1 EP05707907A EP05707907A EP1716331B1 EP 1716331 B1 EP1716331 B1 EP 1716331B1 EP 05707907 A EP05707907 A EP 05707907A EP 05707907 A EP05707907 A EP 05707907A EP 1716331 B1 EP1716331 B1 EP 1716331B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- injection
- adaptation
- operating point
- parameter
- values
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- 238000002347 injection Methods 0.000 title claims description 136
- 239000007924 injection Substances 0.000 title claims description 136
- 238000000034 method Methods 0.000 title claims description 36
- 239000000446 fuel Substances 0.000 title claims description 13
- 230000006978 adaptation Effects 0.000 claims description 48
- 238000002485 combustion reaction Methods 0.000 claims description 24
- 238000012937 correction Methods 0.000 claims description 12
- 230000004913 activation Effects 0.000 claims description 11
- 230000001133 acceleration Effects 0.000 claims description 8
- 238000005259 measurement Methods 0.000 claims description 5
- 230000035945 sensitivity Effects 0.000 claims description 3
- 230000001360 synchronised effect Effects 0.000 claims 1
- 238000003745 diagnosis Methods 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 4
- 239000002826 coolant Substances 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- BYHQTRFJOGIQAO-GOSISDBHSA-N 3-(4-bromophenyl)-8-[(2R)-2-hydroxypropyl]-1-[(3-methoxyphenyl)methyl]-1,3,8-triazaspiro[4.5]decan-2-one Chemical compound C[C@H](CN1CCC2(CC1)CN(C(=O)N2CC3=CC(=CC=C3)OC)C4=CC=C(C=C4)Br)O BYHQTRFJOGIQAO-GOSISDBHSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D41/221—Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1402—Adaptive control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1497—With detection of the mechanical response of the engine
- F02D41/1498—With detection of the mechanical response of the engine measuring engine roughness
Definitions
- the invention relates to a method for equalizing the differences in the injection quantity between the cylinders of an internal combustion engine, in which the injection quantity differences, which are present at an operating point in the lower speed range at the applicable there in regular driving injection parameter values by means of a cylinder-specific measurement method for detecting the rough running of the internal combustion engine determined and assigned to the low operating point, and in which for operating areas with higher loads and speeds for a selected injection parameter, an adaptation of the injection quantity differences is performed.
- the injection quantity differences determined at a low operating point can not be used for equality in the entire operating range, eg. B. can be used as the global correction factors for a control parameter of the injectors, but must be adapted to the applicable at higher operating points injection parameters, but this is not readily possible because of the mentioned condition of steady-state operating conditions for the smooth running control.
- the invention is based on the object to provide a method of the type mentioned, which allows to determine the actual, injection-parameter-dependent systematic error with respect to the injection quantities with respect to a cylinder equalization in a simple manner.
- the selected injection parameter is set for adaptation to a value which deviates from the value applicable there in normal driving operation.
- the regular driving operation it is understood that e.g. at low loads corresponding low injection pressures.
- the regular driving operation is deviated, if e.g. at low loads high injection pressures.
- the injection quantity differences can be determined by means of the measurement of the rough running and learned as adaptation values assigned to the respective injection parameter value.
- At least one second injection parameter is set such that the operating point remains at least approximately stationary in order to limit the dynamics of the low operating point during the adaptation.
- This can advantageously be achieved by adapting to successively higher values of the injection parameter selected injection pressure to limit the dynamics of the low operating point in each case a correspondingly shorter injection period is set.
- the second or further injection parameters are thus controlled here as auxiliary quantities such that the driver does not notice anything of the adaptation process. Since a few piston strokes are sufficient for adaptation, the engine control can easily be adjusted so that the driver can not cancel the stationary conditions during the critical adaptation phase, or only when exceeding a threshold in the desired performance requested by the driver via the gas.
- a low operating point can be selected for the adaptation, in which the highest sensitivity and / or reliability of the measurement of rough running is achieved, although a correct adaptation for high operating ranges is made.
- the low operating point in the idling range can be selected.
- the learned adaptation values are used to calculate cylinder-specific correction factors with which, as a rule in the context of the smooth running control during the adaptation process and while driving, a control parameter of an injection device of the internal combustion engine is applied such that an equalization of the injection quantities takes place.
- the injection device for each cylinder is formed by an injector with a piezoelectric actuator, wherein the drive energy of the actuators is used as a driving parameter. It can therefore in particular for different values of the injection pressure an adaptation of the actuator stroke necessary for equality is carried out.
- the rotational acceleration of the crankshaft of the internal combustion engine caused by the cylinder-specific different injection quantities can be evaluated.
- the determination of the adapted injection quantity differences or the adapted correction factors for equality can thus be based on a very accurate measurement methodology.
- the inventive method also opens up the possibility that the absolute value of the associated injection quantity is determined at the stationary operating point set for adaptation with equivalent injection quantities from a stored torque model of the internal combustion engine.
- a diagnosis of the absolute value of the injection quantity is just for the diagnosis of small injection quantities, in particular of pre-injection amounts that are in the range of a few milligrams, crucial for compliance with the limits of exhaust emissions.
- an initialization phase 2 is provided in the next step, in which the adaptation values stored in an earlier diagnostic cycle are loaded into an engine control unit (not shown).
- the initialization of a new diagnostic cycle can be done both after each startup of the internal combustion engine, as well as after certain, specifiable time or maintenance intervals.
- the activation conditions are checked in a passive diagnostic step 3.
- the aim is to wait until the preferred operating conditions for adaptation to a regular or deviating injection parameter value have been reached. These include, for example, the load, the speed or the coolant temperature. If necessary, the motor control must be changed so that in the subsequent adaptation, the dynamics of the temporal change of the selected for performing the adaptation cycle operating point is limited.
- the actual, active diagnostic cycle 4 is started.
- the regular injection parameters 5 associated with the engine operating state see injection parameter set in FIG. 1
- a rough running control 6 is performed.
- the injection quantities of the individual injectors of the internal combustion engine are matched to one another in the preferred, low operating point.
- an injection quantity known from the torque model is concluded, which must be given in accordance with the achieved torque.
- step 7 adaptive of the activation parameters
- further injection parameters or injection parameter sets i are loaded and the uneven-running control is carried out with a determination of the injection quantity differences present at the set value of the selected injection parameter or with the equality by corresponding correction factors for a control parameter.
- a suitable drive parameter such as, for example, the energy supplied to the actuators
- the resulting adaptation values are added to the injection parameter set, ie primarily the injection parameters, such as the injection parameters.
- Injection pressure and injection period whose influence on the injection quantity differences to be recorded, assigned and stored so that they can be retrieved later, when driving with higher loads and speeds and the associated regular values of the selected injection parameter for direct injection amount equalization without diagnostic cycle.
- a sufficient number of interpolation points typically five to ten
- the different injection quantities of injectors which depend on the injection duration, can be easily adjusted to one another in such a way that the stroke of the actuators is changed.
- the injector control variable Of course, the drive energy used can also be used to vary the start of injection.
- step 11 The illustrated method performs an initialization in step 11.
- the stored adaptation values are loaded.
- step 12 it is checked whether the activation conditions are fulfilled. This means to understand whether constant operating conditions are present, such as constant load, constant speed, constant temperature of the coolant, etc.
- the diagnosis remains passive until the activation conditions are met in step 12.
- step 14 continue by loading the injection parameters for an initial charge / discharge time.
- the initial charge / discharge time can be set to 200 ⁇ s.
- the injection parameters include the injection pressure, injector energy, type of injection, which means whether it is a pre-, main-, post-injection. Once these parameters have been loaded, the procedure is continued in step 15.
- the running disturbance regulation takes place cylinder-selectively, ie that for example for a four-cylinder engine first the cylinder Nr.1 is regulated. If the injection parameters for the injector of cylinder No. 1 are set, the injector of the second cylinder follows.
- the regulation may include the charge / discharge time, the injection pressure, the drive energy, and set the type of injection.
- the control can be performed at a defined (fixed) control duration (injection period) and defined (fixed) injection pressure, wherein the actuator energy is adjusted accordingly. With a rail pressure of, for example, 1500 bar and an injection quantity of 0.84 mg, activation times of less than 160 ⁇ s must be realized.
- step 16 it is checked whether with these variables the rough running is below a threshold value S. If this is not the case, then in step 17, the activation duration must also be changed. This is particularly necessary for "bad" manufactured injectors that poor or not cope with these short load / unload times. In such injectors and short discharge times, the amount of fuel injected is independent of the actuator energy. It sets up a kind of "quantity saturation” and the injection quantity can not be changed by increasing the actuator energy. This means that an injection adaptation in a defined operating state does not have to be carried out solely by energy adaptation, but by means of an extension of the activation duration, which thus extends the injection duration.
- step 18 it is checked whether the charge / discharge time ⁇ i is greater than or equal to an extreme value.
- the extreme value is for example 140 ⁇ s.
- the initial value ⁇ 0 is 200 ⁇ s.
- the index i here is equal to zero. Since the condition established in step 19 is not satisfied, it continues in step 20. Before loading the next parameter set in step 14, the loading / unloading time is previously reduced by 10 ⁇ s in step 20. Thus, the charge / discharge time ⁇ 1 is equal to 190 ⁇ s.
- step 21 only the index is incremented by one.
- the existing injection parameters for ⁇ 1 are now loaded in step 14.
- the constant injection pressure eg 1500 bar
- the actuator energy is determined according to steps 14 to 19 for each charge / discharge time of 200 to 140 ⁇ s. This can be done for different pressures.
- the method ends in step 22.
- the step-by-step change of the charging / discharging time by 10 ⁇ s in step 20 has been given by way of example only. For a finer modeling, differences from one charge / discharge time to the next charge / discharge time of 1 ⁇ s are conceivable. This diagnosis according to the invention can be carried out very quickly, since only a few piston strokes are sufficient.
- the method according to the invention makes it possible to diagnose the injection quantity differences or the injection quantity itself at a preferred, low operating point at which the highest sensitivity and reliability of the rough-running control exists.
- the diagnosis and adaptation then also take place for injection parameter values which apply to other operating points during driving operation. It is done at the low operating point so both a compensation of the injection quantity differences between the individual injectors as well as a calibration of the injection quantity to the associated, in the diagnostic cycle artificially set values of the selected injection parameter, wherein an undesirable movement of the adaptation operating point by the opposite setting of other injection parameter values is prevented or limited.
- an injection quantity equalization by energy control of the injector drive parameter is dependent on, in particular, the injection parameter pressure.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
Die Erfindung betrifft ein Verfahren zur Gleichstellung der Unterschiede in der Einspritzmenge zwischen den Zylindern einer Brennkraftmaschine, bei dem die Einspritzmengenunterschiede, die an einem Betriebspunkt im unteren Drehzahlbereich bei den dort im regulären Fahrbetrieb geltenden Einspritzparameterwerten vorliegen, mittels einer zylinderindividuellen Messmethode zur Erfassung der Laufunruhe der Brennkraftmaschine bestimmt und, dem niedrigen Betriebspunkt zugeordnet, gelernt werden, und bei dem für Betriebsbereiche mit höheren Lasten und Drehzahlen für einen gewählten Einspritzparameter eine Adaption der Einspritzmengenunterschiede durchgeführt wird.The invention relates to a method for equalizing the differences in the injection quantity between the cylinders of an internal combustion engine, in which the injection quantity differences, which are present at an operating point in the lower speed range at the applicable there in regular driving injection parameter values by means of a cylinder-specific measurement method for detecting the rough running of the internal combustion engine determined and assigned to the low operating point, and in which for operating areas with higher loads and speeds for a selected injection parameter, an adaptation of the injection quantity differences is performed.
Ein derartiges Verfahren ist bereits aus der
Bei einer mehrzylindrigen Brennkraftmaschine ergibt sich bei der Einspritzung von Kraftstoff in die Verbrennungsräume durch Streuungen insbesondere der mechanischen Eigenschaften der Einspritzvorrichtung, beispielsweise der Injektoren für Dieselmotoren mit Common Rail, ein systematischer Fehler. Auf Grund von Fertigungstoleranzen der genannten Komponenten und unterschiedlicher Abnutzung (Alterungserscheinungen) werden bei gleicher Einspritzzeitdauer und ansonsten identischen Randbedingungen unterschiedliche Kraftstoffmengen der Verbrennung in den einzelnen Zylindern zugeführt. Die unterschiedlichen Kraftstoffmengen führen zu einer unterschiedlichen Leistungsabgabe der einzelnen Zylinder, was neben einer Steigerung der Laufunruhe auch zu einer Erhöhung der Menge an schädlichen Abgaskomponenten führt.In a multi-cylinder internal combustion engine results in the injection of fuel into the combustion chambers by scattering in particular the mechanical properties of the injection device, such as the injectors for diesel engines with common rail, a systematic error. Due to manufacturing tolerances of said components and different wear (aging phenomena) different fuel quantities of the combustion in the individual cylinders are supplied with the same injection period and otherwise identical boundary conditions. The different fuel quantities lead to a different power output of the individual cylinders, which in addition to a Increase in rough running also leads to an increase in the amount of harmful exhaust gas components.
Es ist bekannt, die Laufunruhe einer Brennkraftmaschine auszuwerten, um daraus Rückschlüsse auf die Einspritzmenge in den verschiedenen Brennräumen zu ziehen. Hierzu wird z. B. mit einem Drehzahlsensor die Drehbeschleunigung der Kurbelwelle gemessen, wobei die Drehbeschleunigung von der jeweiligen Einspritzmenge abhängt. So verursacht eine große Einspritzmenge in dem betroffenen Verbrennungstakt eine entsprechend große Drehbeschleunigung der Kurbelwelle, wohingegen eine kleine Einspritzmenge nur zu einer entsprechend kleineren Drehbeschleunigung führt. Dieser Laufunruhe wird bei bekannten Brennkraftmaschinen dadurch entgegengewirkt, dass die Einspritzmengen in den einzelnen Brennräumen durch eine geeignete Ansteuerung der verschiedenen Injektoren aneinander angeglichen werden. Die Steuersignale für die verschiedenen Injektoren werden hierbei solange verändert, bis alle Zylinder den gleichen Beitrag zum Drehmoment leisten, was auf eine einheitliche Einspritzmenge in den verschiedenen Brennräumen schließen lässt.It is known to evaluate the rough running of an internal combustion engine in order to draw conclusions about the injection quantity in the various combustion chambers. For this purpose, z. B. measured with a speed sensor, the rotational acceleration of the crankshaft, wherein the rotational acceleration depends on the respective injection quantity. Thus, a large injection quantity in the affected combustion cycle causes a correspondingly large rotational acceleration of the crankshaft, whereas a small injection quantity only leads to a correspondingly smaller rotational acceleration. This uneven running is counteracted in known internal combustion engines in that the injection quantities in the individual combustion chambers are matched by a suitable control of the various injectors to each other. The control signals for the various injectors are in this case changed until all cylinders make the same contribution to the torque, which suggests a uniform injection quantity in the various combustion chambers.
Diese bekannte Laufunruhe-Regelung zur Zylindergleichstellung bezüglich der Einspritzmengen ist in der Anwendung auf niedrige Lastpunkte unter stationären Betriebsbedingungen, beispielsweise Leerlauf, beschränkt. Ein Abbremsen oder Beschleunigen, wie es in höheren Betriebsbereichen typischerweise vorkommt, könnte vom Drehzahlsensor an der Kurbelwelle fälschlicherweise als Einspritzmengenunterschied interpretiert werden.This known anti-jerk control for cylinder equalization with respect to the injection quantities is limited in application to low load points under stationary operating conditions, for example idling. Deceleration or acceleration, as typically occurs in higher operating ranges, could be misinterpreted by the crankshaft speed sensor as an injection quantity differential.
Die Beschränkung auf einen niedrigen Betriebspunkt zur Ermittlung der Einspritzmengenunterschiede ist jedoch problematisch, da diese mit mindestens einem der Einspritzparameter, z. B. Einspritzdruck und Einspritzzeitdauer, variieren. Die bei einem niedrigen Betriebspunkt ermittelten Einspritzmengenunterschiede können demnach nicht zur Gleichstellung im gesamten Betriebsbereich, z. B. als globale Korrekturfaktoren für einen Ansteuerparameter der Injektoren, verwendet werden, sondern müssen an die bei höheren Betriebspunkten geltenden Einspritzparameter adaptiert werden, was jedoch wegen der erwähnten Voraussetzung stationärer Betriebsbedingungen für die Laufunruhe-Regelung nicht ohne weiteres möglich ist.However, limiting to a low operating point to determine the injection quantity differences is problematic, since these with at least one of the injection parameters, z. As injection pressure and injection time, vary. Accordingly, the injection quantity differences determined at a low operating point can not be used for equality in the entire operating range, eg. B. can be used as the global correction factors for a control parameter of the injectors, but must be adapted to the applicable at higher operating points injection parameters, but this is not readily possible because of the mentioned condition of steady-state operating conditions for the smooth running control.
In der oben genannten
Ein ähnliches Verfahren, bei dem die Korrekturmengen an einem Betriebspunkt für einen Einspritzparameterwert erfasst und dann rechnerisch auf die anderen Betriebspunkte übertragen werden, ist aus der
Der Erfindung liegt die Aufgabe zu Grunde, ein Verfahren der eingangs genannten Art anzugeben, das es erlaubt, den tatsächlichen, einspritzparameterabhängigen systematischen Fehler bezüglich der Einspritzmengen im Hinblick auf eine Zylindergleichstellung auf einfache Weise zu ermitteln.The invention is based on the object to provide a method of the type mentioned, which allows to determine the actual, injection-parameter-dependent systematic error with respect to the injection quantities with respect to a cylinder equalization in a simple manner.
Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruches 1 gelöst. Die abhängigen Ansprüche betreffen vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung.This object is achieved by the features of
Erfindungsgemäß wird bei einem gattungsgemäßen Verfahren in dem niedrigen Betriebspunkt der gewählte Einspritzparameter zur Adaption auf einen Wert eingestellt, der vom dort im regulären Fahrbetrieb geltenden Wert abweicht. Unter dem regulären Fahrbetrieb ist zu verstehen, dass z.B. bei niedrigen Lasten entsprechende niedrige Einspritzdrücke anliegen. Dagegen wird vom regulären Fahrbetrieb abgewichen, wenn z.B. bei niedrigen Lasten hohe Einspritzdrücke anliegen. Dann können für diesen eingestellten Einspritzparameterwert die Einspritzmengenunterschiede mittels der Messung der Laufunruhe bestimmt und als dem jeweiligen Einspritzparameterwert zugeordnete Adaptionswerte gelernt werden. Während dieser Adaption ist darauf zu achten, dass die Dynamik des mit dem jeweils eingestellten Einspritzparameterwert veränderlichen Betriebspunktes begrenzt wird, da sich ein veränderter Einspritzparameterwert sonst in einer vom Fahrer des Fahrzeugs nicht initiierten Abbremsung oder Beschleunigung, jedenfalls in einem neuen Betriebspunkt, also nicht stationären Bedingungen während der Adaption, äußern würde.According to the invention, in a generic method in the low operating point, the selected injection parameter is set for adaptation to a value which deviates from the value applicable there in normal driving operation. Under the regular driving operation, it is understood that e.g. at low loads corresponding low injection pressures. On the other hand, the regular driving operation is deviated, if e.g. at low loads high injection pressures. Then, for this set injection parameter value, the injection quantity differences can be determined by means of the measurement of the rough running and learned as adaptation values assigned to the respective injection parameter value. During this adaptation, care must be taken to limit the dynamics of the operating point which is variable with the respectively set injection parameter value, since a changed injection parameter value would otherwise result in deceleration or acceleration not initiated by the driver of the vehicle, at least in a new operating point, ie non-stationary conditions during the adaptation, would say.
Besonders bevorzugt wird eine Ausführungsform des Verfahrens, bei der zur Begrenzung der Dynamik des niedrigen Betriebspunktes während der Adaption mindestens ein zweiter Einspritzparameter derart eingestellt wird, dass der Betriebspunkt wenigstens näherungsweise stationär bleibt. Dies lässt sich vorteilhaft dadurch erreichen, dass bei der Adaption an aufeinander folgend höhere Werte des als Einspritzparameter gewählten Einspritzdruckes zur Begrenzung der Dynamik des niedrigen Betriebspunktes jeweils eine entsprechend kürzere Einspritzzeitdauer eingestellt wird. Die zweiten bzw. weiteren Einspritzparameter werden hier also als Hilfsgrößen derart gesteuert, dass der Fahrer vom Adaptionsprozess nichts bemerkt. Da einige wenige Kolbenhübe zur Adaption ausreichend sind, kann die Motorsteuerung ohne weiteres auch so eingestellt werden, dass der Fahrer die stationären Bedingungen während der kritischen Adaptionsphase nicht, oder nur bei Überschreitung einer Schwelle beim vom Fahrer über das Gas angeforderten Wunschleistung, aufheben kann.Particularly preferred is an embodiment of the method in which at least one second injection parameter is set such that the operating point remains at least approximately stationary in order to limit the dynamics of the low operating point during the adaptation. This can advantageously be achieved by adapting to successively higher values of the injection parameter selected injection pressure to limit the dynamics of the low operating point in each case a correspondingly shorter injection period is set. The second or further injection parameters are thus controlled here as auxiliary quantities such that the driver does not notice anything of the adaptation process. Since a few piston strokes are sufficient for adaptation, the engine control can easily be adjusted so that the driver can not cancel the stationary conditions during the critical adaptation phase, or only when exceeding a threshold in the desired performance requested by the driver via the gas.
Bei allen Ausführungsformen des erfindungsgemäßen Verfahrens ergibt sich der Vorteil, dass für die Adaption ein niedriger Betriebspunkt auswählbar ist, bei dem die höchste Empfindlichkeit und/oder Zuverlässigkeit der Messung der Laufunruhe erreicht wird, obwohl dabei eine korrekte Adaption für hohe Betriebsbereiche vorgenommen wird. Insbesondere kann der niedrige Betriebspunkt im Leerlaufbereich gewählt werden.In all embodiments of the method according to the invention there is the advantage that a low operating point can be selected for the adaptation, in which the highest sensitivity and / or reliability of the measurement of rough running is achieved, although a correct adaptation for high operating ranges is made. In particular, the low operating point in the idling range can be selected.
Die gelernten Adaptionswerte dienen zur Berechnung von zylinderindividuellen Korrekturfaktoren, mit denen, im Regelfall im Rahmen der Laufunruhe-Regelung während des Adaptionsprozesses und im Fahrbetrieb, ein Ansteuerparameter einer Einspritzvorrichtung der Brennkraftmaschine derart beaufschlagt wird, dass eine Gleichstellung der Einspritzmengen erfolgt.The learned adaptation values are used to calculate cylinder-specific correction factors with which, as a rule in the context of the smooth running control during the adaptation process and while driving, a control parameter of an injection device of the internal combustion engine is applied such that an equalization of the injection quantities takes place.
Als vorteilhaft hat sich dabei herausgestellt, dass die Einspritzvorrichtung für jeden Zylinder durch einen Injektor mit piezoelektrischem Aktor gebildet wird, wobei als Ansteuerparameter die Ansteuerenergie der Aktoren herangezogen wird. Es kann also insbesondere für verschiedene Werte des Einspritzdruckes eine Adaption des zur Gleichstellung notwendigen Aktorhubs durchgeführt werden.It has proved to be advantageous that the injection device for each cylinder is formed by an injector with a piezoelectric actuator, wherein the drive energy of the actuators is used as a driving parameter. It can therefore in particular for different values of the injection pressure an adaptation of the actuator stroke necessary for equality is carried out.
Zur Erfassung der Laufunruhe der Brennkraftmaschine kann die von den zylinderindividuell unterschiedlichen Einspritzmengen verursachte Drehbeschleunigung der Kurbelwelle der Brennkraftmaschine ausgewertet werden. Die Bestimmung der adaptierten Einspritzmengenunterschiede bzw. der adaptierten Korrekturfaktoren zur Gleichstellung kann somit auf eine sehr genaue Messmethodik gestützt werden.To detect the uneven running of the internal combustion engine, the rotational acceleration of the crankshaft of the internal combustion engine caused by the cylinder-specific different injection quantities can be evaluated. The determination of the adapted injection quantity differences or the adapted correction factors for equality can thus be based on a very accurate measurement methodology.
Das erfindungsgemäße Verfahren eröffnet außerdem die Möglichkeit, dass am zur Adaption eingestellten stationären Betriebspunkt bei gleichgestellten Einspritzmengen aus einem gespeicherten Drehmomentenmodell der Brennkraftmaschine der Absolutwert der zugehörigen Einspritzmenge ermittelt wird. Eine Diagnose des Absolutwertes der Einspritzmenge ist gerade für die Diagnose kleiner Einspritzmengen, insbesondere von Voreinspritzmengen, die im Bereich von wenigen Milligramm liegen, entscheidend für die Einhaltung der Grenzen der Abgas-Emissionen.The inventive method also opens up the possibility that the absolute value of the associated injection quantity is determined at the stationary operating point set for adaptation with equivalent injection quantities from a stored torque model of the internal combustion engine. A diagnosis of the absolute value of the injection quantity is just for the diagnosis of small injection quantities, in particular of pre-injection amounts that are in the range of a few milligrams, crucial for compliance with the limits of exhaust emissions.
Die Erfindung wird im Folgenden anhand der schematischen Zeichnung näher erläutert. Es zeigen:
Figur 1- ein Flussdiagramm zur Durchführung der erfindungsgemäßen Einspritzmengengleichstellung,
Figur 2- ein Flussdiagramm zur Durchführung der bevorzugten Einspritzmengengleichstellung mittels Ladungszeitadaption.
- FIG. 1
- a flow chart for performing the injection quantity equalization according to the invention,
- FIG. 2
- a flowchart for performing the preferred injection quantity equalization by means of charge time adaptation.
Nach Start 1 der Einspritzmengengleichstellung ist im nächsten Schritt eine Initialisierungsphase 2 vorgesehen, in der die in einem früheren Diagnosezyklus abgespeicherten Adaptionswerte in ein (nicht dargestelltes) Motorsteuerungsgerät geladen werden. Die Initialisierung eines neuen Diagnosezyklus kann sowohl nach jedem Startvorgang der Brennkraftmaschine, als auch nach bestimmten, vorgebbaren Zeit- oder Wartungsintervallen erfolgen.After
Nach dem Ende der Initialisierung 2 erfolgt in einem passiven Diagnoseschritt 3 die Überprüfung der Aktivierungsbedingungen. Dabei geht es darum, abzuwarten bis bevorzugte Betriebsbedingungen für die Adaption an einen regulären oder davon abweichenden Einspritzparameterwert erreicht sind. Dazu gehören beispielsweise die Last, die Drehzahl oder die Kühlmitteltemperatur. Dabei muss die Motorsteuerung gegebenenfalls so umgestellt werden, dass bei der nachfolgenden Adaption die Dynamik der zeitlichen Veränderung des zur Durchführung des Adaptionszyklus ausgesuchten Betriebspunktes begrenzt wird.After the end of the
Sobald die Aktivierungsbedingungen erfüllt sind, wird der eigentliche, aktive Diagnosezyklus 4 gestartet. Mit den dem Motorbetriebszustand zugehörigen, regulären Einspritzparametern 5 (vgl. Einspritzparametersatz in der
Danach, im Schritt 7 (Adaption der Ansteuerparameter) werden weitere Einspritzparameter bzw. Einspritzparametersätze i geladen und dafür jeweils die Laufunruhe-Regelung durchgeführt mit einer Bestimmung der am eingestellten Wert des gewählten Einspritzparameters vorliegenden Einspritzmengenunterschiede bzw. mit der Gleichstellung durch entsprechende Korrekturfaktoren für einen Ansteuerparameter. Zur Adaption wird ein geeigneter Ansteuerparameter, wie beispielsweise die den Aktoren zugeführte Energie ausgewählt. Die resultierenden Adaptionswerte werden dem Einspritzparametersatz, also primär den Einspritzparametern, wie z.B. Einspritzdruck und Einspritzzeitdauer dessen Einfluss auf die Einspritzmengenunterschiede festgehalten werden soll, zugeordnet und abgespeichert, damit sie später, beim Fahrbetrieb mit höheren Lasten und Drehzahlen und den zugehörigen regulären Werten des gewählten Einspritzparameters, zur direkten Einspritzmengengleichstellung ohne Diagnosezyklus abgerufen werden können. Wenn die Adaption für genügend viele Stützstellen (typischerweise fünf bis zehn), also beispielsweise für alle i=1 bis i=k eingestellten Einspritzparameterwerte des Druckes durchgeführt wurde, ist das Ende 8 der Adaption bzw. des laufenden Diagnosezyklus erreicht und die gespeicherten Adaptionswerte können im Fahrbetrieb zur Gleichstellung der Einspritzmengen verwendet werden.Thereafter, in step 7 (adaptation of the activation parameters), further injection parameters or injection parameter sets i are loaded and the uneven-running control is carried out with a determination of the injection quantity differences present at the set value of the selected injection parameter or with the equality by corresponding correction factors for a control parameter. For adaptation, a suitable drive parameter, such as, for example, the energy supplied to the actuators, is selected. The resulting adaptation values are added to the injection parameter set, ie primarily the injection parameters, such as the injection parameters. Injection pressure and injection period whose influence on the injection quantity differences to be recorded, assigned and stored so that they can be retrieved later, when driving with higher loads and speeds and the associated regular values of the selected injection parameter for direct injection amount equalization without diagnostic cycle. If the adaptation has been carried out for a sufficient number of interpolation points (typically five to ten), ie, for example, for all of the injection parameter values of the pressure set i = 1 to i = k, the
Es hat sich herausgestellt, dass die von der Einspritzzeitdauer abhängigen unterschiedlichen Einspritzmengen von Injektoren auf einfache Weise dadurch einander angeglichen werden können, dass der Hub der Aktoren verändert wird. Das bedeutet beispielsweise, dass für verschiedene als Einspritzparameterwerte gewählte Einspritzdrücke eine Adaption des Aktorhubs durchgeführt wird. Andererseits kann die als Injektor-Stellgröße eingesetzte Ansteuerenergie natürlich auch zur Variation des Einspritzbeginns herangezogen werden.It has been found that the different injection quantities of injectors, which depend on the injection duration, can be easily adjusted to one another in such a way that the stroke of the actuators is changed. This means, for example, that an adaptation of the actuator stroke is carried out for different injection pressures selected as injection parameter values. On the other hand, as the injector control variable Of course, the drive energy used can also be used to vary the start of injection.
Bei jedem Diagnosezyklus werden die zuletzt gespeicherten Adaptionswerte bzw. Korrekturfaktoren von den neu ermittelten überschrieben, wodurch insbesondere die zwischenzeitlich aufgetretenen Alterungserscheinungen der Einspritzvorrichtung, die eventuell zu veränderten Streuungen bezüglich der Einspritzmengen in die verschiedenen Brennräume führen, Berücksichtigung finden.During each diagnostic cycle, the last stored adaptation values or correction factors are overwritten by the newly determined, whereby in particular the aging phenomena of the injection device which have occurred in the meantime and which possibly lead to changed variations with regard to the injection quantities into the different combustion chambers are taken into account.
Das in
Im Schritt 16 wird überprüft ob mit diesen Größen die Laufunruhe unter einem Schwellenwert S liegt. Ist dies nicht der Fall, so muss in Schritt 17 zusätzlich die Ansteuerdauer verändert werden. Dies ist insbesondere bei "schlecht" gefertigten Injektoren erforderlich, die diese kurzen Lade/Entladezeiten schlecht bzw. nicht verkraften. Bei solchen Injektoren und kurzen Entladezeiten ist die eingespritzte Kraftstoffmenge unabhängig von der Aktorenergie. Es stellt sich eine Art "Mengensättigung" ein und die Einspritzmenge kann nicht mehr durch Erhöhen der Aktorenergie verändert werden. Dies bedeutet, dass eine Einspritzadaption in einem definierten Betriebszustand nicht alleine durch Energieanpassung, sondern mittels einer Verlängerung der Ansteuerdauer durchgeführt werden muss, die damit die Einspritzzeitdauer verlängert.In step 16 it is checked whether with these variables the rough running is below a threshold value S. If this is not the case, then in
Als Ergebnis einer erfolgreichen Laufunruheregelung nach Schritt 16 sind die Einspritzmengen der einzelnen Injektoren aufeinander angeglichen. Diese Einspritzparameter werden für die zugehörige Lade/Entladezeit τi abgespeichert (Schritt 18). In Schritt 19, wird überprüft ob die Lade/Entladezeit τi größer gleich als einem Extremwert ist. Hier beträgt der Extremwert beispielsweise 140 µs. In dem obigen Beispiel liegt der Anfangswert τ0 bei 200 µs. Anzumerken ist, dass der Index i hier gleich Null ist. Da die in Schritt 19 aufgestellte Bedingung nicht erfüllt ist, geht es in Schritt 20 weiter. Vor dem Laden des nächsten Parametersatzes in Schritt 14 wird zuvor in Schritt 20 die Lade/Entladezeit um 10 µs verringert. Somit beträgt jetzt die Lade/Entladezeit τ1 gleich 190 µs. In Schritt 21 wird lediglich der Index um 1 erhöht. Die vorhandenen Einspritzparameter für τ1 werden nun in Schritt 14 geladen. Wie bereits oben beschrieben folgen dann die Schritte 15 bis 19. Sind alle Parametersätze für die verschiedenen Lade/Entladezeiten angepasst, kann der konstante Einspritzdruck (z.B. 1500 bar) auf einen neuen anderen konstanten Einspritzdruck (z.B 1400 bar) eingestellt werden. Sobald in Schritt 12 der neue Druck anliegt, wird für jede Lade/Entladezeit von 200 bis 140 µs die Aktorenergie nach den Schritten 14 bis 19 bestimmt. Dies kann für verschiedene Druckwerte durchgeführt werden. Sobald ausreichend viele Messwerte vorhanden sind, endet das Verfahren in Schritt 22. Anzumerken ist, dass die schrittweise Änderung der Lade/Entladezeit um 10 µs in Schritt 20 nur beispielhaft aufgeführt wurde. Für eine feinere Modellierung, sind durchaus Differenzen von einer Lade/Entladezeit zur nächsten Lade/Entladezeit von 1 µs denkbar. Diese erfindungsgemäße Diagnose ist sehr schnell durchführbar, da nur wenige Kolbenhübe ausreichend sind.As a result of a successful cessation of exercise after step 16, the injection rates of the individual injectors are aligned. These injection parameters are stored for the associated charge / discharge time τ i (step 18). In
Zusammengefasst ermöglicht das erfindungsgemäße Verfahren, dass bei einem bevorzugten, niedrigen Betriebspunkt, bei dem die höchste Empfindlichkeit und Zuverlässigkeit der Laufunruhe-Regelung besteht, die Diagnose der Einspritzmengenunterschiede bzw. der Einspritzmenge selbst erfolgt. An diesem Betriebspunkt erfolgt die Diagnose und Adaption dann auch für Einspritzparameterwerte, die im Fahrbetrieb für andere Betriebspunkte gelten. Es erfolgt am niedrigen Betriebspunkt also sowohl ein Ausgleich der Einspritzmengenunterschiede zwischen den einzelnen Injektoren als auch eine Kalibrierung der Einspritzmenge auf die zugehörigen, im Diagnosezyklus künstlich eingestellten Werte des ausgewählten Einspritzparameters, wobei eine unerwünschte Bewegung des Adaptions-Betriebspunktes durch die gegenläufige Einstellung anderer Einspritzparameterwerte verhindert bzw. begrenzt wird. Bevorzugt ist eine Einspritzmengengleichstellung durch Energieregelung des Injektor-Ansteuerparameters in Abhängigkeit, insbesondere, vom Einspritzparameter Druck.In summary, the method according to the invention makes it possible to diagnose the injection quantity differences or the injection quantity itself at a preferred, low operating point at which the highest sensitivity and reliability of the rough-running control exists. At this operating point, the diagnosis and adaptation then also take place for injection parameter values which apply to other operating points during driving operation. It is done at the low operating point so both a compensation of the injection quantity differences between the individual injectors as well as a calibration of the injection quantity to the associated, in the diagnostic cycle artificially set values of the selected injection parameter, wherein an undesirable movement of the adaptation operating point by the opposite setting of other injection parameter values is prevented or limited. Preferably, an injection quantity equalization by energy control of the injector drive parameter is dependent on, in particular, the injection parameter pressure.
Optional ist es an dem eingestellten Betriebspunkt auf Grund der Kenntnis des Motorbetriebszustandes (Temperatur von Kühlmittel, aktive Verbraucher) möglich, aus dem Drehmomentenmodell den Absolutwert der Einspritzmenge herauszulesen und etwa für die exakte Kalibrierung des Kennfeldes Einspritzmenge/Einspritzzeitdauer zu verwenden.Optionally, it is possible at the adjusted operating point on the basis of knowledge of the engine operating state (temperature of coolant, active consumers) to read the absolute value of the injection quantity from the torque model and to use it for the exact calibration of the injection quantity / injection duration map.
Claims (13)
- Method for synchronising, between the cylinders of an internal combustion engine, the differences in the quantity of fuel injected, in which the differences in the quantity of fuel injected which exist at an operating point in the lower engine-speed range with the injection parameter values valid at that point under normal operating conditions are determined by means of a method of measuring individual cylinders to record irregularities in the running of the internal combustion engine and are assigned to the low operating point and in which, for operating ranges with higher loads and engine speeds, an adaptation of the differences in the quantity of fuel injected is carried out for a chosen injection parameter,
characterised in that
at the low operating point the chosen injection parameter is set for adaptation (4, 5, 6, 7) to different values which deviate from the value applicable at that point under normal operating conditions, and in that for the set values the differences in the quantity of fuel injected are determined in each instance by means of measurement of the irregularities in the running of the engine and are learned as adaptation values which are assigned to the respective injection parameter value, wherein during the adaptation (4, 5, 6, 7) the movement of the operating point, which changes with the injection parameter value set in each case, is limited. - Method according to claim 1,
characterised in that, in order to limit the movement of the low operating point during adaptation (4, 5, 6, 7), at least one second injection parameter is set such that the operating point remains at least approximately stationary. - Method according to claim 2,
characterised in that, in the process of adaptation (4, 5, 6, 7) to successively higher values of the injection pressure chosen as an injection parameter, a correspondingly shorter injection period is set in order to limit the movement of the low operating point. - Method according to claim 2,
characterised in that, in the process of adaptation (4, 5, 6, 7) to successively lower values of the injection pressure chosen as an injection parameter, a correspondingly longer injection period is set in order to limit the movement of the low operating point. - Method according to any one of claims 2 or 3, characterised in that the injection pressure is changed gradually by a defined amount.
- Method according to any one of the preceding claims,
characterised in that for the adaptation (4, 5, 6, 7) a low operating point is selected at which the maximum sensitivity and/or reliability of measurement of the irregularity in the running of the engine is achieved. - Method according to any one of the preceding claims,
characterised in that the low operating point is chosen in the idling range. - Method according to any one of the preceding claims,
characterised in that the learned adaptation values serve to calculate cylinder-specific correction factors, which are applied to an activation parameter of an injection device of the internal combustion engine such that a synchronisation of the quantities of fuel injected occurs. - Method according to claim 8,
characterised in that the injection device for each cylinder is formed by an injector with a piezoelectric actuator, wherein the activation energy of the actuators is used as an activation parameter. - Method according to claim 9,
characterised in that, for a defined loading/unloading time of the injector, the actuator energy is adapted correspondingly. - Method according to claim 10,
characterised in that the loading/unloading time of the main injection is set to an initial value (τ0) and is gradually changed to an extreme value, wherein with each step the actuator energy is adapted correspondingly. - Method according to any one of the preceding claims,
characterised in that, in order to record the irregularity in the running of the internal combustion engine, the angular acceleration of the crankshaft of the internal combustion engine caused by the differing quantities of fuel injected in individual cylinders is analysed. - Method according to claim 12,
characterised in that, at the stationary operating point set for adaptation (4, 5, 6, 7) with synchronised quantities of fuel injected, the absolute value of the associated quantity of fuel injected is determined from a stored model of the torque of the internal combustion engine.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004006554A DE102004006554B3 (en) | 2004-02-10 | 2004-02-10 | Cylinder equalization method for fuel injection in automobile engine using adaption of fuel injection parameters via learned adaption values |
PCT/EP2005/050428 WO2005078263A1 (en) | 2004-02-10 | 2005-02-01 | Method for synchronizing cylinders in terms of quantities of fuel injection in a heat engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1716331A1 EP1716331A1 (en) | 2006-11-02 |
EP1716331B1 true EP1716331B1 (en) | 2008-08-20 |
Family
ID=34625821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05707907A Not-in-force EP1716331B1 (en) | 2004-02-10 | 2005-02-01 | Method for synchronizing cylinders in terms of quantities of fuel injection in a heat engine |
Country Status (4)
Country | Link |
---|---|
US (1) | US7392789B2 (en) |
EP (1) | EP1716331B1 (en) |
DE (2) | DE102004006554B3 (en) |
WO (1) | WO2005078263A1 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1760873B8 (en) * | 2005-09-06 | 2008-06-18 | Siemens Aktiengesellschaft | Method and apparatus for driving a piezoelectric actuator |
JP4487922B2 (en) * | 2005-12-15 | 2010-06-23 | 株式会社デンソー | Initial setting method for fuel injection device and initial setting device used for initial setting method for fuel injection device |
DE102006012656A1 (en) * | 2006-03-20 | 2007-09-27 | Siemens Ag | Method and device for operating an internal combustion engine |
DE102006036568A1 (en) * | 2006-08-04 | 2008-02-07 | Siemens Ag | Method for detecting valve opening times of fuel injection systems of an internal combustion engine |
JP4532532B2 (en) * | 2007-08-30 | 2010-08-25 | 株式会社デンソー | Fuel injection control device and fuel injection system |
JP4407730B2 (en) * | 2007-08-31 | 2010-02-03 | 株式会社デンソー | Fuel injection control device for internal combustion engine |
DE102007044937B4 (en) | 2007-09-20 | 2010-03-25 | Continental Automotive Gmbh | Method and device for operating an internal combustion engine |
DE102007053406B3 (en) | 2007-11-09 | 2009-06-04 | Continental Automotive Gmbh | Method and device for carrying out both an adaptation and a diagnosis in emission-relevant control devices in a vehicle |
DE102008006674B4 (en) * | 2008-01-30 | 2020-08-27 | Bayerische Motoren Werke Aktiengesellschaft | Method for operating an internal combustion engine with direct gasoline injection |
DE102008001081B4 (en) * | 2008-04-09 | 2021-11-04 | Robert Bosch Gmbh | Method and engine control device for controlling an internal combustion engine |
US20130019842A1 (en) * | 2009-12-11 | 2013-01-24 | Purdue Research Foundation | Flow rate estimation for piezo-electric fuel injection |
DE102010014320B4 (en) * | 2010-04-09 | 2016-10-27 | Continental Automotive Gmbh | Method for adjusting the actual injection quantity, injection device and internal combustion engine |
JP6350226B2 (en) | 2014-11-05 | 2018-07-04 | 株式会社デンソー | Fuel injection control device for internal combustion engine |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3336028C3 (en) * | 1983-10-04 | 1997-04-03 | Bosch Gmbh Robert | Device for influencing control variables of an internal combustion engine |
JPH0650077B2 (en) | 1984-08-10 | 1994-06-29 | 日本電装株式会社 | Fuel injection amount control method for internal combustion engine |
US5385129A (en) * | 1991-07-04 | 1995-01-31 | Robert Bosch Gmbh | System and method for equalizing fuel-injection quantities among cylinders of an internal combustion engine |
DE19700711C2 (en) * | 1997-01-10 | 1999-05-12 | Siemens Ag | Method for compensating for the systematic error in injection devices for an internal combustion engine |
DE19720009C2 (en) * | 1997-05-13 | 2000-08-31 | Siemens Ag | Method for cylinder equalization with regard to the fuel injection quantity in an internal combustion engine |
US5809969A (en) * | 1997-07-29 | 1998-09-22 | Chrysler Corporation | Method for processing crankshaft speed fluctuations for control applications |
DE19741965C1 (en) * | 1997-09-23 | 1999-01-21 | Siemens Ag | Multi-cylinder fuel injected IC engine running smoothness control method |
DE19855939A1 (en) | 1997-12-18 | 1999-06-24 | Fev Motorentech Gmbh & Co Kg | Method of operating a multicylinder internal combustion engine |
DE10012025A1 (en) | 2000-03-11 | 2001-10-18 | Bosch Gmbh Robert | Method for operating a multi-cylinder internal combustion engine |
JP2001349243A (en) * | 2000-06-07 | 2001-12-21 | Isuzu Motors Ltd | Fuel injection control device of engine |
-
2004
- 2004-02-10 DE DE102004006554A patent/DE102004006554B3/en not_active Expired - Fee Related
-
2005
- 2005-02-01 WO PCT/EP2005/050428 patent/WO2005078263A1/en active IP Right Grant
- 2005-02-01 US US10/597,846 patent/US7392789B2/en active Active
- 2005-02-01 DE DE502005005103T patent/DE502005005103D1/en active Active
- 2005-02-01 EP EP05707907A patent/EP1716331B1/en not_active Not-in-force
Also Published As
Publication number | Publication date |
---|---|
DE502005005103D1 (en) | 2008-10-02 |
DE102004006554B3 (en) | 2005-06-30 |
WO2005078263A1 (en) | 2005-08-25 |
US20070163543A1 (en) | 2007-07-19 |
EP1716331A1 (en) | 2006-11-02 |
US7392789B2 (en) | 2008-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1716331B1 (en) | Method for synchronizing cylinders in terms of quantities of fuel injection in a heat engine | |
EP1716330B1 (en) | Method for equalizing the differences in injection quantities between the cylinders of a combustion engine | |
DE102008040626A1 (en) | Method for determining the injected fuel mass of a single injection and apparatus for carrying out the method | |
WO2009000647A2 (en) | Method and device for diagnosing an injection valve, connected to a fuel rail, of an internal combustion engine | |
DE102007048650A1 (en) | Method and apparatus for optimizing the combustion of diesel fuels with different cetane numbers in a diesel internal combustion engine | |
WO2008110346A2 (en) | Method for regulating an injection of an injector of a direct-injection internal combustion engine, and direct-injection internal combustion engine | |
DE102005014920A1 (en) | Method to adjust injection times of individual cylinders of an internal combustion engine depending on their dimensions derived from the crank shaft rotations to compensate for fluctuations in injection quantities | |
WO2020030351A1 (en) | Method and device for operating an internal combustion engine with a common-rail injection system | |
DE102008002482A1 (en) | Method and device for calibrating a Kraftstoffzumesssystems an internal combustion engine, in particular a motor vehicle | |
DE102015214780A1 (en) | Method for detecting faulty components of a fuel injection system | |
DE102008042933B4 (en) | Method and device for dosing fuel to be injected into a combustion chamber of an internal combustion engine | |
DE102009009270A1 (en) | Calibration method for injector of internal combustion engine, involves detecting operational condition of internal combustion engine, and detecting speed dependent-variable during working cycle of cylinder of internal combustion engine | |
DE10159016A1 (en) | Method and device for controlling an internal combustion engine | |
EP3786436A1 (en) | Method for diagnosing combustion misfires of a combustion engine | |
DE60302636T2 (en) | Diesel engine with fuel injection quantity control device | |
DE102007034335A1 (en) | Method for determining the injected fuel mass of a pilot injection | |
DE102005031591B4 (en) | Method for operating an internal combustion engine | |
EP2019195B1 (en) | Method for determining the amount of fuel injected | |
DE102006061683A1 (en) | Fuel amount determining method for e.g. self-injecting diesel engine, involves determining post-injection by comparison of measure for actual quantity of injected fuel, and determining correction value by measure for target quantity | |
DE102015224790A1 (en) | Method for operating an internal combustion engine | |
DE102014223117A1 (en) | Method and apparatus for small quantity calibration of a common rail injection system of an internal combustion engine, in particular of a motor vehicle | |
DE102015200565A1 (en) | Method and device for adapting a component of an internal combustion engine | |
DE102006030192A1 (en) | Method for operating combustion engine of motor vehicle, requires influencing fuel amount during air supply for individual cylinders of engine | |
DE102014209194A1 (en) | Method and device for controlling an internal combustion engine | |
EP1502018B1 (en) | Method for operating an internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060713 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20070711 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: CONTINENTAL AUTOMOTIVE GMBH |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 502005005103 Country of ref document: DE Date of ref document: 20081002 Kind code of ref document: P |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090525 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080820 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090213 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20101029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100301 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R084 Ref document number: 502005005103 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502005005103 Country of ref document: DE Owner name: VITESCO TECHNOLOGIES GMBH, DE Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210228 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502005005103 Country of ref document: DE Owner name: VITESCO TECHNOLOGIES GMBH, DE Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005005103 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220901 |