EP1716330B1 - Method for equalizing the differences in injection quantities between the cylinders of a combustion engine - Google Patents

Method for equalizing the differences in injection quantities between the cylinders of a combustion engine Download PDF

Info

Publication number
EP1716330B1
EP1716330B1 EP05701629A EP05701629A EP1716330B1 EP 1716330 B1 EP1716330 B1 EP 1716330B1 EP 05701629 A EP05701629 A EP 05701629A EP 05701629 A EP05701629 A EP 05701629A EP 1716330 B1 EP1716330 B1 EP 1716330B1
Authority
EP
European Patent Office
Prior art keywords
injection
combustion engine
internal combustion
adaptation
differences
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP05701629A
Other languages
German (de)
French (fr)
Other versions
EP1716330A1 (en
Inventor
Roland Dietl
Oliver Kastner
Hans-Peter Rabl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Continental Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34832568&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1716330(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Continental Automotive GmbH filed Critical Continental Automotive GmbH
Publication of EP1716330A1 publication Critical patent/EP1716330A1/en
Application granted granted Critical
Publication of EP1716330B1 publication Critical patent/EP1716330B1/en
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/12Timing of calculation, i.e. specific timing aspects when calculation or updating of engine parameter is performed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3827Common rail control systems for diesel engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections

Definitions

  • the invention relates to a method for equalizing the injection quantity differences between the cylinders of an internal combustion engine according to the preamble of claim 1, such as in the document US 4,590,907 A is described.
  • the invention has for its object to provide a method of the type mentioned above, that allows to determine the actual, injection-parameter-dependent systematic error with respect to the injection quantities, the hydraulic injection start and the course of injection in terms of a cylinder equalization in a simple manner.
  • the method for equalizing the injection quantity differences between the cylinders of an internal combustion engine is carried out for at least one selected injection parameter, an adaptation of the injection quantity differences.
  • the internal combustion engine is at a selected operating point. It is important to ensure that the dynamics of the selected operating point is limited during the adaptation, as a modified injection parameter value otherwise expressed in a not injected by the driver of the vehicle deceleration or acceleration, at least in a new operating point, ie transient conditions during the adaptation would.
  • the injection quantity differences for the selected operating point are determined and learned as adaptation values associated with the respective injection parameter value.
  • care must be taken that the selected operating point remains substantially stationary.
  • the second or further injection parameters are controlled here as auxiliary quantities such that the driver does not notice anything of the adaptation process. Since a few piston strokes are sufficient for adaptation, the engine control can easily be adjusted so that the driver can not cancel the stationary conditions during the critical adaptation phase, or only when exceeding a threshold in the demanded by the driver on the gas desired performance.
  • the learned adaptation values are used to calculate cylinder-specific correction factors with which, for example in the course of a running disturbance regulation, during the adaptation process and the driving operation, a control parameter of an injection device of the internal combustion engine is applied such that an equalization of the injection quantities, the hydraulic injection start and the course of the injection takes place.
  • the injection device for each cylinder is formed by an injector with a piezoelectric actuator, wherein the drive time, the drive time and / or the charging time duration are used as drive parameters as drive parameters. It is thus possible, in particular for different values of the injection pressure, to carry out an adaptation of the valve lift necessary for equality.
  • the inventive method also opens up the possibility that the absolute value of the associated injection quantity is determined at the stationary operating point set for adaptation with equivalent injection quantities from a stored torque model of the internal combustion engine.
  • a diagnosis of the absolute value of the injection quantity is precisely for the diagnosis of small injection quantities, which are in the range of a few milligrams, crucial for compliance with the adjacent exhaust emission.
  • an initialization phase 2 is provided in the next step in which the adaptation data values stored in an earlier control cycle are loaded into an engine control unit (not shown).
  • the initialization of a new control cycle can be carried out both after each startup of the internal combustion engine, as well as after certain predetermined time or maintenance intervals.
  • the activation conditions are checked in a passive control step 3.
  • the aim is to wait until the preferred operating conditions for adaptation to certain injection parameter values have been reached. These include, for example, the load, the speed or the cooling water temperature. The must If necessary, the motor control can be changed so that in the subsequent adaptation, the dynamics of the temporal changes of the selected for performing the adaptation cycle operating point is limited.
  • the actual active control cycle 4 is started.
  • the engine operating state associated injection parameter 5 a control 6 of the drive time and charging time is performed.
  • the injection quantities of the individual injectors of the internal combustion engine are matched to one another at a specific operating point, and the actuator signals of the various injectors take place at the same time.
  • the given injection parameter values are used to deduce an injection quantity known from the torque model, which must be given in accordance with the achieved torque.
  • step 7 adaptive of the control parameters
  • further injection parameters or injection parameter sets i are loaded and control 6 is carried out for each with a determination of the injection quantity differences present at the set value of the selected injection parameter or with equality by corresponding correction factor for a control parameter.
  • a suitable control parameter such as, for example, the activation duration applied to the actuator and the charging time duration, are selected.
  • the resulting adaptation values become the injection parameter set, ie primarily the injection parameter, such as, for example, injection pressure and injection duration, whose influence on the injection quantity differences is to be held, assigned and stored, so that they can be retrieved later, during driving for direct injection quantity equalization without control cycle.
  • a sufficient number of interpolation points typically 5 to 10
  • FIG. 2 shows the adjustment made in step 6 of the actuator signals by changing the drive time and charging period.
  • FIGS. 2A to C show in the upper area two control signals of two injectors. The drive signals have been superimposed on each other for better representability.
  • the bottom section shows the valve strokes of the corresponding injectors.
  • the injectors are controlled with identical control signals.
  • the first injector receives the drive signal 10, the second injector the drive signal 11.
  • Each drive signal consists of an upwardly directed charge signal (triangular) 10 'or 11' and a downward discharge signal 10 "or 11" (triangular), the begins at t 1 and ends at t 2 .
  • the charge durations of 10 'and 11' and the discharge durations of 10 "and 11" are identical.
  • the period between the end of the charge and the beginning of the discharge is for all FIGS. 2A to 2C unchanged (range between t 2 and t 3 ). Due to manufacturing tolerances cause the same drive signals 10 and 11 different valve lifts at the injectors as in the signals 13 and 14 to recognize is.
  • the valve lift 13 corresponds to the first injector and the valve lift 14 corresponds to the second injector.
  • the actuator of the first injector Upon reaching the maximum needle stroke (needle stop of the nozzle needle), the actuator of the first injector generates an actuator signal S1 at the time of about 1.3 time units.
  • the actuator of the second injector generates an actuator signal S2 at about 1.4 time units.
  • the valve of the second injector is raised less than that of the first injector, despite the same drive signals.
  • the valve of the second injector is raised only at the time t 2 , which is done much earlier in the first injector (t ' 1 ). This delay is caused by the larger idle stroke of the second injector.
  • the drive signal of the second injector 11 is changed slightly, in which the charging time is extended and the driving time. This is achieved by leaving the end of the charging time unchanged at t 2 .
  • the activation duration consists of the charging time period (charging time duration and discharge time duration) and the time period between the two signals.
  • the early start of the charging process leads to an earlier overcoming of the idle stroke and thus to a faster actuation of the valve.
  • the longer charge causes an increase in the maximum valve lift (from 16 to 16 '), ie from 40 ⁇ m to over 50 ⁇ m, as in the FIGS. 2A and 2B is shown.
  • the actuator signal S2 shifts to an earlier time, so that the actuator signals S1 and S2 are now closer to each other than in FIG. 2A ,
  • This simultaneity means that the actuator signal of the first injector is at a specific crankshaft angle of the piston relative to the upper dead angle of the piston and correspondingly the actuator signal of the second injector takes place at the same crankshaft angle relative to its top dead center of the piston.
  • each control cycle 6 the last stored adaptation values or correction factors are overwritten by the newly determined, whereby in particular the aging phenomena of the injection device that have occurred in the meantime, which possibly lead to changed variations with regard to the injection quantities into the different combustion chambers, are taken into account.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Gleichstellung der Einspritzmengenunterschiede zwischen den Zylindern einer Brennkraftmaschine nach dem Oberbegriff des Anspruchs 1, wie beispielsweise in der Druckschrift US 4,590,907 A beschrieben ist.The invention relates to a method for equalizing the injection quantity differences between the cylinders of an internal combustion engine according to the preamble of claim 1, such as in the document US 4,590,907 A is described.

Bei einer mehrzylindrigen Brennkraftmaschine ergibt sich bei der Einspritzung von Kraftstoff in die Verbrennungsräume durch Streuungen insbesondere der mechanischen Eigenschaften der Einspritzvorrichtung, beispielsweise der Injektoren für Dieselmotoren mit Common Rail, ein systematischer Fehler. Aufgrund von Fertigungstoleranzen der genannten Komponenten (unterschiedliche Leerhübe) werden bei gleicher Ansteuerdauer und gleicher Aktorenergie unterschiedliche Kraftstoffmengen der Verbrennung in den einzelnen Zylindern zugeführt. Die unterschiedlichen Kraftstoffmengen führen zu einer unterschiedlichen Leistungsabgabe der einzelnen Zylinder, was neben einer Steigerung der Laufunruhe auch zu einer Erhöhung der Menge an schädlichen Abgaskomponenten führt. Außerdem können Unterschiede im Leerhub Veränderungen im Öffnungsverhalten der Injektoren hervorrufen. Dies äußert sich dadurch, dass der hydraulische Einspritzbeginn zwischen den einzelnen Injektoren sowie der Einspritzverlauf verschieden sind.In a multi-cylinder internal combustion engine results in the injection of fuel into the combustion chambers by scattering in particular the mechanical properties of the injection device, such as the injectors for diesel engines with common rail, a systematic error. Due to manufacturing tolerances of said components (different idle strokes) different fuel quantities of the combustion in the individual cylinders are supplied at the same drive time and the same actuator energy. The different amounts of fuel lead to a different power output of the individual cylinders, which in addition to an increase in rough running also leads to an increase in the amount of harmful exhaust gas components. In addition, differences in idle stroke can cause changes in the opening behavior of the injectors. This manifests itself by the fact that the hydraulic injection start between the individual injectors and the course of injection are different.

In der Druckschrift DE 197 20 009 A1 ist ein Verfahren zur Zylindergleichstellung bezüglich der Kraftstoff-Einspritzmenge bei einer Brennkraftmaschine bekannt. Zur gleichmäßigen Drehmomentabgabe der einzelnen Zylinder, insbesondere im Leerlauf der Brennkraftmaschine, werden in Abhängigkeit der Drehzahldifferenz zwischen Kompression und Expansion der einzelnen Zylinder zylinderindividuelle Adaptionsmengen er mittelt und bei der Berechnung der Gesamteinspritzmenge berücksichtigt.In the publication DE 197 20 009 A1 For example, a method for cylinder equalization with respect to the fuel injection amount in an internal combustion engine is known. For uniform torque output of the individual cylinders, in particular during idling of the internal combustion engine, cylinder-specific adaptation quantities are dependent on the speed difference between compression and expansion of the individual cylinders averaged and taken into account in the calculation of the total injection quantity.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art anzugeben, dass es erlaubt, den tatsächlichen, einspritzparameterabhängigen systematischen Fehler bezüglich der Einspritzmengen, des hydraulischen Einspritzbeginns und des Einspritzverlaufs im Hinblick auf eine Zylindergleichstellung auf einfache Weise zu ermitteln.The invention has for its object to provide a method of the type mentioned above, that allows to determine the actual, injection-parameter-dependent systematic error with respect to the injection quantities, the hydraulic injection start and the course of injection in terms of a cylinder equalization in a simple manner.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst. Die abhängigen Ansprüche betreffen vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung.This object is achieved by the features of claim 1. The dependent claims relate to advantageous developments and refinements of the invention.

Erfindungsgemäß wird das Verfahren zur Gleichstellung der Einspritzmengenunterschiede zwischen den Zylindern einer Brennkraftmaschine für mindestens einen gewählten Einspritzparameter eine Adaption der Einspritzmengenunterschiede durchgeführt. Dabei befindet sich die Brennkraftmaschine in einem ausgewählten Betriebspunkt. Dabei ist darauf zu achten, dass während der Adaption die Dynamik des ausgewählten Betriebspunktes begrenzt wird, da sich ein veränderter Einspritzparameterwert sonst in einer vom Fahrer des Fahrzeugs nicht injizierten Abbremsung oder Beschleunigung, jedenfalls in einen neuen Betriebspunkt, also instationären Bedingungen während der Adaption, äußern würde.According to the invention, the method for equalizing the injection quantity differences between the cylinders of an internal combustion engine is carried out for at least one selected injection parameter, an adaptation of the injection quantity differences. In this case, the internal combustion engine is at a selected operating point. It is important to ensure that the dynamics of the selected operating point is limited during the adaptation, as a modified injection parameter value otherwise expressed in a not injected by the driver of the vehicle deceleration or acceleration, at least in a new operating point, ie transient conditions during the adaptation would.

Als nächstes werden die Einspritzmengenunterschiede für den ausgewählten Betriebspunkt bestimmt und als Adaptionswerte gelernt, die dem jeweiligen Einspritzparameterwert zugeordnet werden. Wie oben bereits erwähnt wurde, ist darauf zu achten, dass der gewählte Betriebspunkt im wesentlichen stationär bleibt. Die zweiten bzw. weiteren Einspritzparameter werden hier als Hilfsgrößen derart gesteuert, dass der Fahrer vom Adaptionsprozess nichts bemerkt. Da einige wenige Kolbenhübe zur Adaption ausreichend sind, kann die Motorsteuerung ohne weiteres auch so eingestellt werden, dass der Fahrer die stationären Bedingungen während der kritischen Adaptionsphase nicht, oder nur bei Überschreitung einer Schwelle beim vom Fahrer über das Gas eingeforderten Wunschleistung, aufheben kann.Next, the injection quantity differences for the selected operating point are determined and learned as adaptation values associated with the respective injection parameter value. As mentioned above, care must be taken that the selected operating point remains substantially stationary. The second or further injection parameters are controlled here as auxiliary quantities such that the driver does not notice anything of the adaptation process. Since a few piston strokes are sufficient for adaptation, the engine control can easily be adjusted so that the driver can not cancel the stationary conditions during the critical adaptation phase, or only when exceeding a threshold in the demanded by the driver on the gas desired performance.

Die gelernten Adaptionswerte dienen zur Berechnung von zylinderindividuellen Korrekturfaktoren, mit denen, beispielsweise im Rahmen einer Laufunruheregelung, während des Adaptionsprozesses und dem Fahrbetrieb, ein Ansteuerparameter einer Einspritzvorrichtung der Brennkraftmaschine derart beaufschlagt wird, dass eine Gleichstellung der Einspritzmengen, des hydraulischen Einspritzbeginns und des Einspritzverlaufs erfolgt.The learned adaptation values are used to calculate cylinder-specific correction factors with which, for example in the course of a running disturbance regulation, during the adaptation process and the driving operation, a control parameter of an injection device of the internal combustion engine is applied such that an equalization of the injection quantities, the hydraulic injection start and the course of the injection takes place.

Als vorteilhaft hat sich dabei herausgestellt, dass die Einspritzvorrichtung für jeden Zylinder durch einen Injektor mit einem piezoelektrischem Aktor gebildet wird, wobei als Ansteuerparameter die Ansteuerdauer, der Ansteuerzeitpunkt und/oder die Aufladezeitdauer als Ansteuerparameter herangezogen werden. Es kann also insbesondere für verschiedene Werte des Einspritzdruckes eine Adaption des zur Gleichstellung notwendigen Ventilhubs durchgeführt werden.It has proven to be advantageous that the injection device for each cylinder is formed by an injector with a piezoelectric actuator, wherein the drive time, the drive time and / or the charging time duration are used as drive parameters as drive parameters. It is thus possible, in particular for different values of the injection pressure, to carry out an adaptation of the valve lift necessary for equality.

Das erfindungsgemäße Verfahren eröffnet außerdem die Möglichkeit, dass am zur Adaption eingestellten stationären Betriebspunkt bei gleichgestellten Einspritzmengen aus einem gespeicherten Drehmomentenmodell der Brennkraftmaschine der Absolutwert der zugehörigen Einspritzmenge ermittelt wird. Eine Diagnose des Absolutwertes der Einspritzmenge ist gerade für die Diagnose kleiner Einspritzmengen, die im Bereich von wenigen Milligramm liegen, entscheidend für die Einhaltung der grenzenden Abgasemission.The inventive method also opens up the possibility that the absolute value of the associated injection quantity is determined at the stationary operating point set for adaptation with equivalent injection quantities from a stored torque model of the internal combustion engine. A diagnosis of the absolute value of the injection quantity is precisely for the diagnosis of small injection quantities, which are in the range of a few milligrams, crucial for compliance with the adjacent exhaust emission.

Als vorteilhaft hat es sich erwiesen, den Beginn und die Dauer der Aufladung des piezoelektrischen Aktors derart einzustellen, dass beim erzeugten Aktorsignal (z.B. Nadelanschlag) für jeden Injektor zum selben Kurbelwellenwinkel, bezogen auf den oberen Druckpunkt des entsprechenden Kolbens der Brennkraftmaschine erfolgen soll.It has proven to be advantageous to set the beginning and the duration of the charging of the piezoelectric actuator such that the generated actuator signal (eg needle stop) for each injector for the same crankshaft angle, based on the upper pressure point of the corresponding piston of the internal combustion engine is to take place.

Dadurch können Einspritzmengenschwankungen und auch Unterschiede beim Einspritzbeginn, welche durch Fertigungstoleranzen (z.B. Leerhub) hervorgerufen werden, mittels des Aktorsignals und einer Verschiebung des Ansteuerzeitpunkts vollständig kompensiert werden. Dies zeigt sich insbesondere bei Vor- oder Nacheinspritzungen.As a result, injection quantity fluctuations and also differences in the start of injection, which are caused by manufacturing tolerances (for example idle stroke), can be completely compensated for by means of the actuator signal and a shift of the activation instant. This is especially evident in pre- or post-injections.

Die Erfindung wird im folgenden anhand der schematischen Zeichnung näher erläutert. Dabei zeigen:

Figur 1
ein Flussdiagramm zur Durchführung der erfindungsge- mäßen Einspritzmengengleichstellung
Figur 2
Ansteuerungssignale und Ventilhübe von zwei Injekto- ren bei unterschiedlicher Anpassung
The invention will be explained in more detail below with reference to the schematic drawing. Showing:
FIG. 1
a flowchart for carrying out the injection quantity equalization according to the invention
FIG. 2
Control signals and valve lifts of two injectors with different adjustment

In Figur 1 ist nach Start 1 der Einspritzmengengleichstellung im nächsten Schritt eine Initialisierungsphase 2 vorgesehen, in der die in einem früheren Regelungszyklus abgespeicherten Adaptionsdatenwerte in ein (nicht dargestelltes) Motorsteuerungsgerät (ECU) geladen werden. Die Initialisierung eines neuen Regelungszyklus kann sowohl nach jedem Startvorgang der Brennkraftmaschine, als auch nach bestimmten, vorgegebenen Zeit- oder Wartungsintervallen erfolgen.In FIG. 1 After injection quantity equalization start 1, an initialization phase 2 is provided in the next step in which the adaptation data values stored in an earlier control cycle are loaded into an engine control unit (not shown). The initialization of a new control cycle can be carried out both after each startup of the internal combustion engine, as well as after certain predetermined time or maintenance intervals.

Nach dem Ende der Initialisierung 2 erfolgt in einem passiven Regelungsschritt 3 die Überprüfung der Aktivierungsbedingungen. Dabei geht es darum, abzuwarten bis bevorzugte Betriebsbedingungen für die Adaption an bestimmte Einspritzparameterwerte erreicht sind. Dazu gehören beispielsweise die Last, die Drehzahl oder die Kühlwassertemperatur. Dabei muss die Motorsteuerung gegebenenfalls so umgestellt werden, dass bei der nachfolgenden Adaption die Dynamik der zeitlichen Veränderungen des zur Durchführung des Adaptionszyklus ausgesuchten Betriebspunktes begrenzt wird.After the end of the initialization 2, the activation conditions are checked in a passive control step 3. The aim is to wait until the preferred operating conditions for adaptation to certain injection parameter values have been reached. These include, for example, the load, the speed or the cooling water temperature. The must If necessary, the motor control can be changed so that in the subsequent adaptation, the dynamics of the temporal changes of the selected for performing the adaptation cycle operating point is limited.

Sobald die Aktivierungsbedingungen erhöht sind, wird der eigentliche aktive Regelungszyklus 4 gestartet. Mit den dem Motorbetriebszustand zugehörigen Einspritzparameter 5 wird eine Regelung 6 der Ansteuerdauer und Aufladezeitdauer durchgeführt. Als Ergebnis sind die Einspritzmengen der einzelnen Injektoren der Brennkraftmaschine in einem bestimmten Betriebspunkt aneinander angeglichen und die Aktorsignale der verschiedenen Injektoren erfolgen zum selben Zeitpunkt. Ausführliche Angaben dazu, folgen in der Figurenbeschreibung zur Figur 2. Zum anderen ist an dieser Stelle des Ablaufs auch die zusätzliche Auswertungsmöglichkeit gegeben, dass am gewählten Betriebspunkt mit den gegebenen Einspritzparameterwerten auf eine aus dem Drehmomentenmodell bekannte Einspritzmenge geschlossen wird, die gemäß dem erzielten Drehmoment gegeben sein muss.As soon as the activation conditions are increased, the actual active control cycle 4 is started. With the engine operating state associated injection parameter 5, a control 6 of the drive time and charging time is performed. As a result, the injection quantities of the individual injectors of the internal combustion engine are matched to one another at a specific operating point, and the actuator signals of the various injectors take place at the same time. Detailed information, follow in the description of the figures for FIG. 2 , On the other hand, at this point in the process, there is also the additional evaluation possibility that, at the selected operating point, the given injection parameter values are used to deduce an injection quantity known from the torque model, which must be given in accordance with the achieved torque.

Danach, im Schritt 7 (Adaption der Ansteuerparameter) werden weitere Einspritzparameter bzw. Einspritzparametersätze i geladen und dafür jeweils die Regelung 6 durchgeführt mit einer Bestimmung der am eingestellten Wert des gewählten Einspritzparameters vorliegenden Einspritzmengenunterschiede bzw. mit der Gleichstellung durch entsprechende Korrekturfaktor für einen Ansteuerparameter. Zur Adaption wird ein geeigneter Ansteuerparameter, wie beispielsweise an den Aktor angelegte Ansteuerdauer und Aufladezeitdauer ausgewählt. Die resultierenden Adaptionswerte werden dem Einspritzparametersatz, also primär dem Einspritzparameter, wie z.B. Einspritzdruck und Einspritzdauer dessen Einfluss auf die Einspritzmengenunterschiede festgehalten werden soll, zugeordnet und abgespeichert, damit sie später, beim Fahrbetrieb zur direkten Einspritzmengengleichstellung ohne Regelungszyklus abgerufen werden können. Wenn die Adaption für genügend viele Stützstellen (typischer Weise 5 bis 10), also beispielsweise für alle i=1 bis i=K eingestellten Einspritzparameterwerte des Druckes durchgeführt wurde, ist das Ende 8 der Adaption bzw. des laufenden Regelungszyklus erreicht und die gespeicherten Adaptionswerte können im Fahrbetrieb zur Gleichstellung der Einspritzmengen verwendet werden.Thereafter, in step 7 (adaptation of the control parameters), further injection parameters or injection parameter sets i are loaded and control 6 is carried out for each with a determination of the injection quantity differences present at the set value of the selected injection parameter or with equality by corresponding correction factor for a control parameter. For adaptation, a suitable control parameter, such as, for example, the activation duration applied to the actuator and the charging time duration, are selected. The resulting adaptation values become the injection parameter set, ie primarily the injection parameter, such as, for example, injection pressure and injection duration, whose influence on the injection quantity differences is to be held, assigned and stored, so that they can be retrieved later, during driving for direct injection quantity equalization without control cycle. If the adaptation has been carried out for a sufficient number of interpolation points (typically 5 to 10), for example for all of the injection parameter values of the pressure set i = 1 to i = K, the end 8 of the adaptation or the current control cycle is reached and the stored adaptation values can be reached be used while driving to equalize the injection quantities.

Figur 2 zeigt die in Schritt 6 durchgeführte Anpassung der Aktorsignale durch Veränderung der Ansteuerdauer und Aufladezeitdauer. Figuren 2A bis C zeigen im oberen Bereich zwei Ansteuerungssignale zweier Injektoren. Die Ansteuerungssignale wurden zur besseren Darstellbarkeit übereinander abgebildet. Im unteren Bereich sind die Ventilhübe der entsprechenden Injektoren abgebildet. FIG. 2 shows the adjustment made in step 6 of the actuator signals by changing the drive time and charging period. FIGS. 2A to C show in the upper area two control signals of two injectors. The drive signals have been superimposed on each other for better representability. The bottom section shows the valve strokes of the corresponding injectors.

In Figur 2A werden die Injektoren mit identischen Ansteuerungssignalen angesteuert. Der erste Injektor erhält das Ansteuerungssignal 10 der zweite Injektor das Ansteuerungssignal 11. Jedes Ansteuerungssignal setzt sich aus einem nach oben gerichteten Aufladesignal (dreiecksförmig) 10` bzw. 11` und einem nach unten gerichteten Entladesignal 10" bzw. 11" (dreiecksförmig), das bei t1 anfängt und bei t2 endet. Wie zu erkennen ist, sind die Aufladedauern von 10' und 11' und die Entladedauer von 10" und 11" identisch. Der Zeitraum zwischen dem Ende der Aufladung und dem Anfang der Entladung ist für alle Figuren 2A bis 2C unverändert (Bereich zwischen t2 und t3). Aufgrund von Fertigungstoleranzen bewirken die gleichen Ansteuerungssignale 10 und 11 unterschiedliche Ventilhübe bei den Injektoren wie in den Signalen 13 und 14 zu erkennen ist. Dabei entspricht der Ventilhub 13 dem ersten Injektor und der Ventilhub 14 dem zweiten Injektor. Beim Erreichen des maximalen Nadelhubs (Nadelanschlag der Düsennadel) erzeugt der Aktor des ersten Injektors ein Aktorsignal S1 zum Zeitpunkt von ca. 1,3 Zeiteinheiten. Der Aktor des zweiten Injektors erzeugt ein Aktorsignal S2 bei ca. 1,4 Zeiteinheiten. Wie zu erkennen ist, wird das Ventil des zweiten Injektors weniger angehoben als das des ersten Injektors, trotz gleicher Ansteuerungssignale. Außerdem wird das Ventil des zweiten Injektors erst zum Zeitpunkt t2 angehoben, wobei dies beim ersten Injektor schon viel früher erfolgt (t'1). Diese Verzögerung wird durch den größeren Leerhub des zweiten Injektors verursacht.In FIG. 2A the injectors are controlled with identical control signals. The first injector receives the drive signal 10, the second injector the drive signal 11. Each drive signal consists of an upwardly directed charge signal (triangular) 10 'or 11' and a downward discharge signal 10 "or 11" (triangular), the begins at t 1 and ends at t 2 . As can be seen, the charge durations of 10 'and 11' and the discharge durations of 10 "and 11" are identical. The period between the end of the charge and the beginning of the discharge is for all FIGS. 2A to 2C unchanged (range between t 2 and t 3 ). Due to manufacturing tolerances cause the same drive signals 10 and 11 different valve lifts at the injectors as in the signals 13 and 14 to recognize is. The valve lift 13 corresponds to the first injector and the valve lift 14 corresponds to the second injector. Upon reaching the maximum needle stroke (needle stop of the nozzle needle), the actuator of the first injector generates an actuator signal S1 at the time of about 1.3 time units. The actuator of the second injector generates an actuator signal S2 at about 1.4 time units. As can be seen, the valve of the second injector is raised less than that of the first injector, despite the same drive signals. In addition, the valve of the second injector is raised only at the time t 2 , which is done much earlier in the first injector (t ' 1 ). This delay is caused by the larger idle stroke of the second injector.

In Figur 2B wird nun das Ansteuerungssignal des zweiten Injektors 11 etwas verändert, in dem die Aufladezeit verlängert wird und die Ansteuerungsdauer. Dies wird erreicht, in dem das Ende der Aufladezeit bei t2 unverändert bleibt. Die Ansteuerdauer setzt sich zusammen aus der Ladezeitdauero (Aufladezeitdauer und Entladezeitdauer) und dem Zeitraum zwischen den beiden Signalen. Der frühe Beginn des Aufladevorgangs führt zu einer früheren Überwindung des Leerhubs und damit zu einer schnelleren Ansteuerung des Ventils. Zu dem bewirkt der längere Ladevorgang eine Vergrößerung des maximalen Ventilhubs (von 16 auf 16'), d.h. von 40µm auf über 50µm, wie in den Figuren 2A und 2B gezeigt ist. Ebenfalls durch die Veränderung des Ansteuerungssignals des zweiten Injektors verschiebt sich das Aktorsignal S2 zu einem früheren Zeitpunkt, so dass die Aktorsignale S1 und S2 nunmehr näher beieinander sind als in Figur 2A.In FIG. 2B Now, the drive signal of the second injector 11 is changed slightly, in which the charging time is extended and the driving time. This is achieved by leaving the end of the charging time unchanged at t 2 . The activation duration consists of the charging time period (charging time duration and discharge time duration) and the time period between the two signals. The early start of the charging process leads to an earlier overcoming of the idle stroke and thus to a faster actuation of the valve. In addition, the longer charge causes an increase in the maximum valve lift (from 16 to 16 '), ie from 40μm to over 50μm, as in the FIGS. 2A and 2B is shown. Also by the change of the drive signal of the second injector, the actuator signal S2 shifts to an earlier time, so that the actuator signals S1 and S2 are now closer to each other than in FIG. 2A ,

In Figur 2C ist im Unterschied zur Figur 2B lediglich das Ladesignal 11" " nochmals verlängert worden (Beginn jetzt bei t0), ohne dabei das Ende (t2) dieses Ladesignals zu verändern. Dadurch wird selbstverständlich die Ansteuerdauer verlängert. Durch dieses besondere Ladesignal 11'''' erfolgt der Ventilhub des zweiten Injektors zeitgleich zum Ventilhub des ersten Injektors, so dass die Hübe im unteren Bereich der Figur 2C nicht mehr auseinander zu halten sind. Durch die Anpassung der Ansteuerungsdauer und der Aufladezeitdauer kann der Ventilhub der einzelnen Injektoren angepasst werden, so dass die Aktorsignale S1 und S2 zeitgleich erfolgen. Unter dieser Gleichzeitigkeit ist zu verstehen, dass das Aktorsignal des ersten Injektors, bei einem bestimmten Kurbelwellenwinkel des Kolbens bezogen auf den oberen Totwinkel des Kolbens erfolgt und entsprechend das Aktorsignal des zweiten Injektors bei dem gleichen Kurbelwellenwinkel bezogen auf seinen oberen Totpunkt des Kolbens erfolgt.In Figure 2C is different from FIG. 2B only the charging signal 11 "" has been extended again (start now at t 0 ) without changing the end (t 2 ) of this charging signal. As a result, of course, the driving time is extended. Due to this special charging signal 11 "", the valve lift of the second injector takes place at the same time as the valve lift of the first injector, so that the strokes in the lower region of FIG. 2C can no longer be separated. By adjusting the activation duration and the charging period, the valve lift of the individual injectors can be adjusted so that the actuator signals S1 and S2 occur simultaneously. This simultaneity means that the actuator signal of the first injector is at a specific crankshaft angle of the piston relative to the upper dead angle of the piston and correspondingly the actuator signal of the second injector takes place at the same crankshaft angle relative to its top dead center of the piston.

Bei jedem Regelungszyklus 6 werden die zuletzt gespeicherten Adaptionswerte bzw. Korrekturfaktoren von den neu ermittelten überschrieben, wodurch insbesondere die zwischenzeitlich aufgetretenen Alterungserscheinungen der Einspritzvorrichtung, die eventuell zu veränderten Streuungen bezüglich der Einspritzmengen in die verschiedenen Brennräume führen, Berücksichtigung finden.In each control cycle 6, the last stored adaptation values or correction factors are overwritten by the newly determined, whereby in particular the aging phenomena of the injection device that have occurred in the meantime, which possibly lead to changed variations with regard to the injection quantities into the different combustion chambers, are taken into account.

Optional ist es an dem eingestellten Betriebs- und aufgrund der Kenntnis des Motorbetriebszustandes (Temperatur des Kühlwassers, aktive Verbraucher) möglich, aus dem Drehmomentenmodell den Absolutwert der Einspritzmenge herauszulesen und etwa für die exakte Kalibration des Kennfeldes Einspritzmengen zu verwenden.Optionally, it is possible on the set operating and based on the knowledge of the engine operating condition (temperature of the cooling water, active consumers) to read out of the torque model the absolute value of the injection quantity and about to use for the exact calibration of the map injection quantities.

Claims (7)

  1. Method for balancing out the differences in the injection quantities between the cylinders in an internal combustion engine whereby, for various operating points of the internal combustion engine, an adaptation of the differences in the injection quantities is carried out for at least one selected injection parameter, and that the differences in the injection quantities are determined for the selected operating point and are learned as adaptation values (step 6) which are assigned to the injection parameter value concerned,
    characterised in that
    during the adaptation, the dynamics of a selected operating point is limited (step 3) and that for the purpose of limiting the dynamics the injection parameter is set in such a way that the selected operating point remains essentially static, with the learned adaptation values being used in calculating correction values individual to each cylinder, which are applied to at least one actuation parameter of an injection device on the internal combustion engine in such a way as to effect a balancing out of the injection quantities, time-traces of the injections and the start of the hydraulic injection.
  2. Method according to claim 1
    characterised in that
    the injection device for each cylinder takes the form of an injector with a piezo-electric actuator, whereby the duration of the actuation, the time point of actuation and/or the duration of the recharging time are used as the actuation parameters.
  3. Method according to claim 2
    characterised in that
    for each cylinder the start (t3) of the discharge of the corresponding piezo-electric actuator takes place at the same crankshaft angle relative to top-dead-centre for the corresponding piston of the internal combustion engine.
  4. Method according to at least one of the claims 3 or 4
    characterised in that
    for each cylinder the end (t2) of the recharging of the corresponding piezo-electric actuator takes place at the same crankshaft angle relative to top-dead-centre for the corresponding piston of the internal combustion engine.
  5. Method according to at least one of the preceding claims
    characterised in that
    the durations of the discharge times (10", 11") of all the actuators are the same.
  6. Method according to at least one of the claims 2 to 5
    characterised in that the start and the duration of the recharging of the piezo-electric actuator are set in such a way that the actuator signal (S1, S2) which is generated for each injector occurs at the same crankshaft angle relative to top-dead-centre for the corresponding piston of the internal combustion engine.
  7. Method according to at least one of the preceding claims
    characterised in that the selected operating point is located in the no-load, partial load or full load region.
EP05701629A 2004-02-09 2005-02-01 Method for equalizing the differences in injection quantities between the cylinders of a combustion engine Revoked EP1716330B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004006294A DE102004006294B3 (en) 2004-02-09 2004-02-09 Method for equalizing the injection quantity differences between the cylinders of an internal combustion engine
PCT/EP2005/050407 WO2005075806A1 (en) 2004-02-09 2005-02-01 Method for equalizing the differences in injection quantities between the cylinders of a combustion engine

Publications (2)

Publication Number Publication Date
EP1716330A1 EP1716330A1 (en) 2006-11-02
EP1716330B1 true EP1716330B1 (en) 2010-07-21

Family

ID=34832568

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05701629A Revoked EP1716330B1 (en) 2004-02-09 2005-02-01 Method for equalizing the differences in injection quantities between the cylinders of a combustion engine

Country Status (4)

Country Link
US (1) US7319930B2 (en)
EP (1) EP1716330B1 (en)
DE (2) DE102004006294B3 (en)
WO (1) WO2005075806A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL159720A0 (en) * 2004-01-06 2004-06-20 Robert Harold Steinberg Smart handle and hinge system
DE102005001887B3 (en) * 2005-01-14 2006-07-06 Siemens Ag Method for increasing the control range for the equalization of injection quantity differences
DE102005030870A1 (en) * 2005-07-01 2007-01-11 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE102006002738A1 (en) * 2006-01-20 2007-08-02 Robert Bosch Gmbh Control system for fuel injectors, at a motor common rail assembly, uses signals and adapted correction values to maintain a long-term consistent performance without sensors/actuators
DE102006033869B3 (en) 2006-07-21 2008-01-31 Siemens Ag Method and device for diagnosing the cylinder-selective unequal distribution of a fuel-air mixture, which is supplied to the cylinders of an internal combustion engine
DE102006036568A1 (en) * 2006-08-04 2008-02-07 Siemens Ag Method for detecting valve opening times of fuel injection systems of an internal combustion engine
DE102006039378B4 (en) * 2006-08-22 2012-01-05 Bayerische Motoren Werke Aktiengesellschaft Method for operating an Otto internal combustion engine
DE102007019099B4 (en) * 2007-04-23 2016-12-15 Continental Automotive Gmbh Method and device for calibrating fuel injectors
DE102007020964A1 (en) * 2007-05-04 2008-11-06 Robert Bosch Gmbh Method for the cylinder equalization of an internal combustion engine
DE102007024823B4 (en) * 2007-05-29 2014-10-23 Continental Automotive Gmbh Method and device for determining a drive parameter for a fuel injector of an internal combustion engine
JP4424380B2 (en) * 2007-06-20 2010-03-03 株式会社デンソー Injection amount control device and fuel injection system using the same
DE102007042994A1 (en) * 2007-09-10 2009-03-12 Robert Bosch Gmbh Method for assessing an operation of an injection valve when applying a drive voltage and corresponding evaluation device
DE102008027516B3 (en) * 2008-06-10 2010-04-01 Continental Automotive Gmbh Method for injection quantity deviation detection and correction of an injection quantity and injection system
US8131447B2 (en) * 2008-07-11 2012-03-06 Tula Technology, Inc. Internal combustion engine control for improved fuel efficiency
US9020735B2 (en) 2008-07-11 2015-04-28 Tula Technology, Inc. Skip fire internal combustion engine control
US8701628B2 (en) 2008-07-11 2014-04-22 Tula Technology, Inc. Internal combustion engine control for improved fuel efficiency
US8646435B2 (en) * 2008-07-11 2014-02-11 Tula Technology, Inc. System and methods for stoichiometric compression ignition engine control
US8402942B2 (en) * 2008-07-11 2013-03-26 Tula Technology, Inc. System and methods for improving efficiency in internal combustion engines
US8336521B2 (en) * 2008-07-11 2012-12-25 Tula Technology, Inc. Internal combustion engine control for improved fuel efficiency
US9664130B2 (en) 2008-07-11 2017-05-30 Tula Technology, Inc. Using cylinder firing history for combustion control in a skip fire engine
US8616181B2 (en) 2008-07-11 2013-12-31 Tula Technology, Inc. Internal combustion engine control for improved fuel efficiency
DE102008040626A1 (en) * 2008-07-23 2010-03-11 Robert Bosch Gmbh Method for determining the injected fuel mass of a single injection and apparatus for carrying out the method
US8511281B2 (en) 2009-07-10 2013-08-20 Tula Technology, Inc. Skip fire engine control
WO2012075290A1 (en) 2010-12-01 2012-06-07 Tula Technology, Inc. Skip fire internal combustion engine control
US9010303B2 (en) * 2011-01-28 2015-04-21 Cummins Intellectual Property, Inc. System and method of detecting hydraulic start-of-injection
WO2012122504A2 (en) 2011-03-09 2012-09-13 Cummins Intellectual Property, Inc. Connecting rod with offset cap holes for internal combustion engine
DE102013213405A1 (en) * 2013-07-09 2015-01-15 Robert Bosch Gmbh Method for the separation of quantity errors of at least one cylinder of an internal combustion engine supplied amount of fuel and air quantity
US10072559B2 (en) * 2016-09-23 2018-09-11 Pratt & Whitney Canada Corp. Method of operating an engine having a pilot subchamber at partial load conditions
JP6945053B2 (en) * 2018-02-26 2021-10-06 日立Astemo株式会社 Fuel injection control device, fuel injection control method
CN112585339B (en) 2018-08-21 2024-03-19 卡明斯公司 System and method for determining and adjusting fuel injection control parameters

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184944A (en) * 1984-03-02 1985-09-20 Toyota Motor Corp Fuel injection control method of respective cylinder of electronically-controlled diesel engine
JPS60184945A (en) * 1984-03-02 1985-09-20 Toyota Motor Corp Fuel injection control method for every cylinder of electronically-controlled diesel engine
JPS60184948A (en) * 1984-03-02 1985-09-20 Toyota Motor Corp Fuel injection learning control method for respective cylinder of electronically controlled diesel engine
DE4122139C2 (en) * 1991-07-04 2000-07-06 Bosch Gmbh Robert Method for cylinder equalization with regard to the fuel injection quantities in an internal combustion engine
US5385129A (en) * 1991-07-04 1995-01-31 Robert Bosch Gmbh System and method for equalizing fuel-injection quantities among cylinders of an internal combustion engine
JP2969540B2 (en) * 1993-07-26 1999-11-02 株式会社ユニシアジェックス Air-fuel ratio control device for internal combustion engine
DE19720009C2 (en) * 1997-05-13 2000-08-31 Siemens Ag Method for cylinder equalization with regard to the fuel injection quantity in an internal combustion engine
DE19855939A1 (en) 1997-12-18 1999-06-24 Fev Motorentech Gmbh & Co Kg Method of operating a multicylinder internal combustion engine
JP2001098985A (en) * 1999-09-30 2001-04-10 Mazda Motor Corp Device and method for controlling fuel for spark- ingnited direct injection engine
DE10011690C2 (en) 2000-03-10 2002-02-07 Siemens Ag Cylinder equalization procedure
DE10012025A1 (en) 2000-03-11 2001-10-18 Bosch Gmbh Robert Method for operating a multi-cylinder internal combustion engine
JP4089244B2 (en) * 2002-03-01 2008-05-28 株式会社デンソー Injection amount control device for internal combustion engine
JP3966096B2 (en) * 2002-06-20 2007-08-29 株式会社デンソー Injection amount control device for internal combustion engine
DE10233778A1 (en) * 2002-07-25 2004-02-05 Robert Bosch Gmbh Compensation method for moment differences of cylinders of combustion engine involves correcting hub of injection valve allocated to cylinder depending on cylinder coordination factor

Also Published As

Publication number Publication date
DE102004006294B3 (en) 2005-10-13
US7319930B2 (en) 2008-01-15
EP1716330A1 (en) 2006-11-02
WO2005075806A1 (en) 2005-08-18
DE502005009951D1 (en) 2010-09-02
US20070162215A1 (en) 2007-07-12

Similar Documents

Publication Publication Date Title
EP1716330B1 (en) Method for equalizing the differences in injection quantities between the cylinders of a combustion engine
EP1716331B1 (en) Method for synchronizing cylinders in terms of quantities of fuel injection in a heat engine
DE102008043165B4 (en) Method and device for calibrating the pre-injection quantity of an internal combustion engine, in particular a motor vehicle
WO2007065573A1 (en) Method for controlling an internal combustion engine, in particular a compression-ignition internal combustion engine
DE102010017123B4 (en) Fuel injection control device for internal combustion engines
DE102008040626A1 (en) Method for determining the injected fuel mass of a single injection and apparatus for carrying out the method
DE102006020675A1 (en) Method for lambda and torque control of an internal combustion engine and program algorithm
EP1688606B1 (en) Method for increasing the controlling range for equalizing the injection quantities
EP1495222B1 (en) Method for monitoring an internal combustion engine
DE102009009270A1 (en) Calibration method for injector of internal combustion engine, involves detecting operational condition of internal combustion engine, and detecting speed dependent-variable during working cycle of cylinder of internal combustion engine
WO2008145617A1 (en) Method and device for determining a control parameter for a fuel injector of an internal combustion engine
DE19705463A1 (en) Controlling fuel supply to internal combustion engine
DE102004001119A1 (en) Method and device for controlling an internal combustion engine
DE102004022999B3 (en) Determining fuel vapor retention system regeneration valve control characteristic involves starting stepwise increase in pulse width at value greater than null, smaller than value corresponding to previously determined minimum pulse width
DE112013001817T5 (en) Motor fuel property determination means
DE10302058B4 (en) Method for operating an internal combustion engine
WO2008043784A1 (en) Method and device for determining an operating characteristic of an injection system
EP1432901A1 (en) Method, computer program, and control and/or regulating device for operating an internal combustion engine, and corresponding internal combustion engine
EP1527267B1 (en) Method for improving the true running of an internal combustion engine
DE10303573B4 (en) Method, computer program, storage medium and control and / or regulating device for operating an internal combustion engine, and internal combustion engine, in particular for a motor vehicle
DE10311141A1 (en) Method, computer program, storage medium and control and / or regulating device for operating an internal combustion engine, and internal combustion engine, in particular for a motor vehicle
WO2007039391A1 (en) Diagnostic method and device for controlling an internal combustion engine
DE102008005154A1 (en) Method and device for monitoring a motor control unit
DE112016004781T5 (en) Device for controlling fuel injection for an engine
DE10338775B4 (en) Diagnostic device for an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060714

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005009951

Country of ref document: DE

Date of ref document: 20100902

Kind code of ref document: P

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: MAN DIESEL & TURBO, FILIAL AF MAN DIESEL & TURBO S

Effective date: 20110414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110302

Year of fee payment: 7

Ref country code: IT

Payment date: 20110218

Year of fee payment: 7

Ref country code: DE

Payment date: 20110228

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502005009951

Country of ref document: DE

Effective date: 20110414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110217

Year of fee payment: 7

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 502005009951

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 502005009951

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20111211

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20111211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 502005009951

Country of ref document: DE

Effective date: 20120531