EP1714024B1 - Brennstoffsystemteil mit einer kabeldurchführung - Google Patents

Brennstoffsystemteil mit einer kabeldurchführung Download PDF

Info

Publication number
EP1714024B1
EP1714024B1 EP04802770.0A EP04802770A EP1714024B1 EP 1714024 B1 EP1714024 B1 EP 1714024B1 EP 04802770 A EP04802770 A EP 04802770A EP 1714024 B1 EP1714024 B1 EP 1714024B1
Authority
EP
European Patent Office
Prior art keywords
holding body
recess
wire
cone body
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04802770.0A
Other languages
English (en)
French (fr)
Other versions
EP1714024A1 (de
Inventor
Juergen Hanneke
Bernd Streicher
Arzu Schilling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1714024A1 publication Critical patent/EP1714024A1/de
Application granted granted Critical
Publication of EP1714024B1 publication Critical patent/EP1714024B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/005Arrangement of electrical wires and connections, e.g. wire harness, sockets, plugs; Arrangement of electronic control circuits in or on fuel injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials

Definitions

  • the invention relates to a fuel system part with a cable bushing, in particular a high-pressure cable bushing for fuel systems, in particular a fuel injection valve.
  • a fuel injector is known.
  • electrical lines are led to outputs.
  • a fuel injection valve with a piezoelectric actuator and an actuatable by means of a valve needle valve closing body, which cooperates with a valve seat surface to a sealing seat known.
  • the actuator is arranged on the end of the fuel injection valve facing away from the discharge side and sealed against a fuel introduced laterally and in the direction of discharge below the spring diaphragm via a spring diaphragm extending over the cross section of the fuel injection valve.
  • the spring diaphragm divides the fuel injection valve into a fuel-filled discharge-side portion and a fuel-sealed portion in which the actuator is located.
  • the sealed portion of the fuel injection valve has an electrical connection, via which an electrical supply line is guided to the drive element of the actuator.
  • the electrical connection is inserted in a laterally mounted on the valve housing of the fuel injection valve bore.
  • a disadvantage of the DE 40 05 455 A1 known fuel injection valve is that the fuel can be introduced only via a laterally attached to the valve housing and lying in Abspritzides below the spring diaphragm fuel inlet nozzle in the fuel injection valve.
  • the fuel can not be introduced into the fuel injection valve via the end of the valve housing opposite the discharge side. Due to the unfavorable position of the fuel inlet nozzle, both the length and the diameter of the fuel injection valve is increased. In addition, the connection of a suitable fuel supply to the fuel inlet nozzle is made difficult.
  • Fuel injection valve also has the disadvantage that the spring diaphragm forms a large cross-sectional area, so that due to the fuel pressure, a large force acts on the attachment points of the spring diaphragm.
  • the known fuel injection valve is therefore unsuitable for high pressures, such as those required when injecting diesel fuel. But even at lower pressures may cause damage to the spring diaphragm, which is still promoted by the occurring during actuation of the fuel injection valve movements of the spring diaphragm on the side of the valve needle.
  • the fuel system part according to the invention with a grommet with the features of claim 1 has the advantage that it can form a self-reinforcing seal, ie, a seal whose sealing effect increases with increasing admission.
  • the grommet can be used in particular as a high-pressure cable bushing for fuel systems, ie, for example, in a pump, a fuel reservoir (common rail) or a fuel injection valve can be used.
  • the fuel system part according to the invention has the advantage that a self-reinforcing seal is created by the interaction of the cone body with the conical recess of the component, the sealing effect increases with increasing admission.
  • a universally applicable solution is created, which ensures a great deal of flexibility, in particular with regard to the arrangement of the electrical connections and the fuel supply.
  • the cone body comprises an at least substantially axial or coaxial recess in which the holding body is arranged.
  • the recess of the cone body has at least one step on which the holding body is supported.
  • a thread is provided in the recess of the cone body, in which the holding body engages.
  • the thread may be provided at one end of the recess.
  • the thread can be formed in a simple manner in a bore of the cone body and also has the advantage that a reliable hold of the holding body is ensured.
  • the recess of the conical body is a conical bore and that the holding body is at least substantially conical and inserted in the conical bore of the conical body, wherein between the holding body and the conical body on the conical bore a seal is formed.
  • a self-reinforcing seal created whose sealing effect increases with increasing load.
  • the holding body is made of glass and the wire is melted into the holding body.
  • This can e.g. be achieved in that in the cone body a glass-coated wire is introduced, the parts are heated above the temperature of the yield point of glass and then the soft glass is pressed on both sides in the cone body.
  • the flowable glass material adapts to the predetermined by the recess of the cone body shape, whereby the holding body is formed.
  • the flowing glass material sets, for example, a paragraph or flows into a thread of the cone body. Since the holding body isolates the wire from the cone body, the cone body may be formed of a conductive material, e.g. a steel.
  • the cone body has at least an equal and preferably a larger expansion behavior as the holding body in the time required for melting the wire into the hollow body temperature changes.
  • the cone body preferably contracts more when cooling than the glass body, so that the cone body exerts a pressure on the holding body after cooling.
  • the holding body and / or the cone body is formed of technical ceramics.
  • the holding body and the cone body may also be formed of the same technical ceramic, in particular in one piece.
  • the shaping of the holding body and / or the cone body can then take place by shaping in a mold and / or by grinding.
  • the training of technical ceramics has the advantage that a good insulation of the wire is achieved and that there is a very high compressive strength.
  • the holding body and / or cone body may also be formed from a plastic, in particular from a glass fiber reinforced plastic.
  • the wire may have compressions or pinches at one or more locations.
  • the wire may be at least partially banded, i. shallow, be formed and have locations at which a rotation of the band-shaped wire about its longitudinal axis, e.g. at 90 °.
  • Fuel injection valve is formed of a hardened steel.
  • the component thus consists of a material that at least partially changes its properties at significant temperature increases, ie, that the component is formed of a temperature-sensitive material, a conical recess is incorporated in this, in which the cable gland is inserted.
  • the cable bushing itself can be heated considerably in the production, for example, for melting the holding body, if it is made of glass, or for heating, in particular baking, of the holding body, if it is made of technical ceramics.
  • the component however, it may be temperature sensitive, eg the cured steel would at least partially lose the properties achieved by curing during heating.
  • the cable gland is inserted into the component, the advantages of the properties of the different materials can be combined. The same applies if the component is made of another temperature-sensitive material, for example of a plastic, in particular a hard and fuel-resistant plastic.
  • Fig. 1 shows in an axial sectional view of an inventive fuel injection valve 1 designed as a fuel system part.
  • the fuel injection valve 1 is used in particular for the direct injection of fuel, in particular of diesel fuel, into a combustion chamber of a self-igniting internal combustion engine as a so-called diesel injection valve.
  • the fuel system part according to the invention may also be a fuel pump, a fuel storage chamber (common rail) or another fuel system part of a fuel system.
  • the fuel injection valve 1 has a first valve housing part 2, a second valve housing part 3 and a third valve housing part 4.
  • the third valve housing part 4 is indirectly connected to the first valve housing part 2 through the second valve housing part 3 by the third valve housing part 4 is screwed by a thread 5 on the first valve housing part 2, wherein the third valve housing part 4 at a shoulder 6 on the second valve housing part 3 supported.
  • the first valve housing part 2 has an inner space 10 formed by a recess, in which an actuator 11 consisting of at least one part is provided.
  • the actuator 11 is supported on the one hand via a foot 12 on the first valve housing part 2.
  • the foot 12 is made of hardened steel, preferably a hardened alloy steel.
  • the actuator 11 is supported on a head 13.
  • the actuator 11, the foot 12 and the head 13 together form an actuator module.
  • a fuel is provided under high pressure during operation of the fuel injection valve 1.
  • the pressure of the fuel may be 1600 to 2000 bar or more, especially when diesel fuel is used as the fuel. Due to the pressure of the fuel in the interior 10, a force acts in a direction 14 on the foot 12, which presses the foot 12 against the first valve housing part 2. In this way, a hard high-pressure seal is formed between the first valve housing part 2 and the foot 12 of the actuator module, which manages without a further sealant.
  • the head 13 of the actuator module together with a coupler sleeve 17, a spacer plate 18, a control chamber sleeve 19 and the nozzle needle 16, a hydraulic coupler that can compensate for both different thermal expansions of the individual components as well as a translation of the stroke of the actuator 11 in the stroke of the nozzle needle 16 allows.
  • a negative pressure difference to the surrounding interior 10 of the fuel injection valve 1 is required in the activation of the actuator 11 in the control chamber 15.
  • a spring 20 is provided, which together with the high internal pressure in the interior 10, the high-pressure seal between the foot 12 and the first valve housing part 2 is maintained.
  • the provided in the interior 10 actuator 11 is surrounded by fuel, which has a high pressure.
  • the actuator 11 may be surrounded by a sheath. The supply of electrical energy for actuating the actuator 11 will be described below with reference to FIG Fig. 2 described in more detail.
  • Fig. 2 shows the in Fig. 1
  • Corresponding elements are provided in this and in all other figures with the same reference numerals, whereby a repetitive description is unnecessary.
  • the foot 12 is pressed against the surface 25 of the first valve housing part 2 to form the hard high-pressure seal between the foot 12 and the first valve housing 2.
  • the fuel which has a high pressure, for example from the range of 1600 bar to 2000 bar.
  • the space 26 is connected by means of an opening 27 of the first valve housing part 2 with the outside of the fuel injection valve 1.
  • two electrical lines (not shown) are guided, which direct the electrical energy for actuating the actuator 11 in the fuel injection valve 1.
  • the lines can be guided through the openings 27 or through an opening 27 corresponding opening in the space 26, for example.
  • the one line is with one connected to the first wire 31 and the other line is connected to a second wire 32.
  • the first wire 31 extends into the interior 10 of the first valve housing part 2 of the fuel injection valve 1 and is connected at a contact point 33 with an electrical contact of the actuator 11.
  • the second wire 32 is guided in the inner space 10 and connected at a contact point 34 with an electrical contact of the actuator 11.
  • the wires 31, 32 can be electrically insulated from the fuel provided in the interior 10, for example by a coating of insulating and fuel-resistant lacquer.
  • the voltage applied to actuate the actuator 11 between the two wires 31, 32 can be, for example, 160 volts to 200 volts.
  • the foot 12 has a first stepped bore 35 and a second stepped bore 36.
  • at least a portion 37 of the first stepped bore 35 and a portion 38 of the second stepped bore 36 are formed conically.
  • both the section 37 of the first stepped bore 35 and the section 38 of the second stepped bore 36 are conical, the two sections 37 and 38 tapering towards the space 26.
  • a conical recess 39 is formed in the foot 12. Accordingly, a conical recess 40 is formed in the foot 12 through the portion 38 of the second stepped bore 36.
  • the foot 12 is a member subjected to high pressure fuel on the interior 10 side, having the conical recesses 39 and 40.
  • a first cable gland 41 and a second cable gland 42 are used in the conical recesses 39 and 40.
  • the first grommet 41 is below based on FIGS. 3 and 4 described in more detail.
  • An alternative embodiment of the first grommet 41 is based on Fig. 5 described.
  • the execution of the second cable feedthrough 42 corresponds to that of the first cable feedthrough 41, so that reference can be made to the relevant description.
  • Fig. 3 shows a cone body 45 of the first cable gland 41.
  • the cone body 45 has an outer side 46, the circumference of which decreases continuously from a first end face 47 to a second end face 48 of the cone body 45.
  • the outer side 46 of the conical body 45 is conical, ie the conical body 45 is conical.
  • the cone body 45 is in the in the Fig. 2 shown used first stepped bore 35 in the region of the first portion 37, that is inserted into the conical recess 39.
  • the shape of the outer side 46 is adapted to the shape of the conical recess 39, so that there is a seal between the outer side 46 and the foot 12 in the region of the conical recess 39.
  • the cone body 45 has an axial recess 50.
  • the recess 50 may also be formed such that its axis is oriented parallel to the axis 51 of the cone body 45, so that it is a coaxial recess 50.
  • the recess 50 is formed as a stepped bore.
  • the recess 50 of the cone body 45 has a step 52.
  • a thread 53 is provided in the recess 50 formed as a bore.
  • the Fig. 4 shows an embodiment of the inventive cable gland 41.
  • the first cable gland 41 comprises the in the Fig. 3
  • the holding body 55 has a through opening 56 which is cylindrical and whose axis is parallel to the axis 51 of the cone body 45 and coincides with this.
  • the holding body 55 may be formed, for example, of glass.
  • the first wire 31 extends through the passage opening 56, so that it protrudes clearly beyond the conical body 45 and the holding body 55 inserted into the conical body 45 both on the first end face 47 and on the second end face 48.
  • the grommet 41 can be manufactured as follows. In the recess 50 of the conical body 45 of the glass-coated first wire 31 is inserted, wherein the glass sheath has a diameter which is smaller than that of the recess 50, wherein the glass sheath, however, on the first end face 47 and / or on the second end face 48 further than in the Fig. 4 shown extends to the wire 31. Then, the cone body 45, the holding body 55 and the first wire 31, that is, the entire first cable bushing 41, over the yield strength of glass, for example, heated to 1000 ° C.
  • the glass protruding at the first end face 47 and / or at the second end face 48 is acted upon in such a way that it is pressed into the recess 50.
  • the glass also flows into the thread 53 and lies around the step 52 of the cone body 45.
  • the first Cable bushing 41 engages the solidified holding body 55 in the thread 53 a.
  • the solidified holding body 55 is supported on the step 52 of the recess 50 of the cone body 45.
  • a suitably alloyed steel is used for the cone body 45, which has a thermal expansion which is at least slightly greater than that of the retaining body 55 consisting of glass.
  • the material of the first wire 31 is selected such that the thermal expansion corresponds approximately to that of the holding body 55.
  • the first grommet 41 is as in the Fig. 2 shown inserted into the conical recess 39 of the foot 12.
  • the fuel present in the interior space 10 therefore acts on the first cable bushing 41 on the first end face 47 with a force which results from the surface of the first end face 47 and the pressure of the fuel in the interior 10.
  • the first grommet 41 is pressed towards the at least approximately unpressurized space 26 in the conical recess 39, so that a self-reinforcing seal between the foot 12 and the first cable gland 41 results on the conical recess 39.
  • the fuel pressure acts on the side of the first end face 47 also on the holding body 55, so that it is also pressed in the direction of the space 26.
  • the holding body 55 is supported both on the step 52 and on the thread 53 of the first cone body 45.
  • the thread 53 may also be steplessly, ie formed in the form of grooves.
  • the thread 53 groove-shaped threads, ie threads having approximately rectangular cross-section, or that one or more annular grooves are provided in the recess 50.
  • only one of the described means for supporting the holding body 55 is provided in the recess 50 of the cone body 45, specifically, only the thread 53 or even the step 52 may be provided in the recess 50 of the cone body 45.
  • the fuel pressure in the interior 10 can also act on the first wire 31, which acts on the wire 31 with a force in the direction of the space 26.
  • the friction force existing between the wire 31 and the holding body 55 in the area of the through hole 56 is used to hold the first wire 31 in the through hole 56.
  • the first grommet 41 is fixed in the tapered recess 39 by press-fitting, gluing or the like.
  • the first grommet 41 may be soldered in the tapered recess 39, wherein the soldering is done at low temperature to at least substantially not alter the properties of the material of the foot 12, in particular to maintain the hardness of the foot 12.
  • the diameter of the cone body 45 on the first end face 47 is preferably selected so that even with possible tolerances of the conical recess 39 and the cone body 45 of the cone body 45 abuts in the region 57 of the outer side 46 at the first end face 47 on the conical recess 39 , This means that despite tolerances of the cone body 45 always rests on the pressure side of the conical recess 39. This results in an additional dependent on the pressure of the fuel in the interior 10 radial sealing force.
  • the cone body 45 may be coated with a suitable soft metal layer, e.g. be coated with nickel. As a result, the sealing effect is further improved.
  • Fig. 5 shows an alternative embodiment of a cable gland 41.
  • the recess 50 of the cone body 45 is also formed conically, wherein the diameter of the recess 50 decreases from the first end face 47 to the second end face 48 back.
  • a thread 53 is provided. Due to the conical design of the recess 50, an additional holding force for holding the holding body 55 in the cone body 45 is generated upon application of the holding body 55 on the first end face 47 by the fuel pressure in the interior 10.
  • the first wire 31 has a location 60 and a location 61 at which a change in the shape and size of the cross-sectional area of the first wire 31 is provided. In the in the Fig.
  • the cross section of the first wire at the points 60, 61 is increased, ie, at the points 60, 61 compressions of the wire 31 are provided.
  • the first wire 31 is band-shaped, wherein at the points 60, 61 respectively a rotation of the first wire 31 about the axis 51 by an angle of eg 90 ° occurs. It is also a combination of the above options conceivable.
  • an insulator is formed, which ensures safe isolation even when required for driving the actuator voltages of eg 160 volts to 200 volts.
  • the described grommet 41 can also be used for other arrangements by providing a preferably precise conical bore.
  • the cable bushing according to the invention has the advantage that it can be standardized, cost-effective, easy to assemble, space-saving, storable storable, self-reinforcing and reliable.

Description

    Stand der Technik
  • Die Erfindung betrifft ein Brennstoffsystemteil mit einer Kabeldurchführung, insbesondere eine Hochdruckkabeldurchführung für Brennstoffsysteme, insbesondere ein Brennstoffeinspritzventil.
  • Aus der EP1130249 A2 ist ein Brennstoffeinspritzventil bekannt. Bei dem bekannten Brennstoffeinspritzventil sind elektrische Leitungen an Ausgänge geführt. Aus der DE 40 05 455 A1 ist ein Brennstoffeinspritzventil mit einem piezoelektrischen Aktor und einem mittels einer Ventilnadel betätigbaren Ventilschließkörper, der mit einer Ventilsitzfläche zu einem Dichtsitz zusammenwirkt, bekannt. Der Aktor ist dabei an dem der Abspritzseite abgewandten Ende des Brennstoffeinspritzventils angeordnet und über eine sich über den Querschnitt des Brennstoffeinspritzventils erstreckende Federmembran gegen einen seitlich und in Abspritzrichtung unterhalb der Federmembran eingeführten Brennstoff abgedichtet. Die Federmembran teilt daher das Brennstoffeinspritzventil in einen mit Brennstoff gefüllten abspritzseitigen Abschnitt und einen gegen den Brennstoff abgedichteten Abschnitt, in dem sich der Aktor befindet. Der abgedichtete Abschnitt des Brennstoffeinspritzventils weist einen elektrischen Anschluss auf, über den eine elektrische Zuleitung an das Ansteuerelement des Aktors geführt ist. Der elektrische Anschluss ist dabei in eine seitlich an dem Ventilgehäuse des Brennstoffeinspritzventils angebrachte Bohrung gesteckt.
  • Nachteilig bei dem aus der DE 40 05 455 A1 bekannten Brennstoffeinspritzventil ist, dass der Brennstoff nur über einen seitlich an dem Ventilgehäuse angebrachten und in Abspritzrichtung unterhalb der Federmembran liegenden Brennstoffeinlassstutzen in das Brennstoffeinspritzventil eingeführt werden kann. Insbesondere kann der Brennstoff nicht über das der Abspritzseite gegenüberliegende Ende des Ventilgehäuses in das Brennstoffeinspritzventil eingeführt werden. Durch die unvorteilhafte Lage des Brennstoffeinlassstutzens wird sowohl die Länge als auch der Durchmesser des Brennstoffeinspritzventils vergrößert. Außerdem wird das Anschließen einer geeigneten Brennstoffzuführung an den Brennstoffeinlassstutzen erschwert.
  • Das aus der DE 40 05 455 A1 bekannte
  • Brennstoffeinspritzventil hat außerdem den Nachteil, dass die Federmembran eine große Querschnittsfläche bildet, so dass aufgrund des Brennstoffdruckes eine große Kraft an den Befestigungsstellen der Federmembran wirkt. Das bekannte Brennstoffeinspritzventil ist daher für hohe Drücke ungeeignet, wie sie z.B. beim Einspritzen von Dieselbrennstoff benötigt werden. Aber auch bei geringeren Drücken kann es zur Beschädigung der Federmembran kommen, was durch die beim Betätigen des Brennstoffeinspritzventils auftretenden Bewegungen der Federmembran auf der Seite der Ventilnadel noch gefördert wird.
  • Ein weiterer Nachteil des aus der DE 40 05 455 A1 bekannten Brennstoffeinspritzventils ist, dass der Aktor nicht gegen über die Trennfuge zwischen dem Ventilgehäuse und dem elektrischen Anschluss eindringende Stoffe geschützt ist. Außerdem ist die Verbindung des elektrischen Anschlusses mit einem elektrischen Kontakt des Aktors aufwändig, da der Aktor über eine endseitige Öffnung in das Ventilgehäuse eingeführt wird und die elektrischen Anschlüsse seitlich an den Aktor geführt sind.
  • Aus der US 4 296 275 B1 ist darüber hinaus eine hermetisch dichte Kühlanordnung bekannt, bei der ein elektrisch leitender Draht mittels einer Glasdichtung in einer Durchführungsbohrung abgedichtet ist.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Brennstoffsystemteil mit einer Kabeldurchführung mit den Merkmalen des Anspruchs 1 hat den Vorteil, dass sich eine selbstverstärkende Dichtung ausbilden lässt, d.h. eine Dichtung, deren Dichtwirkung mit zunehmender Beaufschlagung zunimmt. Die Kabeldurchführung kann insbesondere als Hochdruckkabeldurchführung für Brennstoffsysteme zum Einsatz kommen, d.h. beispielsweise in einer Pumpe, einem Brennstoffvorratsbehälter (Common Rail) oder einem Brennstoffeinspritzventil eingesetzt werden. Das erfindungsgemäße Brennstoffsystemteil hat den Vorteil, dass durch die Zusammenwirkung des Kegelkörpers mit der kegelförmigen Aussparung des Bauteils eine selbstverstärkende Dichtung geschaffen wird, deren Dichtwirkung mit zunehmender Beaufschlagung zunimmt. Gegenüber dem Stand der Technik ergibt sich der weitere Vorteil, dass eine universell anwendbare Lösung geschaffen wird, die eine große Flexibilität, insbesondere hinsichtlich der Anordnung der elektrischen Anschlüsse und der Brennstoffzufuhr, gewährleistet.
  • Durch die in den abhängigen Ansprüchen 2 bis 9 aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen der in Anspruch 1 angegebenen Kabeldurchführung möglich.
  • In vorteilhafter Weise umfasst der Kegelkörper eine zumindest im Wesentlichen axiale oder koaxiale Aussparung, in der der Haltekörper angeordnet ist. Dadurch kann der kompakte Aufbau der Kabeldurchführung weiter verbessert werden und eine gleichmäßige Beaufschlagung der gebildeten Dichtungen erreicht werden.
  • Ferner ist es vorteilhaft, dass die Aussparung des Kegelkörpers zumindest eine Stufe aufweist, an der der Haltekörper abgestützt ist. Dadurch wird auch bei einer hohen Beaufschlagung des Haltekörpers, z.B. aufgrund eines sehr hohen Brennstoffdruckes, eine Verschiebung des Haltekörpers in dem Kegelkörper verhindert.
  • Vorteilhaft ist es ferner, dass in der Aussparung des Kegelkörpers zumindest abschnittsweise ein Gewinde vorgesehen ist, in das der Haltekörper eingreift. Insbesondere kann das Gewinde an einem Ende der Aussparung vorgesehen sein. Das Gewinde kann in einfacher Weise in einer Bohrung des Kegelkörpers ausgebildet werden und bietet zudem den Vorteil, dass ein zuverlässiger Halt des Haltekörpers sichergestellt wird.
  • Ferner ist es vorteilhaft, dass die Aussparung des Kegelkörpers eine Kegelbohrung ist und dass der Haltekörper zumindest im Wesentlichen kegelförmig ausgebildet und in der Kegelbohrung des Kegelkörpers eingesetzt ist, wobei zwischen dem Haltekörper und dem Kegelkörper an der Kegelbohrung eine Dichtung ausgebildet ist. Dadurch wird zwischen dem Haltekörper und dem Kegelkörper an der Kegelbohrung eine selbstverstärkende Dichtung geschaffen, deren Dichtwirkung mit zunehmender Beaufschlagung zunimmt.
  • In vorteilhafter Weise ist der Haltekörper aus Glas ausgebildet und der Draht in den Haltekörper eingeschmolzen. Dies kann z.B. dadurch erreicht werden, dass in den Kegelkörper ein von Glas ummantelter Draht eingebracht wird, die Teile über die Temperatur der Fließgrenze von Glas erhitzt werden und dann das weiche Glas beidseitig in den Kegelkörper gepresst wird. Dabei passt sich das fließfähige Glasmaterial der durch die Aussparung des Kegelkörpers vorgegebenen Form an, wodurch der Haltekörper gebildet wird. Dabei legt sich das fließende Glasmaterial beispielsweise um einen Absatz oder fließt in ein Gewinde des Kegelkörpers hinein. Da der Haltekörper den Draht gegenüber dem Kegelkörper isoliert, kann der Kegelkörper aus einem leitenden Material ausgebildet sein, z.B. einem Stahl.
  • Vorteilhaft ist es dabei, dass der Kegelkörper bei den zum Einschmelzen des Drahtes in den Hohlkörper erforderlichen Temperaturänderungen zumindest ein gleich großes und vorzugsweise ein größeres Ausdehnungsverhalten wie der Haltekörper hat. Dadurch zieht sich der Kegelkörper beim Abkühlen vorzugsweise stärker zusammen als der Glaskörper, so dass der Kegelkörper nach dem Abkühlen einen Druck auf den Haltekörper ausübt.
  • Vorteilhaft ist es, dass der Haltekörper und/oder der Kegelkörper aus technischer Keramik ausgebildet ist. In diesem Fall können der Haltekörper und der Kegelkörper auch aus der gleichen technischen Keramik, insbesondere einstückig, ausgebildet sein. Die Formgebung des Haltekörpers und/oder des Kegelkörpers kann dann durch Formen in einer Form und/oder durch Schleifen erfolgen. Die Ausbildung aus technischer Keramik hat den Vorteil, dass eine gute Isolation des Drahtes erreicht wird und dass eine sehr hohe Druckfestigkeit besteht. Alternativ können der Haltekörper und/oder Kegelkörper auch aus einem Kunststoff, insbesondere aus einem glasfaserverstärkten Kunststoff, ausgebildet sein.
  • Vorteilhaft ist es, dass im Bereich der Durchgangsöffnung des Haltekörpers zur Erzeugung einer formschlüssigen Verbindung zwischen dem Draht und dem Haltekörper zumindest an einer Stelle eine Änderung der Form und/oder der Größe der Querschnittsfläche des Drahtes vorgesehen ist. Beispielsweise kann der Draht an einer oder mehreren Stellen Stauchungen oder Quetschungen aufweisen. Außerdem kann der Draht zumindest abschnittsweise bandförmig, d.h. flach, ausgebildet sein und Stellen aufweisen, an denen eine Verdrehung des bandförmigen Drahtes um seine Längsachse, z.B. um 90°, erfolgt. Dadurch wird die Verbindung zwischen dem Haltekörper und dem Draht weiter verbessert und eine Bewegung des Drahtes in dem Haltekörper zumindest weitgehend verhindert.
  • Vorteilhaft ist es, dass das Bauteil des Brennstoffsystemteils, insbesondere des
  • Brennstoffeinspritzventils, aus einem gehärteten Stahl ausgebildet ist. Dadurch wird eine hohe Festigkeit des Bauteils erzielt. Da das Bauteil somit aus einem Material besteht, das bei nicht unerheblichen Temperaturerhöhungen zumindest teilweise seine Eigenschaften ändert, d.h., dass das Bauteil aus einem temperaturempfindlichen Material ausgebildet ist, ist in diesem eine kegelförmige Aussparung eingearbeitet, in das die Kabeldurchführung eingesetzt ist. Die Kabeldurchführung selbst kann bei der Herstellung erheblich erwärmt werden, z.B. zum Schmelzen des Haltekörpers, falls dieser aus Glas gebildet ist, oder zum Erhitzen, insbesondere Ausbacken, des Haltekörpers, falls dieser aus technischer Keramik hergestellt ist. Das Bauteil kann jedoch temperaturempfindlich sein, z.B. würde der gehärtete Stahl beim Erwärmen die durch das Härten erzielten Eigenschaften zumindest zum Teil wieder verlieren. Da allerdings die Kabeldurchführung in das Bauteil eingesetzt wird, können die Vorteile der Eigenschaften der verschiedenen Werkstoffe kombiniert werden. Entsprechendes gilt, wenn das Bauteil aus einem anderen temperaturempfindlichen Material, z.B. aus einem Kunststoff, insbesondere einem harten und kraftstoffresistenten Kunststoff, hergestellt ist.
  • Zeichnung
  • Ausführungsbeispiele der Erfindung sind in den Zeichnungen vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigt:
  • Fig. 1
    ein erstes Ausführungsbeispiel eines erfindungsgemäßen Brennstoffsystemteils in Form eines Brennstoffeinspritzventils in einer Schnittdarstellung;
    Fig. 2
    den in Fig. 1 mit II bezeichneten Ausschnitt;
    Fig. 3
    einen Kegelkörper einer erfindungsgemäßen Kabeldurchführung gemäß dem ersten Ausführungsbeispiel;
    Fig. 4
    eine erfindungsgemäße Kabeldurchführung gemäß dem ersten Ausführungsbeispiel und
    Fig. 5
    eine erfindungsgemäße Kabeldurchführung gemäß einem alternativen Ausführungsbeispiel.
    Beschreibung der Ausführungsbeispiele
  • Fig. 1 zeigt in einer axialen Schnittdarstellung ein erfindungsgemäßes als Brennstoffeinspritzventil 1 ausgebildetes Brennstoffsystemteil. Das Brennstoffeinspritzventil 1 dient insbesondere zum direkten Einspritzen von Brennstoff, insbesondere von Dieselbrennstoff, in einen Brennraum einer selbstzündenden Brennkraftmaschine als so genanntes Dieseleinspritzventil. Das erfindungsgemäße Brennstoffsystemteil kann auch eine Brennstoffpumpe, eine Brennstoffvorratskammer (Common Rail) oder ein anderes Brennstoffsystemteil eines Brennstoffsystems sein.
  • Das Brennstoffeinspritzventil 1 weist ein erstes Ventilgehäuseteil 2, ein zweites Ventilgehäuseteil 3 und ein drittes Ventilgehäuseteil 4 auf. Dabei ist das dritte Ventilgehäuseteil 4 mittelbar mit dem ersten Ventilgehäuseteil 2 durch das zweite Ventilgehäuseteil 3 verbunden, indem das dritte Ventilgehäuseteil 4 mittels eines Gewindes 5 auf das erste Ventilgehäuseteil 2 aufgeschraubt ist, wobei sich das dritte Ventilgehäuseteil 4 an einem Absatz 6 an dem zweiten Ventilgehäuseteil 3 abstützt.
  • Das erste Ventilgehäuseteil 2 weist einen durch eine Aussparung gebildeten Innenraum 10 auf, in dem ein aus mindestens einem Teil bestehender Aktor 11 vorgesehen ist. Der Aktor 11 stützt sich dabei einerseits über einen Fuß 12 an dem ersten Ventilgehäuseteil 2 ab. Der Fuß 12 ist aus gehärtetem Stahl, vorzugsweise aus einem gehärteten legierten Stahl, hergestellt. Auf der anderen Seite stützt sich der Aktor 11 an einem Kopf 13 ab. Der Aktor 11, der Fuß 12 und der Kopf 13 bilden zusammen ein Aktormodul.
  • In dem Innenraum 10 des Brennstoffeinspritzventils 1 ist beim Betrieb des Brennstoffeinspritzventils 1 ein Brennstoff unter hohem Druck vorgesehen. Der Druck des Brennstoffs kann 1600 bis 2000 bar oder mehr betragen, insbesondere wenn als Brennstoff Dieselbrennstoff verwendet wird. Aufgrund des Druckes des Brennstoffs in dem Innenraum 10 wirkt auf den Fuß 12 eine Kraft in einer Richtung 14, die den Fuß 12 gegen das erste Ventilgehäuseteil 2 presst. Auf diese Weise wird zwischen dem ersten Ventilgehäuseteil 2 und dem Fuß 12 des Aktormoduls eine harte Hochdruckabdichtung ausgebildet, die ohne ein weiteres Dichtmittel auskommt.
  • Bei einer Betätigung des Aktors 11 erfolgt mittels des Kopfes 13 eine Beeinflussung des Druckes in einem Steuerraum 15, so dass eine Düsennadel 16 geöffnet oder geschlossen wird.
  • Der Kopf 13 des Aktormoduls bildet gemeinsam mit einer Kopplerhülse 17, einer Distanzplatte 18, einer Steuerraumhülse 19 und der Düsennadel 16 einen hydraulischen Koppler, der sowohl unterschiedliche Wärmeausdehnungen der einzelnen Bauteile ausgleichen kann als auch eine Übersetzung des Hubes des Aktors 11 in den Hub der Düsennadel 16 ermöglicht.
  • Damit das aus dem Aktor 11, dem Fuß 12 und dem Kopf 13 bestehende Aktormodul die Düsennadel 16 öffnen kann, ist bei der Ansteuerung des Aktors 11 in dem Steuerraum 15 eine negative Druckdifferenz zum umgebenden Innenraum 10 des Brennstoffeinspritzventils 1 erforderlich. Um zu verhindern, dass der Fuß 12 des Aktormoduls bei der Betätigung des Aktors 11 sich entgegen der Richtung 14 vom ersten Ventilgehäuseteil 2 abhebt, wodurch die Hochdruckabdichtung zwischen dem Fuß 12 und dem ersten Ventilgehäuseteil 2 geöffnet würde, ist eine Feder 20 vorgesehen, die zusammen mit dem hohen Innendruck im Innenraum 10 die Hochdruckabdichtung zwischen dem Fuß 12 und dem ersten Ventilgehäuseteil 2 aufrechterhält.
  • Der in dem Innenraum 10 vorgesehene Aktor 11 ist von Brennstoff umgeben, der einen hohen Druck hat. Um den Aktor 11 gegen den Brennstoff abzudichten, kann der Aktor 11 von einer Ummantelung umgeben sein. Die Zuführung der elektrischen Energie zum Betätigen des Aktors 11 wird nachfolgend anhand der Fig. 2 näher beschrieben.
  • Fig. 2 zeigt den in Fig. 1 mit II bezeichneten Ausschnitt des Brennstoffeinspritzventils 1. Sich entsprechende Elemente sind in dieser und in allen anderen Figuren mit übereinstimmenden Bezugszeichen versehen, wodurch sich eine wiederholende Beschreibung erübrigt.
  • Der Fuß 12 wird gegen die Fläche 25 des ersten Ventilgehäuseteils 2 zur Ausbildung der harten Hochdruckabdichtung zwischen dem Fuß 12 und dem ersten Ventilgehäuse 2 gepresst. In dem Innenraum 10 befindet sich der Brennstoff, der einen hohen Druck hat, z.B. aus dem Bereich von 1600 bar bis 2000 bar. Ein Raum 26 des ersten Ventilgehäuseteils 2 des Brennstoffeinspritzventils 1, der durch die Hochdruckabdichtung von dem Innenraum 10 getrennt ist, ist im Wesentlichen druckfrei, d.h. hat in etwa Atmosphärendruck. Hierzu ist der Raum 26 mittels einer Öffnung 27 des ersten Ventilgehäuseteils 2 mit der Außenseite des Brennstoffeinspritzventils 1 verbunden. In den Raum 26 sind außerdem zwei elektrische Leitungen (nicht dargestellt) geführt, die die elektrische Energie zum Betätigen des Aktors 11 in das Brennstoffeinspritzventil 1 hineinleiten. Die Leitungen können z.B. durch die Öffnungen 27 oder durch eine der Öffnung 27 entsprechende Öffnung in den Raum 26 geführt werden. Die eine Leitung ist mit einem ersten Draht 31 verbunden und die andere Leitung ist mit einem zweiten Draht 32 verbunden. Der erste Draht 31 erstreckt sich in den Innenraum 10 des ersten Ventilgehäuseteils 2 des Brennstoffeinspritzventils 1 und ist an einer Kontaktstelle 33 mit einem elektrischen Kontakt des Aktors 11 verbunden. Entsprechend ist auch der zweite Draht 32 in den Innenraum 10 geführt und an einer Kontaktstelle 34 mit einem elektrischen Kontakt des Aktors 11 verbunden. Insbesondere im Bereich des Innenraums 10 und an den Kontaktstellen 33 und 34 können die Drähte 31, 32 gegenüber dem in dem Innenraum 10 vorgesehenen Brennstoff elektrisch isoliert sein, z.B. durch eine Beschichtung aus isolierendem und brennstofffestem Lack. Die zum Betätigen des Aktors 11 zwischen den beiden Drähten 31, 32 anliegende Spannung kann z.B. 160 Volt bis 200 Volt betragen.
  • Der Fuß 12 weist eine erste Stufenbohrung 35 und eine zweite Stufenbohrung 36 auf. Dabei ist zumindest ein Abschnitt 37 der ersten Stufenbohrung 35 und ein Abschnitt 38 der zweiten Stufenbohrung 36 kegelförmig ausgebildet. Dadurch ist sowohl der Abschnitt 37 der ersten Stufenbohrung 35 als auch der Abschnitt 38 der zweiten Stufenbohrung 36 konisch ausgebildet, wobei die beiden Abschnitte 37 und 38 sich zum Raum 26 hin verjüngen.
  • Durch den Abschnitt 37 der ersten Stufenbohrung 35 ist eine kegelförmige Aussparung 39 in dem Fuß 12 ausgebildet. Entsprechend ist durch den Abschnitt 38 der zweiten Stufenbohrung 36 eine kegelförmige Aussparung 40 in dem Fuß 12 ausgebildet. Bei dem Fuß 12 handelt es sich um ein Bauteil, das auf der Seite des Innenraums 10 mit Brennstoff unter hohem Druck beaufschlagt ist, wobei es die kegelförmigen Aussparungen 39 und 40 aufweist. In die kegelförmigen Aussparungen 39 und 40 sind eine erste Kabeldurchführung 41 und eine zweite Kabeldurchführung 42 eingesetzt. Die erste Kabeldurchführung 41 ist nachfolgend anhand der Figuren 3 und 4 näher beschrieben. Eine alternative Ausführungsform der ersten Kabeldurchführung 41 ist anhand der Fig. 5 beschrieben. Die Ausführung der zweiten Kabeldurchführung 42 entspricht der der ersten Kabeldurchführung 41, so dass auf die diesbezügliche Beschreibung Bezug genommen werden kann.
  • Fig. 3 zeigt einen Kegelkörper 45 der ersten Kabeldurchführung 41. Der Kegelkörper 45 weist eine Außenseite 46 auf, deren Umfang von einer ersten Stirnseite 47 zu einer zweiten Stirnseite 48 des Kegelkörpers 45 hin kontinuierlich abnimmt. Dadurch ist die Außenseite 46 des Kegelkörpers 45 konisch ausgebildet, d.h. der Kegelkörper 45 ist kegelförmig ausgebildet. Der Kegelkörper 45 ist in die in der Fig. 2 dargestellte erste Stufenbohrung 35 im Bereich des ersten Abschnitts 37 eingesetzt, d.h. in die kegelförmige Aussparung 39 eingesetzt. Die Form der Außenseite 46 ist dabei an die Form der kegelförmigen Aussparung 39 angepasst, so dass sich zwischen der Außenseite 46 und dem Fuß 12 im Bereich der kegelförmigen Aussparung 39 eine Dichtung ergibt.
  • Der Kegelkörper 45 weist eine axiale Aussparung 50 auf. Die Aussparung 50 kann alternativ auch so ausgebildet sein, dass ihre Achse parallel versetzt zu der Achse 51 des Kegelkörpers 45 orientiert ist, so dass es sich um eine koaxiale Aussparung 50 handelt. In Abhängigkeit von dem jeweiligen Anwendungsfall ist es allerdings auch möglich, die Aussparung 50 so auszubilden, dass ihre Achse gegenüber der Achse 51 des Kegelkörpers 45 geneigt bzw. geneigt und versetzt orientiert ist.
  • In dem Ausführungsbeispiel des Kegelkörpers 45 ist die Aussparung 50 als Stufenbohrung ausgebildet. Dadurch weist die Aussparung 50 des Kegelkörpers 45 eine Stufe 52 auf. Außerdem ist an dem Ende des Kegelkörpers 45, das auf der Seite der ersten Stirnseite 47 liegt, ein Gewinde 53 in der als Bohrung ausgebildeten Aussparung 50 vorgesehen.
  • Die Fig. 4 zeigt ein Ausführungsbeispiel der erfindungsgemäßen Kabeldurchführung 41. Die erste Kabeldurchführung 41 umfasst den in der Fig. 3 dargestellten Kegelkörper 45 und einen in der Aussparung 50 vorgesehenen Haltekörper 55. Der Haltekörper 55 weist eine Durchgangsöffnung 56 auf, die zylinderförmig ausgebildet ist und deren Achse parallel zur Achse 51 des Kegelkörpers 45 ist bzw. mit dieser übereinstimmt. Der Haltekörper 55 kann beispielsweise aus Glas ausgebildet sein. Der erste Draht 31 erstreckt sich durch die Durchgangsöffnung 56, so dass er sowohl an der ersten Stirnseite 47 als auch an der zweiten Stirnseite 48 deutlich über den Kegelkörper 45 und den in den Kegelkörper 45 eingesetzten Haltekörper 55 hinausragt.
  • Die Kabeldurchführung 41 kann wie folgt hergestellt werden. In die Aussparung 50 des Kegelkörpers 45 wird der mit Glas ummantelte erste Draht 31 eingeführt, wobei die Glasummantelung einen Durchmesser hat, der kleiner als der der Aussparung 50 ist, wobei die Glasummantelung sich allerdings auf der ersten Stirnseite 47 und/oder auf der zweiten Stirnseite 48 weiter als in der Fig. 4 gezeigt an dem Draht 31 erstreckt. Dann werden der Kegelkörper 45, der Haltekörper 55 und der erste Draht 31, d.h. die gesamte erste Kabeldurchführung 41, über die Fließgrenze von Glas, z.B. auf 1000°C, erhitzt. Dabei wird das an der ersten Stirnseite 47 und/oder an der zweiten Stirnseite 48 überstehende Glas derart beaufschlagt, dass es in die Aussparung 50 hineingedrückt wird. Dadurch fließt das Glas auch in das Gewinde 53 und legt sich um die Stufe 52 des Kegelkörpers 45. Nach dem Abkühlen der ersten Kabeldurchführung 41 greift der erstarrte Haltekörper 55 in das Gewinde 53 ein. Außerdem stützt sich der erstarrte Haltekörper 55 an der Stufe 52 der Aussparung 50 des Kegelkörpers 45 ab. Im Hinblick auf eine Druckbeaufschlagung des Haltekörpers durch den Kegelkörper 45 im abgekühlten Zustand ist es von Vorteil, dass für den Kegelkörper 45 ein geeignet legierter Stahl verwendet wird, der eine Wärmeausdehnung aufweist, die zumindest etwas größer ist als die des aus Glas bestehenden Haltekörpers 55. Um im Übergangsbereich zwischen dem Draht 31 und dem Haltekörper 55 Spannungen in den Materialien zu vermeiden, ist das Material des ersten Drahtes 31 so gewählt, dass die Wärmeausdehnung der des Haltekörpers 55 in etwa entspricht.
  • Die erste Kabeldurchführung 41 ist wie in der Fig. 2 dargestellt in die kegelförmige Aussparung 39 des Fußes 12 eingesetzt. Der in dem Innenraum 10 vorhandene Brennstoff beaufschlagt daher die erste Kabeldurchführung 41 an der ersten Stirnseite 47 mit einer Kraft, die sich aus der Fläche der ersten Stirnseite 47 und dem Druck des Brennstoffes in dem Innenraum 10 ergibt. Somit wird die erste Kabeldurchführung 41 in Richtung zu dem zumindest näherungsweise drucklosen Raum 26 in die kegelförmige Aussparung 39 gepresst, so dass sich eine selbstverstärkende Dichtung zwischen dem Fuß 12 und der ersten Kabeldurchführung 41 an der kegelförmigen Aussparung 39 ergibt.
  • Der Brennstoffdruck wirkt auf der Seite der ersten Stirnseite 47 auch auf den Haltekörper 55 ein, so dass dieser ebenfalls in Richtung des Raumes 26 gepresst wird. Dabei stützt sich der Haltekörper 55 sowohl an der Stufe 52 als auch an dem Gewinde 53 des ersten Kegelkörpers 45 ab. Dabei kann das Gewinde 53 auch steigungslos, d.h. in Form von Rillen ausgebildet sein. Außerdem ist es möglich, dass das Gewinde 53 nutförmige Gewindegänge, d.h. Gewindegänge mit näherungsweise rechteckigem Querschnitt aufweist, oder dass ein oder mehrere ringförmige Nuten in der Aussparung 50 vorgesehen sind. Außerdem ist es möglich, dass nur eines der beschriebenen Mittel zum Abstützen des Haltekörpers 55 in der Aussparung 50 des Kegelkörpers 45 vorgesehen ist, speziell kann nur das Gewinde 53 oder auch nur die Stufe 52 in der Aussparung 50 des Kegelkörpers 45 vorgesehen sein.
  • Außerdem kann durch den Brennstoffdruck im Innenraum 10 auch eine Beaufschlagung des ersten Drahtes 31 erfolgen, die den Draht 31 mit einer Kraft in Richtung des Raumes 26 beaufschlagt. Hierbei wird die zwischen dem Draht 31 und dem Haltekörper 55 im Bereich der Durchgangsöffnung 56 bestehende Reibungskraft zum Halten des ersten Drahtes 31 in der Durchgangsöffnung 56 verwendet.
  • Die erste Kabeldurchführung 41 ist in der kegelförmigen Aussparung 39 durch Einpressen, Einkleben oder dgl. befestigt. Alternativ kann die erste Kabeldurchführung 41 in der kegelförmigen Aussparung 39 eingelötet sein, wobei das Löten bei niedriger Temperatur erfolgt, um die Eigenschaften des Materials des Fußes 12 zumindest im Wesentlichen nicht zu verändern, insbesondere um die Härte des Fußes 12 zu erhalten. Der Durchmesser des Kegelkörpers 45 an der ersten Stirnseite 47 ist dabei vorzugsweise so gewählt, dass auch bei möglichen Toleranzen der kegelförmigen Aussparung 39 und des Kegelkörpers 45 der Kegelkörper 45 in dem Bereich 57 der Außenseite 46 bei der ersten Stirnseite 47 an der kegelförmigen Aussparung 39 anliegt. Das bedeutet, dass trotz Toleranzen der Kegelkörper 45 immer auf der Druckseite an der kegelförmigen Aussparung 39 anliegt. Dadurch entsteht eine zusätzliche vom Druck des Brennstoffes in dem Innenraum 10 abhängige radiale Dichtkraft.
  • Um die Oberflächenrauigkeit an der Außenseite 46 des Kegelkörpers 45 und/oder an dem Abschnitt 37 der kegelförmigen Aussparung 39 auszugleichen, kann der Kegelkörper 45 mit einer geeigneten weichen Metallschicht, z.B. mit Nickel, beschichtet sein. Dadurch wird die Dichtwirkung weiter verbessert.
  • Fig. 5 zeigt ein alternatives Ausführungsbeispiel einer Kabeldurchführung 41. Bei diesem alternativen Ausführungsbeispiel ist die Aussparung 50 des Kegelkörpers 45 ebenfalls konisch ausgebildet, wobei der Durchmesser der Aussparung 50 von der ersten Stirnseite 47 zu der zweiten Stirnseite 48 hin abnimmt. Außerdem ist ein Gewinde 53 vorgesehen. Durch die konische Ausbildung der Aussparung 50 wird eine zusätzliche Haltekraft zum Halten des Haltekörpers 55 in dem Kegelkörper 45 bei Beaufschlagung des Haltekörpers 55 auf der ersten Stirnseite 47 durch den Brennstoffdruck im Innenraum 10 erzeugt. Außerdem weist der erste Draht 31 eine Stelle 60 und eine Stelle 61 auf, an denen eine Änderung der Form und der Größe der Querschnittsfläche des ersten Drahtes 31 vorgesehen ist. Bei dem in der Fig. 5 dargestellten alternativen Ausführungsbeispiel ist der Querschnitt des ersten Drahtes an den Stellen 60, 61 vergrößert, d.h. an den Stellen 60, 61 sind Stauchungen des Drahtes 31 vorgesehen. Alternativ ist es auch möglich, dass an den Stellen 60, 61 Quetschungen vorgesehen sind, oder dass der erste Draht 31 bandförmig ausgebildet ist, wobei an den Stellen 60, 61 jeweils eine Verdrehung des ersten Drahtes 31 um die Achse 51 um einen Winkel von z.B. 90° auftritt. Es ist auch eine Kombination der genannten Möglichkeiten denkbar.
  • Durch den aus Glas ausgebildeten Haltekörper 55 ist ein Isolator gebildet, der auch bei den zum Ansteuern des Aktors erforderlichen Spannungen von z.B. 160 Volt bis 200 Volt eine sichere Isolierung gewährleistet.
  • Die beschriebene Kabeldurchführung 41 kann auch für andere Anordnungen verwendet werden, indem eine vorzugsweise präzise konische Bohrung vorgesehen wird. Die erfindungsgemäße Kabeldurchführung hat dabei den Vorteil, dass sie standardisierbar, kostengünstig, einfach montierbar, Bauraum sparend, lagerhaltig bevorratbar, selbstverstärkend und zuverlässig ist.

Claims (9)

  1. Brennstoffsystemteil, insbesondere Brennstoffeinspritzventil (1), mit zumindest einer Kabeldurchführung (41, 42) mit einem zumindest abschnittsweise kegelförmigen Kegelkörper (45, 46), zumindest einem mit dem Kegelkörper (45, 46) verbundenen Haltekörper (55), der zumindest eine Durchgangsöffnung (56) aufweist, wobei die Verbindung zwischen dem Kegelkörper (45) und dem Haltekörper (55) abgedichtet ausgebildet ist, wobei zumindest ein elektrisch leitender Draht (31, 32) vorgesehen ist, der durch die Durchgangsöffnung (56) geführt ist, und dass der Draht (31, 32) in der Durchgangsöffnung (56) mit dem Haltekörper (55) so verbunden ist, dass der Draht (31, 32) in der Durchgangsöffnung (56) gehalten ist und ein Abdichtung der Durchgangsöffnung (56) erreicht ist, dadurch gekennzeichnet, dass der Haltekörper (55) aus Glas ausgebildet ist, dass der Draht (31, 32) in den Haltekörper (55) eingeschmolzen ist und mit zumindest einem Bauteil (12), das mit Brennstoff unter hohem Druck beaufschlagbar ist, wobei das Bauteil (12) eine kegelförmige Aussparung (39, 40) aufweist, in die die Kabeldurchführung (41, 42) eingesetzt ist, und wobei der Kegelkörper (45) der Kabeldurchführung (41, 42) mit dem Bauteil (12) an der kegelförmigen Aussparung (39, 40) eine Dichtung bildet:
  2. Brennstoffsystemteil nach Anspruch 1, dadurch gekennzeichnet, dass der Kegelkörper (45) zumindest eine zumindest im Wesentlichen axiale oder koaxiale Aussparung (50) aufweist, in der der Haltekörper (55) angeordnet ist.
  3. Brennstoffsystemteil nach Anspruch 2, dadurch gekennzeichnet, dass die Aussparung (50) des Kegelkörpers (45) zumindest eine Stufe (52) aufweist, an der der Haltekörper (55) abgestützt ist.
  4. Brennstoffsystemteil nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass in der Aussparung (50) des Kegelkörpers (45) zumindest abschnittsweise, insbesondere an einem Ende der Aussparung (50), ein Gewinde (53) vorgesehen ist, in das der Haltekörper (55) eingreift.
  5. Brennstoffsystemteil nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die Aussparung (50) des Kegelkörpers (45) zumindest im Wesentlichen kegelförmig ausgebildet ist und dass der Haltekörper (55) zumindest im Wesentlichen kegelförmig ausgebildet und in die kegelförmige Aussparung (50) des Kegelkörpers (45) eingesetzt ist, wobei zwischen dem Haltekörper (55) und dem Kegelkörper (45) an der kegelförmigen Aussparung (50) eine Dichtung ausgebildet ist.
  6. Brennstoffsystemteil nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Kegelkörper (45) bei den zum Einschmelzen des Drahtes (31, 32) in den Haltekörper (55) erforderlichen Temperaturänderungen zumindest ein gleich großes Ausdehnungsverhalten wie der Haltekörper (55) hat.
  7. Brennstoffsystemteil nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Kegelkörper (45) aus technischer Keramik ausgebildet ist.
  8. Brennstoffsystemteil nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass im Bereich der Durchgangsöffnung (56) des Haltekörpers (55) zur Erzeugung einer formschlüssigen Verbindung zwischen dem Draht (31, 32) und dem Haltekörper (55) zumindest an einer Stelle (60, 61) eine Änderung der Form und/oder der Größe der Querschnittsfläche des Drahtes (31, 32) vorgesehen ist.
  9. Brennstoffsystemteil nach Anspruch 1, dadurch gekennzeichnet, dass das Bauteil (12) aus einem gehärteten Stahl ausgebildet ist.
EP04802770.0A 2004-01-30 2004-11-19 Brennstoffsystemteil mit einer kabeldurchführung Not-in-force EP1714024B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410004706 DE102004004706A1 (de) 2004-01-30 2004-01-30 Kabeldurchführung und Brennstoffsystemteil mit einer Kabeldurchführung
PCT/DE2004/002557 WO2005073547A1 (de) 2004-01-30 2004-11-19 Kabeldurchführung und brennstoffsystemteil mit einer kabeldurchführung

Publications (2)

Publication Number Publication Date
EP1714024A1 EP1714024A1 (de) 2006-10-25
EP1714024B1 true EP1714024B1 (de) 2016-05-11

Family

ID=34801271

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04802770.0A Not-in-force EP1714024B1 (de) 2004-01-30 2004-11-19 Brennstoffsystemteil mit einer kabeldurchführung

Country Status (5)

Country Link
EP (1) EP1714024B1 (de)
JP (1) JP4320035B2 (de)
CN (1) CN100532822C (de)
DE (1) DE102004004706A1 (de)
WO (1) WO2005073547A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005039550A1 (de) * 2005-08-22 2007-03-01 Robert Bosch Gmbh Anordnung mit einem Piezoaktor und ein Verfahren zu dessen Herstellung
DE102005039567A1 (de) * 2005-08-22 2007-03-01 Robert Bosch Gmbh Anordnung mit einem Piezoaktor und ein Verfahren zu dessen Herstellung
DE102005040198A1 (de) * 2005-08-25 2007-03-01 Robert Bosch Gmbh Anordnung mit einem Piezoaktor
DE102005045230A1 (de) * 2005-09-22 2007-03-29 Robert Bosch Gmbh Anordnung mit einem Piezoaktor und ein Verfahren zu dessen Herstellung
JP4569558B2 (ja) * 2006-03-06 2010-10-27 株式会社デンソー インジェクタ
JP4506709B2 (ja) * 2006-04-05 2010-07-21 株式会社デンソー インジェクタ
DE102006018916A1 (de) * 2006-04-24 2007-10-25 Siemens Ag Metallischer Körper
DE102007008618A1 (de) 2007-02-22 2008-08-28 Robert Bosch Gmbh Piezoaktormodul mit einer Kabeldurchführung
DE102007027665A1 (de) 2007-06-15 2008-12-18 Robert Bosch Gmbh Piezoaktormodul mit Kabeldurchführungen und ein Verfahren zu dessen Herstellung
DE102008003838A1 (de) * 2008-01-10 2009-07-16 Robert Bosch Gmbh Piezoaktormodul und Piezoinjektor sowie ein Verfahren zur Herstellung eines Piezoaktormoduls
DE102008035087B4 (de) * 2008-07-28 2015-02-12 Continental Automotive Gmbh Einspritzventil
JP4983775B2 (ja) 2008-11-21 2012-07-25 株式会社デンソー インジェクタ
FI123386B (fi) * 2010-12-10 2013-03-28 Waertsilae Finland Oy Polttoaineen syöttölaite, mäntämoottori ja menetelmä mäntämoottorin käyttämiseksi
CN103928887A (zh) * 2013-01-16 2014-07-16 珠海格力电器股份有限公司 一种穿引装置及使用其的空调器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4296275A (en) * 1980-06-09 1981-10-20 Emerson Electric Co. Hermetic refrigeration terminal
US5035637A (en) * 1990-05-04 1991-07-30 Navistar International Transportation Corp. Engine valve cover gasket with electrical bridge
US5641307A (en) * 1994-12-01 1997-06-24 Gerrans; Al Marine electrical connector
DE19833863A1 (de) * 1998-07-28 2000-02-03 Bosch Gmbh Robert Kabelanschluß für Meßfühler

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3739198C1 (de) * 1987-11-19 1989-05-03 Bosch Gmbh Robert Kraftstoffeinspritzpumpe fuer Brennkraftmaschinen
IT1219397B (it) * 1988-06-23 1990-05-11 Weber Srl Valvola per la dosatura e la polverizzazione di carburante ad azionamento elettromagnetico provvista di doppia serie di fori laterali di ingresso del carburante
DE4005455A1 (de) 1989-02-28 1990-08-30 Volkswagen Ag Zumessventil, insbesondere kraftstoff-einspritzventil fuer eine brennkraftmaschine
US6279842B1 (en) * 2000-02-29 2001-08-28 Rodi Power Systems, Inc. Magnetostrictively actuated fuel injector
EP1270926B1 (de) * 2000-03-08 2007-08-01 Hitachi, Ltd. Elektromagnetisch betriebenes brennstoffeinspritzventil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4296275A (en) * 1980-06-09 1981-10-20 Emerson Electric Co. Hermetic refrigeration terminal
US5035637A (en) * 1990-05-04 1991-07-30 Navistar International Transportation Corp. Engine valve cover gasket with electrical bridge
US5641307A (en) * 1994-12-01 1997-06-24 Gerrans; Al Marine electrical connector
DE19833863A1 (de) * 1998-07-28 2000-02-03 Bosch Gmbh Robert Kabelanschluß für Meßfühler

Also Published As

Publication number Publication date
JP4320035B2 (ja) 2009-08-26
CN100532822C (zh) 2009-08-26
DE102004004706A1 (de) 2005-08-18
JP2007500302A (ja) 2007-01-11
WO2005073547A1 (de) 2005-08-11
EP1714024A1 (de) 2006-10-25
CN1906398A (zh) 2007-01-31

Similar Documents

Publication Publication Date Title
EP1906464B1 (de) Piezoaktor mit einer Ummantelung, zur Anordnung in einem Piezoinjektor
EP1714024B1 (de) Brennstoffsystemteil mit einer kabeldurchführung
EP1920476B1 (de) Anordnung mit einem piezoaktor
DE102006022997A1 (de) Piezoaktor
WO2012130538A1 (de) Ventil zum zumessen eines mediums
EP3014105B1 (de) Kraftstoffinjektor
EP1664525B1 (de) Dosiervorrichtung
EP1962351A1 (de) Piezoaktormodul mit einer Kabeldurchführung
DE102005045229A1 (de) Anordnung mit einem Piezoaktor und ein Verfahren zu dessen Herstellung
DE102006018032A1 (de) Aktormodul
EP1789674B1 (de) Hubvorrichtung und einspritzventil
EP1820960B1 (de) Brennstoffeinspritzventil
EP2013923B1 (de) Piezoaktor mit einer ummantelung
DE102005039548A1 (de) Piezoaktor mit einer Steckverbindung
EP1919004B1 (de) Piezoaktormodul oder Piezoaktor mit einem ummantelnden Schutzschichtsystem
DE102008044164A1 (de) Aktormodul
DE102005039558B4 (de) Anordnung mit einem Piezoaktor und ein Verfahren zu dessen Herstellung
DE10004313A1 (de) Dieselkraftstoff-Einspritzdüse
EP2034532A1 (de) Piezoaktormodul mit einem Schutzschichtsystem und ein Verfahren zu dessen Herstellung
DE10350062A1 (de) Aktormodul und Verfahren zu dessen Herstellung
DE10356961A1 (de) Aktormodul
DE102015213003A1 (de) Piezoaktormodul und Piezoinjektor
DE102005005552A1 (de) Brennstoffeinspritzventil
EP2317578A2 (de) Piezoelektrischer Aktor
DE102007012921A1 (de) Kabeldurchführungen für ein Piezoaktormodul

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060830

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20081031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502004015196

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F02M0051000000

Ipc: F02M0063000000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F02M 51/00 20060101ALI20151208BHEP

Ipc: F02M 61/16 20060101ALI20151208BHEP

Ipc: F02M 47/02 20060101ALI20151208BHEP

Ipc: F02M 63/00 20060101AFI20151208BHEP

INTG Intention to grant announced

Effective date: 20160111

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 798881

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015196

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160812

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160912

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015196

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161119

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161119

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 798881

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161119

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20041119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181127

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200124

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004015196

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210601